
Espresso
Two-level Boolean minimization

University of Verona
Dep. Computer Science

Italy

Luigi Di Guglielmo
Davide Bresolin

Tiziano Villa

Agenda

• Introduction

• espresso – two-level Boolean minimization

• espresso - Input file

– description format

– keywords

• espresso - Options

• Exercises

29/10/2014 2Design Automation of Embedded Systems

Introduction

• A Boolean function can be described providing:
– ON-set

• OFF-set is the complement of the ON-set.

• The DC-set is empty

– ON-set and DC-set
• OFF-set is the complement of the union of ON-set and DC-set

– ON-set and OFF-set
• DC-set is the complement of the union of ON-set and OFF-set

• A Boolean function is completely described by
providing its ON-set, OFF-set and DC-set.

29/10/2014 Design Automation of Embedded Systems 3

espresso – U.C. Berkeley

• espresso is a tool developed by the CAD group
at U.C. Berkeley (software developer: Richard
L. Rudell)

• Current release is the #2.3

– Release date 01/31/1988

• espresso is a program for two-level Boolean
minimization

29/10/2014 4Design Automation of Embedded Systems

espresso – Boolean Minimization

• espresso takes as input:

– A sum-of-product (SOP) representation of a two-
valued (or multi-valued) Boolean function

• and produces:

– a minimal equivalent SOP representation

29/10/2014 5Design Automation of Embedded Systems

How to use espresso

29/10/2014 6

Function
specification

read
Optimization /

Verification

Formats:
1. equations
2. matrix
3. kiss

1. Function minimization
2. Equivalence checking

Design Automation of Embedded Systems

espresso – Basic usage

$>espresso [options] [in_file] [> out_file]

• Reads the in_file provided

– Or the standard input if no file is specified

• Writes the minimized results in out_file

– Or to the standard output if no redirection to file
is specified

29/10/2014 7Design Automation of Embedded Systems

Example - Adder

29/10/2014 8Design Automation of Embedded Systems

cinbinaincinbinaincinbinaincinbinaincout

cinbinaincinbinaincinbinaincinbinainsum





ain bin cin sum cout

0 0 1 1 0

0 1 0 1 0

1 0 0 1 0

1 1 1 1 1

1 1 0 0 1

0 1 1 0 1

1 0 1 0 1

espresso – Input file format (I)

• espresso accepts specifications described as a
character matrix with keywords embedded
– keywords specify:

• the size of the matrix

• the format of the function

– comments:
• allowed using #

– whitespaces:
• Blanks, tabs … are ignored

29/10/2014 9Design Automation of Embedded Systems

espresso – Input file format (II)

• Semantics of input part

– The format of the function

• each position in the input matrix corresponds to an
input variable where:

– “0” implies the corresponding input literal appears
complemented in the product term

– “1” implies the input literal appears uncomplemented in the
product term

– “-” implies the input literal does not appear in the product
term

29/10/2014 10Design Automation of Embedded Systems

espresso – Input file format (III)

• Semantics of output part
– Specifying the format of the function

• type f:
– for each output, a 1 means this product term belongs to the ON-

set, and 0 or – means this product term has no meaning for the
value of this function

• type fd:
– for each output, a 1 means this product term belongs to the ON-

set, – implies this product term belongs to the DC-set and a 0
means this product term has no meaning for the value of this
function

– it is the default type

29/10/2014 11Design Automation of Embedded Systems

espresso – Input file format (IV)

• type fr:
– for each output, a 1 means this product term belongs to the

ON-set, a 0 means this product term belongs to the OFF-set,
and a – means this product term has no meaning for the value
of this function

• type fdr:
– for each output, a 1 means this product term belongs to the

ON-set, a 0 means this product term belongs to the OFF-set, a
– means this product term belongs to the DC-set, and a ~
implies this product term has no meaning for the value of this
function

29/10/2014 12Design Automation of Embedded Systems

espresso – Input file keywords (I)

• The following keywords are recognized by espresso:
 .i [d]

specifies the number “d” of input variables

 .o [d]
specifies the number “d” of output variables

 .type [s]
specifies the logical interpretation of the output part of the

character matrix
 this keyword must come before any product term
 [s] is one of “f” “fd” “fr” “fdr”

 .e
optionally marks the end of the description

29/10/2014 13Design Automation of Embedded Systems

espresso – Input file keywords (II)

29/10/2014 14

num of input vars
e.g., ain, bin, cin
.i 3
num of output functions
e.g., sum, cout
.o 2
.type fr
0 0 1 1 0
0 1 0 1 0
1 0 0 1 0
1 1 1 1 1
0 1 1 0 1
1 0 1 0 1
1 1 0 0 1
.e

Design Automation of Embedded Systems

espresso – Input file keywords (III)

.ilb [s1] [s2] .. [sn]

gives the names of the binary-valued variables

must come after .i and .o

as many tokens as input variables

.ob [s1] [s2] .. [sn]

gives the names of the output function

must come after .i and .o

as many tokens as output variables

29/10/2014 15Design Automation of Embedded Systems

espresso – Input file keywords (IV)

29/10/2014 16Design Automation of Embedded Systems

.i 3

.o 2

.ilb ain bin cin

.ob sum cout

.type fr
0 0 1 1 0
0 1 0 1 0
1 0 0 1 0
1 1 1 1 1
0 1 1 0 1
1 0 1 0 1
1 1 0 0 1
.e

espresso – Input file keywords (V)

