Cs162
Operating Systems and
Systems Programming
Lecture 1

What is an Operating System?

August 30, 2010
Prof. John Kubiatowicz

Who am I?

+ Professor John Kubiatowicz (Prof “Kubi”)
- Background in Hardware Design
» Alewife project at MIT
» Designed CMMU, Modified SPAR C processor
» Helped to write operating system

241ma|y

- Background in Operating Systems

» Worked for Project Athena (MIT)

» OS Developer (device drivers,
network file systems)

» Worked on Clustered High-Availability systems
(CLAM Associates)

» OS lead researcher for the new Berkeley PARLab

uol4o||assa |

(Tessellation OS). More later.
- Peer-to-Peer

» OceanStore project -

http://inst.eecs.berkeley.edu/~cs162 Store your data for 1000 years o Q

» Tapestry and Bamboo - o) 8
Find you data around globe 8 2
- Quantum Computing i o
» Well, this is just cool, but probably not apropos S s

8/30/10 Kubiatowicz €S5162 ©UCB Fall 2010 i .2

Goals for Today Technology Trends: Moore's Law
* What is an Operating System?
- And - what is it not?
o . 1978 1980 1985 1990 1995

+ Examples of Operating Systems design o &
* Why study Operating Systems? o S B
+ Oh, and “"How does this class operate?” o BT e
-‘m;;lrb B 04

Interactive is important! Y ' i

Ask Questions!

Note: Some slides and/or pictures in the following are

adapted from slides ©2005 Silberschatz, Galvin, and Gagne. Slides
courtesy of Kubiatowicz, AT Shankar, George Necula, Alex Aiken,
Eric Brewer, Ras Bodik, Ion Stoica, Doug Tygar, and David Wagner.

8/30/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 1.3

2X transistors/Chip Every 1.5 years
Called “Moore’s Law”

Gordon Moore (co-founder of
Intel) predicted in 1965 that the
transistor density of
semiconductor chips would
double roughly every 18
months.

Microprocessors have
become smaller, denser,
and more powerful.

8/30/10 Kubiatowicz €5162 ©UCB Fall 2010 Lec 1.4

Societal Scale Information Systems

* The world is a large parallel system
- Microprocessors in everything
- Vast infrastructure behind them .

Internet
Connectivity

| Scalable, Reliable,
Secure Services

Databases
Information Collection
Remote Storage
Online Games
Commerce

MEMS for

Sensor Nets

8/30/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 1.5

People-to-Computer Ratio Over Time

B
3
(=
E
<]
o
o
=9
2
=
=]
@ .
= streaming
2 information
= to/from phy
» world
year
* Today: Multiple CPUs/person!
- Approaching 100s?
8/30/10 Kubiatowicz €S162 ©UCB Fall 2010

sical

Lec 1.6

New Challenge: Slowdown in Joy's law of Performance

10000 _ < 13X
From Hennessy and Patterson, Computer Architecture: A

Quantitative Approach, 4th edition, Sept. 15, 2006

??%lyear

1000 +

100 +

Performance (vs. VAX-11/780)

= Sea change in chip
design: multiple “cores” or
processors per chip

10

1 A T T T T
1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006
* VAX : 25%/year 1978 to 1986
* RISC + x86: 52%l/year 1986 to 2002

¢ RISC + x86: ??%l/year 2002 to present
8/30/10 Kubiatowicz €5162 ©UCB Fall 2010

Lec 1.7

ManyCore Chips: The future is here

+ Intel 80-core multicore chlp (Feb 2007)
- 80 simple cores .

- Two FP-engines / core
- Mesh-like network

- 100 million transistors
- 65nm feature size
Intel Single-Chip Cloud
Computer (August 2010)
- 24 “tiles" with two cores/tile
- 24-router mesh network

- 4 DDR3 memory controllers
- Hardware support for message-passing

Memory Controller

* “"ManyCore” refers to many processors/chip
- 64? 128? Hard to say exact boundary
How to program these?
- Use 2 CPUs for video/audio
- Use 1 for word processor, 1 for browser
- 76 for virus checking???
* Parallelism must be exploited at all levels
8/30/10 Kubiatowicz €5162 ©UCB Fall 2010

Dual-core SCC Tie

Lec 1.8

Another Challenge: Power Density

10000
E 1000 Rocket Nozzle s
2 Nuclear Reactor sy
= 100 -
3
e .
3 10 B e Hot Plate
] e J -
]
[=]
g 1 . . ' : '
<]
a 1996 1998 2000 2002 2004 2006 2008

| Power Density Becomes Too High to Cool Chips Inexpensively |

Computer System Organization

+ Computer-system operation

- One or more CPUs, device controllers connect
through common bus providing access to shared
memory

- Concurrent execution of CPUs and devices
competing for memory cycles

mouse keyboard printer monitor

&=,]
NI

. ' : disk raphics
Moore's Law Extrapolation cPU el USB controller i
- Potential power density reaching amazing levels! | | |
* Flip side: Battery life very important
- Moore's law can yield more functionality at equivalent T—
(or less) total energy consumption
8/30/10 Kubiatowicz €5162 ©UCB Fall 2010 Lec 1.9 8/30/10 Kubiatowicz €5162 ©UCB Fall 2010 Lec 1.10
Functionality comes with great complexity! Sample of Computer Architecture Topics
Input/Output and Storage
Intel” Pentium® 4
_ _ oo | Disks, WORM, Tape | RATD
Pentium IV Chipset S
Proc DRAM Emerging Technologies
| m " LK) DRAM Interleaving
i e roram Bus protocols
Cacheg : P
| Busses M Coherence,
| I_:I e H;T::Zhy L2 Cache Bandwidth, g
adapters ATA 100 MB/s Audio Latenc a
Memory | & " Y g
| = — i
‘Controllers | I | VLSI L1 Cache Addressing, <
‘ Protection, :E)
1/0 Devices: B::Efays Lnstrucﬁon Set Archi‘recfuré Exceptlon Handlmg O
Keyboards Networks J Pipelining, Hazard Resolution, Pipelining and Instruction
Superscalar, Reordering, Level Parallelism
Prediction, Speculation,
Vector, Dynamic Compilation
8/30/10 Kubiatowicz €S5162 ©UCB Fall 2010 Lec 1.11 8/30/10 Kubiatowicz €S5162 ©UCB Fall 2010 Lec 1.12

Increasing Software Complexity

G0

50

40

30 =

20 —— S —

’ZHHHHH}%__

NASA WindowsWindows Solaris WindowsWindowsWindows RedHat RedHat Windows Vista
space 3.1 NT (1998) a5 98 NT 5.0 Linux 6.2Linux 7.1 XP
shuttle {1992} (1992) (1998) (2000) (2001)

ctrl

5 e |

Millions of lines of
source code

From MIT's 6.033 course

8/30/10 Kubiatowicz €5162 ©UCB Fall 2010 Lec 1.13

Example: Some Mars Rover (“Pathfinder”) Requirements

* Pathfinder hardware limitations/complexity:
- 20Mhz processor, 128MB of DRAM, VxWorks OS

- cameras, scientific instruments, batteries,
solar panels, and locomotion equipment

- Many independent processes work together
* Can't hit reset button very easily!
- Must reboot itself if necessary
- Must always be able to receive commands from Earth
+ Individual Programs must not interfere
- Suppose the MUT (Martian Universal Translator Module) buggy
- Better not crash antenna positioning software!
* Further, all software may crash occasionally
- Automatic restart with diagnostics sent to Earth “
- Periodic checkpoint of results saved?
+ Certain functions time critical:
- Need to stop before hitting something
- Must track orbit of Earth for communication

8/30/10 Kubiatowicz €5162 ©UCB Fall 2010 Lec 1.14

How do we tame complexity?

- Every piece of computer hardware different
- Different CPU
» Pentium, PowerPC, ColdFire, ARM, MIPS
- Different amounts of memory, disk,
- Different types of devices

» Mice, Keyboards, Sensors, Cameras, Fingerprint
readers

- Different networking environment
» Cable, DSL, Wireless, Firewalls, ...
* Questions:

- Does the programmer need to write a single program
that performs many independent activities?

- Does every program have to be altered for every
piece of hardware?

- Does a faulty program crash everything?
- Does every program have access to all hardware?

8/30/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 1.15

OS Tool: Virtual Machine Abstraction

Application

Virtual Machine Interface

Operating System

Physical Machine Interface
Hardware

+ Software Engineering Problem:

- Turn hardware/software quirks =
what programmers want/need

- Optimize for convenience, utilization, security,
reliability, etc...

* For Any OS area (e.g. file systems, virtual memory,
networking, scheduling):

- What's the hardware interface? (physical reality)
- What's the application interface? (nicer abstraction)

8/30/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 1.16

Interfaces Provide Important Boundaries Virtual Machines

C%/ O - Software emulation of an abstract machine
software ™ i - Make it look like hardware has features you want
/1 - - Programs from one hardware & OS on another one
* Programming simplicity

- Each process thinks it has all memory/CPU time

- Each process thinks it owns all devices
\, - Different Devices appear to have same interface

. - Device Interfaces more powerful than raw hardware
* Why do interfaces look the way that they do? » Bitmapped display = windowing system

I instruction set

hardware

- History, Functionality, Stupidity, Bugs, Management » Ethernet card = reliable, ordered, networking (TCP/IP)
- €S152 = Machine interface * Fault Isolation
- €S5160 = Human interface - Processes unable to directly impact other processes
- C5169 = Software engineering/management - Bugs cannot crash whole machine
- Should responsibilities be pushed across boundaries? * Protection and Portability
- RISC architectures, Graphical Pipeline Architectures - Java interface safe and stable across many platforms
8/30/10 Kubiatowicz €5162 ©UCB Fall 2010 Lec 1.17 8/30/10 Kubiatowicz €5162 ©UCB Fall 2010 Lec 1.18
Virtual Machines (con't): Layers of OSs Course Administration
- Useful for OS development - Instructor: John Kubiatowicz (kubitron@cs.berkeley.edu)
- When OS crashes, restricted to one VM 673 Soda Hall
.) Office Hours(Tentative): M/W 2:30pm-3:30pm
- Can aid testing programs on other OSs
- TAs: Angela C. Juang (cs162-ta@cory)
application application application application Chri.s.ros Ster‘giou (C5162'1'b@COPY)
- - Hilfi Alkaff (cs162-tc@cory)
o~ | LR | M - Labs: Second floor of Soda Hall
el e M (B - Website: http://inst.eecs.berkeley.edu/~cs162

virual memory vitwal memery vitual memory Mirror: http://www.cs.berkeley.edu/~kubitron/cs162

* Webcast: http://webcast.berkeley.edu/courses/index.php
- Newsgroup: ucb.class.cs162 (use news.csua.berkeley.edu)
| . + Course Email: cs162@cory.cs.berkeley.edu

host operating system

(Linux) + Reader: TBA (STGY Tuned!)

virtualization layer

hardware

cPU | | memory | | /O devices |

8/30/10 Kubiatowicz €5162 ©UCB Fall 2010 Lec 1.19 8/30/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 1.20

Class Schedule

+ Class Time: M/W 4:00-5:30 PM, 277 Cory Hall

- Please come to class. Lecture notes do not have everything
in them. The best part of class is the interaction!

- Also: 10% of the grade is from class participation (section
and class)

- Sections:
- Important information is in the sections
- The sections assigned to you by Telebears are temporary!
- Every member of a project group must be in same section
- No sections this week (obviously):; start next week

Textbook

'3 ol |
+ Text: Ogera'rmg Systems Concepts, a

Edition Silbershatz, Galvin, Gagne UFEHAHHE
L

- Online supplements Wt
- See "Information” link on course website “"'\
- Includes Appendices, sample problems, etc ;“ o o
- Question: need 8™ edition?
- No, but has new material that we may cover
- Completely reorganized

\“":

Section Time Location TA

101 F 9:00A-10:00A 85 Evans Christos Stergiou - Will try fo give readings from both the 7™ and 8

102 |F 10:00A-11:00A 6 Evans Angela Juang editions on the lecture page

103 F 11:00A-12:00P 2 Evans Angela Juang

104 F 12:00P-1:00P 75 Evans Hilfi Alkaff

105 (New) |F 1:00P-2:00P 85 Evans Christos Stergiou
8/30/10 Kubiatowicz €5162 ©UCB Fall 2010 Lec 1.21 8/30/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 1.22

Topic Coverage 6rading

Textbook: Silberschatz, Galvin, and Gagne,
Operating Systems C'oncepfs 8t Ed., 2008

+ 1 week: Fundamentals (Operating Systems Structures)
- 1.5 weeks: Process Control and Threads
- 2.5 weeks: Synchronization and scheduling

- 2 week: Protection, Address translation, Caching
© 1 week: Demand Paging

+ 1 week: File Systems

- 2.5 weeks: Networking and Distributed Systems

+ 1 week: Protection and Security

< % Advanced topics

8/30/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 1.23

* Rough Grade Breakdown

- One Midterm: 20% each (Perhaps 2?)
One Final: 25%
Four Projects: 50% (i.e. 12.5% each)
Participation: 5%

* Four Projects:

- Phase I: Build a thread system

- Phase IT: Implement Multithreading

- Phase III: Caching and Virtual Memory

- Phase IV: Networking and Distributed Systems
* Late Policy:

- Each group has 5 “slip” days.

- For Projects, slip days deducted from a// partners

- 10% off per day after slip days exhausted

8/30/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 1.24

Group Project Simulates Industrial Environment

* Project teams have 4 or 5 members in same
discussion section

- Must work in groups in “the real world”
+ Communicate with colleagues (team members)
- Communication problems are natural
- What have you done?
- What answers you need from others?
- You must document your workl!l
- Everyone must keep an on-line notebook
+ Communicate with supervisor (TAs)
- How is the team'’s plan?
- Short progress reports are required:
» What is the team's game plan?
» What is each member's responsibility?
8/30/10 Kubiatowicz €5162 ©UCB Fall 2010

Lec 1.25

Typical Lecture Format

Attention

20 min. Break 25 min. Break 25 min. “In Conclusion, ...”

Time >

1-Minute Review

+ 20-Minute Lecture

+ 5- Minute Administrative Matters

+ 25-Minute Lecture

- B-Minute Break (water, stretch)

+ 25-Minute Lecture

+ Instructor will come to class early & stay after to answer

questions

8/30/10 Kubiatowicz 5162 ©UCB Fall 2010

Lec 1.26

Lecture Goal

Interactivelll

8/30/10 Kubiatowicz 5162 ©UCB Fall 2010

Lec 1.27

Computing Facilities

Every student who is enrolled should get an
account form at end of lecture

- Gives you an account of form cs162-xx@cory
- This account is required

» Most of your debugging can be done on other EECS

accounts, however...

» All of the final runs must be done on your cs162-

XX

account and must run on the x86 Solaris machines

and fill out the questions
Project Information:

Make sure to log into your new account this week

- See the "Projects and Nachos” link off the course

home page
Newsgroup (ucb.class.cs162):
- Read this regularly!

8/30/10 Kubiatowicz 5162 ©UCB Fall 2010

Lec 1.28

Academic Dishonesty Policy

* Copying all or part of another person's work, or using reference
material not specifically allowed, are forms of cheating and will
not be tolerated. A student involved in an incident of cheating will
be notified by the instructor and the following policy will apply:

http://www.eecs.berkeley.edu/Policies/acad.dis.shtml
+ The instructor may take actions such as:
- require repetition of the subject work,
- assign an F grade or a 'zero' grade to the subject work,
- for serious offenses, assign an F grade for the course.

+ The instructor must inform the student and the Department Chair
in writing of the incident, the action taken, if any, and the
student's right to appeal to the Chair of the Department
griedvance Committee or to the Director of the Office of Student

onduct.

+ The Office of Student Conduct may choose to conduct a formal
hearing on the incident and to assess a penalty for misconduct.

* The Department will recommend that students involved in a second
incident of cheating be dismissed from the University.

8/30/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 1.29

What does an Operating System do?

- Silerschatz and Gavin:
“"An OS is Similar to a government”

- Begs the question: does a government do anything useful by
itself?

+ Coordinator and Traffic Cop:
- Manages all resources
- Settles conflicting requests for resources
- Prevent errors and improper use of the computer
* Facilitator:
- Provides facilities that everyone needs
- Standard Libraries, Windowing systems
- Make application programming easier, faster, less error-prone
- Some features reflect both tasks:
- E.g. File system is needed by everyone (Facilitator)
- But File system must be Protected (Traffic Cop)

8/30/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 1.30

What is an Operating System, ... Really?

* Most Likely:
- Memory Management
- I/0 Management
- CPU Scheduling
- Communications? (Does Email belong in 0S?)
- Multitasking/multiprogramming?
* What about?
- File System?
- Multimedia Support?
- User Interface?
- Internet Browser? ©
« Is this only interesting to Academics??

8/30/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 1.31

Operating System Definition (Cont.)

* No universally accepted definition

- “"Everything a vendor ships when you order an
operating system” is good approximation
- But varies wildly

* “"The one program running at all times on the
computer” is the kernel.

- Everything else is either a system program (ships
with the operating system) or an application
program

8/30/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 1.32

What if we didn't have an Operating System?

+ Source Code—=Compiler=0bject Code=Hardware
* How do you get object code onto the hardware?
* How do you print out the answer?

+ Once upon a time, had to Toggle in program in

8/30/10

binary and read out answer from LED's!

Kubiatowicz 5162 ©UCB Fall 2010

Lec 1.33

Simple OS: What if only one application?

- Examples:
- Very early computers
- Early PCs
- Embedded controllers (elevators, cars, etc)
+ OS becomes just a library of standard services
- Standard device drivers
- Interrupt handlers
- Math libraries

8/30/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 1.34

8/30/10

MS-DOS Layer Structure

application program

resident system program

MS-DOS device drivers

ammmn

ROM BIOS device drivers H

Kubiatowicz €S5162 ©UCB Fall 2010

Lec 1.35

More thoughts on Simple OS

* What about Cell-phones, Xboxes, etc?

- Is this organization enough?

- What about an Android or iPhone phone?
* Can OS be encoded in ROM/Flash ROM?
* Does OS have to be software?

- Can it be Hardware?

- Custom Chip with predefined behavior

- Are these even OSs?

8/30/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 1.36

More complex OS: Multiple Apps

* Full Coordination and Protection
- Manage interactions between different users
- Multiple programs running simultaneously
- Multiplex and protect Hardware Resources

» CPU, Memory, I/0 devices like disks, printers, etc
* Facilitator

- Still provides Standard libraries, facilities

* Would this complexity make sense if there were
only one application that you cared about?

8/30/10 Kubiatowicz 5162 ©UCB Fall 2010

Example: Protecting Processes from Each Other

* Problem: Run multiple applications in such a way
that they are protected from one another

* Goal:
- Keep User Programs from Crashing OS
- Keep User Programs from Crashing each other
- [Keep Parts of OS from crashing other parts?]
* (Some of the required) Mechanisms:
- Address Translation
- Dual Mode Operation
- Simple Policy:

- Programs are not allowed to read/write memory of
other Programs or of Operating System

Lec 1.37 8/30/10 Kubiatowicz €5162 ©UCB Fall 2010 Lec 1.38
Address Translation Example of Address Translation
*+ Address Space

P) Code Data 2 Code

- A group of memory addresses usable by something Bat Stack 1
- Each program (process) and kernel has potentially ata . Data
different address spaces. Heap Heap Heap
+ Address Translation: Stack Code 1 Stack

- Translate from Virtual Addresses (emitted by CPU) Stack 2
into Physical Addresses (of memory) \';f‘og 1| Data 1 Prog 2
. . irtua Virtual

- Mapping often performed in Hardware by Memory "
Management Unit (MMU) Address Heap 2 Address
Space 1 Code 2 Space 2
Virtual Physical
Addresses Addresses OS code
-_— MWV ———
Translation Map 1 OS data | Translation Map 2
OS heap &
Stacks
Physical Address Space
8/30/10 Kubiatowicz €S5162 ©UCB Fall 2010 Lec 1.39 8/30/10

Kubiatowicz 5162 ©UCB Fall 2010 Lec 1.40

Address Translation Details

* For now, assume translation happens with table
(called a Page Table):

Virtual
Address [V page no. | oflfsetl
Page Table
ACCeSS
index LY /Rights; PA
into
f;tﬁg ta}ble Iocated
in physical [Ppageno. | offset| Physical
memory 10— Address

* Translation helps protection:
- Control translations, control access
- Should Users be able to change Page Table???

8/30/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 1.41

Dual Mode Operation

Hardware provides at least two modes:
- "Kernel” mode (or “supervisor” or “protected”)
- "User” mode: Normal programs executed
+ Some instructions/ops prohibited in user mode:

- Example: cannot modify page tables in user mode
» Attempt to modify = Exception generated

* Transitions from user mode to kernel mode:
- System Calls, Interrupts, Other exceptions

user process

user mode
| user process executing —.-! calls system call | return from system call (mode bit = 1)
\
1 L
LY .I
el Irap return
=l mode bit = 0 mode bit = 1
kernel mode
l execute system call (mode bil = 0)
8/30/10 Kubiatowicz €S5162 ©UCB Fall 2010 Lec 1.42

UNIX System Structure

Applications (the users)
User Mode

q shells and commands
Standard Libs compilers and interpreters

system libraries

system-call interface fo the kernel

i signals terminal file system CPU scheduling
Kernel Mode g p handling swapping block /O page replacement

2 character /O system system demand paging

terminal drivers disk and tape drivers virtual memory

kernel interface to the hardware

terminal controllers device controllers memory controllers

Hardware terminals disks and tapes physical memory

8/30/10 Kubiatowicz €5162 ©UCB Fall 2010 Lec 1.43

New Structures for Multicore chips?
Tessellation: The Exploded OS

Normal Components split
into pieces

- Device drivers
(Security/Reliability)

- Network Services
(Performance)

» TCP/IP stack

» Firewall

» Virus Checking

» Intrusion Detection

- Persistent Storage
Performance,
ecurity, Reliability)
- Monitoring services
» Performance counters
» Introspection

- Identity/Environment
G services (Security)
& e » Biometric, GPS,
e, Possession Tracking
o - Applications Given

Larger Partitions

- Freedom to use
8/30/10 Kubiatowicz 5162 ©UCB Fall 2010 resources arbitrarilys

OS Systems Principles

« OS as illusionist:

- Make hardware limitations go away

- Provide illusion of dedicated machine with infinite
memory and infinite processors

- OS as government:

- Protect users from each other
- Allocate resources efficiently and fairly

- OS as complex system:

- Constant tension between simplicity and
functionality or performance

*+ OS as history teacher

8/30/10

- Learn from past
- Adapt as hardware tradeoffs change

Kubiatowicz 5162 ©UCB Fall 2010 Lec 1.45

Why Study Operating Systems?

* Learn how to build complex systems:

- How can you manage complexity for future projects?

+ Engineering issues:

- Why is the web so slow sometimes? Can you fix it?
- What features should be in the next mars Rover?
- How do large distributed systems work? (Kazaa, etc)

+ Buying and using a personal computer:

- Why different PCs with same CPU behave differently

- How to choose a grocessor (Opteron, Itanium, Celeron,
Pentium, Hexium)? [Ok, made last one up]

- Should you get Windows XP, 2000, Linux, Mac OS ..?
- Why does Microsoft have such a bad name?

* Business issues:

- Should your division buy thin-clients vs PC?

+ Security, viruses, and worms

- What exposure do you have to worry about?

8/30/10 Kubiatowicz €5162 ©UCB Fall 2010 Lec 1.46

“In conclusion..”

* Operating systems provide a virtual machine

abstraction to handle diverse hardware

- Operating systems coordinate resources and

protect users from each other

- Operating systems simplify application

development by providing standard services

- Operating systems can provide an array of fault

containment, fault tolerance, and fault recovery

*+ €5162 combines things from many other areas of

8/30/10

computer science -

- Languages, data structures, hardware, and
algorithms

Kubiatowicz 5162 ©UCB Fall 2010 Lec 1.47

CS162
Operating Systems and
Systems Programming
Lecture 2

History of the World Parts 1—5
Operating Systems Structures

September 1st, 2010
Prof. John Kubiatowicz
http://inst.eecs.berkeley.edu/~cs162

Review: Virtual Machine Abstraction

Application
Operating System

Hardware

 Software Engineering Problem:
- Turn hardware/software quirks =
what programmers want/need
- Optimize for convenience, utilization, security,
reliability, etc...
* For Any OS area (e.g. file systems, virtual memory,
networking, scheduling):
- What's the hardware interface? (physical reality)
- What's the application interface? (nicer abstraction)

Virtual Machine Interface

Physical Machine Interface

9/01/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 2.2

Review: Protecting Processes from Each Other

* Problem: Run multiple applications in such a way
that they are protected from one another

* Goal:
- Keep User Programs from Crashing OS

- Keep User Programs from Crashing each other
- [Keep Parts of OS from crashing other parts?]
* (Some of the required) Mechanisms:
- Address Translation
- Dual Mode Operation
- Simple Policy:
- Programs are not allowed to read/write memory of
other Programs or of Operating System

9/01/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 2.3

Review: Address Translation

*+ Address Space
- A group of memory addresses usable by something

- Each program (process) and kernel has potentially
different address spaces.
* Address Translation:
- Translate from Virtual Addresses (emitted by CPU)
into Physical Addresses (of memory)
- Mapping often performed in Hardware by Memory
Management Unit (MMU)

Virtual Physical
Addresses Addresses

-_— MWV

9/01/10 Kubiatowicz €S162 ©UCB Fall 2010

Lec 2.4

Review: Example of Address Translation

Code Data 2 Code
Data Stack 1 Data
Heap Heap 1 Heap
Stack Code 1 Stack
Stack 2
Prog 1 Prog 2
Virtual Data 1 Virtual
Address Heap 2 Address
SPOCC 1 Code 2 5pace 2
[OS code \
Translation Map 1 OS data | Translation Map 2
OS heap &
Stacks

9/01/10

Physical Address Space

Kubiatowicz €S162 ©UCB Fall 2010

Goals for Today

Finish Protection Example
History of Operating Systems

- Really a history of resource-driven choices

Operating Systems Structures
Operating Systems Organizations
Abstractions and layering

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated from lecture notes by Joseph.

Lec 2.5 9/01/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 2.6
The other half of protection: Dual Mode Operation UNIX System Structure
* Hardware provides at least two modes:
- "Kernel” mode (or “supervisor” or “protected"”)
- "User” mode: Normal programs executed Applications (the users)
. . " . User Mode
+ Some instructions/ops prohibited in user mode:

« Transitions from user mode to kernel mode:

- Example: cannot modify page tables in user mode

» Attempt to modify = Exception generated

- System Calls, Interrupts, Other exceptions

9/01/10

USEr process
user mode
1 il =
| user process executing L-—-r: calls system call | | return from system call | (mode bit = 1
§
\ /
1 L
LY .I
trap return
e mode bit = 0 mode bit = 1
¥ / kernel mode
execute system call (mode bil = 0)
Kubiatowicz €S5162 ©UCB Fall 2010 Lec 2.7

Standard Libs

shells and commands

compilers and interpreters

system libraries

Kernel Mode

Kemel
A

system-call interface fo the kernel

signals terminal
handling
character /O system
terminal drivers

kernel interface to the hardware

file system
swapping block /O
system
disk and tape drivers

CPU scheduling
page replacement
demand paging
virtual memory

Hardware

9/01/10

terminal controllers
terminals

device controllers
disks and tapes

memory controllers
physical memory

Kubiatowicz €S162 ©UCB Fall 2010

Lec 2.8

Moore's Law Change Drives OS Change

1981 2010 Factor
CPU MHz, 10 Quad 36 1,200
Cycles/inst 3—10 | 0.25—-0.5| 6—40
DRAM capacity | 128KB 86B 65536
Disk capacity 10MB 2TB 200,000
Net bandwidth | 9600 b/s | 1 6b/s 110,000
addr bits 16 64 4
#users/machine 10s <1 <0.1
Price $25,000 | $4,000 0.16

Typical academic computer 1981 vs 2010

9/01/10 Kubiatowicz €S162 ©UCB Fall 2010

Moore's law effects

* Nothing like this in any other area of business
* Transportation in over 200 years:

- 2 orders of magnitude from horseback @10mph to
Concorde @1000mph

- Computers do this every decade (at least until 2002)!

* What does this mean for us?

- Techniques have to vary over time to adapt to
changing tradeoffs

* I place a lot more emphasis on principles

- The key concepts underlying computer systems

- Less emphasis on facts that are likely to change over
the next few years...

- Let's examine the way changes in $/MIP has

9/01/10 Kubiatowicz €S162 ©UCB Fall 2010

radically changed how OS's work

Lec 2.10

ENIA

Dawn of time

-..w-i‘]

C: (1945—1955)

* “"The machine designed by Drs. Eckert and Mauchly
was a monstrosity. When it was finished, the
ENIAC filled an entire room, weighed thirty tons,
and consumed two hundred kilowatts of power.”

* http://ei.cs.vt.edu/~history/ENIAC.Richey . HTML

9/01/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 2.11

History Phase 1 (1948—1970)
Hardware Expensive, Humans Cheap

- When computers cost millions of $'s, optimize for
more efficient use of the hardware!

- Lack of interaction between user and computer

« User at console: one user at a time
* Batch monitor: load program, run, print

+ Optimize to better use hardware
- When user thinking at console, computer idle=BAD!
- Feed computer batches and make users wait
- Autograder for this course is similar

* No protection: what if batch program has bug?

9/01/10

Kubiatowicz €S5162 ©UCB Fall 2010 Lec 2.12

Core Memories (1950s & 60s)

The first magnetic core
memory, from the IBM 405
Alphabetical Accounting
Machine.

* Core Memory stored data as magnetization in iron rings
- Iron “cores” woven into a 2-dimensional mesh of wires
- Origin of the term “"Dump Core”
- Rumor that IBM consulted Life Saver company

+ See: http://www.columbia.edu/acis/history/core.html

9/01/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 2.13

History Phase 13 (late 60s/early 70s)

- Data channels, Interrupts: overlap I/O and compute
- DMA - Direct Memory Access for I/0 devices
- I/0 can be completed asynchronously
* Multiprogramming: several programs run simultaneously
- Small jobs not delayed by large jobs
- More overlap between I/0 and CPU
- Need memory protection between programs and/or OS
- Complexity gets out of hand:
- Multics: announced in 1963, ran in 1969
» 1777 people “contributed to Multics” (30-40 core dev)

» Turing award lecture from Fernando Corbato (key
researcher): “On building systems that will fail”

- OS 360: released with 1000 known bugs (APARs)
» “Anomalous Program Activity Report”
+ OS finally becomes an important science:
- How to deal with complexity???
- UNIX based on Multics, but vastly simplified

9/01/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 2.14

A Multics System (Circa 1976)

—

- L =3 y . "-__,‘\ 4,
* The 6180 at MIT IPC, skin doors open, circa 1976:
- "We usually ran the machine with doors open so the

operators could see the AQ register display, which
gave you an idea of the machine load, and for
convenient access to the EXECUTE button, which the
operﬁtgr"would push to enter BOS if the machine
crashed.

* http://www.multicians.org/multics-stories.html

9/01/10 Kubiatowicz €S5162 ©UCB Fall 2010 Lec 2.15

Early Disk History

Model 3340 hard disk Model 2370
1973 1979
5oy 7.7 7
140 2,300 — = _._—,_..‘,_ . _..:.

1973: 1979:
1. 7 Mbit/sq. in 7.7 Mbit/sq. in
140 MBytes 2,300 MBytes

Contrast: Seagate 2TB, g
400 6B/SQ in, 3% in disk,
4 platters

9/01/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 2.16

Administrivia

+ Waitlist:
- All CS/EECS seniors should be in the class
- Remaining:
» 18 CS/EECS juniors,
» 4 grad students
» 2 non CS/EECS seniors

+ Csl162-xx accounts:
- We have more forms for those who didn't get one

- If you haven't logged in yet, you need to do so

* Nachos readers:
- TBA: Will be down at Copy Central on Hearst
- Will include lectures and printouts of all of the code

- Video “Screencast” archives available off lectures page
- If have mp4 player, just click on the title of a lecture
- Otherwise, click on link at top middle of lecture page

* No slip days on first design document for each phase
- Need to get design reviews in on time

- Don't know Java well?

- Perhaps try CS 96 self-paced Java course
9/01/10 Kubiatowicz CS5162 ©UCB Fall 2010 Lec 2.17

Administriva: Time to start thinking about groups

* Project Signup: Not quite ready, but will be
- 4-5 members to a group
» Everyone in group must be able to actually attend same section
» The sections assigned to you by Telebears are temporary!
- Only submit once per group!

» Everyone in group must have logged into their cs162-xx accounts
once before you register the group

» Make sure that you select at least 2 potential sections
» Due Tuesday 9/7 by 11:59pm
+ Sections:
- Watch for section assignments next Wednesday/Thursday
- Attend new sections next week: Telebears sections this Friday

Section Time Location TA
101 F 9:00A-10:00A 85 Evans Christos Stergiou
102 F 10:00A-11:00A 6 Evans Angela Juang

103 F 11:00A-12:00P 2 Evans Angela Juang

104 F 12:00P-1:00P 75 Evans Hilfi Alkaff
105 (New) |F 1:00P-2:00P 85 Evans Christos Stergiou
okei/1o Kbiotowier-E5162-BUEB-FaHi-200 - 15

ceCT Iy

History Phase 2 (1970 - 1985)
Hardware Cheaper, Humans Expensive

+ Computers available for tens of thousands of dollars
instead of millions

* OS Technology maturing/stabilizing
+ Interactive timesharing:

- Use cheap terminals (~$1000) to let multiple users
interact with the system at the same time

- Sacrifice CPU time to get better response time
- Users do debugging, editing, and email online

* Problem: Thrashing
- Performance very non-linear

. o
response with load - _g
- Thrashing caused by many -
factors including o
» Swapping, queueing
Users
9/01/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 2.19

The ARPANet (1968-1970's)

IMPs

* Paul Baran
- RAND Corp, early 1960s

- Communications networks
that would survive a
major enemy attack

+ ARPANet: Research vehicle for

“Resource Sharing Computer
Networks"

- 2 September 1969: UCLA
first node on the
ARPANet

- December 1969: 4 nodes
connected by 56 kbps
BBN team that implemented phone lines

the interface message processor (IMP) - 1971: First Email

- 1970's: <100 computers
9/01/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 2.20

ARPANET GEOGRAPHIC MAP, OCTOBER 1980

“WAr SATELLITE CIRCUIT
o IMP
a me
& PLURIBUS IMP

{ PLURIBUS TIP
@ c30

(NOTE: THIS MAP DOES NOT SHOW ARPA'S EXPERIMENTAL SATELLITE CONNECTIONS)
NAMES SHOWN ARE IMP NAMES, NOT (NECESSARILY) HOST NAMES

9/01/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 2.21

History Phase 3 (1981—)
Hardware Very Cheap, Humans Very Expensive

- Computer costs $1K, Programmer costs $100K/year

- If you can make someone 1% more efficient by giving
them a computer, it's worth it!

- Use computers to make people more efficient
* Personal computing:
- Computers cheap, so give everyone a PC
- Limited Hardware Resources Initially:
- OS becomes a subroutine library
- One application at a time (MSDOS, CP/M, ..)
+ Eventually PCs become powerful:
- OS regains all the complexity of a "big” OS
- multiprogramming, memory protection, etc (NT,0S/2)

* Question: As hardware gets cheaper does need for
OS go away?

9/01/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 2.22

History Phase 3 (con't)
Graphical User Interfaces

+ €S160 = All about GUIs
+ Xerox Star: 1981

- Or‘iginaII(a research
project (Alto)
- First “mice”, “windows"”
- Apple Lisa/Machintosh: 1984
- "Look and Feel” suit 1988
* Microsoft Windows:
- Win 1.0 (1985)
- Win 3.1 (1990)
- Win 95 (1995)
- Win NT (1993) Fpia) /protection
- Win 2000 (2000)
- Win XP (2001) 'I;’Jl';ﬁl—(
- Win Vista (2007)

JDIS X0JdaX

1'E SMOpUIM

9/01/10 Kubiatowicz €S5162 ©UCB Fall 2010 Lec 2.23

History Phase 4 (1988—): Distributed Systems

* Networking (Local Area Networking)
- Different machines share resources
- Printers, File Servers, Web Servers
- Client - Server Model

+ Services
- Computing
- File Storage
l client | ‘ client ‘ ‘ client ‘
| | | I network

server

9/01/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 2.24

History Phase 4 (1988—): Internet

- Developed by the research community
- Based on open standard: Internet Protocol
- Internet Engineering Task Force (IETF)

* Technical basis for many other types of networks
- Intranet: enterprise IP network

- Services Provided by the Internet

- Shared access to computing resources: telnet (1970's)

- Shared access to data/files: FTP, NFS, AFS (1980's)

- Communication medium over which people interact
» email (1980's), on-line chat rooms, instant messaging (1990's)
» audio, video (1990's, early 00's)

- Medium for information dissemination
» USENET (1980's)
» WWW (1990's)
» Audio, video (late 90's, early 00's) - replacing radio, TV?
» File sharing (late 90's, early 00's)

9/01/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 2.25

ARPANet Evolves into Internet
* First E-mail SPAM message: 1 May 1978 12:33 EDT

- 80-83: TCP/IP, DNS: ARPANET and MILNET split

- 85-86: NSF builds NSFNET as backbone, links 6
Supercomputer centers, 1.5 Mbps, 10,000 computers

+ 87-90: link regional networks, NSI (NASA), ESNet
(DOE), DARTnet, TWBNet (DARPA), 100,000 computers

ARPANet TCP/IP NSFNet Deregulation & ISP
SATNet Commercialization ASP
PRNet WWW AIP

1965 1975 1985 1995 2005

SATNet: Satelite network
PRNet: Radio Network

9/01/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 2.26

What is a Communication Network?
(End-system Centric View)

+ Network offers one basic service: move information

- Bird, fire, messenger, truck, telegraph, telephone,
Internet ..

- Another example, transportation service: move
objects

» Horse, train, truck, airplane ...
* What distinguish different types of networks?
- The services they provide
* What distinguish the services?
- Latency
- Bandwidth (Highest BW? “Sneakernet")
- Loss rate
- Number of end systems
- Service interface (how to invoke the service?)
- Others
» Reliability, unicast vs. multicast, real-time...

