Spatial filtering

Outline

Spatial filtering

- ► Filtering idea
- Linear vs non-linear filters
- Correlation and convolution
- Examples: blurring, sharpening, denoising

Filtering in Fourier space

- Spatial domain and frequency domain
- Image details and frequencies
- Why it's a good idea
- Examples: low- and high-pass filters

Recall...

Limitations of point operations

- ► They <u>know</u> only the *current pixel intensity*
- They <u>don't know</u> anything about their *neighbors*
- They <u>don't know</u> where they are in an image

Most image features (e.g. edges) require information from a spatial neighborhood of pixels

Requires derivatives (i.e. spatial information)

To enhance such features, need to **go beyond point operations**

Definition of "spatial filtering"

Spatial filtering is an image operation where a pixel I(u, v) is changed by a function of the *pixels in a neighborhood* of (u, v)

 $J(u,v)\mapsto f\Big[\mathcal{N}\Big(I(u,v)\Big)\Big]$

• $f \text{ depends on all pixels in } \mathcal{N}(I(u,v))$

Neighborhood of pixel (u,v)

- ► Also called *filter*, *mask*, *kernel*, *template*, *window*
- ► Usually defined as *squares* 3×3, 5×5, 7×7...
- ► **Q**: what is a 1×1 neighborhood?

(1/3)

Definition of "spatial filtering"

(2/3)

Note 1: point operations are a subset of spatial filters

- ▶ Point operations → use only the intensity of pixel (u,v)
- Spatial filtering \rightarrow use information from all pixels in the neighborhood of (u,v)
- <u>NB</u>: called neighborhood processing or spatial convolution to be more explicit
 - Soon we will see what "convolution" means exactly

Note 2: "spatial" refers to the spatial domain, i.e. image plane itself

- Spatial filtering means "direct manipulation of pixel intensities of an image"
 - Soon we will see what "direct" means exactly

Note 3: "filtering" refers to the analogy with classic filters

- ► A classic *filter* can remove impurities from water
- An image processing filters remove undesired features from an image (e.g. noise)

Definition of "spatial filtering"

Pseudocode

- ▶ Inputs: *image I*(u, v) defined on $[0 \dots M-1] \times [0 \dots N-1]$ *neighborhood* \mathcal{N} defined on $[0 \dots K-1] \times [0 \dots K-1]$, where $K \in \{3, 5, 7...\}$
- **Output**: new image J(u, v)
- ► for v = 0...N-1for u = 0...M-1set $J(u, v) = f[\mathcal{N}(I(u, v))]$

Example: computing the mean in a 3 × 3 neighborhood

- ► The **blue pixel** is the one to be modified
- \blacktriangleright The green pixels represent the *neighborhood* $\mathcal N$
 - NB: a *point operation* could use information only from the blue pixel
- The function f is defined as: $\frac{1}{9}\sum_{i=-1}^{1}\sum_{j=-1}^{1}I(u+i,v+j)$
- The operation is *repeated* for all **yellow pixels**

Linear vs non-linear filters

Two categories depending on how function f is implemented

- If f can be implemented as a *linear operation of pixels* in the neighborhood
 → linear spatial filtering
- Otherwise, if the computation involves non-linear operations
 non-linear spatial filtering

Examples of linear and non-linear functions

- ► *Multiplication* and *sum* of voxels in the neighborhood → *linear*
- Mean of voxels in the neighborhood \rightarrow linear
- ► *Median* of voxels in the neighborhood → *non-linear*
- Max of voxels in the neighborhood \rightarrow non-linear

Linear filters have a **number of advantages**

- ► We will see soon which and why
- ► In this course, we will focus on linear filters

General (linear) filter equation

Filtering as correlation

$$I'(u,v) = \sum_{(i,j)\in\mathcal{N}} I(u+i,v+j) \cdot H(i,j)$$

This operation is known as correlation of I and H $(I \otimes H)$

- ► *I* and *I*' are, respectively, the input and output images
- N describes the spatial neighborhood of a voxel
- ► $H(i, j) : \mathcal{N} \rightarrow [0, K-1]$ is the filter (a.k.a. *kernel* or *mask*)

In other words

- A small 2D matrix moves across the image affecting only one pixel at a time
- The coefficients in H determine the effect on the output image

■ Filter 1 → nothing!

0	0	0
0	1	0
0	0	0

Filter 2 blurring (mean)

What do these filters do?

Filter 3 **→** sharpening (opposite to mean filter)

1	-1	-1	-1
9	-1	17	-1
	-1	-1	-1

Filter 4 **→** shift left by one pixel

0	0	0
0	0	1
0	0	0

Notes: what to do at the boundary?

