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language of propositional logic
alphabet:
(i) proposition symbols : po, p1, P2, - - -,
(i) connectives : A, v, =, 1, &, 1,

(ifi) auxiliary symbols : (, ).

AT={po, P1, P2 - - - /}U{J—}'

A and

v or

— if ..., then ...
-1 not

o iff

1 falsity

The set PROP of propositions is the smallest set X with
the properties
(1) pi eX(ieN), LeX,

(i) d,peX= (dAY), (PVY), (¢ Y), (PYP)eX,
(iii)peX =(~d)eX.

PROP is well defined? (PROP %2 ?)



The set PROP of propositions is the
smallest set X with the properties

-—1 ¢ PROP | (1) pi eX(ieN), LeX,
(i) d,WeX= (dAY), (dVY), (W),
(PpoP)eX,

(ifi)peX =(p)eX.
Suppose -—1 € PROP.

Y = PROP - {-— 1} also satisfies (i), (ii) and
(iii).

.J_,pi eY.

Bo,ueY=0,0cPROP =(doW)cPROP.
(Ppog)z —L = (poyP) e Y.

B oeY=9pcPROP =(-¢p)ePROP.
(~P)z~—L = (-d)e Y.

B PRORP is not the smallest set satisfying (i), (ii)
and (ii)!!'! impossible




Theorem
Let h: N X A = A and ceA.

There exist one and only one function
f:N —At.c.:

1. f(0)=cC

2. VneN, f(n+1)=h(n,f(n))

the proof is difficult

‘De{/\,v,—>}'

Theorem 1.1.6 (Definition by Recursion) Let mappings Hp : A* — A
and H- : A — A be given and let H,; be a mapping from the set of atoms
into A, then there exists exactly one mapping F': PROP — A such that

= H,:(p) for ¢ atomic,
= Ho(F(p), F(1)),

)
plhp)) =




Theorem 1.1.3 (Induction Principle) exercise

Let A be a property, then A(¢) holds for all $ € PROP if
(i) A(pi), for all i,and A(L),

),
(i) A(d), A() = A((d—Y)),
(i) A(®), A(p) = A( (1Y),
(iv) A(®),

(

Iv) A(Y) = A((PvY)),
V) A(®) = A( (=9)).



N for atomic ¢

~N




Examples.

T((p1 — (L V(—p3)));

/

T (—=(=(p1 A (=p1))))




Examples. T((p1 — (L \/(ﬂpg))); T(_'(ﬁ(pl A (ﬂ]h))))

(p1 — (L V (=ps3))) o (=(=(p1 A (=p1))))
(LV (—ps)) s (=(p1 A (—=p1)))
. (—ps) (p1 A (—p1))
1
(—p1)
D3 P1

P1




SEMANTICS

truth table

V(P A ) = min(v(e), v(P)),
V(¢ v ) = max(v(), v(p)),

A

0

1

0

0

0

1

0

1

Definition 1
A mapping v : PROP — {0, 1} is a valuation if

V(¢—)=0 < v(¢)=1 and v(y)=0,

V(¢ep)=1 & v(d)=v(Y),

vV(7p) =1 - v(0)
v(L) =0.

v(o v ) =1 & v(¢p)=1 or v(y)=1
V(o Y)=1 & v($)=0 or v()=1,

V(ooyP)=1 & v(p)=v(y),
V(=9) = 1 ¢ V(9)=0
v(L) =0.

Definition 2
A mapping v : PROP - {0, 1} is a valuation if
v(d A P) =1 & v(¢)=1 and v(y)=1

the two
definitions are
equivalent



Theorem

v: AT— {0, 1} s.t. v(L) = 0 (assignment for atoms)
=

there exists a unique valuation [-],:PROP—{0,1}
such that [®], = v(¢) for each ¢eAT

Lemma If v, w are two assignments for atoms s.t. for all p;
occurring in ¢, v(pi) = w(pi), then [®]y = [D]w .