9/01/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 2.27

What is a Communication Network?
(Infrastructure Centric View)

- Communication medium: electron, photon
* Network components:

- Links - carry bits from one place to another (or maybe
multiple places): fiber, copper, satellite, ...

- Interfaces - attach devices to links

- Switches/routers - interconnect links: electronic/optic,
crossbar/Banyan

- Hosts - communication endpoints: workstations, PDAs,
cell phones, toasters

* Protocols - rules governing communication between
nodes

- TCP/IP, ATM, MPLS, SONET, Ethernet, X.25
Applications: Web browser, X Windows, FTP, ...

9/01/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 2.28

Network Components (Examples)

Switches/routers

Links Interfaces

Fibers Ethernet card

Types of Networks

* Geographical distance

- Local Area Networks (LAN): Ethernet, Token ring,
FDDI

- Metropolitan Area Networks (MAN): DQDB, SMDS

- Wi'de Area Networks (WAN): X.25, ATM, frame
relay

- Caveat: LAN, MAN, WAN may mean different
things
» Service, network technology, networks
* Information type
- Data networks vs. telecommunication networks

Te'_‘ipﬂone - Application type
S - Special purpose networks: airline reservation
network, banking network, credit card network,
telephony
- General purpose network: Internet
Kubiatowicz €S162 ©UCB F Lec 2.29 9/01/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 2.30
Network “Cloud"” Regi +
= o i : Regional Reaional
ﬁ : \ ’ / = Regional Net egiona
— Net Net
i |
EHJ;.\ EJ' I Backbone
. ional
Regional egiona
Ne% Regional Net

9/01/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 2.31

i L
T 0 }”}- E

LAN: Local Area Network

9/01/10 Kubiatowicz €S5162 ©UCB Fall 2010 Lec 2.32

Backbones + NAPs + ISPs

ISP
ISP
\ /
- NAP/ NaP __ ISP
ISP / Backbones \
Business Consumert 75

ISP: Internet Service Provide
NAP: Network Access Point

9/01/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 2.33

.
AP == ISP 7/
<@\? ((5) Satellite
e \é) Fixed Wireless

@M@Ceu Cel

. cell Sprint AOL e
1 g A AN 7 _
A RR A

9/01/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 2.34

The Morris Internet Worm (1988)

* Internet worm (Self-reproducing)
- Author Robert Morris, a first-year Cornell grad student
- Launched close of Workday on November 2, 1988

- Within a few hours of release, it consumed resources to
the point of bringing down infected machines

hook.

orm sen
worm worm

* Techniques [_emoeen Bk s
- Exploited UNIX networking features (remote access)

- Bugs in fifzfer (buffer overflow) and sendmail programs
(debug mode allowed remote login)

- Dictionary lookup-based password cracking
- 6rappling hook program uploaded main worm program

9/01/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 2.35

LovelLetter Virus (May 2000)

+ E-mail message with
VBScript (simplified Visual
Basic)

- Relies on Windows = ILOVEYOU - Message [Plain Text) |
Scripting Host Fle Edt Yew [wett Fgmet Took Actions Heb _
foReply __ﬂ?anewmaa __sgrugad_g) &7 - | ¥ _.@ »

- Enabled by default in : .
Win98/2000 :‘-‘" Tony Austin m:::hm] Sent: Thu 04/05/00 10:44 PM
o

* User clicks on_ i Lokl
01'1'0Chmen1'9 mfeCfed! cindly check the attached LOVELETTER coming from me. B
- E-mails itself to everyone
in Outlook address book
- Replaces some files with a
copy of itself

=l

- Searches all drives j j
- Downloads password LOVELET

cracking program —— L

+ 60-80% of US companies
infected and 100K
European servers

9/01/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 2.36

History Phase 5 (1995—): Mobile Systems

+ Ubiquitous Mobile Devices
- Laptops, PDAs, phones
- Small, portable, and inexpensive
» Recently twice as many smart phones as PDAs
» Many computers/person!
- Limited capabilities (memory, CPU, power, etc..)
* Wireless/Wide Area Networking
- Leveraging the infrastructure
- Huge distributed pool of resources extend devices

- Traditional computers split into pieces. Wireless
keyboards/mice, CPU distributed, storage remote

* Peer-to-peer systems
- Many devices with equal responsibilities work together
- Components of “"Operating System” spread across globe

9/01/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 2.37

CITRIS's Model:
A Societal Scale Information System

+ Center for Information
Technology Research in the
Interest of Society

« The Network is the OS

- Functionality spread
throughout network

9/01/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 2.38

Datacenter is the Computer

* (From Luiz Barroso’s talk at RAD Lab 12/11)
* Google program == Web search, Gmail, ..

* Google computer ==

L R s 2 1)
=

- Thousands of compu*teﬁs, "néw’orki’rij, sfor'age“
* Warehouse-sized facilities and workloads may be
unusual today but are likely to be more common in
the next few years

9/01/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 2.39

Migration of Operating-System Concepts and Features

1950 1960 1970 1980 1990 2000
MULTICS
no compilers time N distributed
software shared multiuser systems
batch multiprocessor
resident networked fault tolerant

monitors
UNIX

minicomputers 2
no compilers

software

time multiuser multiprocessor
resident ~ shared Nebuarkad fault tolerant
manitors by
clustered
UNIX
desklop compulters - \
no compilers
ff i multiprocessor
multiuser Eehworked
UNIX
handheld computers - \.-
compilers no
software
interactive
networked
9/01/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 2.40

History of OS: Summary

+ Change is continuous and OSs should adapt
- Not: look how stupid batch processing was
- But: Made sense at the time
+ Situation today is much like the late 60s
- Small OS: 100K lines
- Large OS: 10M lines (5M for the browser!)
» 100-1000 people-years
- Complexity still reigns
- NT developed (early to late 90's): Never worked well
- Windows 2000/XP: Very successful
- Windows Vista (aka “"Longhorn”) delayed many times
» Finally released in January 2007
» Promised by removing some of the intended technology
» Slow adoption rate, even in 2008/2009

CS162: understand OSs to simplify them

9/01/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 2.41

Now for a quick tour of OS Structures

9/01/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 2.42

Operating Systems Components
(What are the pieces of the OS)

* Process Management

* Main-Memory Management
- I/0 System management

- File Management

* Networking

* User Interfaces

9/01/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 2.43

Operating System Services
(What things does the OS do?)
- Services that (more-or-less) map onto components
- Program execution
» How do you execute concurrent sequences of instructions?
- I/0 operations
» Standardized interfaces to extremely diverse devices
- File system manipulation
» How do you read/write/preserve files?
» Looming concern: How do you even find files???
- Communications
» Networking protocols/Interface with CyberSpace?
* Cross-cutting capabilities
- Error detection & recovery
- Resource allocation
- Accounting
- Protection

9/01/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 2.44

System Calls (What is the APT)

- See Chapter 2 of 7' edition or Chapter 3 of 6™

S
~ ¥
\k user application)
g
open ()
user
mode
system call interface
kernel
mode A
>| open ()
. Implementation
= » of open()
- system call
return
9/01/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 2.45

Operating Systems Structure
(What is the organizational Principle?)

- Simple
- Only one or two levels of code
- Layered
- Lower levels independent of upper levels

* Microkernel
- OS built from many user-level processes

* Modular
- Core kernel with Dynamically loadable modules

9/01/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 2.46

Simple Structure

* MS-DOS - written to provide the most functionality
in the least space

- Not divided into modules

- Interfaces and levels of functionality not well
separated —

application program

resident system program

ROM BIOS device drivers

9/01/10 Kubiatowicz €S5162 ©UCB Fall 2010 Lec 2.47

UNIX: Also "Simple” Structure

+ UNIX - limited by hardware functionality

+ Original UNIX operating system consists of two
separable parts:
- Systems programs
- The kernel

» Consists of everything below the system-call
interface and above the physical hardware

» Provides the file system, CPU scheduling, memory
management, and other operating-system
functions;

» Many interacting functions for one level

9/01/10 Kubiatowicz €S5162 ©UCB Fall 2010 Lec 2.48

UNIX System Structure

User Mode

Applications

(the users)

Standard Libs

shells and commands
compilers and interpreters

system libraries

Kernel Mode

Kernel

] handling

terminal drivers

signals terminal

character /O system

system-call interface fo the kernel

file system
swapping block /O
system
disk and tape drivers

kernel interface to the hardware

CPU scheduling
page replacement
demand paging
virtual memory

Hardware

9/01/10

terminal controllers
terminals

device controllers
disks and tapes

memory controllers

physical memory

Kubiatowicz €S162 ©UCB Fall 2010 Lec 2.49

Layered Structure

* Operating system is divided many layers (levels)
- Each built on top of lower layers
- Bottom layer (layer O) is hardware
- Highest layer (layer N) is the user interface

* Each layer uses functions (operations) and services of
only lower-level layers

- Advantage: modularity = Easier debugging/Maintenance

- Not alu(a¥s ?ossible: Does grocess scheduler lie above or
below virtual memory layer:

» Need to reschedule processor while waiting for paging
» May need to page in information about tasks
+ Important: Machine-dependent vs independent layers
- Easier migration between platforms
- Easier evolution of hardware platform
- 6ood idea for you as welll
9/01/10

Kubiatowicz €S162 ©UCB Fall 2010 Lec 2.50

Layered Operating System

} layer N
user interface

layer 1

[layer0 \ '
‘. | hardware | |

9/01/10

Kubiatowicz €S162 ©UCB Fall 2010

Lec 2.51

Microkernel Structure

* Moves as much from the kernel into "user” space
- Small core OS running at kernel level

- OS Services built from many independent user-level
processes

+ Communication between modules with message passing
* Benefits:

- Easier to extend a microkernel
- Easier to port OS to new architectures
- More reliable (less code is running in kernel mode)

- Fault Isolation (parts of kernel protected from other
parts)

- More secure
+ Detriments:

- Performance overhead severe for naive implementation

9/01/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 2.52

Modules-based Structure

* Most modern operating systems implement modules

9/01/10

- Uses object-oriented approach
- Each core component is separate

- Each talks to the others over known interfaces
- Each is loadable as needed within the kernel
* Overall, similar to layers but with more flexible

scheduling
classes

core Solaris
kernel

STREAMS
modules

device and
bus drivers
miscellaneous
modules

executable
formats

loadable
system calls

Kubiatowicz €S162 ©UCB Fall 2010

Lec 2.53

Partition Based Structure for Multicore chips?

Hooooy

* Normal Components split

into pieces
- Device drivers

é & 'Y Y (Security/Reliability)
}g bg/t@phﬁé_\sgfh\d > - ageh;‘vork Ser\sices
, ‘ erformance
GRDW@(» TCP/IP stack
» Firewall

» Virus Checking
» Intrusion Detection
- Persistent Storage
Performance,
ecurity, Rellabllrry)
- Monitoring services
» Performance counters
» Introspection
- Identity/Environment
services (Security)

» Biometric, GPS,
Possession Tracking

+ Applications Given
Larger Partitions

- Freedom to use
9/01/10 Kubiatowicz CS162 ©UCB Fall 2010 resources arbitrardyss

9/01/10

Implementation Issues
(How is the OS implemented?)

Policy vs. Mechanism
- Policy: What do you want to do?
- Mechanism: How are you going to do it?
- Should be separated, since both change
Algorithms used

- Linear, Tree-based, Log Structured, efc..

Event models used

- threads vs event loops
Backward compatability issues

- Very important for Windows 2000/XP
System generation/configuration

- How to make generic OS fit on specific hardware

Kubiatowicz €S162 ©UCB Fall 2010

Lec 2.55

Conclusion

Rapid Change in Hardware Leads to changing OS

- Batch = Multiprogramming = Timeshare =
6raphical UI = Ubiquitous Devices =
Cyberspace/MeTaverse/”

OS features migrated from mainframes = PCs
Standard Components and Services

- Process Control

- Main Memory

-I/0

- File System

- UI
Policy vs Mechanism

- Crucial division: not always properly separated!
Complexity is always out of control

- However, “"Resistance is NOT Useless!”

9/01/10 Kubiatowicz €S5162 ©UCB Fall 2010 Lec 2.56

CS162
Operating Systems and
Systems Programming
Lecture 3

Concurrency:
Processes, Threads, and Address Spaces

September 8", 2010
Prof. John Kubiatowicz
http://inst.eecs.berkeley.edu/~cs162

Review: History of OS

Why Study?
- To understand how user needs and hardware constraints
influenced (and will influence) operating systems
Several Distinct Phases:
- Hardware Expensive, Humans Cheap
» Eniac, ... Multics
- Hardware Cheaper, Humans Expensive
» PCs, Workstations, Rise of GUIs
- Hardware Really Cheap, Humans Really Expensive
» Ubiquitous devices, Widespread networking
Rapid Change in Hardware Leads to changing OS
- Batch = Multiprogramming = Timeshare = Graphical UI
= Ubiquitous Devices = Cyberspace/Metaverse/??
- 6radual Migration of Features into Smaller Machines
Situation today is much like the late 60s
- Small OS: 100K lines/Large: 10M lines (BM browser!)
- 100-1000 people-years

9/8/10 Kubiatowicz €S162 ®UCB Fall 2009 Lec 3.2

Review: Migration of OS Concepts and Features

1950 1960 1970 1980 1990 2000
MULTICS
no compilers time N distributed
soltware shared multiuser systems
batch multiprocessor
resi:_:lem networked fault tolerant
monitors
s UNIX
minicomputers
ne compilers
software : - :
time multiuser multiprocessor
resident Shared n;wurked fault tolerant
maonitors .
clustered
g UNIX
desklop compulters -
no compilers
f i multip
multiuser networked
UNIX
handheld computers k \\.-
compilers no
software
interactive
networked
9/8/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 3.3

Review: Implementation Issues
(How is the OS implemented?)

* Policy vs. Mechanism
- Policy: What do you want to do?
- Mechanism: How are you going to do it?
- Should be separated, since policies change
Algorithms used
- Linear, Tree-based, Log Structured, efc..
Event models used
- threads vs event loops
+ Backward compatability issues
- Very important for Windows 2000/XP/Vista/ ...
- POSIX tries to help here
- System generation/configuration
- How to make generic OS fit on specific hardware

9/8/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 3.4

Goals for Today

+ How do we provide multiprogramming?
* What are Processes?

* How are they related to Threads and Address
Spaces?

Note: Some slides and/or pictures in the following are

adapted from slides ©2005 Silberschatz, Galvin, and Gagne.

Many slides generated from my lecture notes by Kubiatowicz.
9/8/10 Kubiatowicz CS162 ©UCB Fall 2009 Lec 3.5

Concurrency

* “Thread” of execution
- Independent Fetch/Decode/Execute loop
- Operating in some Address space
* Uniprogramming: one thread at a time
- MS/DOS, early Macintosh, Batch processing
- Easier for operating system builder
- Get rid concurrency by defining it away
- Does this make sense for personal computers?
* Multiprogramming: more than one thread at a time

- Multics, UNIX/Linux, OS/2, Windows NT/2000/XP,
Mac OS X

- Often called “"multitasking”, but multitasking has
other meanings (talk about this later)

* ManyCore — Multiprogramming, right?
9/8/10 Kubiatowicz CS162 ©UCB Fall 2009 Lec 3.6

The Basic Problem of Concurrency

* The basic problem of concurrency involves resources:
- Hardware: single CPU, single DRAM, single I/0 devices

- Multiprogramming API: users think they have exclusive
access to shared resources

*+ OS Has to coordinate all activity

- Multiple users, I/0 interrupts, ..

- How can it keep all these things straight?
* Basic Idea: Use Virtual Machine abstraction

- Decompose hard problem into simpler ones

- Abstract the notion of an executing program

- Then, worry about multiplexing these abstract machines
* Dijkstra did this for the "THE system”

- Few thousand lines vs 1 million lines in OS 360 (1K bugs)

9/8/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 3.7

Recall (61C): What happens during execution?

Addr 232-1

. Execution sequence:
- Fetch Instruction at PC

PC
- Decode PC
- Execute (possibly using registers) PC
- Write results to registers/mem PC
-PC = i
Next Instruction(PC) Addr 0
- Repeat
9/8/10 Kubiatowicz 5162 ©UCB Fall 2009 Lec 3.8

How can we give the illusion of multiple processors?

= = I CPU1 CPU2 CPU3 | CPU1 CPU2

Time ———

* Assume a single processor. How do we provide the
illusion of multiple processors?

- Multiplex in timel
+ Each virtual "CPU"” needs a structure to hold:
- Program Counter (PC), Stack Pointer (SP)
- Registers (Integer, Floating point, others...?)
+ How switch from one CPU to the next?
- Save PC, SP, and registers in current state block
- Load PC, SP, and registers from new state block
* What triggers switch?

- Timer, volun'rarz ield, I/0, other things
9/8/10 Kubiatowicz 5162 ©UCB Fall 2009 Lec 3.9

Properties of this simple multiprogramming technique

+ All virtual CPUs share same non-CPU resources
- I/0 devices the same
- Memory the same

- Consequence of sharing:

- Each thread can access the data of every other
thread (good for sharing, bad for protection)

- Threads can share instructions
(good for sharing, bad for protection)

- Can threads overwrite OS functions?
+ This (unprotected) model common in:
- Embedded applications
- Windows 3.1/Machintosh (switch only with yield)
- Windows 95—ME? (switch with both yield and timer)

9/8/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 3.10

Modern Technique: SMT/Hyperthreading

* Hardware technique

- Exploit natural properties ar ¢
of superscalar processors N |
to provide illusion of ilut | fi=Ti
multiple processors el

- Higher utilization of _ Nl e
processor resources

* Can schedule each thread | |
as if were separate CPU WA |

- However, not linear | |- | (| |
- If have multiprocessor, |

should schedule each Thread0 mThread 1

a) superscalar 6) multiprocessor 8) Hyper-
archi e hi Threading

Time {CPU cycles)

processor first
* Original technique called "Simultaneous Multithreading”
- See http://www.cs.washington.edu/research/smt/
- Alpha, SPARC, Pentium 4 ("Hyperthreading”), Power 5

9/8/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 3.11

Administriva: Time for Project Signup

9/8/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 3.12

Administrivia (2)

How to protect threads from one another?

* Need three important things:
1. Protection of memory
» Every task does not have access to all memory
2. Protection of I/0 devices
» Every task does not have access to every device

3. Protection of Access to Processor:
Preemptive switching from task to task
» Use of timer

» Must not be possible to disable timer from

usercode
9/8/10 Kubiatowicz €5162 @UCB Fall 2009 Lec 3.13 9/8/10 Kubiatowicz €S162 @UCB Fall 2009 Lec 3.14
. , Providing Illusion of Separate Address Space:
Recall: Program’s Address Space Load new Translation Map on Switch
- Address space = the set of Code Data 2 Code
accessible addresses + state max Bat Stack 1
associated with them: - stack ata — Data
- For a 32-bit processor there are é Heap cap Heap
232 = 4 billion addresses 3 l Stack Code 1 Stack
* What happens when you read or i Stack 2
write to an address? a T \l;r'og 1I Sora 1 Prog 2
_ . 2 irtua Virtual
Perhaps Nothlrlg 8 Address Heap 2 Address
- Perhaps acts like regular memory « heap Space 1 P Space 2
- Perhaps ignores writes g =
. a £ OS code
- Perhaps causes I/0 operation P
» (Memory-mapped I/0) text Translation Map 1 OS data | Translation Map 2
- Perhaps causes exception (fault) 0 0S heap &
Stacks
o Phlxsical Address Space
9/8/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 3.15 9/8/10 Ki

iatowicz CS162 ©UCB Fall 2009 Lec 3.16

Traditional UNIX Process

* Process: Operating system abstraction to
represent what is needed to run a single program
- Often called a "HeavyWeight Process”
- Formally: a single, sequential stream of execution
in its own address space
- Two parts:
- Sequential Program Execution Stream

» Code executed as a single, sequential stream of
execution

» Includes State of CPU registers

- Protected Resources:
» Main Memory State (contents of Address Space)
» I/0 state (i.e. file descriptors)

+ Important: There is no concurrency in a
heavyweight process

9/8/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 3.17

How do we multiplex processes?

+ The current state of process held in a
process control block (PCB):

- This is a “snapshot” of the execution and
protection environment

- Only one PCB active at a time
* Give out CPU time to different
processes (Scheduling):
- Only one process “running” at a time
- Give more time to important processes
* Give pieces of resources to different
processes (Protection):
- Controlled access to non-CPU resources
- Sample mechanisms:

» Memory Mapping: Give each process their
own address space
» Kernel/User dudlity: Arbitrary
multiplexing of I/O through system calls
9/8/10 Kubiatowicz €S162 ©UCB Fall 2009

process state

process number

program counter

registers

memory limits

list of open files

Process
Control
Block

Lec 3.18

CPU Switch From Process to Process

process Pj operating system process P,

interrupt or system call

Exacuting ﬂ’
: } idle
reload state from PCB, 1/

idle interrupt or system call exacuting

save stale into PCB,
: idle
J reload state from PCB,
executing _[
L

+ This is also called a “context switch”
- Code executed in kernel above is overhead
- Overhead sets minimum practical switching time

- Less overhead with SMT/hyperthreading, but...
contention for resources instead

9/8/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 3.19

Diagram of Process State

exit

admitted

interrupt

: heduler dispatch
1/O or event completion schadiier.dispaic

waiting

IO or event wait

terminated

+ As a process executes, it changes state
-new: The process is being created
-ready: The process is waiting to run
- running: Instructions are being executed

- waiting: Process waiting for some event to occur

- ferminated: The process has finished execution
9/8/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 3.20

Process Scheduling

: ready queue CPU
/0 queue H I/O request }4—

time slice |
expired
child fork a
executes child
interrupt walit for an
Qccurs interrupt

- PCBs move from queue to queue as they change state

- Decisions about which order to remove from queues are
Scheduling decisions

- Many algorithms possible (few weeks from now)

9/8/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 3.21

What does it take to create a process?

* Must construct new PCB
- Inexpensive

* Must set up new page tables for address space
- More expensive

+ Copy data from parent process? (Unix fork())

- Semantics of Unix fork() are that the child
process gets a complete copy of the parent
memory and I/0 state

- Originally very expensive

- Much less expensive with “"copy on write”
+ Copy I/0 state (file handles, etc)

- Medium expense

9/8/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 3.22

Process =? Program

main main () Heap

{ {

3 b Stack

AO { AO { A
main

} Program } Process

* More to a process than just a program:
- Program is just part of the process state

- I run emacs on lectures.txt, you run it on
homework. java - Same program, different processes

* Less to a process than a program:
- A program can invoke more than one process

- cc starts up cpp, ccl, cc2, as, and Id
9/8/10 Kubiatowicz 5162 ©UCB Fall 2009 Lec 3.23

Multiple Processes Collaborate on a Task

Proc 1 <:> Proc 2 <:> Proc 3

+ High Creation/memory Overhead
+ (Relatively) High Context-Switch Overhead
* Need Communication mechanism:
- Separate Address Spaces Isolates Processes
- Shared-Memory Mapping
» Accomplished by mapping addresses to common DRAM
» Read and Write through memory
- Message Passing
» send() and receive() messages
» Works across network

9/8/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 3.24

Shared Memory Communication

Code Data 2 Code
Data Stack 11 Data
Heap Heap Heap
Stack Code 1 Stack
Shared Stack 2 Shared
Data 1 broq 2
P 1 rog
Vri‘r?'l?ual Heap 2 Virtual
Address Code 2 Address
Space 1 Shared Space 2

+ Communication occurs by “simply” reading/writing
to shared address page

- Really low overhead communication

- Introduces complex synchronization problems
9/8/10 Kubiatowicz CS162 ©UCB Fall 2009 Lec 3.25

Inter-process Communication (IPC)

* Mechanism for processes to communicate and to
synchronize their actions

* Message system - processes communicate with
each other without resorting to shared variables

+ IPC facility provides two operations:
—send(message) - message size fixed or variable
—receive(message)

« If Pand Q wish to communicate, they need to:
- establish a communication link between them
- exchange messages via send/receive

- Implementation of communication link

- physical (e.g., shared memory, hardware bus,
systcall/trap)

- logical (e.g., logical properties)
9/8/10 Kubiatowicz CS162 ©UCB Fall 2009 Lec 3.26

Modern “Lightweight” Process with Threads

 Thread: a sequential execution stream within process
(Sometimes called a “Lightweight process™)

- Process still contains a single Address Space
- No protection between threads

* Multithreading: a single program made up of a
number of different concurrent activities

- Sometimes called multitasking, as in Ada...

* Why separate the concept of a thread from that of
a process?

- Discuss the “thread” part of a process (concurrency)
- Separate from the “address space” (Protection)
- Heavyweight Process = Process with one thread

9/8/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 3.27

Single and Multithreaded Processes

| code H data || files | [code ” data H files

registers | stack | |register5| |regis!ers| |registers|

[stack || stack H stack

single-threaded process multithreaded process

* Threads encapsulate concurrency: “Active” component

* Address spaces encapsulate protection: “Passive” part
- Keeps buggy program from trashing the system

* Why have multiple threads per address space?

9/8/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 3.28

Examples of multithreaded programs

+ Embedded systems
- Elevators, Planes, Medical systems, Wristwatches
- Single Program, concurrent operations

* Most modern OS kernels

- Internally concurrent because have to deal with
concurrent requests by multiple users

- But no protection needed within kernel

* Database Servers
- Access to shared data by many concurrent users
- Also background utility processing must be done

9/8/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 3.29

Examples of multithreaded programs (con't)

* Network Servers
- Concurrent requests from network
- Again, single program, multiple concurrent operations

- File server, Web server, and airline reservation
systems

* Parallel Programming (More than one physical CPU)
- Split program into multiple threads for parallelism
- This is called Multiprocessing

+ Some multiprocessors are actually uniprogrammed:

- Multiple threads in one address space but one program
at a time

9/8/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 3.30

Thread State

+ State shared by all threads in process/addr space
- Contents of memory (global variables, heap)
- I/0 state (file system, network connections, etc)
- State “private” to each thread
- Kept in TCB = Thread Control Block
- CPU registers (including, program counter)
- Execution stack - what is this?

+ Execution Stack
- Parameters, Temporary variables

- return PCs are kept while called procedures are
executing

9/8/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 3.31

Execution Stack Example

_ Az tmp=1
A(int tmp) { ret=exit

1T (tmp<2) B: ret=A+2

BO;

printf(tmp); C: ret=b+1
} A: tmp=2
BO { Stack I ret=C+l

CO: Pointer 1
} Stack Growth
cO {

A + Stack holds temporary results
3 + Permits recursive execution
ACL: * Crucial to modern languages

9/8/10 Kubiatowicz €S5162 ©UCB Fall 2009 Lec 3.32

Classification

ey
v 9
°8 o M
threads 5 & ne any
Per AS: #
MS/DOS, early e
One Macintosh Traditional UNIX
Embedded systems Mach, 0s/2, Linux
(Geoworks, VxWorks, Windows 9x???
Many Java0Ss, etc) Win NT to XP,
Java0s, Pilot(PC) | solaris, HP-UX, OS X

* Real operating systems have either
- One or many address spaces
- One or many threads per address space
- Did Windows 95/98/ME have real memory protection?
- No: Users could overwrite process tables/System DLLs
9/8/10 Kubiatowicz CS162 ©UCB Fall 2009 Lec 3.33

Example: Implementation Java OS
* Many threads, one Address Space
* Why another OS?
- Recommended Minimum memory sizes:
» UNIX + X Windows: 32MB
» Windows 98: 16-32MB
» Windows NT: 32-64MB Java APPS
» Windows 2000/XP: 64-128MB
- What if we want a cheap network
point-of -sale computer?
» Say need 1000 terminals Hardware
» Want < 8MB
* What language to write this OS in?
- C/C++/ASM? Not terribly high-level.
Hard to debug.

- Java/Lisp? Not quite sufficient - need
direct access to HW/memory management
9/8/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 3.34

Java OS
Structure

Summary

* Processes have two parts
- Threads (Concurrency)
- Address Spaces (Protection)
+ Concurrency accomplished by multiplexing CPU Time:
- Unloading current thread (PC, registers)
- Loading new thread (PC, registers)

- Such context switching may be voluntary (yield(),
I/0 operations) or involuntary (timer, other interrupts)

* Protection accomplished restricting access:
- Memory mapping isolates processes from each other
- Dual-mode for isolating I/0, other resources

* Book talks about processes

- When this concerns concurrency, really talking about
thread portion of a process

- When this concerns protection, talking about address
space portion of a process
9/8/10 Kubiatowicz CS5162 ©UCB Fall 2009 Lec 3.35

Cs162
Operating Systems and
Systems Programming
Lecture 4

Thread Dispatching

September 13, 2010
Prof. John Kubiatowicz
http://inst.eecs.berkeley.edu/~cs162

Recall: Modern Process with Multiple Threads

* Process: Operating system abstraction to represent
what is needed to run a single, multithreaded
program

* Two parts:

- Multiple Threads

» Each thread is a single, sequential stream of execution
- Protected Resources:

» Main Memory State (contents of Address Space)

» I/O state (i.e. file descriptors)

* Why separate the concept of a thread from that of
a process?

- Discuss the “"thread” part of a process (concurrency)
- Separate from the “address space” (Protection)
- Heavyweight Process = Process with one thread

9/13/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 4.2

Recall: Single and Multithreaded Processes

| code H data || files | [code |] data H files

|regislers| | stack | |register5||regis!ers||registers|

[stack ” stack H stack

multithreaded process

single-threaded process

* Threads encapsulate concurrency
- "Active” component of a process
* Address spaces encapsulate protection
- Keeps buggy program from trashing the system

- "Passive” component of a process
9/13/10 Kubiatowicz €S162 ©UCB Fall 2009

Lec 4.3

Goals for Today

* Further Understanding Threads
* Thread Dispatching
- Beginnings of Thread Scheduling

Note: Some slides and/or pictures in the following are

adapted from slides ©2005 Silberschatz, Galvin, and Gagne.

Many slides generated from my lecture notes by Kubiatowicz.
9/13/10 Kubiatowicz 5162 ©UCB Fall 2009 Lec 4.4

Classification

of addr
spaces

threads el S
Per AS:
One MS/DOS, early Traditional UNIX

Macintosh

Embedded systems | Mach, 0S/2, Linux,
Man (6eoworks, VxWorks, | Win 95?2, Mac OS X,
Y TR A7) Win NT fo XP,

JavaOs, Pilot(PC) Solaris, HP-UX

* Real operating systems have either
- One or many address spaces
- One or many threads per address space

- Did Windows 95/98/ME have real memory protection?
- No: Users could overwrite process tables/System DLLs

9/13/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 4.5

Thread State

+ State shared by all threads in process/addr space
- Contents of memory (global variables, heap)
- I/0 state (file system, network connections, etc)
- State “private” to each thread
- Kept in TCB = Thread Control Block
- CPU registers (including, program counter)
- Execution stack - what is this?

* Execution Stack
- Parameters, Temporary variables

- return PCs are kept while called procedures are
executing

9/13/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 4.6

Execution Stack Example

_ A: tmp=1
A(int tmp) { r22=exit
1T (tnp<2) B: ret=A+2
BO:;
printf(tmp); C: ret=B+1
} A: tmp=2
BO { Stack > ret=C+1
cO; Pointer 1
} Stack Growth
cOA . Stack holds + It
A ack holds temporary results
3 « Permits recursive execution
ACL: * Crucial to modern languages

9/13/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 4.7

MIPS: Software conventions for Registers

0 constant O 16
1 reserved for assembler ... (callee must save)
2 v0 expression evaluation & 23
3 vl function results 24 t8 temporary (cont'd)
4 a0 arguments 25 t9
5 al 26 reserved for OS kernel
6 a2 27
7 a3 28 gp Pointerto global area
8 tO temporary: caller saves 29 sp Stack pointer
. 30 fp frame pointer
15 t7 31 Return Address (HW)

* Before calling procedure: - After return, assume
- Save caller-saves regs - Callee-saves reg OK

- Save v0, vl - gp.sp.fp OK (restored!)
- Save ra - Other things trashed
9/13/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 4.8

Single-Threaded Example

* Imagine the following C program:

main() {
ComputePIl (“pi.txt”);
PrintClassList(““clist.text”);

¥
+ What is the behavior here?

- Program would never print out class list
- Why? ComputePI would never finish

9/13/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 4.9

Use of Threads
* Version of program with Threads:

main() {
CreateThread(ComputePl1(“pi.txt));
CreateThread(PrintClassList(“clist.text));

}

* What does “CreateThread” do?
- Start independent thread running given procedure

* What is the behavior here?
- Now, you would actually see the class list
- This should behave as if there are two separate CPUs

CPU1 CPU2 CPU1 CPU2 CPU1 CPU2

Time ———p
9/13/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 4.10

Memory Footprint of Two-Thread Example

+ If we stopped this program and examined it with a
debugger, we would see

- Two sets of CPU registers Stack 1
- Two sets of Stacks)
* Questions:
- How do we position stacks relative to Stack 2 >
each other? t ‘%
- What maximum size should we choose a
for the stacks? s ¥
- What happens if threads violate this? Heap e
- How might you catch violations?
Global Data
Code

9/13/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 4.11

Per Thread State

- Each Thread has a Thread Control Block (TCB)

- Execution State: CPU registers, program counter,
pointer to stack

- Scheduling info: State (more later), priority, CPU time

- Accounting Info

- Various Pointers (for implementing scheduling queues)

- Pointer to enclosing process? (PCB)?

- Etc (add stuff as you find a need)
* In Nachos: "Thread” is a class that includes the TCB
+ OS Keeps track of TCBs in protected memory

- In Array, or Linked List, or ..

9/13/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 4.12

Lifecycle of a Thread (or Process)

admitted interrupt exit

terminated

Ready Queue And Various I/0 Device Queues

* Thread not running = TCB is in some scheduler queue
- Separate queue for each device/signal/condition
- Each queue can have a different scheduler policy

Ready | Head Link Link Link ——
; Queue Tail Registers Registers Registers| =
1/O or event completion Scheauier dispatch /0 or event wait g:h:r' 2:*‘:" g:h:r'
i Tape Head [ate ate ate
waiting Unifr’ o Tai = TCB, TCB, TCB,,
L
As a thread executes, it changes state: bisk [Fead T T
- new: The thread is being created Unit O [T Ta Registers Registers| -
- ready: The thread is waiting to run Other Other
o o o Disk Head 1 State State
- running: Instructions are being executed Unit 2 [7ai = TCB, TCB,
os. ey a
- waiting: Thread waiting for some event to occur s T
. .« e . ni
- terminated: The thread has finished execution NE::’T("O Head 7"%9;5*”5_-';
. o . o e A
+ "Active"” threads are represented by their TCBs Tail Other
. o o ate
- TCBs organized into queues based on their state TCB,
9/13/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 4.13 9/13/10 Kubratowicz €S162 ©UCB Fall 2009 Lec 4.14
Administrivia Administrivia (2)
9/13/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 4.15 9/13/10 Kubiatowicz €S162 ©UCB Fall 2009

Lec 4.16

Dispatch Loop

+ Conceptually, the dispatching loop of the operating system
looks as follows:

Loop {
RunThread();
ChooseNextThread();
SaveStateOfCPU(curTCB);
LoadStateOfCPU(newTCB);
}

+ This is an /infinite loop

- One could argue that this is all that the OS does
+ Should we ever exit this loop???

- When would that be?

9/13/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 4.17

Running a thread

Consider first portion: RunThread()

* How do I run a thread?
- Load its state (registers, PC, stack pointer) into CPU
- Load environment (virtual memory space, etc)
- Jump to the PC

* How does the dispatcher get control back?
- Internal events: thread returns control voluntarily
- External events: thread gets preempted

9/13/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 4.18

Internal Events

* Blocking on I/0

- The act of requesting I/0 implicitly yields the CPU
* Waiting on a “signal” from other thread

- Thread asks to wait and thus yields the CPU
+ Thread executes a yield()

- Thread volunteers to give up CPU

computeP1 O {
while(TRUE) {
ComputeNextDigit();
yieldQ);

9/13/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 4.19

Stack for Yielding Thread

ComputePI

yield
Trap to OS (

yimoub 3o0ig

* How do we run a new thread?
run_new_thread() {
newThread = PickNewThread();
switch(curThread, newThread);
ThreadHouseKeeping(); /* next Lecture */

by
* How does dispatcher switch to a new thread?

- Save anything next thread may trash: PC, regs, stack

- Maintain isolation for each thread
9/13/10 Kubiatowicz 5162 ©UCB Fall 2009 Lec 4.20

What do the stacks look like?

* Consider the following

code blocks:
proc AQ { Thread S Thread T
BO:; § A A
} 8 B(while) B(while)
()]
proc BO { % yield yield
while(TRUE) { g
yieldQ;
3
3
* Suppose we have 2
threads:
- Threads Sand T
9/13/10 Kubiatowicz 5162 ©UCB Fall 2009 Lec 4.21

Saving/Restoring state (often called “"Context Switch)
Switch(tCur,tNew) {
/* Unload old thread */
TCB[tCur].regs.r7 = CPU.r7;

TCB[tCur].regs.r0 = CPU.rO;
TCB[tCur].regs.sp = CPU.sp;
TCB[tCur].regs.retpc = CPU.retpc; /*return addr*/

/* Load and execute new thread */
CPU.r7 = TCB[tNew].regs.r7;
CPU.rO TCB[tNew] .regs.r0;
CPU.sp TCB[tNew].regs.sp;
CPU.retpc = TCB[tNew].regs.retpc;
return; /* Return to CPU.retpc */

9/13/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 4.22

Switch Details

* How many registers need to be saved/restored?
- MIPS 4k: 32 Int(32b), 32 Float(32b)
- Pentium: 14 Int(32b), 8 Float(80b), 8 SSE(128b), ...

- Sparc(v7): 8 Regs(32b), 16 Int regs (32b) * 8 windows =
136 (32b)+32 Float (32b)

- Itanium: 128 Int (64b), 128 Float (82b), 19 Other(64b)
= retpc is where the return should jump to.

- In reality, this is implemented as a jump
* There is a real implementation of switch in Nachos.

- See switch.s

» Normally, switch is implemented as assembly!
- Of course, it's magicall
- But you should be able to follow it!

9/13/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 4.23

Switch Details (continued)

* What if you make a mistake in implementing switch?
- Suppose you forget to save/restore register 4

- Get intermittent failures depending on when context switch
occurred and whether new thread uses register 4

- System will give wrong result without warning
+ Can you devise an exhaustive test to test switch code?
- No! Too many combinations and inter-leavings
+ Cautionary tail:
- For speed, Topaz kernel saved one instruction in switch()
- Carefully documented!
» Only works As long as kernel size < 1MB
- What happened?
» Time passed, People forgot

» Later, they added features to kernel (no one removes
features!)