The neighborhood is not available at the boundary

Some options

crop

pad

extend

wrap

Notes: effect of filter size

Example: mean filters (similar effects with any filter)

original

7 × 7

 15×15

 41×41

Multiplying all entries in H by a constant would cause the image to be multiplied by that constant

$$I'(u,v) = \sum_{i,j} I(u+i,v+j) \cdot (cH(i,j))$$
$$= c \sum_{i,j} I(u+i,v+j) \cdot H(i,j)$$

Hence, to keep the overall brightness constant we need H to sum up to one

Note: all previous filter examples indeed sum up to one!

4	-1	-1	-1
	-1	17	-1
9	-1	-1	-1

0	0	0
0	0	1
0	0	0

Application: noise reduction

Image pixels are the result of a signal intensity measurement

- ► All recording devices are susceptible to *noise*
- Noise causes *fluctuations* in actual signal intensities
- Noise properties depend on acquisition equipment

"Additive" noise model

$$\hat{s}=s+\epsilon$$

- $\blacktriangleright \hat{s}$ is observed signal intensity
- $\blacktriangleright s$ is the true value
- ϵ is the noise value

Noise reduction is the process of removing noise from a signal (i.e. all pixels in the image)

Application: noise reduction

(2/2)

Typical noise: Additive White Gaussian Noise (AWGN)

- Many random processes that occur in nature follow this model
- ▶ NB: white noise has zero mean

IDEA: if we can average several pixels in a neighborhood with the same signal, the noise will "average out"

$$E[\hat{s}] = E[s + \epsilon] = E[s] + E[\epsilon] = s$$

Any filter that *averages in a neighborhood* will reduce noise

► These filters are also called *average filters*

Non-local means filter

Simple averaging may **remove important details**

Example: pixels close to edges/borders are not constant in a neighborhood

- Pixels belong to distinct classes with different intensities
- ► Replaced by their **average value** → edge/border is lost

More advanced filters exist

- ► Use prior information about image, e.g. image is piecewise smooth
- Here we'll see one basic example: Non-Local Means (NLM)

NLM idea: exploit redundancy in images

- Squares with *same color* are on **similar areas** of the image
- Why not using all this information to infer values of pixels?

Non-local means filter

Algorithm (naive implementation)

- Loop over each pixel (u,v)
- Compare the neighborhood of (u,v) to the neighborhood of all other pixels (i,j)
- Compute **similarity** between each pair of neighborhoods

$$d_{\mathcal{N}} = \exp\left(-\frac{\left|\left|\mathcal{N}\left(I(u,v)\right) - \mathcal{N}\left(I(i,j)\right)\right|\right|^{2}}{h^{2}}\right)$$

Gaussian weighting function (*h* controls the degree of similarity)

Set the new value of pixel (*u*,*v*) as a **weighted average** of all other pixels

$$I'(u,v) = \frac{1}{Z} \sum_{(i,j)\in I} d_{\mathcal{N}} \Big(I(u,v), I(i,j) \Big) \cdot I(i,j)$$

Z is a normalization constant i.e. Z = sum of all $d_{\mathcal{N}}$

Notes

- $d_{\mathcal{N}}$ determines how closely related the image in (u,v) is to the image in (i,j)
- Averaging is now performed using "very similar pixels" i.e. pixels with very similar neighborhoods

(2/3)

Non-local means filter

Comparison

original

average filter

noise added

non-local means

Median filter

Particular noise sources require specific denoising algorithms

- Example: Salt-and-Pepper noise
- Caused by sharp and sudden alterations of the image signal
- Manifests as sparsely occurring white and black pixels
- ► Also known as *impulse noise*

Mean filter does not work well because the outliers are included in the mean

240	245	0
247	0	244
251	246	250

(1/3)

Median filter

Taking the median over the neighborhood is more appropriate

NB: median is a non-linear filter

Median filter

Filtering via correlation is slow!

Recall the procedure

- ► To filter a given pixel (*u*,*v*), align the center of the filter at (*u*,*v*)
- Multiply element-wise pixels in \mathcal{N} with the corresponding pixels of H
- New pixel intensity = sum all these values
- Repeat for all pixels of the image

Imagine to process a 4k image

(i.e. 3840×2160, 8.3 megapixels)

Luckily, there is a "trick"...thanks to Fourier!!!