Definition
= ¢ is a tautology if [p], = 1 for all valuations v,
= = ¢ stands for ‘¢ is a tautology’,
= |et I be a set of propositions,

[ = ¢ iff for all v: ([Q]v =1 for all pel)=[p], =1.

SUBSTITUTION

f

QlY/pl = {LIJifCP=P
- if ¢ =/=p if @ atomic

(P10 P2)[W/p] = (P1[W/p] T P2[Y/p])
(=) [W/p] = (=d[W/p])

Substitution Theorem

=|f = d1 < Po, then = Y[P1/p] < Y[Po/p], where p is an atom.

=[P1 < ¢2]v = [Y[P1/p] « W[P2/p]lv
(1 «P2) = (Y[P1/pleoW[d2/p])




tautologies

= (Pvy)voeodv(Pvo) (PAP)AC=DA(PAO)
associativity

- dvyeeyPvo PAY=YPAD
commutativity

=PV (PAro)=(dVvy)a(dvo) PA(Wvo)e (@AY v(Pao)

distributivity
- (¢ v P) o =p A (¢ A P) o p vy
De Morgan’s laws
= Pvpod PrP=P
idempotency
) —|—|q) > (I)

double negation law

De Morgan’s law: [-(dvy)]=1=[pvy]=0e[0]=[p]=0=[-¢]=[-Y]=1 [-) A -] = 1.
So [~(d v Y)] = [P A =] for all valuations, i.e = (P v P) & =d A .




(o) (@2 P)AP—o)
=@ = ) < (me v )
=V P« (mp = Y)

=@ v P o a(m@ A Y)
P AP & 2(m@ v )
=@ < (p — 1),

FL < @ A Q.

~ ¢ PROPXPROP : & = Y iff = & < .

exercise = is an equivalence relation on PROP



Natural Deduction

- E q—L






E an elimination rule

p PP
(0

— an introduction rule
] w

-4—a tree labelled with formulas

e
T e




[ <+— Hypotheses

Proof tree
Deduction {
Derivation

| 1/2 <«—— conclusion

-

i
Y

o
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The Elimination Rule
for Implication

e =Y




The Introduction Rule
for Implication




The Introduction Rule




The Introduction Rule

[p] (O [o] B




The Introduction Rule




The Introduction Rule




The Introduction Rule

L] Y L] B




Introduction rules Elimination rules

4 N\ )
© Y © NP NP
(N) AT (NE) L AE A
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Derivations »

D
P ¢ ¢
Wy

I°4

new derivations
obtained by:
) unary rule

i) binary rule




w — lenotes the set

Derivation with D (possibly empty)
hypothesis of all the leaves
(D labelled with the

formula y

[Qp]—bdenotes the set

D of all the leaves labelled with

the formula
P marked
g "cancelled" / "discharged"

A derivation with
hypothesis 1 cancelled




The set of derivations is the smallest set X such that

(1) The one element tree ¢ belongs to X for all p € PROP. J

D D’
D D
(2N) If € X, then ¢ o €X.
R, :
© NP
D D
D
If c X, then ©AY,pANY €X.
p N

© (0




Y
(2—) If D € X, then

W

D
(2L)If € X,then 1L €X.
J_ S

¥

]

v D

If D € X, then c X.
1

J_ —_—

Y



there is a derivation with conc

(uncancelled) hypot

usion @ and with all

neses in I

Lz

there is a derivation

with conclusion ¢ and
with all hypotheses
cancelled



[ ifpel

[, TN'FY=Tul oAy
[FpopAaP=T+—@andl+—yY
[vpopHFY=TFHE-Y

-, lMN+~e->PY=Tul ~yY
[ 1L =T+@

[u{—-p}- L=+






] |
Y — @

p — (Y — @)






Y —0

>_[2

o)
o) = (p —
(¢ —

o))
(¢ —

o) —

((p —

) —

(¢ —

>13



Soundness

[P =1 E=0o¢.