» Very weird behavior started happening

- Moral of story: Design for simplicity
9/13/10 Kubiatowicz 5162 ©UCB Fall 2009 Lec 4.24

What happens when thread blocks on I/0?

CopyFile

read
Trap to OS C

Y4moub >opic

* What happens when a thread requests a block of
data from the file system?

- User code invokes a system call
- Read operation is initiated
- Run new thread/switch
+ Thread communication similar
- Wait for Signal/Join

- Networking
9/13/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 4.25

External Events

* What happens if thread never does any I/0,
never waits, and never yields control?

- Could the ComputePI program grab all resources
and never release the processor?

» What if it didn't print to console?
- Must find way that dispatcher can regain control!
+ Answer: Utilize External Events

- Interrupts: signals from hardware or software
that stop the running code and jump to kernel

- Timer: like an alarm clock that goes off every
some many milliseconds

- If we make sure that external events occur
frequently enough, can ensure dispatcher runs

9/13/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 4.26

Example: Network Interrupt

Raise priority N
Aq,b«,é eReenable All Ints
ces ° \ ° -
add $ri,$r2,%r3 (," ?\<\‘\ S"fwe registers
subi $ra,$ri,#4 Q@O_&o Dispatch to Handle
slli $ra,$r4,#2 >

|:>Pipeline Flush

Iw $r2,0(%$rd)
Iw $r3,4(s$rd)
add $r2,%r2,%$r3
sw 8($r4d),$r2

A}
”

Transfer Network
Packet from hardware
to Kernel Buffers

Restore registers
Clear current Int
Disable All Ints
Restore priority./
RTI

External Interrupt

~
“Interrupt Handler

* An interrupt is a hardware-invoked context switch
- No separate step to choose what to run next

- Always run the interrupt handler immediately
9/13/10 Kubiatowicz CS5162 ©UCB Fall 2009 Lec 4.27

Use of Timer Interrupt to Return Control

+ Solution to our dispatcher problem
- Use the timer interrupt to force scheduling decisions

Some Routine

Interrupt

y4moub o045

 Timer Interrupt routine:
TimerInterrupt() {
DoPeriodicHouseKeeping();
run_new_thread();

}

+ I/0 interrupt: same as timer interrupt except that
DoHousekeeping() replaced by Servicel0().

9/13/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 4.28

Choosing a Thread to Run Summary

* How does Dispatcher decide what to run? + The state of a thread is contained in the TCB
- Zero ready threads - dispatcher loops - Registers, PC, stack pointer
» Alternative is to create an “idle thread”
» Can put machine into low-power mode
- Exactly one ready thread - easy
- More than one ready thread: use scheduling priorities
* Possible priorities:
- LIFO (last in, first out): . .
. - Can be very expensive if many registers
» put ready threads on front of list, remove from front
. - Must be very carefully constructed!
- Pick one at random heduli .
- FIFO (first in, first out): * Many scheduling options

- Decision of which thread to run complex enough for
complete lecture

- States: New, Ready, Running, Waiting, or Terminated
* Multithreading provides simple illusion of multiple CPUs
- Switch registers and stack to dispatch new thread
- Provide mechanism to ensure dispatcher regains control
+ Switch routine

» Put ready threads on back of list, pull them from front
» This is fair and is what Nachos does
- Priority queue:

» keep ready list sorted by TCB priority field
9/13/10 Kubiatowicz €5162 ©®UCB Fall 2009 Lec 4.29 9/13/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 4.30

CS162
Operating Systems and
Systems Programming
Lecture 5

Cooperating Threads

September 15, 2010
Prof. John Kubiatowicz
http://inst.eecs.berkeley.edu/~cs162

Review: Per Thread State

- Each Thread has a Thread Control Block (TCB)

- Execution State: CPU registers, program counter,
pointer to stack

- Scheduling info: State (more later), priority, CPU time
- Accounting Info
- Various Pointers (for implementing scheduling queues)
- Pointer to enclosing process? (PCB)?
- Etc (add stuff as you find a need)
+ OS Keeps track of TCBs in protected memory
- In Arrays, or Linked Lists, or ..

Head Link Link Link [——
Tail Registers Registers Registers =
Other Other Other
Ready State State State
Queue TCB, TCB, TCB,,
9/15/10 Kubiatowicz €S162 ©®UCB Fall 2009 Lec 5.2

Review: Yielding through Internal Events

+ Blocking on I/0
- The act of requesting I/0 implicitly yields the CPU
*+ Waiting on a “signal” from other thread
- Thread asks to wait and thus yields the CPU
+ Thread executes a yield()
- Thread volunteers to give up CPU
computeP1 O {
while(TRUE) {
ComputeNextDigit();
yieldQ);
+

}

- Note that yieldg) must be called by programmer
frequently enough!

9/15/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 5.3

Review: Stack for Yielding Thread

ComputePI

yield
Trap to OS (

yimoub 3o0ig

+ How do we run a new thread?

run_new_thread() {
newThread = PickNewThread();
switch(curThread, newThread);
ThreadHouseKeeping(); /* Later in lecture */

by
* How does dispatcher switch to a new thread?
- Save anything next thread may trash: PC, regs, stack

- Maintain isolation for each thread
9/15/10 Kubiatowicz 5162 ©UCB Fall 2009 Lec 5.4

Review: Two Thread Yield Example

* Consider the following

code blocks:
proc AQ { Thread S Thread T
BQO:; _§ A A
} 8 B(while) B(while)
()]
proc BO { % yield yield
while(TRUE) { g
yield(Q);
3
}
* Suppose we have 2
threads:
- Threads Sand T
9/15/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 5.5

Goals for Today

* More on Interrupts
* Thread Creation/Destruction
+ Cooperating Threads

Note: Some slides and/or pictures in the following are

adapted from slides ©2005 Silberschatz, Galvin, and Gagne.

Many slides generated from my lecture notes by Kubiatowicz.
9/15/10 Kubiatowicz CS162 ©UCB Fall 2009 Lec 5.6

A ;@Merrupf Controller

JETT
|18 || 1D
{EICE imma CPU
1S | m >
» = .
» = | § [fnterrup []Int Disable

= ala

5 r 2|8

[V}

3

\ 4 Software Control
Network Interrupt NMI

- Interrupts invoked with interrupt lines from devices
+ Interrupt controller chooses interrupt request to honor
- Mask enables/disables interrupts
- Priority encoder picks highest enabled interrupt
- Software Interrupt Set/Cleared by Software
- Interrupt identity specified with ID line
*+ CPU can disable all interrupts with internal flag

Non maskable m‘ter‘ru t line gZNMI can't be disabled
9/15/ ubla owicz €S162 ©UCE Fall 2009 Lec 5.7

Example: Network Interrupt

406«}\6 @Ralse priority
s add $ri,$r2,%$r3 d“Reenable All Ints
g subi $r4,$r1,#4 save registers o
& » Dispatch to Handlefr o
o shlli $r4,%r4,#2 & =
S y) e
<) Transfer Network]
H Pipeline Flush Packet from hardwarey T
© to Kernel Buffers =
T Iw $r2,0($ra) e F
S w $r3.4($ra) Restore registers g
X dd Clear current Int +
w a $r2,$r2,%$r3 - <
sw 8($ra),$r2 Disable All Ints =
0T Restore priority
RTI /
+ Disable/Enable All Ints = Internal CPU disable bit
- RTTI reenables interrupts, returns to user mode
* Raise/lower priority: change interrupt mask
- Software interrupts can be provided entirely in
soffwar'e at priori switching boundaries
9/15/1 ubidtowicz €S162 @UCB Fall 2009 Lec 5.8

Review: Preemptive Multithreading

* Use the timer interrupt to force scheduling decisions

Some Routine
Interrupt

Y4moub 3o04s

+ Timer Interrupt routine:
Timerinterrupt() {
DoPeriodicHouseKeeping();
run_new_thread();

}

* This is often called preemptive multithreading, since
threads are preempted for better scheduling

- Solves problem of user who doesn't insert yield():

9/15/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 5.9

Administrivia

9/15/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 5.10

Review: Lifecycle of a Thread (or Process)

admitted interrupt exit

scheduler dispatch

1/O or event completion /O or event wait

waiting

* As a thread executes, it changes state:
- new: The thread is being created
- ready: The thread is waiting to run
- running: Instructions are being executed
- waiting: Thread waiting for some event to occur
- terminated: The thread has finished execution
+ "Active"” threads are represented by their TCBs

- TCBs organized into queues based on their state
9/15/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 5.11

ThreadFork(): Create a New Thread

« ThreadFork() is a user-level procedure that
creates a new thread and places it on ready queue

- We called this CreateThread() earlier
+ Arguments to ThreadFork()
- Pointer to application routine (fcnPir)
- Pointer to array of arguments (fcnArgPir)
- Size of stack to allocate
+ Implementation
- Sanity Check arguments
- Enter Kernel-mode and Sanity Check arguments again
- Allocate new Stack and TCB
- Initialize TCB and place on ready list (Runnable).

9/15/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 5.12

How do we initialize TCB and Stack?
* Initialize Register fields of TCB
- Stack pointer made to point at stack
- PC return address = OS (asm) routine ThreadRoot()

- Two arg registers (a0 and al) initialized to fcnPtr and
fcnArgPtr, respectively

+ Initialize stack data?
- No. Important part of stack frame is in registers (ra)

- Think of stack frame as just before body of
ThreadRoot() really gets started

Yy4moub >opig

Initial Stack

9/15/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 5.13

How does Thread get started?
Other Thread

A

B(while)

yield

Stack growth

New Thread

+ Eventually, run_new_thread() will select this TCB
and return into beginning of ThreadRoot()

- This really starts the new thread
9/15/10 Kubiatowicz CS162 ©UCB Fall 2009 Lec 5.14

What does ThreadRoot() look like?

+ ThreadRoot() is the root for the thread routine:
ThreadRoot() {
DoStartupHousekeeping();
UserModeSwitch(); /* enter user mode */
Call fcnPtr(fcnArgPtr);

ThreadFinish();
}
- Startup Housekeeping 2
- Includes Thin?s like recording Thread Code | |*
start time of thread q
- Other Statistics 3

- Stack will grow and shrink
with execution of thread

* Final return from thread returns into ThreadRoot()
which calls ThreadFinish()

- ThreadFinish() will start at user-level
9/15/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 5.15

Running Stack

What does ThreadFinish() do?

* Needs to re-enter kernel mode (system call)

- "Wake up” (place on ready queue) threads waitin
for this |;"hr'(gad v) J

- Threads (like the parent) may be on a wait queue
waiting for this thread to finish

*+ Can't deallocate thread yet
- We are still running on its stack!
- Instead, record thread as “waitingToBeDestroyed”
+ Call run_new_thread() to run another thread:
run_new_thread() {
newThread = PickNewThread();
switch(curThread, newThread);
ThreadHouseKeeping();

}

—ThreadHouseKeeping() notices waitingToBeDestroyed
and deallocates the finished thread's TCB and stack

9/15/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 5.16

Additional Detail

* Thread Fork is not the same thing as UNIX fork

- UNIX fork creates a new process so it has to
create a new address space

- For now, don't worry about how to create and
switch between address spaces

* Thread fork is very much like an asynchronous
procedure call

- Runs procedure in separate thread
- Calling thread doesn't wait for finish
* What if thread wants to exit early?

—ThreadFinish() and exit() are essentially the
same procedure entered at user level

9/15/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 5.17

Parent-Child relationship
(See

pid=0

pagecut
pid=2
Ineid
pid = 140

Typical process tree
for Solaris system

+ Every thread (and/or Process) has a parentage
- A "parent” is a thread that creates another thread
- A child of a parent was created by that parent

9/15/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 5.18

ThreadJoin() system call
* One thread can wait for another to finish with the
ThreadJoin(tid) call

- Calling thread will be taken off run queue and placed on
waiting queue for thread tid

* Where is a logical place to store this wait queue?
- On queue inside the TCB

TCBy
Termination
Wait queue
Head Link |—{ Link ——] Link —
Tail N Registers] |Registers| Registers] =
N Other Other Other

State State State
TCBy TCB, TCBy,

+ Similar to wait() system call in UNIX

- Lets parents wait for child processes
9/15/10 Kubiatowicz CS5162 ©UCB Fall 2009 Lec 5.19

Use of Join for Traditional Procedure Call

A traditional procedure call is logically equivalent to
doing a ThreadFork followed by ThreadJoin

+ Consider the following normal procedure call of B()
by A():
AQ { BO: }
B { Do interesting, complex stuff }
 The procedure A() is equivalent to A'():

AO {
tid = ThreadFork(B,null);
ThreadJoin(tid);

}

* Why not do this for every procedure?
- Context Switch Overhead

- Memory Overhead for Stacks
9/15/10 Kubiatowicz 5162 ©UCB Fall 2009 Lec 5.20

Kernel versus User-Mode threads

* We have been talking about Kernel threads
- Native threads supported directly by the kernel
- Every thread can run or block independently
- Ohne process may have several threads waiting on different
things
+ Downside of kernel threads: a bit expensive
- Need to make a crossing into kernel mode to schedule
+ Even lighter weight option: User Threads
- User program provides scheduler and thread package
- May have several user threads per kernel thread

- User threads may be scheduled non-premptively relative to
each other (only switch on yield())

- Cheap
+ Downside of user threads:
- When one thread blocks on I/0, all threads block
- Kernel cannot adjust scheduling among all threads
- Option: Scheduler Activations
» Have kernel inform user level when thread blocks...

9/15/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 5.21

Threading models mentioned by book

; 2 2 z) <+—— user thread
Simple One-to-One | | ' ¢ ¢
Threading Model J
é‘ .\K) \k _/,' -_k\ <«— kernel thread
s 5 < S

SR " P . =Y
\k},- +—— kemel thread ._\k /I -\E/- I'_g,f’ +—— kemal thread
Many-to-One Many - to-Many
9/15/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 5.22

Multiprocessing vs Multiprogramming

* Remember Definitions:
- Multiprocessing = Multiple CPUs
- Multiprogramming = Multiple Jobs or Processes
- Multithreading = Multiple threads per Process
* What does it mean to run two threads “concurrently”?

- Scheduler is free to run threads in any order and
interleaving: FIFO, Random, ..

- Dispatcher can choose to run each thread to completion
or time-slice in big chunks or small chunks

A ﬁ
Multiprocessin B
P I C —
A B C
ﬁ q
Multiprogramming A B C A B C B

1 1 I 1 1 1 1 I

9/15/10 ubiatowicz €S162 ©UCB Fall 2009 Lec 5.23

Correctness for systems with concurrent threads
If dispatcher can schedule threads in any way,
programs must work under all circumstances

- Can you test for this?

- How can you know if your program works?

* Independent Threads:

- No state shared with other threads

- Deterministic = Input state determines results

- Reproducible = Can recreate Starting Conditions, I/0

- Scheduling order doesn't matter (if switch() workslll)
+ Cooperating Threads:

- Shared State between multiple threads

- Non-deterministic

- Non-reproducible

* Non-deterministic and Non-reproducible means that
bugs can be intermittent

- Sometimes called "Heisenbugs”
9/15/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 5.24

Interactions Complicate Debugging

* Is any program truly independent?
- Every ?(ocess shares the file system, OS resources,

network, etfc

- Extreme example: buggy device driver causes thread A to
crash “independent thread” B

* You probably don't realize how much you depend on
reproducibility:
- Example: Evil C compiler

» Modifies files behind your back by inserting errors into C
program unless you insert debugging code

- Example: Debugging statements can overrun stack
* Non-deterministic errors are really difficult to find
- Example: Memory layout of kernel+user programs
» depends on scheduling, which depends on timer/other things
» Original UNIX had a bunch of non-deterministic errors
- Example: Something which does interesting I/0

» User typing of letters used to help generate secure keys
9/15/10 Kubiatowicz CS162 ©UCB Fall 2009 Lec 5.25

Why allow cooperating threads?

* People cooperate; computers help/enhance people’s lives,
so computers must cooperate

- By analogy, the non-reproducibility/non-determinism of
people is"a notable problem for “carefully laid plans”

+ Advantage 1: Share resources
- One computer, many users
- One bank balance, many ATMs
» What if ATMs were only updated at night?
- Embedded systems (robot control: coordinate arm & hand)
+ Advantage 2: Speedup
- Overlap I/0 and computation
» Many different file systems do read-ahead
- Multiprocessors - chop up program into parallel pieces
* Advantage 3: Modularity
- More important than you might think
- Chop large problem up into simpler pieces
» To compile, for instance, gcc calls cpp | ccl | cc2 | as | Id

» Makes system easier to extend
9/15/10 Kubiatowicz CS162 ©UCB Fall 2009 Lec 5.26

High-level Example: Web Server

=

D/_\z

+ Server must handle many requests N
* Non-cooperating version:
serverLoop() {
con = AcceptCon();
ProcessFork(ServiceWebPage(),con);

}
* What are some disadvantages of this technique?

9/15/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 5.27

Threaded Web Server

* Now, use a single process
* Multithreaded (cooperating) version:
serverLoop() {
connection = AcceptCon();
ThreadFork(ServiceWebPage(),connection);

}
* Looks almost the same, but has many advantages:

- Can share file caches kept in memory, results of CGI
scripts, other things

- Threads are much cheaper to create than processes, so
this has a lower per-request overhead

* Question: would a user-level (say one-to-many)
thread package make sense here?

- When one request blocks on disk, all block...
. \A{hag céboutfl?enia!) of Service attacks or digg /
Slash-dot effects:
Slashdot

9/15/10 Kubiatowicz €CS162 © e (o Bnedle, S0KS (ol i Voos,

Thread Pools

* Problem with previous version: Unbounded Threads
- When web-site becomes too popular - throughput sinks

* Instead, allocate a bounded “pool” of worker threads,
representing the maximum level of multiprogramming

///""“-.~‘Aﬂasfer
[::::::} Thread

Thread Pool

worker(queue) {

master() { -
allocThreads(worker ,queue); while(TRUE) { .
while(TRUE) { con=Dequeue(queue);

con=AcceptCon(); if (con==null)

Enqueue(queue,con); elSzleepOn(queue);
} wakeUp(queue); ServiceWebPage(con);
3 }

9/15/10 Kubiatowicz €S5162 ©}JCB Fall 2009 Lec 5.29

Summary

* Interrupts: hardware mechanism for returning control
to operating system

- Used for important/high-priority events

- Can force dispatcher to schedule a different thread
(premptive multithreading)

* New Threads Created with ThreadFork()
- Create initial TCB and stack to point at ThreadRoot()
—ThreadRoot() calls thread code, then ThreadFinish()

—ThreadFinish() wakes up waiting threads then
prepares TCB/stack for distruction

+ Threads can wait for other threads using
ThreadJoin()

+ Threads may be at user-level or kernel level
+ Cooperating threads have many potential advantages
- But: introduces non-reproducibility and non-determinism

- Need to have Atomic operations
9/15/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 5.30

CS162
Operating Systems and
Systems Programming
Lecture 6

Synchronization

September 20, 2010
Prof. John Kubiatowicz
http://inst.eecs.berkeley.edu/~cs162

Review: ThreadFork(): Create a New Thread

» ThreadFork() is a user-level procedure that
creates a new thread and places it on ready queue

+ Arguments to ThreadFork()
- Pointer to application routine (fcnPtr)
- Pointer to array of arguments (fcnArgPir)
- Size of stack to allocate
* Implementation
- Sanity Check arguments
- Enter Kernel-mode and Sanity Check arguments again
- Allocate new Stack and TCB
- Initialize TCB and place on ready list (Runnable).

9/20/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 6.2

Review: How does Thread get started?

Other Thread
A

B(while)

yield

Stack growth

New Thread

+ Eventudlly, run_new_thread() will select this TCB
and return into beginning of ThreadRoot()

- This really starts the new thread
9/20/10 Kubiatowicz CS5162 ©UCB Fall 2009 Lec 6.3

Review: What does ThreadRoot() look like?

+ ThreadRoot() is the root for the thread routine:
ThreadRoot() {
DoStartupHousekeeping();
UserModeSwitch(); /* enter user mode */
Call fcnPtr(fcnArgPtr);

ThreadFinish();
}
- Startup Housekeeping 2
- Includes fhiril_gs like recording Thread Code | |*
start time of thread q
- Other Statistics 3

- Stack will grow and shrink
with execution of thread

* Final return from thread returns into ThreadRoot()
which calls ThreadFinish()

- ThreadFinish() wake up sleeping threads
9/20/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 6.4

Running Stack

Review: Correctness for systems with concurrent threads

+ If dispatcher can schedule threads in any way,
programs must work under all circumstances

* Independent Threads:

- No state shared with other threads

- Deterministic = Input state determines results

- Reproducible = Can recreate Starting Conditions, I/0

- Scheduling order doesn't matter (if switch() workslll)
* Cooperating Threads:

- Shared State between multiple threads

- Non-deterministic

- Non-reproducible

* Non-deterministic and Non-reproducible means that
bugs can be intermittent

- Sometimes called “"Heisenbugs”

9/20/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 6.5

Goals for Today

+ Concurrency examples
* Need for synchronization
+ Examples of valid synchronization

Note: Some slides and/or pictures in the following are

adapted from slides ©2005 Silberschatz, Galvin, and Gagne.

Many slides generated from my lecture notes by Kubiatowicz.
9/20/10 Kubiatowicz CS162 ©UCB Fall 2009 Lec 6.6

Interactions Complicate Debugging

* Is any program truly independent?

- Every process shares the file system, OS resources,
network, etfc

- Extreme example: buggy device driver causes thread A to
crash “independent thread” B

* You probably don't realize how much you depend on
reproducibility:
- Example: Evil C compiler

» Modifies files behind your back by inserting errors into C
program unless you insert debugging code

- Example: Debugging statements can overrun stack
* Non-deterministic errors are really difficult to find
- Example: Memory layout of kernel+user programs
» depends on scheduling, which depends on timer/other things
» Original UNIX had a bunch of non-deterministic errors
- Example: Something which does interesting I/0

» User typing of letters used to help generate secure keys
9/20/10 Kubiatowicz 5162 ©UCB Fall 2009 Lec 6.7

Why allow cooperating threads?

* People cooperate; computers help/enhance people’s lives,
so computers must cooperate

- By analogy, the non-reproducibility/non-determinism of
people is a notable problem for “carefully laid plans”

Advantage 1: Share resources
- One computer, many users
- One bank balance, many ATMs
» What if ATMs were only updated at night?
- Embedded systems (robot control: coordinate arm & hand)
Advantage 2: Speedup
- Overlap I/0 and computation
» Many different file systems do read-ahead
- Multiprocessors - chop up program into parallel pieces
Advantage 3: Modularity
- More important than you might think
- Chop large problem up into simpler pieces
» To compile, for instance, gcc calls cpp | ccl | cc2 | as | Id

» Makes system easier to extend
9/20/10 Kubiatowicz 5162 ©UCB Fall 2009 Lec 6.8

Threaded Web Server

—

4@/\\/_
+ Multithreaded version: L

serverLoop() {
connection = AcceptCon();
ThreadFork(ServiceWebPage(),connection);

\[*

}
+ Advantages of threaded version:
- Can share file caches kept in memory, results of C6GI
scripts, other things
- Threads are much cheaper to create than processes, so
this has a lower per-request overhead

* What if too many requests come in at once?

9/20/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 6.9

Thread Pools
* Problem with previous version: Unbounded Threads
- When web-site becomes too popular - throughput sinks

* Instead, allocate a bounded “pool” of threads,
representing the maximum level of multiprogramming

///""“-.~_Ahasfer
[::::::} Thread

Thread Pool

slave(queue) {
master() { . while(TRUE) {
allocThreads(slave,queue);
while(TRUE) { ?on:Dequeue(queue);
con=AcceptCon(); T (ion==null) .
Enqueue(queue,con); elsz eepOn(queue);
akeU ;
wakeUp(queue); ServiceWebPage(con);

¥ }

9/23/10 Kubiatowicz €S5162 ©}JCB Fall 2009 Lec 6.10

Administrivia

9/20/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 6.11

ATM Bank Server

L

oooo
oooo
oooo

* ATM server problem:
- Service a set of requests
- Do so without corrupting database

- Don't hand out too much money

Kubiatowicz €S162 ©UCB Fall 2009 Lec 6.12

9/20/10

ATM bank server example

+ Suppose we wanted to implement a server process to
handle requests from an ATM network:

BankServer() {
while (TRUE) {
ReceiveRequest(&op, &acctld, &amount);
ProcessRequest(op, acctld, amount);

}

ProcessRequest(op, _acctld, amount) g
|T (opf:: deposit) Deposit(acctld, amount);
else if ..

Deposit(acctld, amount) {)
acct = GetAccount(acctld); /* may use disk 1/0 */
acct->balance += amount;)
StoreAccount(acct); /* Involves disk 1/0 */

* How could we speed this up?
- More than one request being processed at once
- Event driven (overlap computation and I/0)

- Multiple threads (multi-proc, or overlap comp and I/0)
9/20/10 Kubiatowicz CS162 ©UCB Fall 2009 Lec 6.13

Event Driven Version of ATM server

* Suppose we only had one CPU
- Still like to overlap I/0 with computation

- Without threads, we would have to rewrite in event-
driven style

+ Example

BankServer()
while(TRUE) {

event = WailtForNextEvent();

if (event == ATMRequest)
StartOnRequest();

else iT (event == AcctAvail)
ContinueRequest();

else if (event == AcctStored)
FinishRequest();

}
}
- What if we missed a blocking I/O step?

- What if we have to split code into hundreds of pieces
which could be blocking?

- This technique is used for graphical programming
9/20/10 Kubiatowicz €5162 ©UCB Fall 2009 Lec 6.14

Can Threads Make This Easier?

* Threads yield overlapped I/O and computation without
“deconstructing” code into non-blocking fragments

- One thread per request

* Requests proceeds to completion, blocking as required:

Deposit(acctld, amount) {
acct = GetAccount(actld); /* May use disk 1/0 */
acct->balance += amount;
StoreAccount(acct);

}

* Unfortunately, shared state can get corrupted:

Thread 1 Thread 2
load r1, acct->balance

/* Involves disk 1/0 */

load r1, acct->balance
add r1, amount2

store rl, acct->balance
add r1, amountl

store rl1, acct->balance

9/20/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 6.15

Review: Multiprocessing vs Multiprogramming

* What does it mean to run two threads "concurrently”?

- Scheduler is free to run threads in any order and
interleaving: FIFO, Random, ..

- Dispatcher can choose to run each thread to completion
or time-slice in big chunks or small chunks

Y ——

Multiprocessin B
P J C

A B Cc
ﬁ ﬁ
Multiprogramming A B C A B C B
I 1 1 1 1 1 1

+ Also recall: Hyperthreading
- Possible to interleave threads on a per-instruction basis
- Keep this in mind for our examples (like multiprocessing)
9/20/10 Kubiatowicz €5162 ©UCB Fall 2009 Lec 6.16

Problem is at the lowest level

* Most of the time, threads are working on separate
data, so scheduling doesn't matter:

Thread A Thread B
x=1; y=2:
* However, What about (Initially, y = 12):
Thread A Thread B
x=1; y=2:
X = y+1; y = y*2;

- What are the possible values of x?

* Or, what are the possible values of x below?
Thread A Thread B
x=1; x = 2;
- X could be 1 or 2 (non-deterministicl)
- Could even be 3 for serial processors:
» Thread A writes 0001, B writes 0010.
» Scheduling order ABABABBA yields 3!

9/20/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 6.17

Atomic Operations
* To understand a concurrent program, we need to know
what the underlying indivisible operations are!

+ Atomic Operation: an operation that always runs to
completion or not at dll

- It is /indivisible: it cannot be stopped in the middle and
state cannot be modified by someone else in the middle

- Fundamental building block - if no atomic operations, then
have no way for threads to work together

* On most machines, memory references and assignments
(i.e. loads and stores) of words are atomic

- Consequently - weird example that produces “3" on
previous slide can't happen

* Many instructions are not atomic
- Double-precision floating point store often not atomic

- VAX and IBM 360 had an instruction to copy a whole
array

9/20/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 6.18

Correctness Requirements

Threaded programs must work for all interleavings of
thread instruction sequences

- Cooperating threads inherently non-deterministic and
non-reproducible

- Really hard to debug unless carefully designed!
+ Example: Therac-25

- Machine for radiation therapy

» Software control of electron
accelerator and electron beam/
Xray production

» Software control of dosage
- Software errors caused the
death of several patients

» A series of race conditions on
shared variables and poor

software design P 1 Ty e 3 ey

» "They determined that data entry speed during editin
was the key factor in producing the error condition: If
the prescription data was edited at a fast pace, the

overdose occurred.”
9/20/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 6.19

Space Shuttle Example

* Original Space Shuttle launch aborted 20 minutes
before scheduled launch
- Shuttle has five computers:
- Four run the “Primary Avionics PAES ﬁ
Software System” (PASS)
» Asynchronous and real-time
» Runs all of the control systems
» Results synchronized and compared every 3 to 4 ms
- The Fifth computer is the "Backup Flight System” (BFS)
» stays synchronized in case it is needed
» Written by completely different team than PASS
+ Countdown aborted because BFS disagreed with PASS
- A 1/67 chance that PASS was out of sync one cycle
- Bug due to modifications in initialization code of PASS
» A delayed init request placed into timer queue

» As a result, timer queue not empty at expected time to
force use of hardware clock

- Bug not found during extensive simulation
9/20/10 Kubiatowicz 5162 ©UCB Fall 2009 Lec 6.20

BFS

Another Concurrent Program Example

+ Two threads, A and B, compete with each other
- One tries to increment a shared counter
- The other tries to decrement the counter

Thread A
i=0;
while (i < 10)
i=i+1;
printf("A wins!”);

Thread B
0]

i=0;
thZIe (j > -10)

i=i-1

printf("B w'ins!"):

+ Assume that memory loads and stores are atomic, but
incrementing and decrementing are 7ot atomic

* Who wins? Could be either
* Is it guaranteed that someone wins? Why or why not?

* What it both threads have their own CPU running at
same speed? Is it guaranteed that it goes on
forever?

9/20/10

Kubiatowicz €S162 ©UCB Fall 2009 Lec 6.21

Hand Simulation Multiprocessor Example

9/20/10 ’ Kubiatowicz €5162 ©UCB Fall 2009 Lec 6.22

Motivation: “"Too much milk”

* Great thing about OS's - analogy between ——

problems in OS and problems in real life

- Help you understand real life problems better i
- But, computers are much stupider than people

- Example: People need to coordinate:

Time Person A Person B

3:00 |Look in Fridge. Out of milk

3:05 |Leave for store

3:10 |Arrive at store Look in Fridge. Out of milk
3:15 | Buy milk Leave for store

3:20 | Arrive home, put milk away | Arrive at store

3:25 Buy milk

3:30 Arrive home, put milk away

9/20/10

Kubiatowicz €S162 ©UCB Fall 2009 Lec 6.23

Definitions

- Synchronization: using atomic operations to ensure

cooperation between threads
- For now, only loads and stores are atomic

- We are going to show that its hard to build anything
useful with only reads and writes

* Mutual Exclusion: ensuring that only one thread does

a particular thing at a time
- One thread excludes the other while doing its task

* Critical Section: piece of code that only one thread

can execute at once. Only one thread at a time will
get into this section of code.

- Critical section is the result of mutual exclusion

- Critical section and mutual exclusion are two ways of
describing the same thing.

9/20/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 6.24

More Definitions
* Lock: prevents someone from doing something

- Lock before entering critical section and ‘
before accessing shared data
- Unlock when leaving, after accessing shared data

- Wait if locked
» Important idea: all synchronization involves waiting
* For example: fix the milk problem by putting a key on
the refrigerator
- Lock it and take key if you are going to go buy milk
- Fixes too much: roommate angry if only wants OJ

- Of Course - We dont know how to make a lock yet
9/20/10 Kubiatowicz CS162 ©UCB Fall 2009 Lec 6.25

Too Much Milk: Correctness Properties

* Need to be careful about correctness of
concurrent programs, since non-deterministic

- Always write down behavior first

- Impulse is to start coding first, then when it
doesn’t work, pull hair out

- Instead, think first, then code

* What are the correctness properties for the
“Too much milk” problem???

- Never more than one person buys
- Someone buys if needed

+ Restrict ourselves to use only atomic load and
store operations as building blocks

9/20/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 6.26

Too Much Milk: Solution #1

* Use a note To avoid buying Too much milk:
- Leave a note before buying (kind of “lock™)
- Remove note after buying (kind of “unlock™)
- Don't buy if note (wait)
* Suppose a computer tries this (remember, only memory
read/write are a1'ormc)
it (noMilk)
if gnoNote)
eave Note;

buy milk;
remove note;

* Result?
- Still too much milk but only occasionally!

- Thread can get context swn‘ched after checking milk and
note but befg ore buying milk!

* Solution makes problem worse since fails intermittently
- Makes it really hard to debug...
- Must work deserre what the dis atcher does!

9/20/10 ubiatowicz €S162 @UCB all 200! Lec 6.27

Too Much Milk: Solution #1%

* Clearly the Note is not quite blocking enough
- Let's try to fix this by placing note first
* Another try at previous solution:

leave Note;

if (noMilk) {
if fnoNote)
eave Note;
buy milk;

}

remove note;

* What happens here?
- Well, with human, probably nothing bad
- With computer: no one ever buys milk

9/20/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 6.28

Too Much Milk Solution #2

How about labeled notes?
- Now we can leave note before checking
Algorithm looks like this:

Thread A

leave note A;
if (noNote B) {
it (noMilk) {
buy Milk;

Thread B

leave note B;
it (noNoteA) {
if (noMilk) {
buy Milk;

remove note A;
Does this work?
Possible for neither thread to buy milk

- Context switches at exactly the wrong times can lead
each to think that the other is going to buy

Really insidious:
- Extremely unlikely that this would happen, but will at
worse possible time
- Probably something like this in UNIX

remove note B;

9/20/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 6.29

Too Much Milk Solution #2: problem!

* I'm not getting milk, You're getting milk
+ This kind of lockup is called "starvation!”

9/20/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 6.30

9/20/10 Kubiatowicz €S16

Too Much Milk Solution #3

Here is a possible two-note solution:

Thread A Thread B

leave note A; leave note B;
while (note B) { //X if (noNote A) { 7/Y
do nothing; if (noMilk) {

} buy milk;
if (noMilk) {
buy milk;

remove note B;
remove note A;

Does this work? Yes. Both can guarantee that:
- It is safe to buy, or
- Other will buy, ok to quit
At X:
- if no note B, safe for A to buy,
- otherwise wait to find out what will happen
At Y:
- if no note A, safe for B to buy

- Otherwise, A is either buziggc BoFr' "vggcl;;ring for B to Sui;rsl
ai ec O.

Solution #3 discussion

* Our solution protects a single “"Critical-Section” piece
of code for each thread:

if (noMilk) {
buy milk;

- Solution #3 works, but it's really unsatisfactory
- Really complex - even for this simple an example
» Hard to convince yourself that this really works
- A’'s code is different from B's - what if lots of threads?
» Code would have to be slightly different for each thread
- While A is waiting, it is consuming CPU time
» This is called "busy-waiting”
* There's a better way

- Have hardware grovide better (higher-level) primitives
than atomic load and store

- Build even higher-level programming abstractions on this
new hardware support
9/20/10 Kubiatowicz 5162 ©UCB Fall 2009 Lec 6.32

Too Much Milk: Solution #4
*+ Suppose we have some sort of implementation of a
lock (more in a moment).
—Lock.Acquire() - wait until lock is free, then grab
—Lock.Release() - Unlock, waking up anyone waiting

- These must be atomic operations - if two threads are
waiting for the lock and both see it's free, only one
succeeds to grab the lock

* Then, our milk problem is easy:
milklock.Acquire();
if (nomilk)
buy milk;
milklock.Release();
+ Once again, section of code between Acquire() and
Release() called a “Critical Section”

* Of course, you can make this even simfler: suppose
you are out of ice cream instead of milk

- Skip the test since you always need more ice cream.
9/20/10 Kubiatowicz CS162 ©UCB Fall 2009 Lec 6.33

Where are we going with synchronization?

Programs Shared Programs

Higher-
level

APT

Hardware | Load/Store Disable Ints Test&Set Comp&Swap

* We are going to implement various higher-level
synchronization primitives using atomic operations

- Everything is pretty painful if only atomic primitives are
load and store
- Need to provide primitives useful at user-level

9/20/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 6.34

Summary

+ Concurrent threads are a very useful abstraction
- Allow transparent overlapping of computation and I/0
- Allow use of parallel processing when available

+ Concurrent threads introduce problems when accessing
shared data

- Programs must be insensitive to arbitrary interleavings

- Without careful design, shared variables can become
completely inconsistent

* Important concept: Atomic Operations
- An operation that runs to completion or not at all

- These are the primitives on which to construct various
synchronization primitives

+ Showed how to protect a critical section with only
atomic load and store = pretty complex!

9/20/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 6.35

CS162
Operating Systems and
Systems Programming
Lecture 7

Mutual Exclusion, Semaphores,
Monitors, and Condition Variables

September 22, 2010
Prof. John Kubiatowicz
http://inst.eecs.berkeley.edu/~cs162

Review: Synchronization problem with Threads

* One thread per transaction, each running:

Deposit(acctld, amount) {
acct = GetAccount(actld); /* May use disk 1/0 */
acct->balance += amount;
StoreAccount(acct);

}

* Unfortunately, shared state can get corrupted:

Thread 1 Thread 2
load r1, acct->balance

/* Involves disk 1/0 */

load r1, acct->balance
add r1, amount2
store rl1, acct->balance
add r1, amountl
store rl1, acct->balance

- Atomic Operation: an operation that always runs to
completion or not at dll
- It is indivisible: it cannot be stopped in the middle and state

cannot be modified by someone else in the middle
9/22/10 Kubiatowicz €S162 @UCB Fall 2009 Lec 7.2

9/22/10 Kubiatowicz €S16

Review: Too Much Milk Solution #3

Here is a possible two-note solution:

Thread A Thread B

leave note A; leave note B;
while (note B) {\\X if (noNote A) {\\Y
do nothing; it (noMilk) {

} buy milk;
if (noMilk) {
buy milk;

remove note B;
remove note A;

Does this work? Yes. Both can guarantee that:
- It is safe to buy, or
- Other will buy, ok to quit
At X:
- if no note B, safe for A to buy,
- otherwise wait to find out what will happen
At Y:
- if no note A, safe for B to buy

- Otherwise, A is either bugi@r)\l?c BoFr' "vggcl;;ring for B to ﬂui; ;
ai ec /.