.phase [b1] [b2] .. [bn]

specifies the phase of each output
positive (1) or negative (0)

must come after .i and .o

as many tokens as output variables

.p [d];

specifies the number [d] of products

optional

29/10/2014 17Design Automation of Embedded Systems

espresso – Input file keywords (VI)

.symbolic [s0]..[sN] ; [t0] .. [tM] ;
the binary variables named [s0] thru [sN] must be

considered as a single multiple-valued variable
 variable with 2N parts corresponding to the decodes of the

binary-valued variables

[s0] is the most significant bit, [sN] is the least significant bit

 [t0] .. [tm] provide the labels for each decode of [s0] thru
[sN]

.mv [num_var] [num_bin_var] [d1] [dN]
specifies the number num_var of variables, the number

num_bin_var of binary variables and the size of each of the
multiple-valued variables (d1 through dN)

29/10/2014 18Design Automation of Embedded Systems

espresso – Input file keywords (VII)

29/10/2014 19

.i 4

.o 3

.ilb ain<1> ain<0> bin<1> bin<0>

.ob sum<1> sum<0> cout

.symbolic ain<1> ain<0>

.symbolic bin<1> bin<0>

.symbolic sum<1> sum<0>

0 0 0 0 0 0 0
0 0 0 1 0 0 1
0 0 1 0 0 1 0
0 0 1 1 0 1 1
0 1 0 0 0 0 1
…

Design Automation of Embedded Systems

…

0 1 0 1 0 1 0
0 1 1 0 0 1 1
0 1 1 1 1 0 0
1 0 0 0 0 1 0
1 0 0 1 0 1 1
1 0 1 0 1 0 0
1 0 1 1 1 0 1
1 1 0 0 0 1 1
1 1 0 1 1 0 0
1 1 1 0 1 0 1
1 1 1 1 1 1 0
.e

espresso – Options (I)

• Interesting options for running espresso are:
-Dcheck

checks that ON-set, OFF-set, DC-set are disjoint

-Dexact
performs exact minimization (potentially expensive)

-Dmany
reads and minimizes all PLA defined into the input file

-Dopo
performs output phase optimization, i.e., reduce the

number of terms needed to implement the function or its
complement

29/10/2014 20Design Automation of Embedded Systems

espresso – Options (II)

-Dverify
checks for Boolean equivalence of two functions
requires two filenames from command line

-Dequiv
identifies output variables which are equivalent

-Dso
minimizes each function one at time as a single-output

function

-epos
swaps the ON-set and OFF-set of the function after reading

the function
useful for minimizing the OFF-set of a function

29/10/2014 21Design Automation of Embedded Systems

espresso – Options (II)

-v ‘’
verbose debugging details
‘’ activates all details

-d
enables debugging

-o [type]
selects the output format
type can be:

 f: only On-set
 fd: ON-set and DC-set
 fr: ON-set and OFF-set
 fdr: ON-set, OFF-set and DC-set

29/10/2014 22Design Automation of Embedded Systems

U.C. Berkeley – Official release

• Official espresso release is available at
http://embedded.eecs.berkeley.edu/pubs/do
wnloads/espresso/index.htm

– Source code

– Examples

– Man pages for espresso

29/10/2014 23Design Automation of Embedded Systems

http://embedded.eecs.berkeley.edu/pubs/downloads/espresso/index.htm

Lab configuration for Espresso

• The latest version of the tool is installed:
– $> espresso --help

• Man pages are available
– http://bear.cwru.edu/eecs_cad/man_octtools_espresso.html

– http://user.engineering.uiowa.edu/~switchin/OldSwitching/espre
sso.5.html

29/10/2014 24Design Automation of Embedded Systems

http://bear.cwru.edu/eecs_cad/man_octtools_espresso.html
http://user.engineering.uiowa.edu/~switchin/OldSwitching/espresso.5.html

Man pages

• PLA format manual (espresso.5)

– see examples

• #1, a two bit adder

• #2, multi-valued function

• #3, multi-valued function setup for kiss-style
minimization

• espresso usage manual (espresso.1)

– List options by espresso -h

29/10/2014 25Design Automation of Embedded Systems

Exercise 1 (I)
• The Indian society of Natchez, who lived in North America, was

divided into four groups: Suns, Nobles, Honorables, Stinkards.
In this society, marriages were allowed according to specific rules,
and the corresponding progeny belongs to a particular group as
described in the following table:

29/10/2014 26

Mother Father Progeny

Sun Stinkard Sun

Noble Stinkard Noble

Honorable Stinkard Honorable

Stinkard Sun Noble

Stinkard Noble Honorable

Stinkard Honorable Stinkard

Stinkard Stinkard Stinkard

• Other combinations are not allowed.

Design Automation of Embedded Systems

Exercise 1 (II)

1. Represent the condition that characterizes
the progeny of type Stinkard using a multi-
valued single product.

2. Represent, using the minimum number of
multi-valued products, the illegal marriages.

3. Represent using the minimum number of
multi-valued products the illegal marriages
and progeny group.

29/10/2014 27Design Automation of Embedded Systems

Exercise 2 (I)

• Formulate the minimum map coloring
problem (coloring a map with the minimum
number of colors such that adjacent regions
don’t have the same color) as a logic
minimization problem.

• Apply your formulation to the following map
and use espresso to find a minimum coloring
for the map.

29/10/2014 28Design Automation of Embedded Systems

Exercise 2 (II)

29/10/2014 29Design Automation of Embedded Systems