Filtering in Fourier space

Image details and frequencies

With pictures, the term "frequency" means the <u>rate of change</u> of intensity per pixel

► Take a **line across an image** and plot the intensity values

- ► If it takes <u>many pixels</u> to undergo an intensity variation → low frequency
- ► The <u>fewer pixels</u> it takes to represent that change → the higher the frequency
 - edges represent pretty high frequency features
 - noise is also a high-frequency component of the image

Image details and frequencies

With pictures, the term "frequency" means the <u>rate of change</u> of intensity per pixel

► Take a line across an image and plot the

- ► If it takes <u>many pixels</u> to undergo an inte
- The <u>fewer pixels</u> it takes to represent that
 - edges represent pretty high frequency features
 - **noise** is also a high-frequency component of the image

In short

- Low frequencies show you structure
- High frequencies give you detail

Filtering in frequency domain

- Spatial domain refers to the *image plane* itself
- Frequency domain refers to the frequency components of the Fourier transform of the image
- Filtering in the spatial domain: changes <u>directly</u> the pixels

Filtering in the frequency domain: changes <u>indirectly</u> the pixels by manipulating the Fourier transform of the image

Convolution

Convolution of an *image I* by a *kernel H* is given by

 $I'(u,v) = \sum_{(i,j)\in\mathcal{N}} I(u-i,v-j) \cdot H(i,j)$ Convolution of *I* and *H* (*I* * *H*)

- I(u, v) and I'(u, v) are, respectively, the *input and output images*
- N describes the spatial neighborhood of a voxel
- $H(i, j) : \mathcal{N} \rightarrow [0, K-1]$ is the *filter*

Notes

Recall the definition of correlation:

$$I'(u,v) = \sum_{(i,j)\in\mathcal{N}} I(u+i,v+j) \cdot H(i,j)$$

Correlation of I and H($I \otimes H$)

- ► Similar to correlation, but with negative signs on the *I* indices
- ► Equivalent to **vertical and horizontal flipping** of *H*

$$I'(u,v) = \sum_{(-i,-j)\in\mathcal{N}} I(u+i,v+j) \cdot H(-i,-j)$$

Convolution

(2/3)

Why then another definition?

- Correlation was easier to explain for introducing spatial filters
- Convolution has more useful properties

Basic properties of convolution

- Linear $(a \cdot I) * H = a \cdot (I * H)$ $(I_1 + I_2) * H = (I_1 * H) + (I_2 * H)$
- Commutative I * H = H * I
- Associative $(I * H_1) * H_2 = I * (H_1 * H_2)$

Convolution theorem

- ► Let f, g be two functions with *convolution* f*g and *Fourier transforms* $F{f}$ and $F{g}$. Then: $F{f*g} = F{f} \cdot F{g}$ $F{f \cdot g} = F{f} * F{g}$
- ► In other words, convolution in a domain equals point-wise multiplication in the other

Convolution

Filtering is **simpler in Fourier space!**

- ▶ In <u>spatial domain</u>, *I***H* is performed by sliding *H* on the image *I* (*very slow*)
- ▶ In <u>frequency domain</u>, the operation is *replaced by a simple multiplication*

 $\mathsf{F}\{I \ast H\} = \mathsf{F}\{I\} \cdot \mathsf{F}\{H\}$

$$I * H = F^{-1}\{ F\{I\} \cdot F\{H\} \}$$

► NB: *FFT* is efficient, *multiplication* is efficient → filtering in Fourier space is fast

To make the theory work out, we need a mathematical trick

- Let's define our *image* and *kernel* **domains to be infinite**: $\Omega = \mathbb{Z} \times \mathbb{Z}$
- ► Now convolution is an **infinite sum**:

 $I'(u,v) = \sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} I(u-i,v-j) \cdot H(i,j)$ New definition of I * H

► We can still imagine that the image is defined on a finite domain [0, M-1] × [0, N-1] but is set to zero outside this range

Behavior

- ► Low frequencies of the image (from the Fourier transform) are kept
- High frequencies are blocked (containing all fine details)

Used to smooth the image or reduce noise

(1/7)

"Ideal" filter

Do you remember the mean filter?

0	0	0	0	0
0	1	1	1	0
0	1	1	1	0
0	1	1	1	0
0	0	0	0	0

Example

image I

filter H

I' = I * H

Note: the mean filter gives blocky blurring/ringing

Why does this happen?

► FFT pair

► What are we **convolving** with in Fourier space?

(4/7)

Gaussian filter

Why is this better?

► FFT pair

What are we convolving with in Fourier space?

Do we expect again any ringing?

(5/7)

Comparison

Note 1: the parameter σ controls **width** of Gaussian kernel

▶ i.e. the amount of frequencies to keep/cut

- Note 2: theoretically, filters have infinite support but discrete filters use finite kernels
 - Usually assumed equal to zero outside
 - Which shape if σ too large?

2D

High-pass filters

Behavior

- ► High frequencies are kept, low frequencies are blocked
- ► Inverse of low-pass filters

Used to sharpen the edges of the image

Ideal vs Gaussian filters

Same pros/cons of low-pass filters

Other frequency domain filters

Any filtering can be performed in frequency domain

- You can selectively enhance or attenuate any frequency component of the image
- ▶ NB: always remember the *possible effects* in the spatial domain!
- ► There is a *whole field of research* on this → filter design

Take-home messages

- ► The process to move to the frequency domain usually is *more efficient*
- It also provides valuable insight into the nature of the image and filter

NB: soon, we will see other **uses of spatial filters**