Review: Solution #3 discussion

* Our solution protects a single "Critical-Section” piece

of code for each thread:

if (noMilk) {
buy milk;

- Solution #3 works, but it's really unsatisfactory

- Really complex - even for this simple an example
» Hard to convince yourself that this really works
- A's code is different from B's - what if lots of threads?
» Code would have to be slightly different for each thread
- While A is waiting, it is consuming CPU time
» This is called “busy-waiting”

* There's a better way

- Have hardware gr‘ovide better (higher-level) primitives
than atomic load and store

- Build even higher-level programming abstractions on this
new hardware support
9/22/10 Kubiatowicz 5162 ©UCB Fall 2009 Lec 7.4

Goals for Today

* Hardware Support for Synchronization
* Higher-level Synchronization Abstractions
- Semaphores, monitors, and condition variables
* Programming paradigms for concurrent programs

MY PROTECT IS
A WHOLE NEW
PARADIGM

e

Note: Some slides and/or pictures in the following are

adapted from slides ©2005 Silberschatz, Galvin, and Gagne.

Many slides generated from my lecture notes by Kubiatowicz.
9/22/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 7.5

High-Level Picture

* The abstraction of threads is good:
- Maintains sequential execution model
- Allows simple parallelism to overlap I/0 and computation

* Unfortunately, still too complicated to access state
shared between threads

- Consider "too much milk” example

- Implementing a concurrent program with only loads and
stores would be tricky and error-prone

* Today, we'll implement higher-level operations on top
of atomic operations provided by hardware

- Develop a “synchronization toolbox"
- Explore some common programming paradigms

9/22/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 7.6

Too Much Milk: Solution #4
- Suppose we have some sort of implementation of a
lock (more in a moment).
—Lock.Acquire() - wait until lock is free, then grab
—Lock.Release() - Unlock, waking up anyone waiting

- These must be atomic operations - if two threads are
waiting for the lock and both see it's free, only one
succeeds to grab the lock

* Then, our milk problem is easy:
milklock.Acquire();
if (nomilk)
buy milk;
milklock.Release();
+ Once again, section of code between Acquire() and
Release() called a “Critical Section”
+ Of course, you can make this even simrler: suppose
you are out of ice cream instead of milk
- Skip the test since you always need more ice cream.
9/22/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 7.7

How to implement Locks?

¢ Lock: prevents someone from doing something
- Lock before entering critical section and r.
before accessing shared data @
- Unlock when leaving, after accessing shared data
- Wait if locked
» Important idea: all synchronization involves waiting
» Should s/eep if waiting for a long time
+ Atomic Load/Store: get solution like Milk #3
- Looked at this last lecture
- Pretty complex and error prone
+ Hardware Lock instruction
- Is this a good idea?

- What about putting a task to sleep?
» How do you handle the interface between the hardware and
scheduler?
- Complexity?
» Done in the Intel 432

» Each feature makes hardware more complex and slow
9/22/10 Kubiatowicz 5162 ©UCB Fall 2009 Lec 7.8

Naive use of Interrupt Enable/Disable

* How can we build multi-instruction atomic operations?
- Recall: dispatcher gets control in two ways.
» Internal: Thread does something to relinquish the CPU
» External: Interrupts cause dispatcher to take CPU
- On a uniprocessor, can avoid context-switching by:
» Avoiding internal events (although virtual memory tricky)
» Preventing external events by disabling interrupts
+ Consequently, naive Implementation of locks:
LockAcquire { disable Ints; }
LockRelease { enable Ints; }
* Problems with this approach:
- Can't let user do this! Consider following:
LockAcquire();
While(TRUE) {:}
- Real-Time system—no guarantees on timing!
» Critical Sections might be arbitrarily long
- What happens with I/0 or other important events?

» “"Reactor about to meltdown. Help?”
9/22/10 Kubiatowicz €5162 ©UCB Fall 2009 Lec 7.9

Better Implementation of Locks by Disabling Interrupts

* Key idea: maintain a lock variable and impose mutual
exclusion only during operations on that variable

int value = FREE; Q

Acquire() { Release() {
disable interrupts; disable interrupts;
if (value == BUSY) { if (anyone on wait queue) {
put thread on wait queue; take thread off wait queue
Go to sleepQ); Place on ready queue;

// Enable interrupts? } elﬁe { FREE -
3 else { value = ;
3 value = BUSY; enable interrupts;
i 3
enable interrupts;
}
9/22/10 Kubiatowicz €S162 ©®UCB Fall 2009 Lec 7.10

New Lock Implementation: Discussion

* Why do we need to disable interrupts at all?
- Avoid interruption between checking and setting lock value
- Otherwise two threads could think that they both have lock
Acquire({
disable interrupts;
if (value == BUSY) {
put thread on wait queue;
Go to sleep();

// Enable interrupts? Critical
} else { Section
value = BUSY;
}
enable interrupts;

}
* Note: unlike previous solution, the critical section
(inside Acquire()) is very short

- User of lock can take as long as they like in their own
critical section: doesn't impact global machine behavior

- Critical im‘er‘rugfs taken in timel
9/22/10 ubiatowicz €S162 ©UCB Fall 2009 Lec 7.11

Interrupt re-enable in going to sleep

* What about re-enabling ints when going to sleep?
Acquire(Q) {
disable interrupts;
if (value == BUSY) {
ut thread on wait queue;
Go_to sleep();
} else {
value = BUSY;
}

enable interrupts;

nable Position
nable Position
Enable Position

T

9/22/10) Kubiatowicz €S162 QUCB Fall 2009 Lec 7.12

9/22/10

Administrivia

Kubiatowicz €S162 ©UCB Fall 2009

Lec 7.13

How to Re-enable After Sleep()?

* In Nachos, since ints are disabled when you call sleep:
- Responsibility of the next thread to re-enable ints

- When the sleeping thread wakes up, returns to acquire
and re-enables interrupts

Thread A Thread B

disable ints

sleep Context
Ws leep return

enable iInts

disable iInt

sleep return<swiic

enable iInts

9/22/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 7.14

Interrupt disable and enable across context switches

* An important point about structuring code:

- In Nachos code you will see lots of comments about
assumptions made concerning when interrupts disabled

- This is an example of where modifications to and
assumptions about program state can't be localized

- In these cases it is possible for your program to

within a small body of code

eventually “acquire” bugs as people modify code

* Other cases where this will be a concern?
- What about exceptions that occur after lock is

9/22/10

acquired? Who releases the lock?
mylock.acquire();
a=>b/ 0;
mylock.release()

Kubiatowicz €S162 ©UCB Fall 2009

Lec 7.15

Atomic Read-Modify-Write instructions

* Problems with previous solution:
- Can't give lock implementation to users

- Doesn't work well on multiprocessor

» Disabling interrupts on all processors requires messages
and would be very time consuming

+ Alternative: atomic instruction sequences

- These instructions read a value from memory and write
a new value atomically

- Hardware is responsible for implementing this correctly
» on both uniprocessors (not too hard)

» and multiprocessors (requires help from cache coherence
protocol)

- Unlike disabling interrupts, can be used on both
uniprocessors and multiprocessors

9/22/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 7.16

Examples of Read-Modify-Write

testé&set (&address) { /* most architectures */
result = M[address];
M[address] = 1;
return result;

swap (&address, register) { /* x86 */
temp = M[address];
M[address] = register;
register = temp;

e compareé&swap (&address, regl, reg2) { /* 68000 */
if (regl == M[address]) {
M[address] = reg2;
return success;
} else {
return failure;

}
load-linked&store conditional(&address) {
/* R4000, alpha */

loop:
1l r1, M[address];
movi r2, 1; /* Can do arbitrary comp */

sc r2, M[address];
beqz r2, loop;

9/22/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 7.17

Implementing Locks with test&set

* Another flawed, but simple solution:

int value = 0; // Free

Acquire() {
while (test&set(value)); 7/ while busy

}

Release() {
value = 0;

}
- Simple explanation:

- If lock is free, testé&set reads O and sets value=1, so
lock is now busy. It returns O so while exits.

- If lock is busy, testdset reads 1 and sets value=1 (no
change). It returns 1, so while loop continues

- When we set value = O, someone else can get lock
* Busy-Waiting: thread consumes cycles while waiting

9/22/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 7.18

Problem: Busy-Waiting for Lock

+ Positives for this solution
- Machine can receive interrupts
- User code can use this lock
- Works on a multiprocessor
* Negatives {
- This is very inefficient because the busy-waiting
thread will consume cycles waiting

- Waiting thread may take cycles away from thread
holding lock (no one wins!)

- Priority Inversion: If busy-waiting thread has higher
priority than thread holding lock = no progress!

Priority Inversion problem with original Martian rover
+ For semaphores and monitors, waiﬁn|g thread may
wait for an arbitrary length of timel!

- Thus even if busy-waiting was OK for locks, definitely
not ok for other primitives

- Homework/exam solutions should not have busy-waiting!

9/22/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 7.19

Better Locks using test&set

* Can we build testdset locks without busy-waiting?
- Can't entirely, but can minimize!
- Idea: only busy-wait to atomically check lock value
int guard

= O;
int value = FREE; g

Acquire(Q) { Release() {
// Short busy-wait time // Short busy-wait time
while (test&set(guard)); while (test&set(guard));
if (value == BUSY) { if anyone on wait queue {
put thread on wait queue: take thread off wait queue

go to sleep() & guard = O; } éatiféton ready queue;

} else { value = FREE;
value = BUSY; }
guard = 0; guard = 0;

}

}+ Note: sleep has to be sure to reset the guard variable
- Why can't we do it just before or just after the sleep?
9/22/10 Kubiatowicz €5162 ©UCB Fall 2009 Lec 7.20

Higher-level Primitives than Locks

* Goal of last couple of lectures:

- What is the right abstraction for synchronizing threads
that share memory?

- Want as high a level primitive as possible
* Good primitives and practices important!

- Since execution is not entirely sequential, really hard to
find bugs, since they happen rarely

- UNIX is pretty stable now, but up until about mid-80s
(10 Kear‘s after started), systems running UNIX would
crash every week or so - concurrency bugs

+ Synchronization is a way of coordinating multiple
concurrent activities that are using shared state

- This lecture and the next presents a couple of ways of
structuring the sharing

9/22/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 7.21

Semaphores gl

+ Semaphores are a kind of generalized lock .
- First defined by Dijkstra in late 60s
- Main synchronization primitive used in original UNIX
+ Definition: a Semaphore has a non-negative integer
value and supports the following two operations:

- P(): an atomic operation that waits for semaphore to
become positive, then decrements it by 1
» Think of this as the wait() operation
- V(): an atomic operation that increments the semaphore
by 1, waking up a waiting P, if any
» This of this as the signal() operation

- Note that P() stands for “proberen” (to test) and V()
stands for “verhogen” (to increment) in Dutch

9/22/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 7.22

Semaphores Like Integers Except
- Semaphores are like integers, except
- No negative values

- Only operations allowed are P and V - can't read or write
value, except to set it initially

- Operations must be atomic
» Two P's together can't decrement value below zero

» Similarly, thread going to sleep in P won't miss wakeup
from V - even if they both happen at same time

+ Semaphore from railway analogy
- Here is a semaphore initialized to 2 for resource control:

8

9/22/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 7.23

Two Uses of Semaphores

* Mutual Exclusion (initial value = 1)
- Also called "Binary Semaphore”.
- Can be used for mutual exclusion:

semaphore.PQ);
// Critical section goes here
semaphore.V(Q);

* Scheduling Constraints (initial value = 0)

- Locks are fine for mutual exclusion, but what if you
want a thread to wait for something?

- Example: suppose you had to implement ThreadJoin
which must wait for thread to terminiate:
Initial value of semaphore = 0

ThreadJoin {
semaphore.PQ);

ThreadFinish {
semaphore.V(Q);

9/22/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 7.24

Producer-consumer with a bounded buffer

Producer = Buffer j==»! Consumer

* Problem Definition
- Producer puts things into a shared buffer
- Consumer takes them out
- Need synchronization to coordinate producer/consumer

+ Don't want producer and consumer to have to work in
lockstep, so put a fixed-size buffer between them

- Need to synchronize access to this buffer

- Producer needs to wait if buffer is full

- Consumer needs to wait if buffer is empty
+ Example 1: GCC compiler

-cpplcel | cc2 | as | Id ;
- Example 2: Coke machine 3

- Producer can put limited number of cokes in machine

- Consumer can't take cokes out if machine is empty

9/22/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 7.25

Correctness constraints for solution

« Correctness Constraints:

- Consumer must wait for producer to fill buffers, if none
full (scheduling constraint)

- Producer must wait for consumer to empty buffers, if all
full (scheduling constraint)

- Only one thread can manipulate buffer queue at a time
(mutual exclusion)

+ Remember why we need mutual exclusion
- Because computers are stupid

- Imaﬂine if in real life: the delivery J:er'son is filling the
machine and somebody comes up and tries to stick their
money into the machine

* General rule of thumb:
Use a separate semaphore for each constraint

—Semaphore fullBuffers; // consumer’s constraint
— Semaphore emptyBuffers;// producer’s constraint

— Semaphore mutex; // mutual exclusion
9/22/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 7.26

Full Solution to Bounded Buffer

Semaphore fullBuffer = 0; // Initially, no coke

Semaphore emptyBuffers = numBuffers;
// Initially, num empty slots

Semaphore mutex = 1; // No one using machine
Producer(item) {
emptyBuffers.P(); // Wait until space
mutex.PQ); // Wait until buffer free
Enqueue(item);
mutex.VQ;
fullBuffers.V(Q); // Tell consumers there is
3 // more coke
Consumer() {
fullBuffers.PQ; // Check if there’s a coke
mutex.PQ); // Wait until machine free
item = Dequeue();
mutex.V(Q);
emptyBuffers.V(); // tell producer need more
return item;
}
9/22/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 7.27

Discussion about Solution

* Why asymmetry?
- Producer does: emptyBuffer.P(), fullBuffer.v()
- Consumer does: fullBuffer.P(), emptyBuffer.vV()

+ Is order of P's important?

* Is order of V's important?

* What if we have 2 producers or 2 consumers?
- Do we need to change anything?

9/22/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 7.28

Motivation for Monitors and Condition Variables

+ Semaphores are a huge step up; just think of trying
to do the bounded buffer with only loads and stores
- Problem is that semaphores are dual purpose:
» They are used for both mutex and scheduling constraints

» Example: the fact that flipping of P's in bounded buffer
gives deadlock is not immediately obvious. How do you
prove correctness to someone?

* Cleaner idea: Use /ocks for mutual exclusion and
condition variables for scheduling constraints

+ Definition: Monitor: a lock and zero or more
condition variables for managing concurrent access to
shared data

- Some languages like Java provide this natively
- Most others use actual locks and condition variables

9/22/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 7.29

Monitor with Condition Variab

b

. initialization
- code

¢ Lock: the lock provides mutual exclusion to shared data
- Always acquire before accessing shared data structure
- Always release after finishing with shared data
- Lock initially free
* Condition Variable: a queue of threads waiting for
something /nside a critical section

- Key idea: make it Ioossible o go to sleep inside critical
section by atomically releasing lock at time we go to sleep

- Contrast to semaphores: Can't wait inside critical section
9/22/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 7.30

Simple Monitor Example
* Here is an (infinite) synchronized queue

Lock lock;
Condition dataready;
Queue queue;

AddToQueue(item) {
lock.Acquire(); // Get Lock
queue.enqueue(item); // Add item
dataready.signal(Q); // Signal any waiters
lock.Release(); // Release Lock

}

RemoveFromQueue() {
lock.Acquire(); // Get Lock
while (queue.isEmpty()) {
dataready.wait(&lock); // If nothing, sleep

item = queue.dequeue(); // Get next item

lock.Release(); // Release Lock
return(item);

9/22/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 7.31

Summary

+ Important concept: Atomic Operations
- An operation that runs to completion or not at all
- These are the primitives on which to construct various
synchronization primitives
* Talked about hardware atomicity primitives:
- Disabling of Interrupts, test&set, swap, comp&swap,
load-linked/store conditional
- Showed several constructions of Locks

- Must be very careful not to waste/tie up machine
resources

» Shouldn’t disable interrupts for long
» Shouldn’t spin wait for long
- Key idea: Separate lock variable, use hardware
mechanisms to protect modifications of that variable
* Talked about Semaphores, Monitors, and Condition
Variables

- Higher level constructs that are harder to “screw up”
9/22/10 Kubiatowicz €5162 ©UCB Fall 2009 Lec 7.32

CS162
Operating Systems and
Systems Programming
Lecture 8

Readers-Writers
Language Support for Synchronization

September 27, 2010
Prof. John Kubiatowicz
http://inst.eecs.berkeley.edu/~cs162

Review: Implementation of Locks by Disabling Interrupts

* Key idea: maintain a lock variable and impose mutual
exclusion only during operations on that variable

int value = FREE; Q

Acquire() { Release() {
disable interrupts; disable interrupts;
if (value == BUSY) { if (anyone on wait queue) {

put thread on wait queue; take thread off wait queue
Go to sleep(); Place on ready queue;
} else {

Enable interr ?
// Enable interrupts value = FREE:

} else {
3 value = BUSY; enable interrupts;
_ 3
enable interrupts;
}
9/27/10 Kubiatowicz 5162 ©UCB Fall 2009 Lec 8.2

Review: How to Re-enable After Sleep()?

* In Nachos, since ints are disabled when you call sleep:

- Responsibility of the next thread to re-enable ints

- When the sleeping thread wakes up, returns to acquire
and re-enables interrupts

Thread A Thread B

disable ints

sleep Sontexy
-~?Eﬁzn‘>sleep return

enable iInts

disable int

sleep return<switc

enable iInts

9/27/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 8.3

Review: Locks using testd&set

* Can we build testdset locks without busy-waiting?
- Can't entirely, but can minimize!
- Idea: only busy-wait to atomically check lock value
int guard = 0;

int value = FREE; g

Acquire(Q) { Release() {
// Short busy-wait time // Short busy-wait time
while (test&set(guard)); while (test&set(guard));
if (value == BUSY) { if anyone on wait queue {
put thread on wait queue; ;?ggetgge?gagff ﬁgag_queue
go to sleep() & guard = O; } else { y a 7

} else { value = FREE;
value = BUSY; }
guard = 0; guard = 0;

}

}+ Note: sleep has to be sure to reset the guard variable
- Why can't we do it just before or just after the sleep?
9/27/10 Kubiatowicz €5162 ©UCB Fall 2009 Lec 8.4

Review: Semaphores
+ Definition: a Semaphore has a non-negative integer
value and supports the following two operations:

- P(): an atomic operation that waits for semaphore to
become positive, then decrements it by 1

» Think of this as the wait() operation

- V(): an atomic operation that increments the semaphore
by 1, waking up a waiting P, if any
» This of this as the signal() operation
- Only time can set integer directly is at initialization time

+ Semaphore from railway analogy
- Here is a semaphore initialized to 2 for resource control:

g

9/27/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 8.5

Goals for Today

+ Continue with Synchronization Abstractions
- Monitors and condition variables

+ Readers-Weriters problem and solutoin

* Language Support for Synchronization

Note: Some slides and/or pictures in the following are

adapted from slides ©2005 Silberschatz, Galvin, and Gagne.

Many slides generated from my lecture notes by Kubiatowicz.
9/27/10 Kubiatowicz CS162 ©UCB Fall 2009 Lec 8.6

Review: Full Solution to Bounded Buffer

Semaphore fullBuffer = 0; // Initially, no coke

Semaphore emptyBuffers = numBuffers;
// Initially, num empty slots

Semaphore mutex = 1; // No one using machine
Producer(item) {
emptyBuffers.P(); // Wait until space
mutex.PQ); // Wait until buffer free
Enqueue(item);
mutex.VQ;
fullBuffers.V(Q); // Tell consumers there is
3 // more coke
Consumer() {
fullBuffers.PQ; // Check if there’s a coke
mutex.PQ); // Wait until machine free
item = Dequeue();
mutex.V(Q);
emptyBuffers.V(); // tell producer need more
return item;
}
9/27/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 8.7

Discussion about Solution

* Why asymmetry?
- Producer does: emptyBuffer.P(), fullBuffer.v()
- Consumer does: fullBuffer.P(), emptyBuffer.v()
+ Is order of P's important?
- Yes! Can cause deadlock:

Producer(item) {
mutex.PQ; // Wait until buffer free

emptyBuffers.P();// Could wait forever!
Enqueue(item);

mutex.VQ);

fullBuffers.V(); // Tell consumers more coke

}

* Is order of V's important?

- No, except that it might affect scheduling efficiency
* What if we have 2 producers or 2 consumers?

- Do we need to change anything?

9/27/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 8.8

Motivation for Monitors and Condition Variables

+ Semaphores are a huge step up, but:
- They are confusing because they are dual purpose:
» Both mutual exclusion and scheduling constraints

» Example: the fact that flipping of P's in bounded buffer
gives deadlock is not immediately obvious

- Cleaner idea: Use /ocks for mutual exclusion and
condition variables for scheduling constraints

. Definiﬁon: Monitor: a lock and zero or more condition
éar'lables for managing concurrent access to shared
ata

- Use of Monitors is a programming paradigm
- Some languages like Java provide monitors in the
language
* The lock provides mutual exclusion to shared data:
- Always acquire before accessing shared data structure
- Always release after finishing with shared data
- Lock initially free

9/27/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 8.9

Simple Monitor Example (version 1)
* Here is an (infinite) synchronized queue

Lock lock;
Queue queue;

AddToQueue(item) {
lock.Acquire(); // Lock shared data
queue.enqueue(item); // Add item
lock.Release(); // Release Lock

RemoveFromQueue() {
lock.Acquire(); // Lock shared data
item = queue.dequeue();// Get next item or null
lock.Release(); // Release Lock
return(item); // Might return null

* Not very interesting use of “"Monitor”
- It only uses a lock with no condition variables

- Cannot put consumer to sleep if no work!
9/27/10 Kubiatowicz CS162 ©UCB Fall 2009 Lec 8.10

Condition Variables

+ How do we change the RemoveFromQueue() routine to
wait until something is on the queue?

- Could do this by keeping a count of the number of things
on the queue (with semaphores), but error prone

+ Condition Variable: a queue of threads waiting for
something /inside a critical section

- Key idea: allow sleeping inside critical section by
atomically releasing lock at time we go to sleep

- Contrast to semaphores: Can't wait inside critical section
* Operations:

—Wait(&lock): Atomically release lock and go to sleep.
Re-acquire lock later, before returning.

—Signal(): Wake up one waiter, if any
—Broadcast(): Wake up all waiters
* Rule: Must hold lock when doing condition variable ops!

- In Birrell paper, he says can perform signal() outside of
lock - IGNORE HIM (this is only an optimization)
9/27/10 Kubiatowicz CS5162 ©UCB Fall 2009 Lec 8.11

Complete Monitor Example (with condition variable)

* Here is an (infinite) synchronized queue

Lock lock;
Condition dataready;
Queue queue;

AddToQueue(item) {
lock.Acquire(); // Get Lock
queue.enqueue(item); // Add item
dataready.signal(Q); // Signal any waiters
lock.Release(); // Release Lock

}
RemoveFromQueue() {
lock.Acquire(); // Get Lock
while (queue.isEmpty()) {
dataready.wait(&lock); // 1f nothing, sleep
item = queue.dequeue(); // Get next item
lock.Release(); // Release Lock
return(item);
}
9/27/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 8.12

Mesa vs. Hoare monitors

* Need to be careful about precise definition of signal
and wait. Consider a piece of our dequeue code:

while (queue.isEmpty()) {
dataready.wait(&lock); // 1f nothing, sleep

item = queue.dequeue();// Get next item
- Why didn't we do this?
if (queue.isEmpty()) {
dataready.wait(&lock); /7 1f nothing, sleep

item = queue.dequeue();// Get next item
* Answer: depends on the type of scheduling
- Hoare-style (most textbooks):

» Signaler gives lock, CPU to waiter; waiter runs immediately

» Waiter gives up lock, processor back to signaler when it
exits critical section or if it waits again

- Mesa-style (Nachos, most real operating systems):
» Signaler keeps lock and processor
» Waiter placed on ready queue with no special priority

» Practically, need to check condition again after wait
9/27/10 Kubiatowicz CS162 ©UCB Fall 2009 Lec 8.13

Administrivia

9/27/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 8.14

Administrivia (con't)

9/27/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 8.15

Using of Compare&Swap for queues

= compare&swap (&address, regl, reg2) { /* 68000 */
if (regl == M[address]) {
M[address] = reg2;
return success;
} else {
return failure;

}

Here is an atomic add to linked-list function:
addToQueue(&object) {
do // repeat until no conflict
Id r1, M[root] // Get ptr to current head
st rl, M[object] // Save link in new object
} until (compare&swap(&root,rl,object));

next next

/

next

New
Object

9/27/10 wicz 5162 ©UCB Fall 2009 Lec 8.16

Readers/Writers Problem

* Motivation: Consider a shared database
- Two classes of users:
» Readers - never modify database
» Writers - read and modify database
- Is using a single lock on the whole database sufficient?
» Like to have many readers at the same time
» Only one writer at a time

9/27/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 8.17

Basic Readers/Writers Solution

+ Correctness Constraints:
- Readers can access database when no writers
- Writers can access database when no readers or wrﬂ'er'r
- Only one thread manipulates state variables at a time
- Basic structure of a solution:

—Reader()
Wait until no writers
Access data base o)
Check out — wake up a waiting writer

—Writer(Q)
Wait until no active readers or writers
Access database
Check out — wake up waiting readers or writer
- State variables (Protected by a lock called “lock"):
» int AR: Number of active readers: initially = 0
» int WR: Number of waiting readers; initially = O
» int AW: Number of active writers; initially = O
» int WW: Number of waiting writers; initially = O
» Condition okToRead = NIL
» Conditioin okToWrite = NIL
9/27/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 8.18

Code for a Reader

Reader() {
// First check self into system
lock.Acquire();

while ((AW + W) > 0) { // Is it safe to read?

WR++; // No. Writers exist
okToRead.wait(&lock); 7/ Sleep on cond var
WR--3; // No longer waiting
}
AR++; // Now we are active!

lock.release();

// Perform actual read-only access
AccessDatabase(ReadOnly) ;

// Now, check out of system

lock.Acquire();

AR--; // No longer active

if (AR ==0 && WW > 0) // No other active readers
okToWrite.signal(); // Wake up one writer

lock.Release();

}

9/27/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 8.19

Code for a Writer

Writer() {
// First check self into system
lock_Acquire(Q);

while ((AW + AR) > 0) {// Is it safe to write?
Ww

++ // No. Active users exist
okToWrite.wait(&lock); // Sleep on cond var
WW-—; // No longer waiting
}
AW++; // Now we are active!l

lock.release();

// Perform actual read/write access
AccessDatabase(ReadWrite);

// Now, check out of system

lock_Acquire(Q);

AW--; // No longer active

if (W > 0){ // Give priority to writers
okToWrite._signal(); // Wake up one writer

} else if (WR > 0) { // Otherwise, wake reader
okToRead.broadcast(); // Wake all readers

}
lock.Release();

9/27/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 8.20

Simulation of Readers/Writers solution

+ Consider the following sequence of operators:
-R1, R2, W1, R3
* On entry, each reader checks the following:
while ((AW + W) > 0) { // Is it safe to read?

WR++; // No. Writers exist
okToRead.wait(&lock); 7/ Sleep on cond var
WR--3; // No longer waiting
}
AR++; // Now we are activel!

* First, R1 comes along:
AR=1, WR=0 A W=0, WW=0
* Next, R2 comes along:
AR=2, WR=0 A W=0,WW=0
* Now, readers make take a while to access database
- Situation: Locks released

- Only AR is non-zero
9/27/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 8.21

Simulation(2)

* Next, W1 comes along:
while ((AW + AR) > 0) { // Is it safe to write?

WW++; // No. Active users exist
okToWrite.wait(&lock); // Sleep on cond var
WW--; // No longer waiting

}

AW++;

+ Can't start because of readers, so go to sleep:
AR =2, WR =0, AW=0, WW=1
* Finally, R3 comes alon%
AR=2,WR=1, AW =0, WW =1
* Now, say that R2 finishes before R1:
AR=1,WR=1, AW =0, WW =1
* Finally, last of first two readers (R1) finishes and
wakes up writer:
if (AR == 0 && W > 0) // No other active readers
okToWrite.signal(); // Wake up one writer

9/27/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 8.22

Simulation(3)

* When writer wakes up, get:
AR=0,WR=1 AW =1, WW =0
+ Then, when writer finishes:

if (w > 0){ // Give priority to writers
okToWrite.signal(); // Wake up one writer

} else if (WR > 0) { // Otherwise, wake reader
okToRead.broadcast(); 7/ Wake all readers

}

- Writer wakes up reader, so get:
AR=1 WR=0 A W=0,WW=0
* When reader completes, we are finished

9/27/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 8.23

Questions

* Can readers starve? Consider Reader() entry code:
while ((AW + W) > 0) { // Is it safe to read?

WR++; // No. Writers exist
okToRead.wait(&lock); // Sleep on cond var
WR--3; // No longer waiting
}
AR++; // Now we are active!l

- What if we erase the condition check in Reader exit?

okToWrite.signa Wake up one writer

* Further, what if we turn the signal() into broadcast()

AR--; // No longer active
okToWrite._broadcast(); // Wake up one writer

* Finally, what if we use only one condition variable (call
it "okToContinue”) instead of two separate ones?
- Both readers and writers sleep on this variable

- Must use broadcast() instead of signal()
9/27/10 Kubiatowicz €S5162 ©UCB Fall 2009 Lec 8.24

Can we construct Monitors from Semaphores?

* Locking aspect is easy: Just use a mutex

+ Can we implement condition variables this way?
waitQ { semaphore.P(Q); }
Signal () { semaphore.VQ; }

* Does this work better?

Wait(Lock lock) {
lock.Release();
semaphore.P(Q);

3 lock_.Acquire();

Signal(Q { semaphore.VQ; }

9/27/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 8.25

Construction of Monitors from Semaphores (con't)
* Problem with previous fry:

- P and V are commutative - result is the same no matter
what order they occur

- Condition variables are NOT commutative
* Does this fix the problem?

Wait(Lock lock) {
lock.Release();
semaphore.P(Q);
lock_.Acquire();

}
Signal({
if semaphore queue is not empty
semaphore.V(Q);

- Not legal to look at contents of semaphore queue

- There is a race condition - signaler can inR in after lock
release and before waiter executes semaphore.P()

+ It is actually possible to do this correctly
- Complex solution for Hoare scheduling in book

- Can you come up with simpler Mesa-scheduled solution?
9/27/10 Kubiatowicz €5162 ©UCB Fall 2009 Lec 8.26

Monitor Conclusion

* Monitors represent the logic of the program
- Wait if necessary
- Signal when change something so any waiting threads
can proceed
* Basic structure of monitor-based program:
vlvﬁ(i:ll(e (need to wait) { }Check and/or update

condvar.wait(); state variables

Wait if necessary
unlock

do something so no need to wait

lock
condvar.signal O ; Check and/or update
state variables
unlock
9/27/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 8.27

C-Language Support for Synchronization

* C language: Pretty straightforward synchronization

- Just make sure you know a// the code paths out of a
critical section

int Rtn() {_ Proc A ()
lock.acquire(); a5
o i Proc B *x
it (exception) { Calls setjmp |
lock.release(); Proc C o
return errReturnCode; rocc |3
lock.acquire | =
lock.release(); Proc D l
y return OK; Proc E
- - Calls longjm|
- Watch out for setjmp/longjmp! ===

» Can cause a non-local jump out of procedure

» In example, procedure E calls longjmp, poping stack
back to procedure B

» If Procedure C had lock.acquire, problem!
9/27/10 Kubiatowicz 5162 ©UCB Fall 2009 Lec 8.28

C++ Language Support for Synchronization

* Languages with exceptions like C++

- Languages that support exceptions are problematic (easy
to make a non-local exit without releasing lock)

- Consider:

void Rtn() {
lock.acquire();

BoFoo();
iock-release();
}
void DoFoo() {

Ef (exception) throw errException;

y

- Notice that an exception in DoFoo() will exit without
releasing the lock

9/27/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 8.29

C++ Language Support for Synchronization (con't)

* Must catch all exceptions in critical sections

- Catch exceptions, release lock, and re-throw exception:
void Rtn() {
lock.acquire(Q);

try {
BoFoo();

1} catch) { // catch exception
lock.release(); // release lock
throw; // re-throw the exception

lock.release();
3oid DoFoo() {
if (exception) throw errException;
) -
- Even Better: auto_ptr<T> facility. See C++ Spec.

» Can deallocate/free lock regardless of exit method
9/27/10 Kubiatowicz €5162 ©UCB Fall 2009 Lec 8.30

Java Language Support for Synchronization

+ Java has explicit support for threads and thread
synchronization

* Bank Account example:
class Account {
private int balance;
// object constructor
public Account (int initialBalance) {
balance = initialBalance;

}
public synchronized int getBalance() {
return balance;

public synchronized void deposit(int amount) {
balance += amount;
}
}
- Every object has an associated lock which gets

automatically acquired and released on entry and exit
from a synchronized method.

9/27/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 8.31

Java Language Support for Synchronization (con't)

+ Java also has synchronized statements:
synchronized (object) {

}

- Since every Java object has an associated lock, this
type of statement acquires and releases the object's
lock on entry and exit of the body

- Works properly even with exceptions:
synchronized (object) {

BoFoo();

}
void DoFoo() {
throw errException;

}

9/27/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 8.32

Java Language Support for Synchronization (con't 2)

* In addition to a lock, every object has a single
condition variable associated with it

- How to wait inside a synchronization method of block:
» void wait(long timeout); // Wait for timeout
» void wait(long timeout, int nanoseconds); //variant
» void wait();

- How to signal in a synchronized method or block:
» void notify(); // wakes up oldest waiter
» void notifyAll(); // like broadcast, wakes everyone

- Condition variables can wait for a bounded length of
time. This is useful for handling exception cases:

tl = time.now();
whille (TATMRequest()) {
wait (CHECKPERIOD);
t2 = time.new();
if (t2 — t1 > LONG_TIME) checkMachine();

- Not all Java VMs equivalent!
» Different scheduling policies, not necessarily preemptive!

9/27/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 8.33

Summary

Semaphores: Like integers with restricted interface
- Two operations:
» P(): Wait if zero; decrement when becomes non-zero
» V() : Increment and wake a sleeping task (if exists)
» Can initialize value to any non-negative value
- Use separate semaphore for each constraint
Monitors: A lock plus one or more condition variables
- Always acquire lock before accessing shared data
- Use condition variables to wait inside critical section
» Three Operations: Wait(), Signal(), and Broadcast()
Readers/Writers
- Readers can access database when no writers
- Writers can access database when no readers
- Only one thread manipulates state variables at a time
Language support for synchronization:

- Java provides synchronized keyword and one condition-
variable per object (with wait() and notify())

9/27/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 8.34

CS162
Operating Systems and
Systems Programming
Lecture 9

Tips for Working in a Project Team/
Cooperating Processes and Deadlock

September 29, 2010
Prof. John Kubiatowicz
http://inst.eecs.berkeley.edu/~cs162

Review: Definition of Monitor

+ Semaphores are confusing because dual purpose:
- Both mutual exclusion and scheduling constraints
- Cleaner idea: Use /ocks for mutual exclusion and
condition variables for scheduling constraints
Monitor: a lock and zero or more condition variables
for managing concurrent access to shared data
- Use of Monitors is a programming paradigm
* Lock: provides mutual exclusion to shared data:
- Always acquire before accessing shared data structure
- Always release after finishing with shared data

* Condition Variable: a queue of threads waiting for
something /nside a critical section
- Key idea: allow sleeping inside critical section by
atomically releasing lock at time we go to sleep
- Contrast to semaphores: Can't wait inside critical

section
9/29/10 Kubiatowicz €S162 ©®UCB Fall 2009 Lec 9.2

Review: Programming with Monitors

* Monitors represent the logic of the program
- Wait if necessary
- Signal when change something so any waiting threads
can proceed
* Basic structure of monitor-based program:

lock
while (need to wait) { Check and/or update
condvar.wait(); state variables

Wait if necessary
unlock

do something so no need to wait

lock

condvar.signal O ; Check cmd/or' update
state variables

unlock

9/29/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 9.3

Goals for Today

+ Tips for Programming in a Project Team
* Language Support for Synchronization
- Discussion of Deadlocks
- Conditions for its occurrence
- Solutions for breaking and avoiding deadlock

Note: Some slides and/or pictures in the following are

adapted from slides ©2005 Silberschatz, Galvin, and Gagne.

Many slides generated from my lecture notes by Kubiatowicz.
9/29/10 Kubiatowicz 5162 ©UCB Fall 2009 Lec 9.4

Tips for Programming in a Project Team

- Big projects require more than one
person (or long, long, long time)

- Big OS: thousands of person-years!

+ It's very hard to make software
project teams work correctly
- Doesn't seem to be as true of big
construction projects

» Empire state building finished in
one year: staging iron production
thousands of miles away

» Or the Hoover dam: built towns to
hold workers

- Is it OK to miss deadlines?

"You just have
to get your » We make it free (slip days)

» Reality: they're very expensive as
time-to-market is one of the most
important things!

9/29/10 Kubiatowicz CS162 ©UCB Fall 2009 Lec 9.5

synchronization right!”

Big Projects

* What is a big project?
- Time/work estimation is hard
- Programmers are eternal orﬂmisﬁcs
(it will only take two days)!

» This is why we bug you about
starting the project early

» Had a grad student who used to say he just needed
"10 minutes” to fix something. Two hours later...
+ Can a project be efficiently partitioned?
- Partitionable task decreases in time as
you add people
- But, if you require communication: "
» Time reaches a minimum bound \ 7\
» With complex interactions, time increases! N \v
- Mythical person-month problem:
» You estimate how long a project will take
» Starts to fall behind, so you add more people

» Project takes even more timel
9/29/10 Kubiatowicz CS162 ©UCB Fall 2009 Lec 9.6

Techniques for Partitioning Tasks

* Functional
- Person A implements threads, Person B implements
semaphores, Person C implements locks...
- Problem: Lots of communication across APIs
» If B changes the API, A may need to make changes

» Story: Large airline company spent $200 million on a new
scheduling ‘and booking system. Two teams “working
together™ After two dyear's, went to merge software.
Failed! Interfaces had changed (documenfed, but no one
noticed). Result: would cost another $200 million to fix.