Towards Soundness

Notation:

M, Ms ol
¢ T, {¢}

=p20&['=p=1T,1"

==, "=}




I, ¢

= 0= [

¢—0

I,0FO
Vv. {([T'h=1&[¢].=1)=[c]=1}

Wv. {Nor([T}=1s [0},=1) ok [],=1}

Vv. (([T]y =1 ORE]V=O) OR [O]y=1}

Y. {[The1 o ([§=0 or [0}=1)}
9. {[The1 o8 (9—h=1)}

=

Vv. {I'l=1=[¢—0c]=1}

—

I'=¢—0




Soundness

[0 =T .

Notation: hpD is the
set of uncancelled

hypoteses of D

We prove, by induction on the lenght of
derivations, that

for each derivationD and [, with hpDcl
¥

we have [ E @




Basis:|D =¢

@=¢=>¢EF=F=¢|




Inductive cases

D D’
A D"=) © (70,
o N’
hp@ug I‘W
Inductive Hypothesis (IH)
—
hpD =¢ & hpD' =o'
—
hp2 u hpD' Epap’
—

[’N =§0A€0,




D

2: A Eq =1 N\ w
¥
hpD'c I
Inductive Hypothesis (IH)
—
hpD Epay

=

3: A E2| as the previous one




]
D
0l

p — P

- J

hpD'c I

Inductive Hypothesis (IH)
—

hpD =y
—

hpD -{p} Fp—y

=> (since hpD' = hpD -{p})
1" Ep—y




4. —F "= | © O — w

hp@"g [w

Inductive Hypothesis (IH)
=

hpD E¢p & hpD' =gy
—

hp2 u hpD' =y

—

F’I =§0/\§0’




4: RAA - o)
D
D=
1
\_ SO J
hpD'c I

Inductive Hypothesis (IH)
—

hp? =
—
hpD -{~¢} =p

=> (since hpD' = hpD -{—¢})
"=




An application ofsoundnessl [ - (I) = [ (I)

(pvo)—0

1. let p=po and a=p;
2. let v(po)=0 and
v(p1)=T

3. V((povp1)—’po)—

4. ¥ (povp1)—po

5. F (poVvp1)—po




Completeness

[=E0=T+ ¢




A set [ of propositions is consistent if
[ L.
A set [ of propositions is inconsistent if
1. |

[ is consistent| <= (2) For no ¢, NP and Fl——-cp\

(3) There is at least one ¢ such that '+ ¢



(1) I is inconsistent (2) Thereis ¢ s.t. '=¢ and M=

(3) Foreach ¢. '~ ¢

(1) ["is inconsistent\« (2) Thereis ¢ s.t. ¢ and '@ \

(3) Foreach ¢. T+ ¢



(1) I' is inconsistent

(3) Foreach ¢. '+ ¢

(1= 3Ds.t. P with hpD c I
1

D
=1 = Iro

¥




« (2) Thereis ¢ s.t. P and I'—=¢

(3) Foreach ¢. '+~ ¢

immediate



(1) I' is inconsistent « (2) Thereis ¢ s.t. P and I'—=¢

[+ o= 3D s.t. z with hpD' c I

P

—

[+ )= 3D s.t. with hpD' c I

D' D




Proposition:
If there is a valuation such that [@]y, =1 forall ¢ e T,
then I Is consistent.

Proof:
Suppose I' —1, then I" =1, so for any valuation v

[(Py=1forallpel =[L],=1

Since [L]y = 0 for all valuations, there is no valuation with [(], =
1 for all ¢ € I'. Contradiction.
Hence [ Is consistent.




[ u{-d}isinconsistent =T + ¢,

[ u{}}isinconsistent = [ + .

i with hp2' € Tu{-}}

['u{—~@}is inconsistent = I D's.t.

[~¢]
)

[u{}} is inconsistent = 3ID's.t. P with hp?' € I'u{d}

[~¢]
)

1




A set I is maximally consistent iff
(a) I' is consistent,

(b) T <" and " consistent =r=I".

example: Let v a valuation, I' = {¢: [p]v = 1}. [ is consistent.
Let " suchthat " c I'".