« Task
- Person A designs, Person B writes code, Person C tests

- Ma);\ be difficult to find right balance, but can focus on
each person's strengths (Theory vs systems hacker)

- Since Debugging is hard, Microsoft has fwo testers for
each programmer

* Most CS162 project teams are functional, but people

have had success with task-based divisions
9/29/10 Kubiatowicz €5162 ©UCB Fall 2009 Lec 9.7

Communication

* More people mean more communication
- Changes have to be propagated to more people

- Think about person writing code for most
fundﬁmcalntal component of system: everyone depends
on them!

+ Miscommunication is common

- "Index starts at 0? I thought you said 1!”
+ Who makes decisions?

- Individual decisions are fast but trouble

- Group decisions take time

- Centralized decisions require a big picture view (someone
who can be the "system architect™)

+ Often designating someone as the system architect
can be a good thing
- Better not be clueless
- Better have good people skills
- Better let other people do work
9/29/10 Kubiatowicz €5162 ©UCB Fall 2009 Lec 9.8

Coordination
* More people = no one can make all mee‘T‘ans!’\

- They miss decisions and associated discussion

- Example from earlier class: one person missed
meetings and did something group had rejected

- Why do we limit groups to 5 people?
» You would never be able to schedule meetings otherwise
- Why do we require 4 people minimum?
» You need to experience groups to get ready for real world
* People have different work styles
- Some people work in the morning, some at night
- How do you decide when to meet or work together?
* What about project slippage?
- It will happen, guaranteed!

- Ex: phase 4, everyone busy but not talking. One person
way behind. No one knew until very end - too late!

* Hard to add people to existing group
- Members have already figured out how to work together

9/29/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 9.9

How to Make it Work?

* People are human. Get over it.

- People will make mistakes, miss meetings, miss
deadlines, etc. You need to live with it and adapt

- It is better to anticipate problems than clean up
afterwards.
* Document, document, document
- Why Document?
» Expose decisions and communicate to others
» Easier to spot mistakes early
» Easier to estimate progress
- What to document?
» Everything (but don't overwhelm people or no one will read)
- Standardize!

» One programming format: variable naming conventions, tab
indents,etc.

» Comments (Requires, effects, modifies)—javadoc?

9/29/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 9.10

Suggested Documents for You to Maintain

* Project objectives: goals, constraints, and priorities
- Specifications: the manual plus performance specs

- This should be the first document generated and the
last one finished

* Meeting notes
- Document all decisions
- You can often cut & paste for the design documents
* Schedule: What is your anticipated timing?
- This document is criticall
* Organizational Chart
- Who is responsible for what task?

9/29/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 9.11

Use Software Tools

+ Source revision control software

- (Subversion, CVS, others..)

- Easy to go back and see history/undo mistakes

- Figure out where and why a bug got introduced

- Communicates changes to everyone (use CVS's features)
* Use automated testing tools

- Write scripts for non-interactive software

- Use “expect” for interactive software

- JUnit: automate unit testing

- Microsoft rebuilds the Vista kernel every night with the
day's changes. Everyone is running/testing the latest
software

*+ Use E-mail and instant messaging consistently to
leave a history trail

9/29/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 9.12

Test Continuously

* Integration tests all the time, not at 11pm
on due date!

- Write dummy stubs with simple functionality
» Let's people test continuously, but more work
- Schedule periodic integration tests

» Get everyone in the same room, check out code, build,
and test.

» Don't wait until it is too late!
* Testing types:
- Unit tests: check each module in isolation (use JUnit?)
- Daemons: subject code to exceptional cases
- Random testing: Subject code to random timing changes
* Test early, test later, test again

- Tendency is to test once and forget: what if something
changes in some other part of the code?

9/29/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 9.13

Administrivia

9/29/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 9.14

9/29/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 9.15

Resources

* Resources - passive entities needed by threads to do
their work

- CPU time, disk space, memory
+ Two types of resources:
- Preemptable - can take it away
» CPU, Embedded security chip
- Non-preemptable - must leave it with the thread

» Disk space, plotter, chunk of virtual address space
» Mutual exclusion - the right to enter a critical section

* Resources may require exclusive access or may be
sharable

- Read-only files are typically sharable
- Printers are not sharable during time of printing

* One of the major tasks of an operating system is to

manage resources
9/29/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 9.16

Starvation vs Deadlock @
+ Starvation vs. Deadlock

- Starvation: thread waits indefinitely

» Example, low-priority thread waiting for resources
constantly in use by high-priority threads

- Deadlock: circular waiting for resources

» Thread A owns Res 1 and is waiting for Res 2
Thread B owns Res 2 and is waiting for Res 1

- Deadlock = Starvation but not vice versa
» Starvation can end (but doesn't have to)

» Deadlock can't end without external intervention
9/29/10 Kubiatowicz 5162 ©UCB Fall 2009 Lec 9.17

Conditions for Deadlock
- Deadlock not always deterministic - Example 2 mutexes:

Thread A Thread B
X-PQ; y-PO:
y-PO; X.PO;
y-VO: x.VO;
x.VO; y-VO;

- Deadlock won't always happen with this code
» Have to have exactly the right timing ("wrong” timing?)

» So you release a piece of software, and you tested it, and
there it is, controlling a nuclear power plant...

- Deadlocks occur with multiple resources

- Means you can't decompose the problem

- Can't solve deadlock for each resource independently
+ Example: System with 2 disk drives and two threads

- Each thread needs 2 disk drives to function

- Each thread gets one disk and waits for another one
9/29/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 9.18

Bridge Crossing Example

 Each segment of road can be viewed as a resource
- Car must own the segment under them
- Must acquire segment that they are moving into

* For bridge: must acquire both halves
- Traffic only in one direction at a time

- Problem occurs when two cars in opposite directions on
bridge: each acquires one segment and needs next

« If a deadlock occurs, it can be resolved if one car
backs up (preempt resources and rollback)

- Several cars may have to be backed up
+ Starvation is possible

- East-going traffic really fast = no one goes west
9/29/10 Kubiatowicz 5162 ©UCB Fall 2009 Lec 9.19

Train Example (Wormhole-Routed Network)

+ Circular dependency (Deadlock!)
- Each train wants to turn right
- Blocked by other trains
- Similar problem to multiprocessor networks
* Fix? Imagine grid extends in all four directions
- Force ordering of channels (tracks)
» Protocol: Always go east-west first, then north-south
- Called “dimension ordering” (X then Y)

9/29¢10 Lec 9.20

Dining Lawyers Problem
& &
N

B3
* Five chopsticks/Five lawyers (really cheap restaurant)
- Free-for all: Lawyer will grab any one they can
- Need two chopsticks to eat
* What if all grab at same time?
- Deadlock!
* How to fix deadlock?
- Make one of them give up a chopstick (Hah!)
- Eventually everyone will get chance to eat
* How to prevent deadlock?

- Never let lawyer take last chopstick if no hungry

lawyer has two chog_sﬁcks afterwards
9/29/10 KubiatoWicz €S162 ©UCB Fall 2009 Lec 9.21

Four requirements for Deadlock

* Mutual exclusion
- Only one thread at a time can use a resource.
* Hold and wait
- Thread holding at least one resource is waiting to
acquire additional resources held by other threads
* No preemption
- Resources are released only voluntarily by the thread
holding the resource, after thread is finished with it
+ Circular wait
- There exists a set {T;, .., T} of waiting threads
» T, is waiting for a resource that is held by T,

» T, is waiting for a resource that is held by T;
»

T, is waiting for a resource that is held by T;

v

9/29/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 9.22

Resource-Allocation 6Graph

- System Model Symbols
- Asetof Threads T7,, T, . . ., T, @ @
- Resource types R, R,, . . ., R,
CPU cycles, memory space, I/O devices ° :
- Each resource type R has W, instances. R, o
- Each thread utilizes a resource as follows: R,

» Request() 7/ Use() / Release()
+ Resource-Allocation Graph:
- V is partitioned into two types:
» T={T;, T,, .., T}, the set threads in the system.
» R={R, R, .., R}, the set of resource types in system
- request edge - directed edge 7; — R;
- assignment edge - directed edge R, — T;

9/29/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 9.23

Resource Allocation Graph Examples

* Recall:
- request edge - directed edge 7; > R,
- assignment edge - directed edge R; > T;

R, R,

R, R, R,
Jn e =6
N

T Ts
Y [}
: YiE S
Rs - R > - \‘G
3
R4 R4 2
Simple Resource Allocation Graph Allocation Graph
Allocation Graph With Deadlock With Cycle, but
No Deadlock

9/29/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 9.24

Methods for Handling Deadlocks @

+ Allow system to enter deadlock and then recover
- Requires deadlock detection algorithm

- Some technique for forcibly preempting resources
and/or terminating tasks

* Ensure that system will never enter a deadlock
- Need to monitor all lock acquisitions
- Selectively deny those that might lead to deadlock

+ Ignore the problem and pretend that deadlocks
never occur in the system

- Used by most operating systems, including UNIX

9/29/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 9.25

Deadlock Detection Algorithm

* Only one of each type of resource = look for loops
* More General Deadlock Detection Algorithm
- Let [X] represent an m-ary vector of non-negative
integers (quantities of resources of each type):

[FreeResources]: Current free resources each type
[Request,]: Current requests from thread X
[Alloc,]: Current resources held by thread X

- See if tasks can eventually terminate on their own
[Avail] = [FreeResources]

Add all nodes to UNFINISHED Ry @
do { =
%

done = true
Foreach node in UNFINISHED {

' r(e%%?/%uisot é’demlr;; u[r@/ N IIéIF?EI;){ i s
[
3
} until(done)
- Nodes left in UNFINISHED = deadlocked

[Avail] = [Avail] + [Alloc,]
9/29/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 9.26

done = false

What to do when detect deadlock?

+ Terminate thread, force it to give up resources

- In Bridge example, Godzilla picks up a car, hurls it into
the river. Deadlock solved!

- Shoot a dining lawyer

- But, not always possible - killing a thread holding a
mutex leaves world inconsistent

* Preempt resources without killing off thread

- Take away resources from thread temporarily

- Doesn't always fit with semantics of computation
* Roll back actions of deadlocked threads

- Hit the rewind button on TiVo, pretend last few
minutes never happened

- For bridge example, make one car roll backwards (may
require others behind him)

- Common technique in databases (transactions)

- Of course, if you restart in exactly the same way, may
reenter deadlock once again

* Many operating systems use other ogﬂons
9/29/10 Kubiatowicz CS5162 ©UCB Fall 200

Lec 9.27

Summary

* Suggestions for dealing with Project Partners
- Start Early, Meet Often

- Develop Good Organizational Plan, Document Everything,
Use the right tools, Develop Comprehensive Testing Plan

- (Oh, and add 2 years to every deadline!)
+ Starvation vs. Deadlock
- Starvation: thread waits indefinitely
- Deadlock: circular waiting for resources
* Four conditions for deadlocks
- Mutual exclusion
» Only one thread at a time can use a resource
- Hold and wait

» Thread holding at least one resource is waiting to acquire
additional resources held by other threads

- No preemption
» Resources are released only voluntarily by the threads
- Circular wait

» 3 set {T;, .., T.} of threads with a cyclic waiting pattern
Kubiatowicz €S162 @UCB Fall 200! Lec 9.28

9/29/10

Summary (2)

* Techniques for addressing Deadlock
- Allow system to enter deadlock and then recover
- Ensure that system will never enter a deadlock

- Ignore the problem and pretend that deadlocks never
occur in the system

+ Deadlock detection

- Attempts to assess whether waiting graph can ever
make progress

* Next Time: Deadlock prevention

- Assess, for each allocation, whether it has the
potential to lead to deadlock

- Banker's algorithm gives one way to assess this

9/29/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 9.29

CS162
Operating Systems and
Systems Programming
Lecture 10

Deadlock (cont'd)
Thread Scheduling

October 4, 2010
Prof. John Kubiatowicz
http://inst.eecs.berkeley.edu/~cs162

Review: Deadlock

+ Starvation vs. Deadlock

- Starvation: thread waits indefinitely

- Deadlock: circular waiting for resources

- Deadlock=Starvation, but not other way around
* Four conditions for deadlocks

- Mutual exclusion

» Only one thread at a time can use a resource
- Hold and wait

» Thread holding at least one resource is waiting to acquire
additional resources held by other threads

- No preemption
» Resources are released only voluntarily by the threads
- Circular wait

» There exists a set {T;, .., T;} of threads with a cyclic
waiting pattern

10/4/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 10.2

Review: Resource Allocation Graph Examples
+ Recall:
- request edge - directed edge T; —» RJ.
- assignment edge - directed edge RJ- -> T;

R R
A\ A N § o
N
T Ts
Vi E Vi S
[
R3 ° R [R\
R g 2
4 R4
Simple Resource Allocation Graph Allocation Graph
Allocation Graph With Deadlock With Cycle, but
No Deadlock

10/4/10 Kubiatowicz €S5162 ©UCB Fall 2009 Lec 10.3

Review: Methods for Handling Deadlocks @

+ Allow system to enter deadlock and then recover
- Requires deadlock detection algorithm

- Some technique for selectively preempting resources
and/or terminating tasks

* Ensure that system will never enter a deadlock
- Need to monitor all lock acquisitions
- Selectively deny those that might lead to deadlock

+ Ignore the problem and pretend that deadlocks
never occur in the system

- used by most operating systems, including UNIX

10/4/10 Kubiatowicz €S5162 ©UCB Fall 2009 Lec 10.4

Goals for Today

* Preventing Deadlock

+ Scheduling Policy goals

* Policy Options

- Implementation Considerations

Note: Some slides and/or pictures in the following are

adapted from slides ©2005 Silberschatz, Galvin, and Gagne.

Many slides generated from my lecture notes by Kubiatowicz.
10/4/10 Kubiatowicz 5162 ©UCB Fall 2009 Lec 10.5

Deadlock Detection Algorithm

* Only one of each type of resource = look for loops
* More General Deadlock Detection Algorithm
- Let [X] represent an m-ary vector of non-negative
integers (quantities of resources of each type):

[FreeResources]: Current free resources each type
[Request,]: Current requests from thread X
[Alloc,]: Current resources held by thread X

- See if tasks can eventually terminate on their own
[Avail] = [FreeResources]

Add all nodes to UNFINISHED Ry @
do { =
%

done = true
Foreach node in UNFINISHED {

' r(e%%?/%uisot é’demlr;; u[r@/ N IIéIF?EI;){ i s
[
3
} until(done)
- Nodes left in UNFINISHED = deadlocked

[Avail] = [Avail] + [Alloc,]
10/4/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 10.6

done = false

What to do when detect deadlock?

+ Terminate thread, force it to give up resources

- In Bridge example, Godzilla picks up a car, hurls it into
the river. Deadlock solved!

- Shoot a dining lawyer

- But, not always possible - killing a thread holding a
mutex leaves world inconsistent

* Preempt resources without killing off thread

- Take away resources from thread temporarily

- Doesn't always fit with semantics of computation
* Roll back actions of deadlocked threads

- Hit the rewind button on TiVo, pretend last few
minutes never happened

- For bridge example, make one car roll backwards (may
require others behind him)

- Common technique in databases (transactions)

- Of course, if you restart in exactly the same way, may
reenter deadlock once again

* Many operating systems use other ogﬂons
10/4/10 Kubiatowicz 5162 ©UCB Fall 200

Lec 10.7

Techniques for Preventing Deadlock

 Infinite resources

- Include enough resources so that no one ever runs out of
resources. Doesn't have to be infinite, Just Iarge

- Give illusion of infinite resources (e.g. virtual memory)
- Examples:
» Bay bridge with 12,000 lanes. Never wait!
» Infinite disk space (not realistic yet?)
* No Sharing of resources (totally independent threads)
- Not very realistic
+ Don't allow waiting
- How the phone company avoids deadlock

» Call to your Mom in Toledo, works its way through the phone
lines, but if blocked get busy signal.

- Technique used in Ethernet/some multiprocessor nets
» Everyone speaks at once. On collision, back off and retry
- Inefficient, since have to keep retrying

» Consider: driving to San Francisco: when hit traffic jam,
suddenly you're “transported back home and told to retry!

10/4/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 10.8

Techniques for Preventing Deadlock (con't)

* Make all threads request everything they'll need at
the beginning.
- Problem: Predicting future is hard, tend to over-
estimate resources
- Example:
» If need 2 chopsticks, request both at same time
» Don't leave home until we know no one is using any
intersection between here and where you want to go: only
one car on the Bay Bridge at a time
* Force all threads to request resources in a particular
order preventing any cyclic use of resources

- Thus, preventing deadlock
- Example (x.P, y.P, z.P,..)
» Make tasks request disk, then memory, then..

» Keep from deadlock on freeways around SF by requiring

everyone to go clockwise
10/4/10 Kubiatowicz 5162 ©UCB Fall 2009 Lec 10.9

Review: Train Example (Wormhole-Routed Network)

+ Circular dependency (Deadlock!)
- Each train wants to turn right
- Blocked by other trains
- Similar problem to multiprocessor networks
* Fix? Imagine grid extends in all four directions
- Force ordering of channels (tracks)
» Protocol: Always go east-west first, then north-south
- Called “dimension ordering” (X then Y)

10/4710 i Fall 2009 Lec 10.10

Banker's Algorithm for Preventing Deadlock

*+ Toward right idea:
- State maximum resource needs in advance
- Allow particular thread to proceed if:
(available resources - #requested) > max
remaining that might be needed by any thread
+ Banker's algorithm (less conservative):
- Allocate resources dynamically
» Evaluate each request and grant if some
ordering of threads is still deadlock free afterward

» Technique: pretend each request is granted, then run
deadlock detection algorithm, substituting
(IMax,q.]-[Alloc,.q.] < [Avail]) for ([Request, 4] < [Avail])
Grant request if result is deadlock free (conservativel)

» Keeps system in a "SAFE" state, i.e. there exists a
sequence {T,, T,, .. T} with T, requesting all remaining
resources, f1inishing, then T, requesting all remaining
resources, etc..

- Algorithm allows the sum of maximum resource needs of all

current threads to be greater than total resources
10/4/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 10.11

: ‘]"

+ Banker's algorithm with dining lawyers

- "Safe” (won't cause deadlock) if when try to grab
chopstick either:

» Not last chopstick

» Is last chopstick but someone will have
two afterwards

- What if k-handed lawyers? Don't allow if:
» It's the last one, no one would have k
» It's 2" to last, and no one would have k-1
» It's 3 to last, and no one would have k-2

1074/10 > - Kubiatowicz €5162 ®UCB Fall 2009 Lec 10.12

Administrivia

10/4/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 10.13

CPU Scheduling
: ready queue '/c—PU

/0 queue H 110 request l<—
time slice
expired
child fork a
executes child

interrupt wail for an
OCCurs interrupt

* Earlier, we talked about the life-cycle of a thread

- Active threads work their way from Ready queue to
Running to various waiting queues.

* Question: How is the OS to decide which of several
tasks to take off a queue?
- Obvious queue to worry about is ready queue
- Others can be scheduled as well, however

* Scheduling: deciding which threads are given access

to resources from moment to moment
10/4/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 10.14

Scheduling Assumptions

*+ CPU scheduling big area of research in early 70's
* Many implicit assumptions for CPU scheduling:
- One program per user
- One thread per program
- Programs are independent
* Clearly, these are unrealistic but they simplify the
problem so it can be solved

- For instance: is “fair” about fairness among users or
programs?
» If I run one compilation job and you run five, you get five
times as much CPU on many operating systems
* The high-level goal: Dole out CPU time to optimize
some desired parameters of system

USER1 USER2 USER3 USER1 USER2

10/4/10 Kubiatowicz €S5162 ©UCB Fall 2009 Lec 10.15

Assumption: CPU Bursts

load store
add store + CPU burs
read from file

.lf Weighted toward small bursts

lond store
add store + CPU burs
read from file

wait for 1O b WO barat

burst du

- Execufion model: programs alternate between bursts of
CPU and I/0
- Program tyfically uses the CPU for some period of time,
then does 1/0, then uses CPU again
- Each scheduling decision is about which job to give to the
CPU for use by its next CPU burst
- With timeslicing, thread may be forced to give up CPU

before finishing current CPU burst
ubiatowicz €S162 ©UCB Fall 2009 Lec 10.16

10/4/10

Scheduling Policy Goals/Criteria

* Minimize Response Time
- Minimize elapsed time to do an operation (or job)
- Response time is what the user sees:
» Time to echo a keystroke in editor
» Time to compile a program
» Real-time Tasks: Must meet deadlines imposed by World
* Maximize Throughput
- Maximize operations (or jobs) per second
- Throughput related to response time, but not identical:

» Minimizing response time will lead to more context
switching than if you only maximized throughput

- Two parts to maximizing throughput
» Minimize overhead (for example, context-switching)
» Efficient use of resources (CPU, disk, memory, etc)
* Fairness
- Share CPU among users in some equitable way
- Fairness is not minimizing average response time:

» Better average response time by making system /ess fair
ubiatowicz €S162 ©UCB Fall 2009 Lec 10.17

10/4/10

First-Come, First-Served (FCFS) Scheduling

* First-Come, First-Served (FCFS)
- Also “"First In, First Out” (FIFO) or “"Run until done”

» In early systems, FCFS meant one program
scheduled until done (including I/0)

» Now, means keep CPU until thread blocks

+ Example: Process Burst Time
P 24
A 3
7, 3

- Suppose processes arrive in the order: P, , P, , P;
The Gantt Chart for the schedule is:

Py P, Ps

0 24 27 30
- Waiting time for P, = 0; P, = 24; P;= 27
- Average waiting time: (0 + 24 + 27)/3 = 17
- Average Completion time: (24 + 27 + 30)/3 = 27

* Convoy effect: short process behind long process
10/4/10 Kubiatowicz 5162 ©UCB Fall 2009 Lec 10.18

FCFS Scheduling (Cont.)

+ Example continued:

- Suppose that processes arrive in order: P, , P;, P,
Now, the Gantt chart for the schedule is:

P, Ps Py

0 3 6 30
- Waiting time for P, =6,P,=0.P; =3

- Average waiting time: (6 + 0 + 3)/3 = 3
- Average Completion time: (3 + 6 + 30)/3 = 13
* In second case:
- average waiting time is much better (before it was 17)
- Average completion time is better (before it was 27)
+ FIFO Pros and Cons:
- Simple (+)
- Short jobs get stuck behind long ones (-)

» Safeway: Getting milk, always stuck behind cart full of

small items. Ul?side: get to read about space aliens!
u

10/4/10 biatowicz C5162 ©UCB Fall 2009 Lec 10.19

Round Robin (RR)

+ FCFS Scheme: Potentially bad for short jobsl!
- Depends on submit order

- If you are first in line at supermarket with milk, you
don't care who is behind you, on the other hand..

* Round Robin Scheme

- Each process gets a small unit of CPU time
(time guantum), usually 10-100 milliseconds
- After quantum expires, the process is preempted
and added to the end of the ready queue.
- n processes in ready queue and time quantum is ¢ =
» Each process gets 1/n of the CPU time
» In chunks of at most ¢ time units
» No process waits more than (#-1)g time units
* Performance
- ¢ large = FCFS
- ¢ small = Interleaved (really small = hyperthreading?)

- g must be large with respect to context switch,
otherwise overhead is too high (all overhead)
10/4/10 Kubiatowicz €S5162 ©UCB Fall 2009 Lec 10.20

Example of RR with Time Quantum = 20

. Example: Process Burst Time
P, 53
Py 68
Py 24

- The Gantt chart is:

Po| Py, | Py | Py | Py | P | Py | P[Py Py

0O 20 28 48 68 88 108 112 125 145 153

- Waiting time for P,=(68-20)+(112-88)=72
P,=(20-0)=20
P,=(28-0)+(88-48)+(125-108)=85
P,=(48-0)+(108-68)=88

- Average waiting time = (72+20+85+88)/4=66%

- Average completion time = (125+28+153+112)/4 = 104}

+ Thus, Round-Robin Pros and Cons:
- Better for short jobs, Fair (+)

- Context-switching time adds up for long jobs (-)
10/4/10 Kubiatowicz 5162 ©UCB Fall 2009 Lec 10.21

Round-Robin Discussion

* How do you choose time slice?
- What if too big?
» Response time suffers
- What if infinite («)?
» Get back FIFO
- What if time slice too small?
» Throughput suffers!
* Actual choices of timeslice:
- Initially, UNIX timeslice one second:
» Worked ok when UNIX was used by one or two people.

» What if three compilations going on? 3 seconds to echo
each keystroke!
- In practice, need to balance short-job performance
and long-job throughput:
» Typical time slice today is between 10ms - 100ms
» Typical context-switching overhead is 0.1ms - 1ms
» Roughly 1% overhead due to context-switching

10/4/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 10.22

Comparisons between FCFS and Round Robin

* Assuming zero-cost context-switching time, is RR
always better than FCFS?

+ Simple example: 10 jobs, each take 100s of CPU time
RR scheduler quantum of 1s
All jobs start at the same time

+ Completion Times: | Job # | FIFO RR

1 100 991
2 200 992
9 900 999

10 1000 1000
- Both RR and FCFS finish at the same time

- Average response time is much worse under RR!
» Bad when all jobs same length

* Also: Cache state must be shared between all jobs with

RR but can be devoted to each job with FIFO

- Total time for RR longer even for zero-cost switch!

10/4/10 Kubiatowicz €S5162 ©UCB Fall 2009 Lec 10.23

Earlier Example with Different Time Quantum

P P P P
Best FCFS: |[g] | [24] [53] [68]
0 8 32 85 153
Quantum Py P, P P, Average
Best FCFS | 32 0 85 8 311
Q-1 84 22 85 57 62
_ Q-5 82 20 85 58 615
.m': Q-8 80 8 85 56 573
Q-10 | 82 10 85 68 61%
Q=20 | 72 20 85 88 663
Worst FCFS| 68 | 145 0 121 83%
Best FCFS | 85 8 153 32 69%
Q-1 137 | 30 153 81 1003
_ Q-5 135 | 28 153 82 99%
C°'.“r’i’r'::'°“ Q-8 133 | 16 153 80 95%
Q-10 | 135 | 18 153 92 99%
Q-20 | 125 | 28 153 | 112 | 104%
1 Worst FCFS | 121 | 153 68 145 | 1212

What if we Knew the Future?

- Could we always mirror best FCFS? G
+ Shortest Job First (SJF): (\

- Run whatever job has the least amount of
computation to do

- Sometimes called “"Shortest Time to
Completion First” (STCF)

+ Shortest Remaining Time First (SRTF):

- Preemptive version of SJF: if job arrives and has a
shorter time to completion than the remaining time on
the current job, immediately preempt CPU

- Sometimes called "Shortest Remaining Time to
Completion First” (SRTCF)

+ These can be applied either to a whole program or
the current CPU burst of each program
- Idea is to get short jobs out of the system
- Big effect on short jobs, only small effect on long ones

- Result is better average response time
10/4/10 Kubiatowicz 5162 ©UCB Fall 2009 Lec 10.25

Discussion

+ SIF/SRTF are the best you can do at minimizing
average response time

- Provably optimal (SJF among non-preemptive, SRTF
among preemptive)

- Since SRTF is always at least as good as SJF, focus
on SRTF

+ Comparison of SRTF with FCFS and RR

- What if all jobs the same length?

» SRTF becomes the same as FCFS (i.e. FCFS is best can
do if all jobs the same length)

- What if jobs have varying length?
» SRTF (and RR): short jobs not stuck behind long ones

10/4/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 10.26

Example to illustrate benefits of SRTF

AorB C

Cs Cs C's
. Three jobs: I/0 I/0 I/0

- A,B: both CPU bound, run for week
C: I/0 bound, loop 1ms CPU, 9ms disk I/0

- If only one at a time, C uses 90% of the disk, A or B
could use 100% of the CPU

- With FIFO:

- Once A or B get in, keep CPU for two weeks
* What about RR or SRTF?

- Easier to see with a timeline

10/4/10 Kubiatowicz €S5162 ©UCB Fall 2009 Lec 10.27

SRTF Example continued:

Disk Utilization:

c A B /\ 9/201 ~ 4.5%
I I
| I

—

Cs RR 100ms time slice Disk Utilization:
1/0 ~90% but lots of
cxmnn. c wakeups!
11

(e 1 . .

—_— RR 1ms time slice

C's C's

I/0 I/0

Disk Utilization:

cC A A A 90%

| I |

IR R

_—— SRTF

Cs C's

I/0 I/0

10/4/10 Kubiatowicz €S162 @UCB Fall 2009 Lec 10.28

SRTF Further discussion

- Starvation
- SRTF can lead to starvation if many small jobs!
- Large jobs never get to run
+ Somehow need to predict future
- How can we do this?
- Some systems ask the user
» When you submit a job, have to say how long it will take
» To stop cheating, system kills job if takes too long
- But: Even non-malicious users have trouble predicting
runtime of their jobs
* Bottom line, can't really know how long job will take

- However, can use SRTF as a yardstick
for measuring other policies

- Optimal, so can't do any better
SRTF Pros & Cons

- Optimal (average response time) (+)

- Hard to predict future (-)

- Unfair (-

10/4/10) Kubiatowicz €S162 ©UCB Fall 2009

Summary (Deadlock)

* Four conditions required for deadlocks
- Mutual exclusion
» Only one thread at a time can use a resource
- Hold and wait

» Thread holding at least one resource is waiting to acquire
additional resources held by other threads

- No preemption
» Resources are released only voluntarily by the threads
- Circular wait
» 3 set {T;, .., T;} of threads with a cyclic waiting pattern
* Deadlock detection
- Attempts to assess whether waiting graph can ever
make progress
+ Deadlock prevention

- Assess, for each allocation, whether it has the potential
to lead to deadlock

- Banker's algorithm gives one way to assess this

10/4/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 10.30

Summary (Scheduling)

* Scheduling: selecting a waiting process from the ready
queue and allocating the CPU Yo it
* FCFS Scheduling:
- Run threads to completion in order of submission
- Pros: Simple
- Cons: Short jobs get stuck behind long ones
* Round-Robin Scheduling:

- Give each thread a small amount of CPU time when it
executes; cycle between all ready threads

- Pros: Better for short jobs
- Cons: Poor when jobs are same length
+ Shortest Job First (SJF)/Shortest Remaining Time
First (SRTF):
- Run whatever job has the least amount of computation to
do/least remaining amount of computation to do
- Pros: Optimal (average response time)

- Cons: Hard to predict future, Unfair
10/4/10 Kubiatowicz €S5162 ©UCB Fall 2009 Lec 10.31

CS162
Operating Systems and
Systems Programming
Lecture 11

Thread Scheduling (con't)
Protection: Address Spaces

October 6, 2010
Prof. John Kubiatowicz
http://inst.eecs.berkeley.edu/~cs162

Review: Banker's Algorithm for Preventing Deadlock

* Banker's algorithm:

- Allocate resources dynamically
» Evaluate each request and grant if some
ordering of threads is still deadlock
free afterward
» Technique: pretend each request is granted,
then run deadlock detection algorithm,
substituting
([Maxnode]-[A”ocnode] < [AVGII]) for
([Request,q.] < [Avail])
Grant request if result is deadlock free (conservativel)
» Keeps system in a "SAFE" state, i.e. there exists a
sequence {T;, T,, .. T} with T, requesting all remaining
resources, finishing, then T, requesting all remaining
resources, etc..

- Algorithm allows the sum of maximum resource needs of all
current threads to be greater than total resources

10/6/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 11.2

Review: Last Time

* Scheduling: selecting a waiting process from the ready
queue and allocating the CPU to it
+ FCFS Scheduling:
- Run threads to completion in order of submission
- Pros: Simple (+)
- Cons: Short jobs get stuck behind long ones (-)
* Round-Robin Scheduling:

- Give each thread a small amount of CPU time when it
executes; cycle between all ready threads

- Pros: Better for short jobs (+)
- Cons: Poor when jobs are same length (-)

10/6/10 Kubiatowicz €5162 ©UCB Fall 2009 Lec 11.3

Review: FCFS and RR Example with Different Quantum

P, P P P
Best FCFS: |[g] | [24] [53] [68]
0 8 32 85 153
Quantum Py P, P P, Average
Best FCFS | 32 0 85 8 311
Q-1 84 22 85 57 62
_ Q-5 82 20 85 58 1%
m‘": Q-8 80 8 85 56 57%
Q:-10 | 82 10 85 68 612
Q=20 | 72 20 85 88 66%
Worst FCFS | 68 | 145 0 121 83%
Best FCFS | 85 8 153 32 69%
Q-1 137 | 30 153 81 1002
_ Q-5 135 | 28 153 82 99%
C°".‘r‘i’r'::'°“ Q-8 133 | 16 153 80 95%
Q-10 | 135 | 18 153 92 99%
Q-20 | 1z | 28 163 [112 | 104%
1 Worst FCFS | 121 | 153 68 145 | 1212

Review: SRTF Further discussion

+ Starvafion
- SRTF can lead to starvation if many small jobs!
- Large jobs never get to run
+ Somehow need to predict future
- How can we do this?
- Some systems ask the user
» When you submit a job, have to say how long it will take
» To stop cheating, system kills job if takes too long

- But: Even non-malicious users have trouble predicting
runtime of their jobs

* Bottom line, can't really know how long job will take

- However, can use SRTF as a yardstick
for measuring other policies

- Optimal, so can't do any better
SRTF Pros & Cons

- Optimal (average response time) (+)

- Hard to predict future (-)

- Unfair (-

10/6/10)

Kubiatowicz 5162 ©UCB Fall 2009

Goals for Today

+ Finish discussion of Scheduling
* Kernel vs User Mode

* What is an Address Space?

* How is it Implemented?

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne

10/6/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 11.6

Example to illustrate benefits of SRTF

AorB C
I I | |
I I hm1n 1
Cs Cs C's
I/0 I/0 I/0

* Three jobs:

- A,B: both CPU bound, run for week
C: I/0 bound, loop 1ms CPU, 9ms disk I/0

- If only one at a time, C uses 90% of the disk, A or B
could use 100% of the CPU

- With FIFO:

- Once A or B get in, keep CPU for two weeks
* What about RR or SRTF?

- Easier to see with a timeline

10/6/10 Kubiatowicz €S5162 ©UCB Fall 2009 Lec 11.7

SRTF Example continued:

~
Disk Utilization:
¢ A B 9/201 ~ 4.5%
Il I n /
il | Il
Cs RR 100ms time slice Disk Utilization:)
I/0 ~90% but lots of
CABAB.. C wakeups!
11 <
(e 1 . .
—_— RR 1ms time slice
C's C's
I/0 I/0
Disk Utilization:
C A A A 90%
| I |
IR R
—_— SRTF
Cs C's
I/0 I/0
10/6/10 Kubiatowicz €S162 @UCB Fall 2009 Lec 11.8

Predicting the Length of the Next CPU Burst

+ Adaptive: Changing policy based on past behavior
- CPU scheduling, in virtual memory, in file systems, etc
- Works because programs have predictable behavior
» If program was I/0 bound in past, likely in future
» If computer behavior were random, wouldn't help
+ Example: SRTF with estimated burst length

- Use an estimator function on previous bursts:

Let t,.4, t,.2, t..3, etc. be previous CPU burst lengths.
Estimate next burst t, = f(t,_;, t,.2, Th-3. -.)

- Function f could be one of many different time series
estimation schemes (Kalman filters, etc)

- For instance,
exponential averaging
Tﬂ, = (11'"_1+(1-G,)Tn_1
with (O<a<1)

10/6/10 Kubiatowicz ¢ ™" ~ ° 4 * 4 ® MO B 119

Multi-Level Feedback Scheduling

N]

lf_L‘ Long-Running Compute
|—..="’: - ~Tosks Dem%ted)

- - L Priori
{ quantum = 16 J/—I/ ow r‘lol"lfy
)

Lﬁ FCFS |

* Another method for exploiting past behavior
- First used in CTSS
- Multiple queues, each with different priority
» Higher priority queues often considered “foreground” tasks
- Each queue has its own scheduling algorithm
» e.g. foreground - RR, background - FCFS

» Sometimes multiple RR priorities with quantum increasing
exponentially (highest:lms, next:2ms, next: 4ms, etc)

*+ Adjust each job's priority as follows (details vary)
- Job starts in highest priority queue
- If timeout expires, drop one level

- If timeout doesn't expire, push up one level (or to top)
10/6/10 Kubiatowicz €S5162 ©UCB Fall 2009 Lec 11.10

Scheduling Details

* Result approximates SRTF:
- CPU bound jobs drop like a rock
- Short-running I/0 bound jobs stay near top
+ Scheduling must be done between the queues
- Fixed priority scheduling:
» serve all from highest priority, then next priority, etc.
- Time slice:
» each queue gets a certain amount of CPU time
» e.g., 70% to highest, 20% next, 10% lowest
+ Countermeasure: user action that can foil intent of
the OS designer
- For multilevel feedback, put in a bunch of meaningless
I/0 to keep job's priority high
- Of course, if everyone did this, wouldn't work!
+ Example of Othello program:

- Playing against competitor, so key was to do computing
at higher priority the competitors.

10/6/10 » Put in prmtfl(ﬁbiu’;&‘w’?u%?t‘z m&e'ralll 2009 Lec 11.11

Administrivia

10/6/10 Kubiatowicz 5162 ©UCB Fall 2009 Lec 11.12

Scheduling Fairness

* What about fairness?
- Strict fixed-priority scheduling between queues is unfair
(run highest, then next, etc):
» long running jobs may never get CPU
» In Multics, shut down machine, found 10-year-old job
- Must give long-running jobs a fraction of the CPU even
when there are shorter jobs to run
- Tradeoff: fairness gained by hurting avg response timel!
* How to implement fairness?
- Could give each queue some fraction of the CPU
» What if one long-running job and 100 short-running ones?
» Like express lanes in a supermarket—sometimes express
lanes get so long, get better service by going into one of
the other lines
- Could increase priority of jobs that don't get service
» What is done in UNIX
» This is ad hoc—what rate should you increase priorities?

» And, as system gets overloaded, no job gets CPU time, so

everyone increases in priority=Interactive jobs suffer
10/6/10 Kubiatowicz C5162 ©UCB Fall 2009 Lec 11.13

Lottery Scheduling

* Yet another alternative: Lottery Scheduling
- Give each job some number of lottery tickets
- On each time slice, randomly pick a winning ticket

- On average, CPU time is proportional to number of
tickets given to each job
* How to assign tickets?
- To approximate SRTF, short running jobs get more,
long running jobs get fewer
- To avoid starvation, every job gets at least one
ticket (everyone makes progress)

* Advantage over strict priority scheduling: behaves
gracefully as load changes
- Adding or deleting a job affects all jobs

proportionally, independent of how many tickets each
Job possesses

10/6/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 11.14

Lottery Scheduling Example

* Lottery Scheduling Example
- Assume short jobs get 10 tickets, long jobs get 1 ticket

short jobs/ | % of CPU each | % of CPU each
long jobs short jobs gets | long jobs gets
1/1 91% 9%

0/2 N/A 50%

2/0 50% N/A
10/1 9.9% 0.99%
1/10 50% 5%

- What if too many short jobs to give reasonable
response time?

» In UNIX, if load average is 100, hard to make progress
» One approach: log some user out

10/6/10 Kubiatowicz €S5162 ©UCB Fall 2009 Lec 11.15

How to Evaluate a Scheduling algorithm?

+ Deterministic modeling

- takes a predetermined workload and compute the
performance of each algorithm for that workload

* Queueing models
- Mathematical approach for handling stochastic workloads
+ Implementation/Simulation:

- Build system which allows actual algorithms to be run
against actual data. Most flexible/general.

parformance
simulation > stalistics
/ for FCFS
;' | _FCFs |
CPU 10
1w 213
actual CPU 12 periomance
process >0 112 =—p- Simulation = stlatistics
execution CPU 2 for SJF
o 147
CPU1T3 S
race tap .':""“:::.-;“
\‘ perlormance
simulation > slalistics
for RR (g = 14,
RR (g = 14}

10/6/10 —__Kubiatowicz C516Z2 ©UCB Fall 2009 Lec 11.16

A Final Word On Scheduling

* When do the details of the scheduling policy and
fairness really matter?

- When there aren’t enough resources to go around
* When should you simply buy a faster computer?
- (Or network link, or expanded highway, or ..)

- One approach: Buy it when it will pay
for itself in improved response time
» Assuming you're paying for worse
response time in reduced productivity,
customer angst, etc..

» Might think that you should bug a
faster X when X is utilized 100%,
but usually, response time goes
to infinity as utilization=100% Utilization

Wi}
asuodsay
%001

* An interesting implication of this curve:

- Most scheduling algorithms work fine in the “linear”
portion of the Toad curve, fail otherwise

- Argues for buying a faster X when hit "knee” of curve
10/6/10 Kubiatowicz 5162 ©UCB Fall 2009 Lec 11.17

Virtualizing Resources

* Physical Reality:
Different Processes/Threads share the same hardware
- Need to multiplex CPU (Just finished: scheduling)
- Need to multiplex use of Memory (Today)
- Need to multiplex disk and devices (later in term)

* Why worry about memory sharing?
- The complete working state of a process and/or kernel is
defined by its data in memory (and registers)
- Consequently, cannot just let different threads of control
use the same memory
» Physics: two different pieces of data cannot occupy the same
locations in memory
- Probably don't want different threads to even have access

to each other's memory ggr‘ofecﬁon
6/10 i

10/ Kubiatowicz €5162 ©UCB Fall 2009 Lec 11.18

Recall: Single and Multithreaded Processes

| code || data H files | | code H data H files

| stack | Ireglsters‘ |reg|slers‘ [registers‘

| stack H stack H stack

thread — ; ; ; ;ﬁ——mread

multithreaded process

single-threaded process

* Threads encapsulate concurrency
- "Active” component of a process
* Address spaces encapsulate protection
- Keeps buggy program from trashing the system

- "Passive” component of a process
10/6/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 11.19

Important Aspects of Memory Multiplexing

+ Controlled overlap:
- Separate state of threads should not collide in physical
memory. Obviously, unexpected overlap causes chaos!
- Conversely, would like the ability to overlap when
desired (for communication)

* Translation:
- Ability to translate accesses from one address space
(virtual) to a different one (physical)
- When translation exists, processor uses virtual
addresses, physical memory uses physical addresses
- Side effects:
» Can be used to avoid overlap
» Can be used to give uniform view of memory to programs

* Protection:
- Prevent access to private memory of other processes
» Different pages of memory can be given special behavior
(Read Only, Invisible to user programs, etc).
» Kernel data protected from User programs

» Programs protected from themselves
10/6/10 Kubiatowicz 5162 ©UCB Fall 2009 Lec 11.20

Binding of Instructions and Data to Memory

+ Binding of instructions and data to addresses:

- Choose addresses for instructions and data from the
standpoint of the processor

datal: dw 32
start: Iw rl1,0(datal) 0x900 8C2000C0
jal checkit 0x904 O0C
loop: addi ri, rl1, -1 0x908 20 /AFFFF

bnz rl1, rO, loop 0x90C 20FFFF

checkit: .. 0;

0x300, 00000020

- Could we place datal, start, and/or checkit at
different addresses?
» Yes
» When? Compile time/Load time/Execution time
- Related: which physical memory locations hold particular
instructions or data?

10/6/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 11.21

Multi-step Processing of a Program for Execution

- Preparation of a program for Gain)
execution involves components at: ey
- Compile time (i.e. “gcc”) T
- Link/Load time (unix "Id” does link) cothper or |[il
- Execution time (e.g. dynamic libs) ‘,—‘ ;
* Addresses can be bound to final (oot
values anywhere in this path Soma \mode)
- Depends on hardware support \ooddes/ |
- Also depends on operating system | tnkage
+ Dynamic Libraries 1

- Linking postponed until execution
- Small piece of code, stub, used to

{ load \ | load
/ \ module / time
I. system | A

locate the appropriate memory- \ orary [T
resident library routine o | T
- STUb f‘ep'aces iTseIf Wifh the .-'[!','I:'d.mlcil‘-@.l L o : |
address of the routine, and ol SO _
executes routine e in-memory
dynamic binary
lirkin: memory
10/6/10 Kubiatowicz €S162 ©UCB Fall il

Recall: Uniprogramming

* Uniprogramming (no Translation or Protection)

- Application always runs at same place in physical
memory since only one application at a time

- Application can access any physical address

} OxFFFFFFFF
Operating
System £
S8
N »n
™ P
T3
33
>
Application
0x00000000

- Application given illusion of dedicated machine by giving
it reality of a dedicated machine

* Of course, this doesn't help us with multithreading

10/6/10 Kubiatowicz €S5162 ©UCB Fall 2009 Lec 11.23

Multiprogramming (First Version)

* Multiprogramming without Translation or Protection
- Must somehow prevent address overlap between threads
OXFFFFFFFF

Operating
System

Application2| 0x00020000

Applicationl

0x00000000

- Trick: Use Loader/Linker: Adjust addresses while
program loaded into memory (loads, stores, jumps)

» Everything adjusted to memory location of program
» Translation done by a linker-loader
» Was pretty common in early days
* With this solution, no protection: bugs in any program

can cause other programs to crash or even the OS
10/6/10 Kubiatowicz 5162 ©UCB Fall 2009 Lec 11.24

Multiprogramming (Version with Protection)

* Can we protect programs from each other without
translation?

} OXFFFFFFFF
Operating

System

4_| LimitAddr=0x10000 |
Application2 0X00020000¢————_4BaseAddr=Ox20000|

Applicationl

0x00000000
- Yes: use two special registers BaseAddr and LimitAddr
to prevent user from sfraying outside designated area
» If user tries to access an illegal address, cause an error
- During switch, kernel loads new base/limit from TCB
» User not allowed to change base/limit registers

10/6/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 11.25

Segmentation with Base and Limit registers

Base
Virtual |
CPU Address >@ > DRAM
Physical
Limit — Address
No: Error!

* Could use base/limit for dynamic address translation
(often called “segmentation”):
- Alter address of every load/store by adding “"base”
- User allowed to read/write within segment

» Accesses are relative to segment so don't have to be
relocated when program moved to different segment
- User may have multiple segments available (e.g x86)
» Loads and stores include segment ID in opcode:
x86 Example: mov [eS:bx],ax.

» Operating system moves around segment base pointers as
necessary
10/6/10 Kubiatowicz 5162 ©UCB Fall 2009 Lec 11.26

Issues with simple segmentation method

process 6 process 6 process 6 process 6

process 5 process 5 process 5 process 5

process 9 process 9

process 2 — :> =) process 10
oS 0s oS oS

* Fragmentation problem

- Not every process is the same size

- Over time, memory space becomes fragmented
* Hard to do inter-process sharing

- Want to share code segments when possible

- Want to share memory between processes

- Helped by by providing multiple segments per process
* Need enough physical memory for every process

10/6/10 Kubiatowicz €S5162 ©UCB Fall 2009 Lec 11.27

Multiprogramming (Translation and Protection version 2)

* Problem: Run multiple applications in such a way that
they are protected from one another
* Goals:

- Isolate processes and kernel from one another
- Allow flexible translation that:

» Doesn't lead to fragmentation

» Allows easy sharing between processes

» Allows only part of process to be resident in physical
memory

* (Some of the required) Hardware Mechanisms:
- General Address Translation

» Flexible: Can fit crhysical chunks of memory into arbitrary
places in users address space

» Not limited to small number of segments

» Think of this as providing a large number (thousands) of
fixed-sized segments (called “pages”)

- Dual Mode Operation
» Protection base involving kernel/user distinction
10/6/10 Kubiatowicz 5162 ©UCB Fall 2009 Lec 11.28

Example of General Address Translation

Code Data 2
Data Stack 1
Heap HCOP 1
Stack Code 1
Stack 2
Prog 1
Virtual Data 1
Address Heap 2
Space 1 Code 2
[OS code \
Translation Map 1 0S data
OS heap &
Stacks

10/6/10 iatowicz C5162 ©UCB Fall 2009

Pt\%sical Address Sgace

Code

Data

Heap

Stack

Prog 2
Virtual
Address
Space 2

Translation Map 2

Lec 11.29

Two Views of Memory

Virtual
‘\ddressg_l MMU Add
N—

Untranslated read or write

Recall: Address Space:
- All the addresses and state a process can touch
- Each process and kernel has different address space
+ Consequently: two views of memory:
- View from the CPU (what program sees, virtual memory)
- View fom memory (physical memory)
- Translation box converts between the two views
Translation helps to implement protection
- If task A cannot even gain access to task B's data, no
way for A to adversely affect B
With translation, every program can be linked/loaded
into same region of user address space

- Overlap avoided through translation, not relocation
10/6/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 11.30

Example of Translation Table Format

1K
Two-level Page Tables PTEs

32-bit address:

10 10 12
| P1 index | P2 index | page offset‘

| e

—> 4 bytes

* Page: a unit of memory translatable by
memory management unit (MMU)

- Typically 1K - 8K
* Page table structure in memory
- Each user has different page table
* Address Space switch: change pointer
to base of table (hardware register)

- Hardware traverses page table (for
many architectures)

- MIPS uses software to traverse table
10/6/10 Kubiatowicz €5162 ©UCB Fall 2009

-

e —

—> 4 bytes+—

W\
i

N

Lec 11.31

Dual-Mode Operation

* Can Application Modify its own translation tables?
- If it could, could get access to all of physical memory
- Has to be restricted somehow
* To Assist with Protection, Hardware provides at
least two modes (Dual-Mode Operation):
- "Kernel” mode (or “supervisor” or “protected”)
- "User” mode (Normal program mode)
- Mode set with bits in special control register only
accessible in kernel-mode
* Intel processor actually has four “rings” of
protection:
- PL (Priviledge Level) from O - 3
» PLO has full access, PL3 has least
- Privilege Level set in code segment descriptor (CS)
- Mirrored "IOPL" bits in condition register gives
permission to programs to use the I?O instructions

ypical OS kernels on Intel processors only use PLO
("user”) and PL3 (“kernel”)

Kubiatowicz 5162 ©UCB Fall 2009

10/6/10 Lec 11.32

For Protection, Lock User-Programs in Asylum

- Idear Lock user programs in padded cell _go
with no exit or sﬁar‘p objects

- Cannot change mode to kernel mode

- User cannot modify page table mapping

- Limited access to memory: cannot -
adversely effect other processes

» Side-effect: Limited access to = Iz
memorK—mapped I/0 operations & @\ J
(I/0 that occurs by reading/writing memory locations)

- Limited access to interrupt controller
- What else needs to be protected?
* A couple of issues
- How to share CPU between kernel and user programs?

» Kinda like both the inmates and the warden in asylum are
the same person. How do you manage this???

- How do programs interact?
- How does one switch between kernel and user modes?
» OS — user (kernel — user mode): getting into cell

» User— OS (user — kernel mode): Z%eh‘ing out of cell
10/6/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 11.33

How to get from Kernel->User

+ What does the kernel do to create a new user
process?

- Allocate and initialize address-space control block
- Read program off disk and store in memory
- Allocate and initialize translation table
» Point at code in memory so program can execute
» Possibly point at statically initialized data
- Run Program:
» Set machine registers
» Set hardware pointer to translation table
» Set processor status word for user mode
» Jump to start of program
* How does kernel switch between processes?
- Same saving/restoring of registers as before

- Save/restore PSL (hardware pointer to translation table)
10/6/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 11.34

User—Kernel (System Call)

* Can't let inmate (user) get out of padded cell on own
- Would defeat purpose of protection!
- So, how does the user program get back into kernel?

User process
user mode
(mode bit = 1)

T T 1
user process executing l[—-e calls system call ‘ | return from system call

\ /

7
K | trap retum
A mode bit=0 mode bit = 1

kermnel mode

execute system call (mode bit = 0)

- System call: Voluntary procedure call into kernel
- Hardware for controlled User—Kernel transition
- Can any kernel routine be called?
» No! Only specific ones.
- System call ID encoded into system call instruction
» Index forces well-defined interface with kernel

10/6/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 11.35

System Call Continued

* What are some system calls?
- I/0: open, close, read, write, Iseek
- Files: delete, mkdir, rmdir, truncate, chown, chgrp, ..
- Process: fork, exit, wait (like join)
- Network: socket create, set options
* Are system calls constant across operating systems?
- Not entirely, but there are lots of commonalities
- Also some standardization attempts (POSIX)
What happens at beginning of system call?
» On entry to kernel, sets system to kernel mode
» Handler address fetched from table/Handler started
System Call argument passing:
- In registers (not very much can be passed)
- Write into user memory, kernel copies into kernel mem
» User addresses must be translatediw
» Kernel has different view of memory than user
- Every Argument must be explicitly checked!
10/6/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 11.36

User—Kernel (Exceptions: Traps and Interrupts)
+ A SysTem call instruction causes a synchronous
exception (or “trap”)
- In fact, often called a software “trap” instruction
* Other sources of Synchronous Exceptions:

- Divide by zero, Illegal instruction, Bus error (bad
address, e.g. unaligned access)

- Segmentation Fault (address out of range)
- Page Fault (for illusion of infinite-sized memory)
* Interrupts are Asynchronous Exceptions
- Examples: timer, disk ready, network, etc....
- Interrupts can be disabled, traps cannot!
+ On system call, exception, or interrupt:
- Hardware enters kernel mode with interrupts disabled
- Saves PC, then jumps to appropriate handler in kernel

- For some processors (x86), processor also saves
registers, changes stack, etc.

* Actual handler Tﬁpically saves registers, other CPU
werfate. and switehes to kernel.stack,

Additions to MIPS ISA to support Exceptions?

- Exception state is kept in "Coprocessor 0"

- Use mfcO read contents of these registers:

» BadVAddr ISregis'rer' 8): contains memory address at which
memory reference error occurred

» Status (register 12): interrupt mask and enable bits
» Cause (register 13): the cause of the exception
» EPC (register 14): address of the affected instruction

15 8 543210

Status Mask kle|kle|k|e
old prev cur

- Status Register fields:
- Mask: Interrupt enable
» 1 bit for each of 5 hardware and 3 software interrupts
- k = kernel/user: O=kernel mode
- e = interrupt enable: O=interrupts disabled
- Exception=6 LSB shifted left 2 bits, setting 2 LSB to O:
» run in kernel mode with interrupts disabled
10/6/10 Kubiatowicz 5162 ©UCB Fall 2009 Lec 11.38

Intel x86 Special Registers

80386 Special Registers

Segiment tegistels
15 cs] 15 oS]
15 55] 15 ES o
15 23 L] 15 Gs]

N |olo|i|T|s|z|.lale]E c
XIT|PL |E|F|E|F|F|E|X|F|X|E|X|FE

RPL = Requestor Puivilege Level 1514 13 121110 9 8 7 6 S + 3 2 1 0
TL=Table Indicatot

(0=GDT,1=L0OT) E-EEHE CRO CRJ

Index =Index into lable

3130 S 431210 31 CFlags
Protected Mode segrment selectot cR2 cR3
. . 31 0 T o
Typical Segment Register BG=Legins Enshe e
Current Priority is RPL Tt el CEueonErs
nulate Coprocessol D iection Flag
Of Code Segment (CS) B Preciad bade enibie ™ Teluonont lag.
P A
F=Aoxiliaty Flag
CEaCan) Bl
10/6/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 11.39

Communication

* Now that we have isolated processes, how
can they communicate?

- Shared memory: common mapping to physical page

» As long as place objects in shared memory address range,
threads from each process can communicate

» Note that 1J:»r'ocesses A and B can talk to shared memory
through different addresses

» In some sense, this violates the whole notion of
protection that we have been developing

- If address spaces don't share memory, all inter-
address space communication must go through kernel
(via system calls)

» Byte stream producer/consumer (put/get): Example,
communicate through pipes connecting stdin/stdout

» Message Kassin (send/receive): Will explain later how you
can use this to build remote procedure call (RPC)
abstraction so that you can have one program make
procedure calls to another

» File System (read/write): File system is shared statel

10/6/10 Kubiatowicz 5162 ®UCB Fall 2009 Lec 11.40

Closing thought: Protection without Hardware

* Does protection require hardware support for
translation and dual-mode behavior?
- No: Normally use hardware, but anything you can do in
hardware can also do in software (possibly expensive)
* Protection via Strong Typing
- Restrict rogr‘amming language so that you can't express
program that would trash another program
- Loader needs to make sure that program produced by
valid compiler or all bets are off
- Example languages: LISP, Ada, Modula-3 and Java
* Protection via software fault isolation:
- Language independent approach: have compiler generate
object code that provably can't step out of bounds
» Compiler puts in checks for every “"dangerous” operation
(loads, stores, efc). Again, need special loader.
» Alternative, compiler generates “proof” that code cannot
do certain things (Proof Carrying Code)
- Or: use virtual machine to guarantee safe behavior

(loads and stores recompiled on flg to check bounds)
10/6/10 Kubiatowicz €5162 ©UCB Fall 2009 Lec'11.41

Summary

+ Shortest Job First (SJF)/Shortest Remaining Time
First (SRTF):
- Run whatever job has the least amount of computation
to do/least remaining amount of computation to do
- Pros: Optimal (average response time)
- Cons: Hard to predict future, Unfair
* Multi-Level Feedback Scheduling:
- Multiple queues of different priorities

- Automatic promotion/demotion of process priority in
order to approximate SJF/SRTF

* Lottery Scheduling:

- Give each thread a priority-dependent number of
tokens (short tasks=more tokens)

- Reserve a minimum number of tokens for every thread
to ensure forward progress/fairness

* Evaluation of mechanisms:
- Analytical, Queuing Theory, Simulation

10/6/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 11.42

Summary (2)

* Memory is a resource that must be shared
- Controlled Overlap: only shared when appropriate

- Translation: Change Virtual Addresses into Physical
Addresses

- Protection: Prevent unauthorized Sharing of resources
+ Simple Protection through Segmentation

- Base+limit registers restrict memory accessible to user

- Can be used to translate as well

* Full translation of addresses through Memory
Management Unit (MMU)

- Every Access translated through page table
- Changing of page tables only available to user
* Dual-Mode
- Kernel/User distinction: User restricted
- User—Kernel: System calls, Traps, or Interrupts

- Inter'-ﬁrocess communication: shared memory, or
through kernel (system calls)

10/6/10 Kubiatowicz €S5162 ©UCB Fall 2009 Lec 11.43

CS162
Operating Systems and
Systems Programming
Lecture 12

Protection (continued)
Address Translation

October 11, 2010
Prof. John Kubiatowicz
http://inst.eecs.berkeley.edu/~cs162

Review: Important Aspects of Memory Multiplexing
* Controlled overlap:

- Separate state of threads should not collide in physical
memory. Obviously, unexpected overlap causes chaos!
- Conver'selz, would like the ability to overlap when
desired (for communication)
* Translation:

- Ability to translate accesses from one address space
(virtual) to a different one (physical)
- When translation exists, processor uses virtual
addresses, physical memory uses physical addresses
- Side effects:
» Can be used to avoid overlap

» Can be used to give uniform view of memory to programs
* Protection:

- Prevent access to private memory of other processes

» Different pages of memory can be given special behavior
(Read Only, Invisible to user programs, etc).

» Kernel data protected from User programs

» Programs protected from themselves
Kubiatowicz 5162 ©UCB Fall 2009

10/11/10 Lec 12.2

Review: General Address Translation

Code Data 2 Code
Data Stack 1 Data
Heap Heap 1 Heap
Stack Code 1 Stack
Stack 2
Prog 1 Prog 2
Virtual Data 1 Virtual
Address Heap 2 Address
Space 1 Code 2 Space 2
[OS code \
Translation Map 1 OS data | Translation Map 2
OS heap &
Stacks
Phlxsicql Address Sgace
10/11/10 Kubiatowicz CS162 ©UCB Fall 2009 Lec 12.3

Review: Simple Segmentation: Base and Bounds (CRAY-1)

Base
Virtual !

CPU Address

+ »| DRAM
C Physical
Limit — Address

Yes: Error!

+ Can use base & bounds/limit for dynamic address
translation (Simple form of “segmentation”):

- Alter every address by adding "base”
- Generate error if address bigger than limit
* This gives program the illusion that it is running on its
own dedicated machine, with memory starting at O
- Program gets continuous region of memory

- Addresses within program do not have to be relocated
when program placed in different region of DRAM

10/11/10 Kubiatowicz 5162 ©UCB Fall 2009

Lec 12.4

Review: Cons for Simple Segmentation Method
+ Fragmentation problem (compiex memory ailocation)
- Not every process is the same size
- Over time, memory space becomes fragmented
- Really bad if want space to grow dynamically (e.g. heap)

process 6 process 6 process 6 process 6

process 5 process 5 process 5 process 5

process 9 process 9

process 2 |::> |:> :> process 10
oS oS oS oS

* Other problems for process maintenance
- Doesn't allow heap and stack to grow independently

- Want to ru‘r these as far apart in virtual memory space
as possible so that they can grow as needed

* Hard to do inter-process sharing
- Want to share code segments when possible

- Want to share memory between processes
10/11/10 Kubiatowicz 5162 ©UCB Fall 2009 Lec 12.5

Goals for Today

* Address Translation Schemes

- Segmentation

- Paging

- Multi-level translation

- Paged page tables

- Inverted page tables
- Discussion of Dual-Mode operation
- Comparison among options

Note: Some slides and/or pictures in the following are

adapted from slides ©2005 Silberschatz, Galvin, and Gagne.

Many slides generated from my lecture notes by Kubiatowicz.
10/11/10 Kubiatowicz 5162 ©UCB Fall 2009 Lec 12.6

More Flexible Segmentation

1

subroutine stack 4
symbol
table

2

sqrt
main
program 3
: user view of physical
logical address memory space memory space

- Typical: Code, Data, Stack
- Others: memory sharing, etc

 Each segment is given region of contiguous memory
- Has a base and limit

111, £an reside anyyhere in physjcal. memory Lec 12.7

Implementation of Multi-Segment Model

Vit [ot @ —trror

BaseO[LimitO [V
Basel [Limit1
Base2.Li '1%

ase3 | Limit3 [N=p Physical
Base4 |Limit4 [V Address
Base5 [Limit5 |N]
Baseb [Limit6 [N
Base7|Limit7 [V

- Segment map resides in processor
- Segment number mapped into base/limit pair
- Base added to offset to generate physical address
- Error check catches offset out of range
+ As many chunks of physical memory as entries
- Segment addressed by portion of virtual address
- However, could be included in instruction instead:
» x86 Example: mov [es:bx],ax.
* What is "V/N"?

- Can mark segments as invalid; requires check as well
10/11/10 Kubiatowicz 5162 ©UCB Fall 2009 Lec 12.8

Intel x86 Special Registers

Example: Four Segments (16 bit addresses)

80386 Special Registers Seg ID # | Base Limit
Segiment tegistels
Offset | 0 (code) |0x4000 | 0x0800
[Jewess [Jowse 1514 13 0 [1 (data) |Ox4800 | Ox1400
15 cs o 15 oS o .
Virtual Address Format 2 (shared) | 0xFO0O | 0x1000
5 = . 5 = 5 3 (stack) |0x0000 | 0x3000
1 [Jewss [Jewss 0x0000 0x0000
15 23 o 15 GS o
L EAHEHEBHERAHAE 0x4000 0x4000 —— Might
— . 0x4800 be shared
= nque:lolpl“‘ﬂegti.t\ffl 15 14 13 12 11 10 ¢ &8 7 6 § 4 3 2 1 ©
TL=Table Indicatot 0x5€00
(0=GDT,1=L0OT) E-EEHE CRO CRI 0x8000
Index =Index into lable 3130 S 43210 31 thy
= - Space for
' l’luleclchodczgummsclecu.:i | Lifage Fanh ocaz Base Quiecieny Dcm 0xC000 Other Apps
Typical Segment Register BG-2uging e horaened
Current Priority is RPL e CEueonErs 0xF000 Shared with
Of Code Segment (CS) B Preciad bade enibie ™ EF;_E;::‘;;" (Biag” - - Other Apps
SeSehtis Virtual Physical
I Address Space Address Space
10/11/10 Kubiatowicz CS162 ®UCB Fall 2009 T lec 12,9 10/11/10 Kubiatowicz CS162 ©UCB Fall 2009 Lec 12.10
Example of segment translation Administrivia
0x240 main: la $a0, varx
0x244 Jal strlen Seg ID # | Base | Limit
0x360 strien: 1i $v0, 0 ;count | [2{code) | 0x4000 | 0x0800
0x364 loop: Ib $t0, ($ald) 1 (data) |Ox4800 |0x1400
0x368 beq $r0,$tl, done 2 (shared) | 0xFO0O | 0x1000
0x4050 varx dw 0x314159 gl (o) 1900008 [D>2000
Let's simulate a bit of this code to see what happens (PC=0x240):
- Fetch 0x240. Virtual segment #? 0; Offset? 0x240
Physical address? Base=0x4000, so physical addr=0x4240
Fetch instruction at 0x4240. Get “la $a0, varx”
Move 0x4050 — $a0, Move PC+4—PC
2. Fetch Ox244. Translated to Physical=-0x4244. Get "jal strlen”
Move 0x0248 — $ra (return address!), Move 0x0360 — PC
3. Fetch 0x360. Translated to Physical=0x4360. Get “li $v0,0"
Move 0x0000 — $vO, Move PC+4—PC
4. Fetch 0x364. Translated to Physical=-0x4364. Get "Ib $t0,($a0)"
Since $a0 is 0x4050, try to load byte from 0x4050
Translate 0x4050. Virtual segg\enf #? 1; Offset? 0x50
Physical address? Base=0x4800, Physical addr = 0x4850,
Load Byte from 0x4850—%$10, Move PC+4—PC
10/11/10 Kubiatowicz €5162 @UCB Fall 2009 Lec 12.11 10/11/10 Kubiatowicz €5162 ©UCB Fall 2009 Lec 12.12

Observations about Segmentation

Virtual address space has holes
- Segmentation efficient for sparse address spaces

- A correct program should never address gaps (except
as mentioned in moment)

» If it does, trap to kernel and dump core
* When it is OK to address outside valid range:
- This is how the stack and heap are allowed to grow

- For instance, stack takes fault, system automatically
increases size of stack

* Need protection mode in segment table
- For example, code segment would be read-only
- Data and stack would be read-write (stores allowed)
- Shared segment could be read-only or read-write

* What must be saved/restored on context switch?
- Segment table stored in CPU, not in memory (small)

- Might store all of processes memory onto disk when
switched (called “swapping™)

10/11/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 12.13

Schematic View of Swapping

P)
) P A
operating s i
syslom aa—
rocess Py
ﬁ} swap out i
process P,
fE} swap in
=]
user TR - —_/
space backing store
mam memory

+ Extreme form of Context Switch: Swapping

- In order to make room for next process, some or all
of the previous process is moved to disk

» Likely need to send out complete segments
- This greatly increases the cost of context-switching
* Desirable alternative?

- Some way to keep only active portions of a process in
memory at any one time

- Need finer granularity control over physical memory
10/11/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 12.14

Paging: Physical Memory in Fixed Size Chunks

+ Problems with segmentation?

- Must fit variable-sized chunks into physical memory

- May move processes multiple times to fit everything

- Limited options for swapping to disk
* Fragmentation: wasted space

- External: free gaps between allocated chunks

- Internal: don't need all memory within allocated chunks
+ Solution to fragmentation from segments?

- Allocate physical memory in fixed size chunks (“pages”)

- Every chunk of physical memory is equivalent

» Can use simple vector of bits to handle allocation:
00110001110001101 .. 110010

» Each bit represents page of physical memory
1=allocated, O=free

+ Should pages be as big as our previous segments?
- No: Can lead to lots of internal fragmentation
» Typically have small pages (1K-16K)

- Consequently: need mulﬂPIe pages/segmem‘
10/11/10 Kubiatowicz 5162 ©UCB Fall 200

Lec 12.15

How to Implement Paging?

Virtual Address:

age #0 | V,R 4
P AN -

page #2 |V R W Physical Address
page #3 V.R.W \Fheck Pern)
page #4 | N

page #5 V.R,W Access
Error

PageTableSize

AcZess
Error
* Page Table (One per process)
- Resides in physical memor
- Contains physical page am}l permission for each virtual page
» Permissions include: Valid bits, Read, Write, etc
* Virtual address mapping
- Offset from Virtual address copied to Physical Address
» Example: 10 bit offset = 1024-byte pages
- Virtual page # is all remaining bits
» Example for 32-bits: 32-10 = 22 bits, i.e. 4 million entries
» Physical page # copied from table into physical address

- Check Page Table bounds and permissions
10/11/10 Kubiatowicz €S5162 ©UCB Fall 2009 Lec 12.16

What about Sharing?

Virtual Address
(Process A):

Simple Page Table Discussion

- What needs to be switched on

ERRLULLLLLLLLLELELELLLLELLL LT L L LY E Qa Con'l-ext switch?

0x00 . 0x00 i - Page table pointer and limit
PageTablePtrAl— page #0 | V.R c ox04|4—{ i* Analysis
page #1 | V., 4 j i -Pros
| 0x04184 3 k » Simple memory allocation
: f 1| oxos |- » Easy to Share
2 - Con: What if address space is
: 0x08 [Page oxoc —— SPGI"SC?
: j | Table £l ¢ » E.g. on UNIX, code starts at
k g| 0, stack starts at (231-1).
1] hl ¢ » With 1K pages, need 4 million
izgz = This physical page Virtual 0x10 3 page table entries!
TR AN appears in address Memory b - Con: What if table really big?
space of both processes ; : » NOT all pages used.all the
Phvsical time = would be nice to have
page #5 [V R, MYS'C° : working set of page table in
emory : memory
Vir"l'ual Addl"ess: _ e rrrrrrrrrrrrrrse el H b b- H H
Offset ow about combining paging
Process B Example (4 byte pages) gnd’ segmentation?
10/11/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 12.17 10/11/10 Kubiatowicz €S5162 ©UCB Fall 2009 Lec 12.18
Multi-level Translation What about Sharing (Complete Segment)?
9 9
+ What about a free of tables? Process
- Lowest level page table=>memory still allocated with bitmap A — page #0 | V.R
- Higher levels often segmented page z; VR'R
+ Could have any number of levels. Example (top segment): Base0 | Limit0 .52—3:#5 z'R'w
) Basel | Lisi R,
e Offet AT
) ase3 | Limit page #5 V.R. W
page #0 | V.R v Base4 | Limit4 V| Shared Segment
BaseO | Limi page #1 | VR Offset Base5 | Limith [N —
S e , - Base6 | Limit6 [N Basef]LimiO TV
page #3 Physical Address Base7 | Limit7 |V asef | Limi
ase3 | Limit: 74 —
imt page ase3 | Limit3
gﬁ:ﬁ% I'::rmn::g_ page #5 32224 _I'::rmnﬁ::rr} %/f
Base6 | Limit6 [N A acd Base | Limit6 [N
Base7|Limit7 |V _»Ecrc;%srs Ecrﬁ'%is Base7|Limit7 |V
* What must be saved/restored on context switch? Process
- Contents of top-level segment registers (for this example) B
- Pointer to top-level table (page table)
10/11/10 Kubiatowicz CS162 ©UCB Fall 2009 Lec 12.19 10/11/10 Kubiatowicz CS162 ©UCB Fall 2009 Lec 12.20

Another common example: TVSLO-!eVd page table
VYSICa

12 bits __ Address:]

10 bits 10 bits

Virtual
Address:

4KB

—> 4 bytes «—

* Tree of Page Tables L
+ Tables fixed size (1024 entries)
- On context-switch: save single
PageTablePtr register
* Valid bits on Page Table Entries
- Don't need every 2"-level table
- Even when exist, 2m-level tables_, ;1o

can reside on disk if not in use
10/11/10 Kubiatowicz 5162 ©UCB Fall 2009 Lec 12.21

Multi-level Translation Analysis

* Pros:
- Only need to allocate as many page table entries as we
need for application
» In other wards, sparse address spaces are easy
- Easy memory allocation
- Easy Sharing
» Share at segment or page level (need additional reference
counting)
* Cons:
- One pointer per page (typically 4K - 16K pages today)
- Page tables need to be contiguous
» However, previous example keeps tables to exactly one
page in size
- Two (or more, if >2 levels) lookups per reference
» Seems very expensivel!

10/11/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 12.22

Inverted Page Table

+ WiTh all previous examples (Forward Page Tables")

- Size of page table is at least as large as amount of
virtual memory allocated to processes

- Physical memory may be much less
» Much of process space may be out on disk or not in use

Hash
Table

* Answer: use a hash table

- Called an "Inverted Page Table”

- Size is independent of virtual address space

- Directly related to amount of physical memory

- Very attractive option for 64-bit address spaces
+ Cons: Complexity of managing hash changes

- Often in hardware!
10/11/10 Kubiatowicz €S5162 ©UCB Fall 2009 Lec 12.23

Dual-Mode Operation

* Can Application Modify its own translation tables?
- If it could, could get access to all of physical memory
- Has to be restricted somehow
* To Assist with Protection, Hardware provides at
least two modes (Dual-Mode Operation):
- "Kernel” mode (or “supervisor” or “protected”)
- "User” mode (Normal program mode)
- Mode set with bits in special control register only
accessible in kernel-mode
* Intel processor actually has four “rings” of
protection:
- PL (Priviledge Level) from O - 3
» PLO has full access, PL3 has least
- Privilege Level set in code segment descriptor (CS)

- Mirrored “"IOPL" bits in condition re?ister‘ ives
permission to programs to use the I/O insfructions
ypical OS kernels on Intel processors only use PLO

("user”) and PL3 (“kernel”)

10/11/10 Kubiatowicz €S5162 ©UCB Fall 2009 Lec 12.24

For Protection, Lock User-Programs in Asylum
- Idear Lock user programs in padded cell _go
with no exit or sﬁar‘p objects
- Cannot change mode to kernel mode :
- User cannot modify page table mapping

- Limited access to memory: cannot
adversely effect other processes

» Side-effect: Limited access to = Iz
memorx—mapped I/0 operations & @\ J
(I/0 that occurs by reading/writing memory locations)

- Limited access to interrupt controller
- What else needs to be protected?
* A couple of issues
- How to share CPU between kernel and user programs?

» Kinda like both the inmates and the warden in asylum are
the same person. How do you manage this???

- How do programs interact?
- How does one switch between kernel and user modes?
» OS — user (kernel — user mode): getting into cell

» User— OS (user — kernel mode): Z%eh‘ing out of cell
10/11/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 12.25

How to get from Kernel->User

+ What does the kernel do to create a new user
process?

- Allocate and initialize address-space control block
- Read program off disk and store in memory
- Allocate and initialize translation table
» Point at code in memory so program can execute
» Possibly point at statically initialized data
- Run Program:
» Set machine registers
» Set hardware pointer to translation table
» Set processor status word for user mode
» Jump to start of program
* How does kernel switch between processes?
- Same saving/restoring of registers as before

- Save/restore PSL (hardware pointer to translation table)
10/11/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 12.26

User—Kernel (System Call)

* Can't let inmate (user) get out of padded cell on own
- Would defeat purpose of protection!
- So, how does the user program get back into kernel?

USer process
user mode

I [1 0 =
user process executing }—— calls system call ‘ | return from system call fmeda Dt =1
LY 4
K | trap retum
Rine mode bit = 0 mode bit = 1

kermnel mode

execule system call (mode bit = 0)

- System call: Voluntary procedure call into kernel
- Hardware for controlled User—Kernel transition
- Can any kernel routine be called?
» No! Only specific ones.
- System call ID encoded into system call instruction
» Index forces well-defined interface with kernel

10/11/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 12.27

System Call Continued

* What are some system calls?
- I/0: open, close, read, write, Iseek
- Files: delete, mkdir, rmdir, truncate, chown, chgrp, ..
- Process: fork, exit, wait (like join)
- Network: socket create, set options
* Are system calls constant across operating systems?
- Not entirely, but there are lots of commonalities
- Also some standardization attempts (POSIX)
What happens at beginning of system call?
» On entry to kernel, sets system to kernel mode
» Handler address fetched from table/Handler started
System Call argument passing:
- In registers (not very much can be passed)
- Write into user memory, kernel copies into kernel mem
» User addresses must be translatediw
» Kernel has different view of memory than user
- Every Argument must be explicitly checked!
10/11/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 12.28

User—Kernel (Exceptions: Traps and Interrupts)
+ A SysTem call instruction causes a synchronous
exception (or “trap”)
- In fact, often called a software “trap” instruction
* Other sources of Synchronous Exceptions:

- Divide by zero, Illegal instruction, Bus error (bad
address, e.g. unaligned access)

- Segmentation Fault (address out of range)
- Page Fault (for illusion of infinite-sized memory)
* Interrupts are Asynchronous Exceptions
- Examples: timer, disk ready, network, etc....
- Interrupts can be disabled, traps cannot!
+ On system call, exception, or interrupt:
- Hardware enters kernel mode with interrupts disabled
- Saves PC, then jumps to appropriate handler in kernel

- For some processors (x86), processor also saves
registers, changes stack, etc.