Let Yel™' s.t. Yl i.e. [W]v=0, then[-Y]v=1, and so —Perl.

But since ' ¢ I this implies that " is inconsistent.
Contradiction.




Theorem:
Each consistent set ' is contained in a maximally
consistent set ™

1) enumerate all the formulas
Do, ©1, P2, .....

2) define the non decreasing sequence:
[o=I
Thu{dn}if [n u{dn}is consistent,

['n otherwise

rn+1: 3

3) define

r’*‘=Urn.

n=>0




(a)T', is consistent for all n (a trivial induction on n)

(b) I'* is consistent
suppose I'* —_1

we have 3 ?_ with hpD={yy,... p }C I'*;

F’*‘ = Urn — VlSk Hni . ”l.])i Erni.

n=0

Let n=max{n;: i<k}, theny,,...py €', and hence I',, L.
But T',, is consistent. Contradiction.

(c) I'* is maximally consistent
Let I'* C A and A consistent. If y € A, then Am. Y=y,
', CI'* CA and Ais consistent,I',,U{¢,} is consistent.

ThereforeI'y,1 =Ty U {bm )}, i.€. o €E Tye1 ST
[ =A.




If I' is maximally consistent, then I is closed under
derivability (i.e. T -9 =0cl ).

Let I' = ¢ and suppose @& I' . Then I' U {¢p} must be
inconsistent. Hence I' = =@, so I 1s inconsistent.
Contradiction.




Let ' be maximally consistent;
a)Vvo either ¢pel, or ~perl,

b)Ve,p. 2Pl (pel=perl).

(a) We know that not both ¢ and ~¢ can belong to I' . Consider
" =T u{p). If I "isinconsistent, then, -p e . If [ "is
consistent, then ¢ € [ by the maximality of I'.

(b) b1) Let o<l and ¢<rT.

Since ¢,p—Yel and since I is closed under derivability we
get Yel by — E.

b2) Letdpecll =2 erT.

It ¢ € [ then obviously 'y, so N'=p—.
If ¢z ',then =~Ppel’, and then ' --¢.
Therefore ' —p— .




Corollary
If ' is maximally consistent,then e I' & =zl ,andp el & oz .

If I' is consistent, then there exists a valuation such that [¢] =1 forall p € T.

Proof.(a) I" is contained in a maximally consistent I'™*
B lifp, e I™
(b) Define v(p;) = {0 ol

and extend v to the valuation | |,.

Claim: [¢] =1 < ¢ € I'*. Use induction on ¢.

1. For atomic ¢ the claim holds by definition.

2. o =Y ANo. |pl, =1 < [¥], = [o], =1 < (induction hypothesis)
Y,o0 € I'™ and so o € I'™*. Conversely Yy No € "= ¢Y,oc € ™
The rest follows from the induction hypothesis.

3. ¢p=v—o0 |[Y—o0],=0<% Y], =1and |o], =0 < (induction
hypothesis) Yy e ' and o €I < — o & [

(c¢) Since I' C I'* we have [¢], =1 for all ¢ € I'.




Corollary
I ¥ ¢ & there is a valuation such that [] = 1 for all ¢l and [¢]=0.

[+ ¢ & [ u{-®p}consistent & there is a valuation such that [{] = 1 for all
Pel u{~¢}, namely, [W]=1forall el and[P]=0

Theorem (Completeness Theorem)
N=¢p =TI+~ ¢

Proof.TH- o =T ¢

=0 =<l - ¢




The connective v

proof by cases






© [0]1 (0 [0]2
(o ANY) Vo oV o go\/cf1 (p ANY) Vo Y Vo zpsz
p Vo YV o

(pVao)N(pVo)




(pVa)An(dbVo)

Y Vo



















= (e AY) — —p VY

9]

V)

o)
(e V)] eV (= V)]
1 1
p (0
(e A Y)] p A\
1
V)




oV e (o A1),

exercise