* Actual handler TKpically saves registers, other CPU
s FigTe. and switehes to kernel.stack,

Additions to MIPS ISA to support Exceptions?

- Exception state is kept in "Coprocessor 0"

- Use mfcO read contents of these registers:

» BadVAddr #regis'rer' 8): contains memory address at which
memory reference error occurred

» Status (register 12): interrupt mask and enable bits
» Cause (register 13): the cause of the exception
» EPC (register 14): address of the affected instruction

15 8 543210

Status Mask klek|e|k|e
old prev cur

- Status Register fields:
- Mask: Interrupt enable
» 1 bit for each of 5 hardware and 3 software interrupts
- k = kernel/user: O=kernel mode
- e = interrupt enable: O=interrupts disabled
- Exception=6 LSB shifted left 2 bits, setting 2 LSB to O:
» run in kernel mode with interrupts disabled
10/11/10 Kubiatowicz 5162 ©UCB Fall 2009 Lec 12.30

Closing thought: Protection without Hardware

* Does protection require hardware support for
translation and dual-mode behavior?
- No: Normally use hardware, but anyfhingf you can do in
hardware can also do in software (possibly expensive)
* Protection via Strong Typing
- Restrict rogmmming language so that you can't express
program that would trash another program
- Loader needs to make sure that program produced by
valid compiler or all bets are off
- Example languages: LISP, Ada, Modula-3 and Java
* Protection via software fault isolation:
- Language independent approach: have compiler generate
object code that provably can't step out of bounds
» Compiler puts in checks for every “dangerous” operation
(loads, stores, efc). Again, need special loader.
» Alternative, compiler generates “proof” that code cannot
do certain things (Proof Carrying Code)
- Or: use virtual machine to guaran'ree safe behavior

(loads and stores recompiled on flg to check bounds
10/11/10 Kubiatowicz €5162 ©UCB Fall 2009 Lec'12.31

Summary (1/2)

* Memory is a resource that must be shared
- Controlled Overlap: only shared when appropriate

- Translation: Change Virtual Addresses into Physical
Addresses

- Protection: Prevent unauthorized Sharing of resources
* Dual-Mode

- Kernel/User distinction: User restricted

- User—Kernel: System calls, Traps, or Interrupts

- Inter-process communication: shared memory, or

through kernel (system calls)

- Exceptions

- Synchronous Exceptions: Traps (including system calls)

- Asynchronous Exceptions: Interrupts

10/11/10 Kubiatowicz €S5162 ©UCB Fall 2009 Lec 12.32

Summary (2/2)

+ Segment Mapping
- Segment registers within processor
- Segment ID associated with each access
» Often comes from portion of virtual address
» Can come from bits in instruction instead (x86)
- Each segment contains base and limit information
» Offset (rest of address) adjusted by adding base
* Page Tables
- Memory divided into fixed-sized chunks of memory

- Virtual page number from virtual address mapped
through page table to physical page number

- Offset of virtual address same as physical address
- Large page tables can be placed into virtual memory
* Multi-Level Tables
- Virtual address mapped to series of tables
- Permit sparse population of address space
+ Inverted page table

- Size of page table related to physical memory size
10/11/10 Kubiatowicz 5162 ©UCB Fall 2009 Lec 12.33

CS162
Operating Systems and
Systems Programming
Lecture 13

Address Translation (con't)
Caches and TLBs

October 13, 2010
Prof. John Kubiatowicz
http://inst.eecs.berkeley.edu/~cs162

Review: Multi-level Translation

+ What about a free of tables?
- Lowest level page table=>memory still allocated with bitmap
- Higher levels often segmented

* Could have any number of levels. Example (top segment):

Virtual

Address:
page #0 | VR l
BaseO|Limi page #1 | VR
Basel [LTl [V -
page #3 Physical Address
ase3 | Limit page #4
Base4 | Limit4
Base5 | Limith | page #5
Base6 | Limit6 [N Access Ac (}ess
= e
Base7 |[Limit7 [V] Eces:

* What must be saved/restored on context switch?
- Contents of top-level segment registers (for this example)

- Pointer to top-level table (page table)
10/13/10 Kubiatowicz €5162 ©UCB Fall 2009 Lec 13.2

Review: Two-level page table
VYSICa

12 bits Address:|

10 bits 10 bits

Virtual
Address:

—> 4 bytes «—

* Tree of Page Tables

* Tables fixed size 9024 entries)

- On context-switch: save single
PageTablePtr register

- Sometimes, top-level page tables
called "directories” (Intel)

* Each entry called a (surprisel)
Page Table Entry (PTE)

10/13/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 13.3

—> 4 bytes «—

Goals for Today

+ Finish discussion of both Address Translation and
Protection

* Caching and TLBs

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne

10/13/10 Kubiatowicz €5162 ©UCB Fall 2009 Lec 13.4

What is in a PTE?

* What is in a Page Table Entry (or PTE)?

- Pointer to next-level page table or to actual page

- Permission bits: valid, read-only, read-write, write-only
+ Example: Intel x86 architecture PTE:

- Address same format previous slide (10, 10, 12-bit offset)

- Intermediate page tables called "Directories”

Page Frame Number Free B
(Phygsical Page Number) (0Ss) OjL[bfA §U WP
31-12 11-9 876543210
P: Present (same as “valid” bit in other architectures)
W: Writeable

U: User accessible

PWT: Page write transparent: external cache write-through

PCD: Page cache disabled (page cannot be cached)
A: Accessed: page has been accessed recently
D: Dirty (PTE only): page has been modified recently
L: L=1=4MB page (directory only).

Bottom 22 bits of virtual address serve as offset
10/13/10 Kubiatowicz €5162 ©UCB Fall 2009 Lec 13.5

Examples of how to use a PTE

How do we use the PTE?
- Invalid PTE can imply different things:
» Region of address space is actually invalid or
» Page/directory is just somewhere else than memory
- Validity checked first
» OS can use other (say) 31 bits for location info
Usage Example: Demand Paging
- Keep only active Jaa es in memory
- Place others on disk and mark their PTEs invalid
Usage Example: Copy on Write
- UNIX fork gives copy of parent address space to child
» Address spaces disconnected after child created
- How to do this cheaply?
» Make copy of parent’s page tables (point at same memory)
» Mark entries in both sets of page tables as read-only
» Page fault on write creates two copies
Usage quample: Zero Fill On Demand
- New data pages must carry no information (say be zeroed)
- Mark PTEs as invalid: page fault on use gets zeroed page
- Often, OS creates zeroed pages in background

10/13/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 13.6

How is the translation accomplished?

Virtual
Addresses

* What, exactly happens inside MMU?
* One possibility: Hardware Tree Traversal

- For each virtual address, takes ﬁage table base pointer
and traverses the page table in hardware

- Generates a "Page Fault” if it encounters invalid PTE
» Fault handler will decide what to do
» More on this next lecture

- Pros: Relatively fast (but still many memory accesses!)

- Cons: Inflexible, Complex hardware

* Another possibility: Software

- Each traversal done in software

- Pros: Very flexible

- Cons: Every translation must invoke Fault!

« In fact, need wa\{ to cache translations for either casel
10/13/10 ubiatowicz 5162 ©UCB Fall 2009 Lec 13.7

Physical
Addresses

Dual-Mode Operation

* Can Application Modify its own translation tables?
- If it could, could get access to all of physical memory
- Has to be restricted somehow
* To Assist with Protection, Hardware provides at
least two modes (Dual-Mode Operation):
- "Kernel” mode (or “supervisor” or “protected”)
- "User” mode (Normal program mode)
- Mode set with bits in special control register only
accessible in kernel-mode
* Intel processor actually has four “rings” of
protection:
- PL (Priviledge Level) from O - 3
» PLO has full access, PL3 has least
- Privilege Level set in code segment descriptor (CS)
- Mirrored "IOPL" bits in condition register gives
permission to programs to use the I?O instructions

ypical OS kernels on Intel processors only use PLO
("user”) and PL3 (“kernel”)

10/13/10 Kubiatowicz CS162 ©UCB Fall 2009 Lec 13.8

For Protection, Lock User-Programs in Asylum
- Idear Lock user programs in padded cell _go
with no exit or sﬁar‘p objects
- Cannot change mode to kernel mode :
- User cannot modify page table mapping

- Limited access to memory: cannot
adversely effect other processes

» Side-effect: Limited access to = Iz
memorx—mapped I/0 operations & @\ J
(I/0 that occurs by reading/writing memory locations)

- Limited access to interrupt controller
- What else needs to be protected?
* A couple of issues
- How to share CPU between kernel and user programs?

» Kinda like both the inmates and the warden in asylum are
the same person. How do you manage this???

- How do programs interact?
- How does one switch between kernel and user modes?
» OS — user (kernel — user mode): getting into cell

» User— OS (user — kernel mode): Z%eh‘ing out of cell
10/13/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec

13.9

How to get from Kernel->User

+ What does the kernel do to create a new user
process?

- Allocate and initialize address-space control block
- Read program off disk and store in memory
- Allocate and initialize translation table
» Point at code in memory so program can execute
» Possibly point at statically initialized data
- Run Program:
» Set machine registers
» Set hardware pointer to translation table
» Set processor status word for user mode
» Jump to start of program
* How does kernel switch between processes?
- Same saving/restoring of registers as before

- Save/restore PSL (hardware pointer to translation table)
10/13/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 13.10

User—Kernel (System Call)

* Can't let inmate (user) get out of padded cell on own
- Would defeat purpose of protection!
- So, how does the user program get back into kernel?

USer process
user mode

I [1 0 =
user process executing }—— calls system call ‘ | return from system call fmeda Dt =1
LY 4
K | trap retum
Rine mode bit = 0 mode bit = 1

kermnel mode

execule system call (mode bit = 0)

- System call: Voluntary procedure call into kernel
- Hardware for controlled User—Kernel transition
- Can any kernel routine be called?
» No! Only specific ones.
- System call ID encoded into system call instruction
» Index forces well-defined interface with kernel

10/13/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 13.11

System Call Continued

* What are some system calls?
- I/0: open, close, read, write, Iseek
- Files: delete, mkdir, rmdir, truncate, chown, chgrp, ..
- Process: fork, exit, wait (like join)
- Network: socket create, set options
* Are system calls constant across operating systems?
- Not entirely, but there are lots of commonalities
- Also some standardization attempts (POSIX)
What happens at beginning of system call?
» On entry to kernel, sets system to kernel mode
» Handler address fetched from table/Handler started
System Call argument passing:
- In registers (not very much can be passed)
- Write into user memory, kernel copies into kernel mem
» User addresses must be translatediw
» Kernel has different view of memory than user
- Every Argument must be explicitly checked!
10/13/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 13.12

User—Kernel (Exceptions: Traps and Interrupts)
+ A SysTem call instruction causes a synchronous
exception (or “trap”)
- In fact, often called a software “trap” instruction
* Other sources of Synchronous Exceptions:

- Divide by zero, Illegal instruction, Bus error (bad
address, e.g. unaligned access)

- Segmentation Fault (address out of range)
- Page Fault (for illusion of infinite-sized memory)
* Interrupts are Asynchronous Exceptions
- Examples: timer, disk ready, network, etc....
- Interrupts can be disabled, traps cannot!
+ On system call, exception, or interrupt:
- Hardware enters kernel mode with interrupts disabled
- Saves PC, then jumps to appropriate handler in kernel

- For some processors (x86), processor also saves
registers, changes stack, etc.

* Actual handler TKpically saves registers, other CPU
s FigTe. and switehes to kernel.stack,

Additions to MIPS ISA to support Exceptions?

- Exception state is kept in "Coprocessor 0"

- Use mfcO read contents of these registers:

» BadVAddr #regis'rer' 8): contains memory address at which
memory reference error occurred

» Status (register 12): interrupt mask and enable bits
» Cause (register 13): the cause of the exception
» EPC (register 14): address of the affected instruction

15 8 543210

Status Mask klek|e|k|e
old prev cur

- Status Register fields:
- Mask: Interrupt enable
» 1 bit for each of 5 hardware and 3 software interrupts
- k = kernel/user: O=kernel mode
- e = interrupt enable: O=interrupts disabled
- Exception=6 LSB shifted left 2 bits, setting 2 LSB to O:
» run in kernel mode with interrupts disabled
10/13/10 Kubiatowicz 5162 ©UCB Fall 2009 Lec 13.14

Closing thought: Protection without Hardware

* Does protection require hardware support for
translation and dual-mode behavior?
- No: Normally use hardware, but any'rhingf you can do in
hardware can also do in software (possibly expensive)
* Protection via Strong Typing
- Restrict rogmmming language so that you can't express
program that would trash another program
- Loader needs to make sure that program produced by
valid compiler or all bets are off
- Example languages: LISP, Ada, Modula-3 and Java
* Protection via software fault isolation:
- Language independent approach: have compiler generate
object code that provably can't step out of bounds
» Compiler puts in checks for every “dangerous” operation
(loads, stores, efc). Again, need special loader.
» Alternative, compiler generates “proof” that code cannot
do certain things (Proof Carrying Code)
- Or: use virtual machine to guar‘an'ree safe behavior

(loads and stores recompiled on flg to check bounds)
10/13/10 Kubiatowicz €5162 ©UCB Fall 2009 Lec'13.15

Administrivia

10/13/10 Kubiatowicz €5162 ©UCB Fall 2009 Lec 13.16

Caching Concept

Why Bother with Caching?

Processor-DRAM Memory Gap (latency)

T gﬂ 1000, T T i ~ WProc
(OR—7 Neome) Moore's Law 60%/yr.
* Cache: a repository for copies that can be accessed Y (really Joy's Law) (2X/1.5yr)
more qulckly fhan he orlglnal)) g 100 .. Processar-Memory
- Mr:lke fr'equer'rt case fast and mfrequgnt case less dominant E Performance Gap:
* Caching underlies many of the techniques that are used o (grows 50% / year)
today to make computers fast “ 10 S A
. . L ‘Less’ Law?" ~— DRAM
- Can cache: memory locations, address translations, pages, o ' T
file blocks, file names, network routes, etc... a e Q% /yr.
- Only good if: 1 e e e, (8X/10
- Frequent case frequent enough and DV XV VOVLVRVANNNNNNAANRS YrS)
. [3 e e Y ¢, e N e e e N e W e, We We e We We We We We We Vo)
- Infrequent case not too expensive R iR R R R R R R R R R R R R R R
* Important measure: Average Access time = Time
(Hit Rate x Hit Time) + (Miss Rate x Miss Time) m
10/13/10 Kubiatowicz 5162 ©UCB Fall 2009 Lec 13.17 10/13/10 Kubiatowicz 5162 ©UCB Fall 2009 Lec 13.18
Another Major Reason to Deal with Caching Why Does Caching Help? Locality!
Virtual
Address: Offset Probability
of reference
page #0 | V,R !
BaseO [LimitQ#7"] | Page Z; VR _» Offset
Basel | Lifft1 [V page R, : S—
== BaseZ] Limi page #3 |V,R,W Physical Address 0 2n-1
Base3 | Limit: page #4 | N Address Space
pased|Limitd page #5 [V.R,W| eck Per - Temporal Locality (Locality in Time):
Base6 | Limit6 [N A Ac CLSS - Keep recently accessed data items closer to processor
imi ccess
Sase/[Limit7 [V ~— Error Error * Spatial Locality (Locality in Space):

+ Cannot afford to translate on every access
- At least three DRAM accesses per actual DRAM access
- Or: perhaps I/0 if page table partially on disk!
+ Even worse: What if we are using caching to make
memory access faster than DRAM access???
+ Solution? Cache translations!

- Translation Cache: TLB ("Translation Lookaside Buffer”
10/13/10 Kubiatowicz €S5162 ©UCB Fall 2009 Lec 13.19

- Move contiguous blocks to the upper levels

Lower Level
To Processor | Upper Level Memory
Memory
Blk X
From Processor BIKY
10/13/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 13.20

Memory Hierarchy of a Modern Computer System

* Take advantage of the principle of locality to:
- Present as much memory as in the cheapest technology

- Provide access at speed offered by the fastest technology

Processor
Control .
Secondary ekl
/ Storage SHENE
Second Main 7o (Tape)
2 09 Level Memory (Disk)
Datapath & § 9 Cache (DRAM)
= D = (SRAM)
(-11) ©
Speed (ns): 1s 10s-100s 100s 10,000,000s 10,000,000,000s
(10s ms) (10s sec)
Size (bytes): 100s Ks-Ms Ms Gs Ts
10/13/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 13.21

A Summary on Sources of Cache Misses

« Compulsory (cold start or process migration, first
reference): first access to a block

- "Cold” fact of life: not a whole lot you can do about it

- Note: If you are going to run "billions” of instruction,
Compulsory Misses are insignificant

* Capacity:
- Cache cannot contain all blocks access by the program
- Solution: increase cache size

+ Conflict (collision):

- Multiple memory locations mapped
to the same cache location

- Solution 1: increase cache size
- Solution 2: increase associativity

* Coherence (Invalidation): other process (e.g., I/0)

uPdaTes memory
10/13/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 13.22

How is a Block found in a Cache?

Block Address Block
Tag [Index offset
v
Set Select
Data Select

*+ Index Used to Lookup Candidates in Cache
- Index identifies the set
* Tag used to identify actual copy
- If no candidates match, then declare cache miss
* Block is minimum quantum of caching
- Data select field used to select data within block
- Many caching applications don't have data select field

10/13/10 Kubiatowicz €S5162 ©UCB Fall 2009 Lec 13.23

Review: Direct Mapped Cache

+ Direct Mapped 2N byte cache:
- The uppermost (32 - N) bits are always the Cache Tag
- The lowest M bits are the Byte Select (Block Size = 2M)
. Examc‘)le: 1 KB Direct Mapped Cache with 32 B Blocks
- Index chooses potential block
- Tag checked to verify block
- Byte select chooses byte within block

31 9 4 0
| Cache Tag | Cache Index | Byte Select |
Ex: 0x50 Ex: 0x01 Ex: 0x00
VaIiiBit Cache Tag Cache Data J
8 R PPN ... [Byte31)...0 1.Byte 1. 1.BytdQ.1.0
|| 0X50 Byte 63| - * |Byte 33| Byte 32| 1
_. ... T T ST T e)
|| 3
[] Byte 1023 -+ Byte 99231
10/13/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 13.24

Review: Set Associative Cache

* N-way set associative: N entries per Cache Index
- N direct mapped caches operates in parallel

- Example: Two-way set associative cache
- Cache Index selects a "set” from the cache
- Two tags in the set are compared to input in parallel
- Data is selected based on the tag result

31 8 4 0
| Cache Tag | cachelndex | Byte Select |
—
Valid Cache Tag Cache Data Cache Data Cache Tag Valid
Cache Block 0 Cache Block 0

—><Compar§ D_Esm Mux O Sel0 ompare

10/13/10 : 3 Lec 13.25
Hit l Cache Block ec

Review: Fully Associative Cache

* Fully Associative: Every block can hold any line

- Address does not include a cache index

- Compare Cache Tags of all Cache Entries in Parallel
+ Example: Block Size=32B blocks

- We need N 27-bit comparators

- Still have byte select to choose from within block

31 4 0
| Cache Tag (27 bits long) | Byte Select |
Ex: 0x01
Cache Tag Valid Bit ~ Cache Data l
———()—] Byte 31| - - |Bytel | Byte 0
® Byte 63| - |Byte 33 Byte 32
.@.
.@.
10/13/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 13.26

Where does a Block Get Placed in a Cache?
* Example: Block 12 placed in 8 block cache

32-Block Address Space:

Block 1111111111222222222233
no. 01234567890123456789012345678901

Direct mapped: Set associative: Fully associative:
block 12 can go block 12 can go block 12 can go
only into block 4 anywhere in set 0 anywhere
(12 mod 8) (12 mod 4)
Block 01234567 Block 01234567 Block 01234567
no. no. no.
Set Set Set Set
01 2 3

10/13/10 Kubiatowicz €S5162 ©UCB Fall 2009 Lec 13.27

Review: Which block should be replaced on a miss?

* Easy for Direct Mapped: Only one possibility
+ Set Associative or Fully Associative:

- Random
- LRU (Least Recently Used)

2-way 4-way 8-way
Size LRU Random LRU Random LRU Random
16 KB 5.2% 5.7% 4.7% 5.3% 4.4% 5.0%
64KB 19% 20% 15% 1.7% 1.4% 1.5%
256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%

10/13/10 Kubiatowicz €S5162 ©UCB Fall 2009 Lec 13.28

Review: What happens on a write?

© Write through: The information is written to both the
block in the cache and to the block in the lower-level
memory
* Write back: The information is written only to the
block in the cache.
- Modified cache block is written to main memory only
when it is replaced
- Question is block clean or dirty?
* Pros and Cons of each?
- WT:
» PRO: read misses cannot result in writes
» CON: Processor held up on writes unless writes buffered
- WB:
» PRO: repeated writes not sent to DRAM
processor not held up on writes

» CON: More complex
Read miss may require writeback of dirty data

10/13/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 13.29

Caching Applied to Address Translation
O

TLB Physi
ysical
Cached? Address .
—> Yes > — | Physical
No 0 Memory
1 o
(g

Translate
(MMU)

Data Read or Write
(untranslated)
* Question is one of page locality: does it exist?

- Instruction accesses spend a lot of time on the same
page (since accesses sequential)

- Stack accesses have definite locality of reference
- Data accesses have less page locality, but still some...
+ Can we have a TLB hierarchy?

- Sure: multiple levels at different sizes/speeds
10/13/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 13.30

What Actually Happens on a TLB Miss?

* Hardware traversed page tables:

- On TLB miss, hardware in MMU looks at current page
table to fill TLB (may walk multiple levels)
» If PTE valid, hardware fills TLB and processor never knows

» If PTE marked as invalid, causes Page Fault, after which
kernel decides what to do afterwards

+ Software traversed Page tables (like MIPS)
- On TLB miss, processor receives TLB fault
- Kernel traverses page table to find PTE
» If PTE valid, fills TLB and returns from fault
» If PTE marked as invalid, internally calls Page Fault handler
* Most chip sets provide hardware traversal

- Modern operating systems tend to have more TLB faults
since they use translation for many things
- Examples:
» shared segments
» user-level portions of an operating system

10/13/10 Kubiatowicz €S5162 ©UCB Fall 2009 Lec 13.31

What happens on a Context Switch?

* Need to do something, since TLBs map virtual
addresses to physical addresses

- Address Space just changed, so TLB entries no
longer valid!

+ Options?
- Invalidate TLB: simple but might be expensive
» What if switching frequently between processes?
- Include ProcessID in TLB
» This is an architectural solution: needs hardware
* What if translation tables change?

- For example, to move page from memory to disk or
vice versa...

- Must invalidate TLB entry!
» Otherwise, might think that page is still in memory!

10/13/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 13.32

What TLB organization makes sense?

TLB |—| Cache » Memory

* Needs to be really fast
- Critical path of memory access
» In simplest view: before the cache
» Thus, this adds to access time (reducing cache speed)
- Seems to argue for Direct Mapped or Low Associativity
 However, needs to have very few conflicts!
- With TLB, the Miss Time extremely high!
- This arqgues that cost of Conflict (Miss Time) is much
higher than slightly increased cost of access (Hit Time)
* Thrashing: continuous conflicts between accesses
- What if use low order bits of page as index into TLB?
» First page of code, data, stack may map to same entry
» Need 3-way associativity at least?
- What if use high order bits as index?

» TLB mostly unused for small programs
10/13/10 Kubiatowicz €S5162 ©UCB Fall 2009 Lec 13.33

TLB organization: include protection

* How big does TLB actually have to be?
- Usually small: 128-512 entries
- Not very big, can support higher associativity
* TLB usually organized as fully-associative cache
- Lookup is by Virtual Address
- Returns Physical Address + other info
* What happens when fully-associative is too slow?
- Put a small (4-16 entry) direct-mapped cache in front
- Called a "TLB Slice”
* Example for MIPS R3000:

Virtual Address | Physical Address | Dirty | Ref | Valid |AccessASID
OxFA00 0x0003 Y N Y R/W 34
0x0040 0x0010 N Y Y R 0
0x0041 0x0011 N Y Y R 0
10/13/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 13.34

Example: R3000 pipeline includes TLB “stages”

MIPS R3000 Pipeline
Inst Fetch	Dcd/ Reg IALU	EA	Memory I Write Reg		
TLB	I-Cache	RF	Operation		WB
EA.	TLB	D-Cache			

TLB
64 entry, on-chip, fully associative, software TLB fault handler

Virtual Address Space

|ASID || | | | V. Page Number | Offset |

A_rl 20 12

Oxx User segment (caching based on PT/TLB entry)
100 Kernel physical space, cached

101 Kernel physical space, uncached

11x Kernel virtual space

Allows context switching among
64 user processes without TLB flush
10/13/10 Kubiatowicz 5162 ©UCB Fall 2009 Lec 13.35

Reducing translation time further

* As described, TLB lookup is in serial with cache lookup:
Virtual Address

[Vpageno. | offset |
|

TLB Lookup

AcCcess
V Rights | _PA

[Ppageno. | offset |

Physical Address

* Machines with TLBs go one step further: they overlap
TLB lookup with cache access.

- Works because offset available early
10/13/10 Kubiatowicz 5162 ©UCB Fall 2009 Lec 13.36

Overlapping TLB & Cache Access
+ Here is how this might work with a 4K cache:

[inssl?c }
ookup index

32 TLB <—‘ ’—' 4K Cache 1K
J 20 2 j

10 ——4 bytes—
|page # | disp [od

Hit/
Miss

FN ©, FN Data | Hit/
1 Miss

* What if cache size is increased to 8KB?

- Overlap not complete

- Need to do something else. See €S5152/252
* Another option: Virtual Caches

- Tags in cache are virtual addresses

- Translation only happens on cache misses
10/13/10 Kubiatowicz 5162 ©UCB Fall 2009 Lec 13.37

Summary #1/2

* The Principle of Locality:
- Program likely to access a relatively small portion of the
address space at any instant of time.
» Temporal Locality: Locality in Time
» Spatial Locality: Locality in Space
* Three (+1) Major Categories of Cache Misses:

- Compulsory Misses: sad facts of life. Example: cold start
misses.

- Conflict Misses: increase cache size and/or associativity
- Capacity Misses: increase cache size

- Coherence Misses: Caused by external processors or I/0
devices

* Cache Organizations:
- Direct Mapped: single block per set
- Set associative: more than one block per set
- Fully associative: all entries equivalent

10/13/10 Kubiatowicz €S162 ©UCB Fall 2009 Lec 13.38

Summary #2/2: Translation Caching (TLB)

+ PTE: Page Table Entries
- Includes physical page number
- Control info (valid bit, writeable, dirty, user, etc)

« A cache of translations called a “"Translation Lookaside
Buffer” (TLB)

- Relatively small number of entries (< 512)
- Fully Associative (Since conflict misses expensive)
- TLB entries contain PTE and optional process ID
* On TLB miss, page table must be traversed
- If located PTE is invalid, cause Page Fault
* On context switch/change in page table
- TLB entries must be invalidated somehow
* TLB is logically in front of cache

- Thus, needs to be overlapped with cache access to be
eally fast

10/13'; Kubiatowicz €S5162 ©UCB Fall 2009 Lec 13.39

CS162
Operating Systems and
Systems Programming
Lecture 14

Caching and
Demand Paging

October 20, 2010
Prof. John Kubiatowicz
http://inst.eecs.berkeley.edu/~cs162

Review: Memory Hierarchy of a Modern Computer System

* Take advantage of the principle of locality to:
- Present as much memory as in the cheapest technology
- Provide access at speed offered by the fastest technology

Processor
Control .
Secondary U7
Storage Sl
Second Main 1L (Tape)
2 09 Level Memory (Disk)
Datapath & § o Cache (DRAM)
g |32 (SRAM)
= o°
w
Speed (ns): 1s 10s-100s 100s 10,000,000s 10,000,000,000s
(10s ms) (10s sec)
Size (bytes): 100s Ks-Ms Ms Gs Ts
10/20/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 14.2

Review: A Summary on Sources of Cache Misses

+ Compulsory (cold start): first reference to a block
- "Cold” fact of life: not a whole lot you can do about it
- Note: When running “billions” of instruction, Compulsory
Misses are insignificant
+ Capacity:
- Cache cannot contain all blocks access by the program
- Solution: increase cache size
+ Conflict (collision):
- Multiple memory locations mapped to same cache location
- Solutions: increase cache size, or increase associativity

- Two others:
- Coherence (Invalidation): other process (e.g., I70)
updates memory
- Policy: Due to non-optimal replacement policy

10/20/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 14.3

Review: Set Associative Cache

* N-way set associative: N entries per Cache Index
- N direct mapped caches operates in parallel

- Example: Two-way set associative cache
- Cache Index selects a "set” from the cache
- Two tags in the set are compared to input in parallel
- Data is selected based on the tag result

31 8 4 0
| Cache Tag | CacheIndex | Byte Select |
—]
Valid Cache Tag Cache Data Cache Data Cache Tag Valid
Cache Block 0 Cache Block 0

10/20/10 - 3 Lec 14.4
Hit l | Cache Block ec

Review: Where does a Block Get Placed in a Cache?

+ Example: Block 12 placed in 8 block cache

32-Block Address Space:

Block 1111111111222222222233
no. 01234567890123456789012345678901

Direct mapped: Set associative: Fully associative:

block 12 can go block 12 can go block 12 can go

only into block 4 anywhere in set 0 anywhere

(12 mod 8) (12 mod 4)

Block 01234567 Block 01234567 Block 01234567
no. no. no.
Set Set Set Set
01 2 3
10/20/10 Kubiatowicz €S5162 ©UCB Fall 2010 Lec 14.5

Goals for Today

+ Finish discussion of Caching/TLBs
+ Concept of Paging to Disk

* Page Faults and TLB Faults

* Precise Interrupts

- Page Replacement Policies

Note: Some slides and/or pictures in the following are

adapted from slides ©2005 Silberschatz, Galvin, and Gagne.

Many slides generated from my lecture notes by Kubiatowicz.
10/20/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 14.6

Which block should be replaced on a miss?

* Easy for Direct Mapped: Only one possibility
+ Set Associative or Fully Associative:

- Random

- LRU (Least Recently Used)

2-way 4-way 8-way
Size LRU Random LRU Random LRU Random
16 KB 5.2% 5.7% 4.7% 5.3% 4.4% 5.0%
64KB 19% 20% 15% 1.7% 1.4% 1.5%
256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%

10/20/10 Kubiatowicz €S5162 ©UCB Fall 2010 Lec 14.7

What happens on a write?

* Write through: The information is written to both the
block in the cache and to the block in the lower-level
memory

* Write back: The information is written only to the
block in the cache.

- Modified cache block is written to main memory only
when it is replaced
- Question is block clean or dirty?
* Pros and Cons of each?

- WT:

» PRO: read misses cannot result in writes

» CON: Processor held up on writes unless writes buffered
- WB:

» PRO: repeated writes not sent to DRAM

processor not held up on writes

» CON: More complex
Read miss may require writeback of dirty data

10/20/10 Kubiatowicz €S5162 ©UCB Fall 2010 Lec 14.8

Caching Applied to Address Translation
O

TLB Physi
ysical
Cached? Address .
—> Yes > — | Physical
No A Memory
1 A
(L

Translate
(MMU)

Data Read or Write
(untranslated)
* Question is one of page locality: does it exist?

- Instruction accesses spend a lot of time on the same
page (since accesses sequential)

- Stack accesses have definite locality of reference
- Data accesses have less page locality, but still some...
+ Can we have a TLB hierarchy?

- Sure: multiple levels at different sizes/speeds
10/20/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 14.9

What Actually Happens on a TLB Miss?

* Hardware traversed page tables:

- On TLB miss, hardware in MMU looks at current page
table to fill TLB (may walk multiple levels)

» If PTE valid, hardware fills TLB and processor never knows

» If PTE marked as invalid, causes Page Fault, after which
kernel decides what to do afterwards

+ Software traversed Page tables (like MIPS)
- On TLB miss, processor receives TLB fault
- Kernel traverses page table to find PTE
» If PTE valid, fills TLB and returns from fault
» If PTE marked as invalid, internally calls Page Fault handler
* Most chip sets provide hardware traversal

- Modern operating systems tend to have more TLB faults
since they use translation for many things
- Examples:
» shared segments
» user-level portions of an operating system

10/20/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 14.10

What happens on a Context Switch?

* Need to do something, since TLBs map virtual
addresses to physical addresses

- Address Space just changed, so TLB entries no
longer valid!

+ Options?
- Invalidate TLB: simple but might be expensive
» What if switching frequently between processes?
- Include ProcessID in TLB
» This is an architectural solution: needs hardware
* What if translation tables change?

- For example, to move page from memory to disk or
vice versa...

- Must invalidate TLB entry!
» Otherwise, might think that page is still in memory!

10/20/10 Kubiatowicz €S5162 ©UCB Fall 2010 Lec 14.11

Administrative

10/20/10 Kubiatowicz CS5162 ©UCB Fall 2010 Lec 14.12

What TLB organization makes sense?

TLB |—| Cache »| Memory

* Needs to be really fast
- Critical path of memory access
» In simplest view: before the cache
» Thus, this adds to access time (reducing cache speed)
- Seems to argue for Direct Mapped or Low Associativity
 However, needs to have very few conflicts!
- With TLB, the Miss Time extremely high!
- This arqgues that cost of Conflict (Miss Time) is much
higher than slightly increased cost of access (Hit Time)
* Thrashing: continuous conflicts between accesses
- What if use low order bits of page as index into TLB?
» First page of code, data, stack may map to same entry
» Need 3-way associativity at least?

- What if use high order bits as index?

» TLB mostly unused for small programs
10/20/10 Kubiatowicz €S5162 ©UCB Fall 2010 Lec 14.13

TLB organization: include protection

* How big does TLB actually have to be?
- Usually small: 128-512 entries
- Not very big, can support higher associativity
* TLB usually organized as fully-associative cache
- Lookup is by Virtual Address
- Returns Physical Address + other info
+ Example for MIPS R3000:

Virtual Address | Physical Address | Dirty | Ref |Valid [Access|AS

OxFAOQO0 0x0003 Y N Y R/W | 34
0x0040 0x0010 N Y Y R 0
0x0041 0x0011 N Y Y R 0

* What happens when fully-associative is too slow?

- Put a small (4-16 entry) direct-mapped cache in front
- Called a "TLB Slice”

* When does TLB lookup occur?
- Before cache lookup?

- In parallel with cache lookup?
10/20/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 14.14

Example: R3000 pipeline includes TLB “"stages”

MIPS R3000 Pipeline
Inst Fetch	Dcd/ Reg IALU	EA	Memory I Write Reg		
TLB	I-Cache	RF	Operation		WB
EA.	TLB	D-Cache			

TLB
64 entry, on-chip, fully associative, software TLB fault handler

Virtual Address Space

|ASID || | | | V. Page Number | Offset |

A_rl 20 12

Oxx User segment (caching based on PT/TLB entry) g A

100 Kernel physical space, cached Comb"‘at'on
101 Kernel physical space, uncached segments and
11x Kernel virtual space Paging'

Allows context switching among

64 user processes without TLB flush
10/20/10 Kubiatowicz €S5162 ©UCB Fall 2010 Lec 14.15

Reducing translation time further

* As described, TLB lookup is in serial with cache lookup:
Virtual Address

| | offset |
|

TLB Lookup

AcCcess
V ! Rights

[| offset |

Physical Address

* Machines with TLBs go one step further: they overlap
TLB lookup with cache access.

- Works because offset available early

10/20/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 14.16

Overlapping TLB & Cache Access
+ Here is how this might work with a 4K cache:

[inssl?c }
ookup index 1K

32 TLB ‘—‘ ’—' 4K Cache
J 20 2

10 ——4 bytes—
|page # | disp [od

Hit/
Miss

FN ©) FN Data Hit/
1 Miss
* What if cache size is increased to 8KB?
- Overlap not complete
- Need to do something else. See €S152/252
* Another option: Virtual Caches
- Tags in cache are virtual addresses

- Translation only happens on cache misses
10/20/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 14.17

Demand Paging

* Modern programs require a lot of physical memory
- Memory per system growing faster than 25%-30%/year
* But they don't use all their memory all of the time

- 90-10 rule: programs spend 90% of their time in 10%
of their code

- Wasteful to require all of user's code to be in memory
+ Solution: use main memory as cache for disk

Processor

Control 2 ?aclimgl Tertiary
Second| | MainY | Becondary | Storage

0% Level [[Memory| | Storage (Tape)
Datapath § o Cache | [(DRAM)| | (Disk)
= SRAM
10/20/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 14.18

........... Illusion of Infinite Memory

e A [N
e
able .

............ Physical Disk
Virtual Meymlorf1 50068
Memory 512 M
4 GB

- Disk is larger than physical memory =
- In-use virtual memory can be bigger than physical memory
- Combined memory of running processes much larger than
physical memory
» More programs fit into memory, allowing more concurrency
+ Principle: Tr-ansgar-em‘ Level of Indirection (page table)
- Supports flexible placement of physical data
» Data could be on disk or somewhere across network
- Variable location of data transparent to user program
» Performance issue, not correctness issue

10/20/10 Kubiatowicz €S5162 ©UCB Fall 2010 Lec 14.19

Demand Paging is Caching

+ Since Demand Paging is Caching, must ask:

- What is block size?
» 1 page

- What is organization of this cache (i.e. direct-mapped,

set-associative, fully-associative)?

» Fully associative: arbitrary virtual->physical mapping

- How do we find a page in the cache when look for it?
» First check TLB, then page-table traversal

- What is page replacement policy? (i.e. LRU, Random...)
» This requires more explanation... (kinda LRU)

- What happens on a miss?
» Go to lower level to fill miss (i.e. disk)

- What happens on a write? (write-through, write back)
» Definitely write-back. Need dirty bit!

10/20/10 Kubiatowicz €S5162 ©UCB Fall 2010 Lec 14.20

Review: What is in a PTE?

* What is in a Page Table Entry (or PTE)?

- Pointer to next-level page table or to actual page

- Permission bits: valid, read-only, read-write, write-only

+ Example: Intel x86 architecture PTE:

- Address same format previous slide (10, 10, 12-bit offset)
- Intermediate page tables called "Directories”

Page Frame Number Free B
(Phygsical Page Number) (0Ss) OjL[bfA §U WP
31-12 11-9 876543210
P: Present (same as “valid” bit in other architectures)
W: Writeable

U: User accessible
PWT: Page write transparent: external cache write-through
PCD: Page cache disabled (page cannot be cached)

A: Accessed: page has been accessed recently

D: Dirty (PTE only): page has been modified recently

L: L=1=4MB page (directory only).

Bottom 22 bits of virtual address serve as offset
10/20/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 14.21

Demand Paging Mechanisms

* PTE helps us implement demand paging
- Valid = Page in memory, PTE points at physical page
- Not Valid = Page not in memory: use info in PTE to find
it on disk when necessary
* Suppose user references page with invalid PTE?
- Memory Management Unit (MMU) traps to OS
» Resulting trap is a "Page Fault” : .
- What does OS do on a Page Fault?: |
» Choose an old page to replace
» If old page modified ("D=1"), write contents back to disk
» Change its PTE and any cached TLB to be invalid
» Load new page into memory from disk
» Update page table entry, invalidate TLB for new entry
» Continue thread from original faulting location
- TLB for new page will be loaded when thread continued!
- While pulling pages off disk for one process, OS runs
another process from ready queue
» Suspended process sits on wait queue
10/20/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 14.22

Software-Loaded TLB

* MIPS/Nachos TLB is loaded by software
- High TLB hit rate=ok to trap to software to fill the
TLB, even if slower
- Simpler hardware and added flexibility: software can
maintain translation tables in whatever convenient format
* How can a process run without access to page table?
- Fast path (TLB hit with valid=1):
» Translation to physical page done by hardware
- Slow path (TLB hit with valid=0 or TLB miss)
» Hardware receives a "TLB Fault”
- What does OS do on a TLB Fault?
» Traverse page table to find appropriate PTE
» If valid=1, load page table entry into TLB, continue thread
» If valid=0, perform “"Page Fault” detailed previously
» Continue thread
- Everything is transparent to the user process:
- It doesn't know about paging to/from disk

- It doesn't even know about software TLB handling
10/20/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 14.23

Transparent Exceptions

2 2 o S
- = = =
User B} 34;, 34‘,—, 34;.
o= 85 55 o5
w w w w

|

TLB Faults
Fetch page/
os B

* How to transparently restart faulting instructions?
- Could we just skip it?
» No: need to perform load or store after reconnecting
physical page
* Hardware must help out by saving:
- Faulting instruction and partial state
» Need to know which instruction caused fault
» Is single PC sufficient to identify faulting position????
- Processor State: sufficient to restart user thread
» Save/restore registers, stack, etc

+ What if an instruction has side-effects?
10/20/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 14.24

Consider weird things that can happen

- What if an insfruction has side effects?
- Options:
» Unwind side-effects (easy to restart)
» Finish off side-effects (messy!)
- Examﬁle 1: mov (sp)+,10
» What if page fault occurs when write to stack pointer?
» Did sp get incremented before or after the page fault?
- Example 2: strcpy (r1), (r2)
» Source and destination overlap: can't unwind in principle!
» IBM S/370 and VAX solution: execute twice - once
read-only
* What about "RISC" processors?
- For instance delayed branches?

» Example: bne somewhere
Id r1,(sp)
» Precise exception state consists of two PCs: PC and nPC
- Delayed exceptions:
» Example: ~ div r1, r2, r3
Id r1, (sp)
» What if takes many cycles to discover divide by zero,

but load has already caused page fault?
10/20/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 14.25

Precise Exceptions

Precise = state of the machine is preserved as if
program executed up to the offending instruction
- All previous instructions completed

- Offending instruction and all following instructions act as
if they have not even started

- Same system code will work on different implementations
- Difficult in the presence of pipelining, out-of-order
execution, ...
- MIPS takes this position
Imprecise = system software has to figure out what is
where and put it all back together

+ Performance goals often lead designers to forsake

precise interrupts

- system software developers, user, markets etc. usually
wish they had not done this

* Modern techniques for out-of-order execution and

branch prediction help implement precise interrupts

10/20/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 14.26

Page Replacement Policies

* Why do we care about Replacement Policy?
- Replacement is an issue with any cache
- Particularly important with pages
» The cost of being wrong is high: must go to disk
» Must keep important pages in memory, not toss them out
* What about MIN?
- Replace page that won't be used for the longest time
- 6reat, but can't really know future...
- Makes good comparison case, however
* What about RANDOM?
- Pick random page for every replacement
- Typical solution for TLB's. Simple hardware
- Pretty unpredictable - makes it hard to make real-time
guarantees
* What about FIFO?
- Throw out oldest page. Be fair - let every page live in
memory for same amount of time.
- Bad, because throws out heavily used pages instead of
infrequently used pages
10/20/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 14.27

Replacement Policies (Con't)

What about LRU?
- Replace page that hasn't been used for the longest time

- Pr‘o?rams have locality, so if something not used for a
while, unlikely to be used in the near future.

- Seems like LRU should be a good approximation to MIN.
How to implement LRU? Use a list!

Head—|Page 6}—|Page 7|—|Page 1|—|Page 2

Tail (LRV)
- On each use, remove page from list and place at head
- LRU page is at tail
Problems with this scheme for paging?

- Need to know immediately when each page used so that
can change position in list...

- Many instructions for each hardware access
In practice, people approximate LRU (more later)

10/20/10 Kubiatowicz €S5162 ©UCB Fall 2010 Lec 14.28

Summary

*+ TLB is cache on translations
- Fully associative to reduce conflicts
- Can be overlapped with cache access
+ Demand Paging:
- Treat memory as cache on disk
- Cache miss = get page from disk
* Transparent Level of Indirection
- User program is unaware of activities of OS behind scenes
- Data can be moved without affecting application correctness
- Software-loaded TLB
- Fast Path: handled in hardware (TLB hit with valid=1)
- Slow Path: Trap to software to scan page table
* Precise Exception specifies a single instruction for which:
- All previous instructions have completed (committed state)
- No following instructions nor actual instruction have started
* Replacement policies
- FIFO: Place pages on queue, replace page at end
- MIN: replace page that will be used farthest in future
- LRU: Replace page that hasn't be used for the longest time

10/20/10 Kubiatowicz €5162 ©UCB Fall 2010 Lec 14.29

CS162
Operating Systems and
Systems Programming
Lecture 15

Page Allocation and
Replacement

October 25, 2010
Prof. John Kubiatowicz
http://inst.eecs.berkeley.edu/~cs162

Review: Demand Paging Mechanisms

* PTE helps us implement demand paging
- Valid = Page in memory, PTE points at physical page
- Not Valid = Page not in memory: use info in PTE to find
it on disk when necessary
* Suppose user references page with invalid PTE?
- Memory Management Unit (MMU) traps to OS
» Resulting trap is a "Page Fault” . ‘
- What does OS do on a Page Fault?: |
» Choose an old page to replace
» If old page modified ("D=1"), write contents back to disk
» Change its PTE and any cached TLB to be invalid
» Load new page into memory from disk
» Update page table entry, invalidate TLB for new entry
» Continue thread from original faulting location
- TLB for new page will be loaded when thread continued!
- While pulling pages off disk for one process, OS runs
another process from ready queue
» Suspended process sits on wait queue
10/25/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 15.2

Goals for Today

* Precise Exceptions
- Page Replacement Policies
- Clock Algorithm
- Nth chance algorithm
- Second-Chance-List Algorithm
* Page Allocation Policies
* Working Set/Thrashing

Note: Some slides and/or pictures in the following are

adapted from slides ©2005 Silberschatz, Galvin, and Gagne.

Many slides generated from my lecture notes by Kubiatowicz.
10/25/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 15.3

Software-Loaded TLB

* MIPS/Nachos TLB is loaded by software

- Hi% TLB hit rate=ok to trap to software to fill the
TLB, even if slower

- Simpler hardware and added flexibility: software can
maintain translation tables in whatever convenient format
* How can a process run without hardware TLB fill?
- Fast path (TLB hit with valid=1):
» Translation to physical page done by hardware
- Slow path (TLB hit with valid=0 or TLB miss)
» Hardware receives a TLB Fault
- What does OS do on a TLB Fault?
» Traverse page table to find appropriate PTE
» If valid=1, load page table entry into TLB, continue thread
» If valid=0, perform “"Page Fault” detailed previously
» Continue thread
+ Everything is transparent to the user process:
- It doesn't know about paging to/from disk

- It doesn't even know about software TLB handling
10/25/10 Kubiatowicz €S5162 ©UCB Fall 2010 Lec 15.4

Transparent Exceptions

D e Sy Sy
+ + e + e
User =37 % 5 %
55 s s S.s
w wH wH wH
TLB Faults
0os

* How to transparently restart faulting instructions?
- Could we just skip it?
» No: need to perform load or store after reconnecting
physical page
* Hardware must help out by saving:
- Faulting instruction and partial state
» Need to know which instruction caused fault
» Is single PC sufficient to identify faulting position????
- Processor State: sufficient to restart user thread
» Save/restore registers, stack, etc

« What if an instruction has side-effects?
10/25/10 Kubiatowicz €5162 ©UCB Fall 2010 Lec 15.5

Consider weird things that can happen

- What it an instruction has side effecis?

- Options:
» Unwind side-effects (easy to restart)
» Finish off side-effects (messy!)
- Examﬂle 1: mov (sp)+,10
» What if page fault occurs when write to stack pointer?
» Did sp get incremented before or after the page fault?
- Example 2: strcpy (r1), (r2)
» Source and destination overlap: can't unwind in principle!
» IBM S/370 and VAX solution: execute twice - once
read-only
* What about "RISC" processors?
- For instance delayed branches?
» Example: bne somewhere
Id r1,(sp)
» Precise exception state consists of two PCs: PC and nPC
- Delayed exceptions:
» Example: div r1, r2, r3

Id r1, (sp)
» What if takes many cycles to discover divide by zero,
but load has already caused page fault?
10/25/10 Kubiatowicz €S5162 ©UCB Fall 2010 Lec 15.6

Precise Exceptions

* Precise = state of the machine is preserved as if
program executed up to the offending instruction
- All previous instructions completed
- Offending instruction and all following instructions act as
if they have not even started
- Same system code will work on different implementations
- Difficult in the presence of pipelining, out-of-order
execution, ...
- MIPS takes this position
 Imprecise = system software has to figure out what is
where and put it all back together
+ Performance goals often lead designers to forsake
precise interrupts
- system software developers, user, markets etc. usually
wish they had not done this
* Modern techniques for out-of-order execution and
branch prediction help implement precise interrupts

10/25/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 15.7

Steps in Handling a Page Fault

ré\ page is on
2/ backing store

operating

system
y i

®

refarence trap

Q)
@

load M

b ﬁ‘\

b
restart page table
instruction

free frame

() (@)

L4 N

reset page bring in

table missing page

" physical
memory
10/25/10 Kubiatowicz €S5162 ©UCB Fall 2010 Lec 15.8

Demand Paging Example
- Since Demand Paging like caching, can compute
average access timel ("Effective Access Time")
- EAT = Hit Rate x Hit Time + Miss Rate x Miss Time
+ Example:
- Memory access time = 200 nanoseconds
- Average page-fault service time = 8 milliseconds
- Suppose p = Probability of miss, 1-p = Probably of hit
- Then, we can compute EAT as follows:
EAT =(1-p)x200ns + p x 8 ms
(1 - p) x 200ns + p x 8,000,000ns
= 200ns + p x 7,999,800ns
- If one access out of 1,000 causes a page fault, then
EAT = 8.2 ps:
- This is a slowdown by a factor of 40!
* What if want slowdown by less than 10%?
- 200ns x 1.1 < EAT = p < 2.5 x 106
- This is about 1 page fault in 400000!

10/25/10 KubiaTowicz €S162 ©UCB Fall 2010 Lec 15.9

What Factors Lead to Misses?

+ Compulsory Misses:
- Pages that have never been paged into memory before
- How might we remove these misses?
» Prefetching: loading them into memory before needed
» Need to predict future somehow! More later.
* Capacity Misses:
- Not enough memory. Must somehow increase size.
- Can we do this?
» One option: Increase amount of DRAM (not quick fix!)

» Another option: If multiple processes in memory: adjust
percentage of memory allocated to each onel!

+ Conflict Misses:

- Technically, sonflict misses dq'n"r exist in virtual memory,
since it is a "fully-associative” cache

* Policy Misses:
- Caused when pages were in memory, but kicked out
prematurely because of the replacement policy

- How to fix? Better replacement policz
10/25/10 Kubiatowicz 5162 ©UCB Fall 201 Lec 15.10

Page Replacement Policies

* Why do we care about Replacement Policy?
- Replacement is an issue with any cache
- Particularly important with pages
» The cost of being wrong is high: must go to disk
» Must keep important pages in memory, not toss them out
« FIFO (First In, First Out)
- Throw out oldest page. Be fair - let every page live in
memory for same amount of time.
- Bad, because throws out heavily used pages instead of
infrequently used pages
* MIN (Minimum):
- Replace page that won't be used for the longest time
- 6reat, but can't really know future...
- Makes good comparison case, however
* RANDOM:
- Pick random page for every replacement
- Typical solution for TLB's. Simple hardware
- Pretty unpredictable - makes it hard to make real-time
guarantees
10/25/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 15.11

Replacement Policies (Con't)

* LRU (Least Recently Used):
- Replace page that hasn't been used for the longest time

- Programs have locality, so if something not used for a
while, unlikely to be used in the near future.

- Seems like LRU should be a good approximation to MIN.
* How to implement LRU? Use a list!

Head—|Page 6}—|Page 7|—|Page 1|—|Page 2

Tail (LRV)
- On each use, remove page from list and place at head
- LRU page is at tail

* Problems with this scheme for paging?

- Need to know immediately when each page used so that
can change position in list...

- Many instructions for each hardware access
* In practice, people approximate LRU (more later)
10/25/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 15.12

Administrivia

10/25/10 Kubiatowicz €S5162 ©UCB Fall 2010 Lec 15.13

In the News: Android

* Android is the new operating system from Google
- For Mobile devices

»Phones S

» Ebook Readers
(i.e. B&N)

- Linux version 2.6.x

- Java virtual machine and
runtime system

- Lots of media extensions
» WebKit for browsing
» Media Libraries
» Cellular Networking

* Mobile Systems are the hottest new software stack
- Ubiquitous Computing
- Worldwide, more than 1 billion new cell phones
purchased/year for last few years

» Compare: worldwide number PCs purchased/year ~ 250M
10/25/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 15.14

Example: FIFO

* Suppose we have 3 page frames, 4 virtual pages, and
following reference stream:
-ABCABDADBCB

* Consider FIFO Page replacement:

Ref:] A| B|C| A B D/ A D B|C|B
Page:

2 B A
3 B

- FIFO: 7 faults.

- When referencing D, replacing A is bad choice, since
need A again right away

10/25/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 15.15

Example: MIN

* Suppose we have the same reference stream:
-ABCABDADBCB
+ Consider MIN Page replacement:

Ref:] A| B|C|A| B | D/ A|D|B|C|B

B o]

2 B
3 D

- MIN: 5 faults

- Where will D be brought in? Look for page not
referenced farthest in future.

« What will LRU do?

- Same decisions as MIN here, but won't always be true!
10/25/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 15.16

When will LRU perform badly?
+ Consider the following: ABCDABCDABCD
* LRU Performs as follows (same as FIFO here):
Ref:]A|B|C|D|A | B|C|D|A|B|C|D
_Egge:
1 A D c B
2 B A D C

3 c B A D

- Every reference is a page fault!
* MIN Does much better:

Ref:] A | B|C|D|A | B|C|D|A|B|C|D

1 A B

2 B (o

d 3 ¢ o

6raph of Page Faults Versus The Number of Frames

[+
T

=
T
I

L=T i~
T T

number of page faults

1T e
T

1 2 3 4 5 6
number of frames
* One desirable property: When you add memory the
miss rate goes down
- Does this always happen?
- Seems like it should, right?
* No: BelLady's anomaly

- Certain replacement algorithms (FIFO) don't have this
obvious property!
10/25/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 15.18

Adding Memory Doesn't Always Help Fault Rate

+ Does adding memory reduce number of page faults?
- Yes for LRU and MIN
- Not necessarily for FIFO! (Called Belady's anomaly)

Ref:]A|B|(Cc|D|A|B|E|A|B|C|D|E
Page:

1 A D E
2 B A (&
3 (4 B D

Ref:]A|B | C|D|A|[B|E|A|B|C|D|E
 Page:
1 A E D
2 B A E
3 c B
4 D (4
+ After adding memory:

- With FIFO, contents can be completely different

- In contrast, with LRU or MIN, contents of memory with

X pages are a subset of contents with X+1 Page
10/25/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 15.19

Implementing LRU

* Perfect:
- Timestamp page on each reference
- Keep list of pages ordered by time of reference
- Too expensive to implement in reality for many reasons
* Clock Algorithm: Arrange physical pages in circle with
single clock hand
- Approximate LRU (approx to approx to MIN)
- Replace an old page, not the oldest page
+ Details:
- Hardware “use” bit per physical page:
» Hardware sets use bit on each reference
» If use bit isn't set, means not referenced in a long time

» Nachos hardware sets use bit in the TLB; you have to copy
this back to page table when TLB entry gets replaced
- On page fault:
» Advance clock hand (not real time)
» Check use bit: 1-sused recently; clear and leave alone
O—selected candidate for replacement
- Will always find a page or loop forever?

» Even if all use bits set, will eventually loop around=FIFQ
10/25/10 Kubiatowicz €5162 é’UCB Fall 2010y P Lec 15.20

Clock Algorithm: Not Recently Used
~ T~
Advances only on page fault!
e N d ! fault!
A Y Check for pages not used recently
Mark pages as not used recently

/

l Set of all pages \
in Memory]

\

/
~_."7
* What if hand moving slowly?

- 6ood sign or bad sign?
» Not many page faults and/or find page quickly
* What if hand is moving quickly?
- Lots of page faults and/or lots of reference bits set
* One way to view clock algorithm:
- Crude partitioning of pages into two groups: young and old

- Why not partition into more than 2 groups?
10/25/10 Kubiatowicz €S5162 ©UCB Fall 2010 Lec 15.21

\

Nth Chance version of Clock Algorithm

* N™ chance algorithm: Give page N chances
- OS keeps counter per page: # sweeps
- On page fault, OS checks use bit:
» 1=clear use and also clear counter (used in last sweep)
» O=increment counter; if count=N, replace page
- Means that clock hand has to swee,: by N times without
page being used before page is replaced
* How do we pick N?
- Why pick large N? Better approx to LRU
» If N ~ 1K, really good approximation
- Why pick small N? More efficient
» Otherwise might have to look a long way to find free page
* What about dirty pages?
- Takes extra overhead to replace a dirty page, so give
dirty pages an extra chance before replacing?
- Common approach:
» Clean pages, use N=1

» Dirty pages, use N=2 (and write back to disk when N=1)
10/25/10 Kubiatowicz €S5162 ©UCB Fall 2010 Lec 15.22

Clock Algorithms: Details

* Which bits of a PTE entry are useful to us?

- Use: Set when page is referenced. cleared by clock
algorithm

- Modified: set when page is modified, cleared when page
written to disk

- Valid: ok for program to reference this page
- Read-only: ok for program to read page, but not modify
» For example for catching modifications to code pages!
* Do we really need hardware-supported “modified” bit?
- No. Can emulate it (BSD Unix) using read-only bit
» Initially, mark all pages as read-only, even data pages

» On write, trap to OS. OS sets software “modified” bit,
and marks page as read-write.

» Whenever page comes back in from disk, mark read-only

10/25/10 Kubiatowicz €S5162 ©UCB Fall 2010 Lec 15.23

Clock Algorithms Details (continued)

* Do we really need a hardware-supported “use” bit?
- No. Can emulate it similar to above:
» Mark all pages as invalid, even if in memory
» On read to invalid page, trap to OS
» OS sets use bit, and marks page read-only
- Get modified bit in same way as previous:
» On write, trap to OS (either invalid or read-only)
» Set use and modified bits, mark page read-write
- When clock hand passes by, reset use and modified bits
and mark page as invalid again
* Remember, however, that clock is just an
approximation of LRU

- Can we do a better approximation, given that we have
to take page faults on some reads and writes to collect
use information?

- Need to identify an old page, not oldest pagel!

- Answer: second chance list
10/25/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 15.24

Second-Chance List Algorithm (VAX/VMS)

I_,—> LRV victim

Second
Chance List

Directly
Mapped Pages

Marked: Invalid

List: FIFO [% List: LRU
. New* New
Page-in Active sC
From disK Pages Victims

- Split memory in two: Active list (RW), SC list (Invalid)
* Access pages in Active list at full speed
+ Otherwise, Page Fault
- Always move overflow page from end of Active list to
front of Second-chance list (SC) and mark invalid
- Desired Page On SC List: move to front of Active list,
mark R
- Not on SC list: page in to front of Active list, mark RW:;
page out LRU victim at end of SC list

Second-Chance List Algorithm (con't)

* How many pages for second chance list?

- If 0 = FIFO

- If all = LRU, but page fault on every page reference
* Pick intermediate value. Result is:

- Pro: Few disk accesses (page only goes to disk if unused
for a long time)
- Con: Increased overhead trapping to OS (software /
hardware tradeoff)
+ With page translation, we can adapt to any kind of
access the program makes
- Later, we will show how to use page translation /
protection to share memory between threads on widely
separated machines
* Question: why didn't VAX include “use” bit?
- Strecker (architect) asked OS people, they said they
didn't need it, so didn't implement it
- He later got blamed, but VAX did OK anyway

10/25/10 Kubiatowicz €S5162 ©UCB Fall 2010 Lec 15.25 10/25/10 Kubiatowicz €S5162 ©UCB Fall 2010 Lec 15.26
Free List Demand Paging (more details)
- SN
. - T it?
Vs \ Advances as needed to keep Does software-loaded TLB need use bit

/ \fieelisf full ("background”)

' Set of all pages
in Memory |

/

N\ /7
N -

Free Pages
For Processes

+ Keep set of free pages ready for use in demand paging
- Freelist filled in background by Clock algorithm or other
technique ("Pageout demon”)
- Dirty pages start copying back to disk when enter list
* Like VAX second-chance list
- If page needed before reused, just return to active set
* Advantage: Faster for page faui‘*r

- Can always use page (or pages) immediately on fault
10/25/10 Kubiatowicz €S5162 ©UCB Fall 2010 Lec 15.27

Two Options:

- Hardware sets use bit in TLB; when TLB entry is
replaced, software copies use bit back to page table

- Software manages TLB entries as FIFO list; everything
not in TLB is Second-Chance list, managed as strict LRU
*+ Core Map
- Page tables map virtual page — physical page
- Do we need a reverse mapping (i.e. physical page —
virtual page)?
» Yes. Clock algorithm runs through page frames. If sharing,
then multiple virtual-pages per physical page
» Can't push page out to disk without invalidating all PTEs

10/25/10 Kubiatowicz €S5162 ©UCB Fall 2010 Lec 15.28

Summary

. Pr}-‘qc:‘se Exception specifies a single instruction for
which:
- All previous instructions have completed (committed state)
- No fol(ljowing instructions nor actual instruction have
starte

* Replacement policies
- FIFO: Place pages on queue, replace page at end
- MIN: Replace page that will be used farthest in future
- LRU: Replace page used farthest in past
* Clock Algorithm: Approximation to LRU
- Arrange all pages in circular list
- Sweep through them, marking as not “in use”
- If page not “in use” for one pass, than can replace
+ Nth-chance clock algorithm: Another approx LRU
- Give pages multiple passes of clock hand before replacing
+ Second-Chance List algorithm: Yet another approx LRU

- Divide pages into two groups, one of which is truly LRU

and managed on page aults.
10/25/10 Kubiafowicz €S162 ©UCB Fall 2010 Lec 15.29

Ccs162
Operating Systems and
Systems Programming
Lecture 16

Page Allocation and
Replacement (con't)
I/0 Systems

October 27, 2010
Prof. John Kubiatowicz
http://inst.eecs.berkeley.edu/~cs162

Review: Page Replacement Policies

* FIFO (First In, First Out)

- Throw out oldest page. Be fair - let every page live in
memory for same amount of time.
- Bad, because throws out heavily used pages instead of
infrequently used pages
* MIN (Minimum):
- Replace page that won't be used for the longest time
- Great, but can't really know future...
- Makes good comparison case, however
* RANDOM:
- Pick random page for every replacement
- Typical solution for TLB's. Simple hardware
- Pretty unpredictable - makes it hard to make real-time
guarantees
* LRU (Least Recently Used):
- Replace page that hasn't been used for the longest time
- Programs have locality, so if something not used for a
while, unlikely to be used in the near future.
- Seems like LRU should be a good approximation to MIN.
10/27/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 16.2

Review: Clock Algorithm: Not Recently Used
-~
/7 S . Advances only on page fault!
N\ Check for pages not used recently
Mark pages as not used recently

/

l Set of all pages \
in Memory]

\

\ /
7’
N o -
* Clock Algorithm: pages arranged in a ring
- Hardware “use” bit per physical page:
» Hardware sets use bit on each reference
» If use bit isn't set, means not referenced in a long time
» Nachos hardware sets use bit in the TLB; you have to copy
this back to page table when TLB entry gets replaced
- On page fault:
» Advance clock hand (not real time)
» Check use bit: 1—>used recently: clear and leave alone

O->selected, candidate,far Lrplggement Lec 16.3

10/27/10

Review: Nt Chance version of Clock Algorithm

+ N™ chance algorithm: Give page N chances
- OS keeps counter per page: # sweeps
- On page fault, OS checks use bit:
» 1=clear use and also clear counter (used in last sweep)
» O=increment counter; if count=N, replace page
- Means that clock hand has to sweer by N times without
page being used before page is replaced
* How do we pick N?
- Why pick large N? Better approx to LRU
» If N ~ 1K, really good approximation
- Why pick small N? More efficient
» Otherwise might have to look a long way to find free page

* What about dirty pages?
- Takes extra overhead to replace a dirty page, so give
dirty pages an extra chance before replacing?

- Common approach:

» Clean pages, use N=1

» Dirty pages, use N=2 (and write back to disk when N=1)
10/27/10 Kubiatowicz €S5162 ©UCB Fall 2010 Lec 16.4

Goals for Today

* Finish Page Allocation Policies
* Working Set/Thrashing
- I/0 Systems

- Hardware Access

- Device Drivers

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated from my lecture notes by Kubiatowicz.

Second-Chance List Algorithm (VAX/VMS)

| l—> LRV victim

Second
Chance List

Directly
Mapped Pages

Marked: Invalid

List: FIFo [T % List: LRU
. New* New
Page-in Active sC
From disk Pages Victims

- Split memory in two: Active list (RW), SC list (Invalid)
+ Access pages in Active list at full speed
+ Otherwise, Page Fault
- Always move overflow page from end of Active list to
front of Second-chance list (SC) and mark invalid
- Desired Page On SC List: move to front of Active list,
mark R
- Not on SC list: page in to front of Active list, mark RW:;
page out LRU victim at end of SC list

10/27/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 16.5 10/27/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 16.6
Second-Chance List Algorithm (con't) Free List
* How many pages for second chance list? PA - TSN
\ Advances as needed to keep

- If 0 = FIFO
- If all = LRU, but page fault on every page reference
* Pick intermediate value. Result is:

- Pro: Few disk accesses (page only goes to disk if unused
for a long time)

- Con: Increased overhead trapping to OS (software /
hardware tradeoff)

+ With page translation, we can adapt to any kind of
access the program makes
- Later, we will show how to use page translation /
protection to share memory between threads on widely
separated machines
* Question: why didn't VAX include “use” bit?
- Strecker (architect) asked OS people, they said they
didn't need it, so didn't implement it
- He later got blamed, but VAX did OK anyway

10/27/10 Kubiatowicz €S5162 ©UCB Fall 2010 Lec 16.7

/ \fieelisf full ("background”)

' Set of all pages
in Memory l

/

N /
N _ -

Free Pages
For Processes

* Keep set of free pages ready for use in demand paging

- Freelist filled in background by Clock algorithm or other
technique ("Pageout demon”)
- Dirty pages start copying back to disk when enter list

+ Like VAX second-chance list

- If page needed before reused, fusf return to active set

* Advantage: Faster for page fault
- Can always use page (or pages) immediately on fault
10/27/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 16.8

Demand Paging (more details)

* Does software-loaded TLB need use bit?
Two Options:
- Hardware sets use bit in TLB; when TLB entry is
replaced, software copies use bit back to page table
- Software manages TLB entries as FIFO list; everything
not in TLB is Second-Chance list, managed as strict LRU
* Core Map
- Page tables map virtual page — physical page
- Do we need a reverse mapping (i.e. physical page —
virtual page)?
» Yes. Clock algorithm runs through page frames. If sharing,
then multiple virtual-pages per physical page
» Can't push page out to disk without invalidating all PTEs

10/27/10 Kubiatowicz €5162 ©UCB Fall 2010 Lec 16.9

Allocation of Page Frames (Memory Pages)

* How do we allocate memory among different processes?

- Does every process get the same fraction of memory?
Different fractions?
- Should we completely swap some processes out of memory?

* Each process needs minimum number of pages

- Want to make sure that all processes that are loaded into
memory can make forward progress
- Example: IBM 370 - 6 pages to handle SS MOVE
instruction:
» instruction is 6 bytes, might span 2 pages
» 2 pages to handle from
» 2 pages to handle fo

* Possible Replacement Scopes:

- Global replacement - process selects replacement frame
from set of all frames: one process can take a frame
from another

- Local replacement - each process selects from only its own

set of allocated frames
10/27/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 16.10

Fixed/Priority Allocation

* Equal allocation (Fixed Scheme):
- Every rr'ocess gets same amount of memory
- Example: 100 frames, 5 processes—=process gets 20 frames
* Proportional allocation (Fixed Scheme)
- Allocate according to the size of process
- Computation proceeds as follows:
s; = size of process p;and S = Is;
m = total number of frames

a:

/

. S;
allocation for p; = gx m

* Priority Allocation:
- Proportional scheme using priorities rather than size
» Same type of computation as previous scheme
- Possible behavior: If process p, generates a page fault,
select for replacement a frame ?r‘om a process with lower
priority number
* Perhaps we should use an adaptive scheme instead???
- What if some application just needs more memory?
10/27/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 16.11

Administrivia

10/27/10 Kubiatowicz €S5162 ©UCB Fall 2010 Lec 16.12

Review from Test: Monitors

* Monitors represent the logic of the program
- Wait if necessary

- Signal when change something so any waiting threads
can proceed

- Remarkably - people didn't get this basic structure!

* Basic structure of monitor-based program:

lock
while (need to wait) { Check and/or update
condvar.wait(); state variables

Wait if necessar
unlock Y
do something so no need to wait

lock

condvar.signal(Q); .
state variables

} Check and/or update

unlock
10/27/10 Kubiatowicz €5162 ©UCB Fall 2010 Lec 16.13

Page-Fault Frequency Allocation

+ Can we reduce Capacity misses by dynamically
changing the number of pages/application?

increase number
of frames

upper bound

page-faull rate

lower bound

decrease number
of frames

number of frames

- Establish "acceptable” page-fault rate
- If actual rate too low, process loses frame
- If actual rate too high, process gains frame
* Question: What if we just don't have enough memory?

10/27/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 16.14

Thrashing

thrashing

CPU utilization

degree of multiprogramming
+ If a process does not have “enough” pages, the page-
fault rate is very high. This leads to:

- low CPU utilization

- operating system spends most of its time swapping to disk
* Thrashing = a process is busy swapping pages in and out
* Questions:

- How do we detect Thrashing?

- What is best response to Thrashing?
10/27/10 Kubiatowicz €S5162 ©UCB Fall 2010 Lec 16.15

Locality In A Memory-Reference Pattern

14 — ———

* Program Memory Access L e s
Patterns have temporal % I S ST NG D! S
and spatial locality e

- 6roup of Pages accessed '
along a given time slice
called the "Working Set” |

- Working Set defines gl
minimum number of pages | ﬁ |

B

needed for process to
behave well
* Not enough memory for
Working Set=Thrashing

- Better to swap out
process? ‘

10/27/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 16.16

Working-Set Model

page reference table
...2615777751623412344434344413234443444 ..,

A | A |
I] FJ?
WS(t,) = {1,2,56,7) WS(t,) = {3,4)
A = working-set window = fixed number of page
references
- Example: 10,000 instructions

WS, (working set of Process P) = total set of pages
referenced in the most recent A (varies in time)

- if A too small will not encompass entire locality
- if A too large will encompass several localities
- if A = o = will encompass entire program
D = | WS/ = total demand frames
if O > m = Thrashing
- Policy: if D > m, then suspend/swap out processes
- This can improve overall system behavior by a lot!

10/27/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 16.17

What about Compulsory Misses?

* Recall that compulsory misses are misses that occur
the first time that a page is seen

- Pages that are touched for the first time

- Pages that are touched after process is swapped
out/swapped back in

* Clustering:

- On a page-fault, bring in multiple pages “around” the
faulting page

- Since efficiency of disk reads increases with sequential
reads, makes sense to read several sequential pages

* Working Set Tracking:
- Use algorithm to try to track working set of application
- When swapping process back in, swap in working set

10/27/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 16.18

Demand Paging Summary

Replacement policies
- FIFO: Place pages on queue, replace page at end
- MIN: Replace page that will be used farthest in future
- LRU: Replace page used farthest in past
Clock Algorithm: Approximation to LRU
- Arrange all pages in circular list
- Sweep through them, marking as not “in use”
- If page not “in use” for one pass, than can replace
Nth-chance clock algorithm: Another approx LRU
- Give pages multiple passes of clock hand before replacing
Second-Chance List algorithm: Yet another approx LRU
- Divide pages into two groups, one of which is truly LRU
and managed on page ?aul'rs.
Working Set:
- Set of pages touched by a process recently
Thrashing: a process is busy swapping pages in and out
- Process will thrash if working set doesn't fit in memory
- Need to swap out a process

10/27/10 Kubiatowicz €S5162 ©UCB Fall 2010 Lec 16.19

The Requirements of I/0

*+ So far in this course:
- We have learned how to manage CPU, memory
* What about I/0?
- Without I/0, computers are useless (disembodied brains?)
- But... thousands of devices, each slightly different
» How can we standardize the interfaces to these devices?
- Devices unreliable: media failures and transmission errors
» How can we make them reliable???
- Devices unpredictable and/or slow
» How can we manage them if we don't know what they will do
or how they will perform?
+ Some operational parameters:
- Byte/Block
» Some devices provide single byte at a time (e.g. keyboard)
» Others provide whole blocks (e.g. disks, networks, etc)
- Sequential/Random
» Some devices must be accessed sequentially (e.g. tape)
» Others can be accessed randomly (e.g. disn, cdq, etc.)
- Polling/Interrupts
» Some devices require continual monitoring

» Others generate in'rerrugrs when they need service
10/27/10 Kubiatowicz €5162 ©UCB Fall 2010 Lec 16.20

Modern I/0 Systems

SR 2| \a‘s;

\—— ——
— T — | .@.5;;

H

V' ® °

SCSI bus

SCS| controllar

graphics bridge/memory | I
4
v /

—CLT— ;

/\]

expansion bus |
IDE disk controller kil kayh.oard

G G] —-expansion bus——!

parallel | | serial e
port port

10/27/10 Kubiatowicz €5162 ©UCB Fall 2010 ~ Lec 16.21

10/27/10 Kubiatowicz €S162

Example Device-Transfer Rates (Sun Enterprise 6000)

gigaplane
bus

SBUS

SCSI bus

fast
ethamet

hard disk

ethamat

lasar
printer

modem

mouse

keyboard
T T
S
* Device Rates vary over many orders of magnitude
- System better be able to handle this wide range
- Better not have high overhead/byte for fast devices!

- Better not waste time waiting Ffaﬁ”;oilnow devices .

The Goal of the I/O Subsystem

* Provide Uniform Interfaces, Despite Wide Range of
Different Devices

- This code works on many different devices:
FILE fd = fopen(*“/dev/something”,”rw”’);
for (int 1 = 0; 1 < 10; i++) {
fprintf(fd,”Count %d\n”,1);
close(fd);

- Why? Because code that controls devices ("device
driver”) implements standard interface.

* We will try to get a flavor for what is involved in
actually controlling devices in rest of lecture

- Can only scratch surface!

10/27/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 16.23

Want Standard Interfaces to Devices
* Block Devices: e.g. disk drives, tape drives, DVD-ROM

- Access blocks of data
- Commands include open(), read(), write(), seek()
- Raw I/O or file-system access
- Memory-mapped file access possible
+ Character Devices: e.g. keyboards, mice, serial ports,
some USB devices
- Single characters at a time
- Commands include get(), put()
- Libraries layered on top allow line editing
* Network Devices: e.g. Ethernet, Wireless, Bluetooth

- Different enough from block/character to have own
interface

- Unix and Windows include socket interface
» Separates network protocol from network operation
» Includes select() functionality

- Usage: pipes, FIFOs, streams, queues, mailboxes

10/27/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 16.24

How Does User Deal with Timing?

+ Blocking Interface: “"Wait"

- When request data (e.g. read() system call), put
process to sleep until data is ready

- When write data (e.g. write() system call), put process
to sleep until device is ready for data

+ Non-blocking Interface: “"Don't Wait"

- Returns quickly from read or write request with count of
bytes successfully transferred

- Read may return nothing, write may write nothing
* Asynchronous Interface: "Tell Me Later”

- When request data, take pointer to user's buffer, return
immediately; later kernel fills buffer and notifies user

- When send data, take pointer to user's buffer, return
immediately; later kernel takes data and notifies user

10/27/10 Kubiatowicz €5162 ©UCB Fall 2010 Lec 16.25

Main components of Intel Chipset: Pentium 4

* Northbridge:
- Handles memory
- 6raphics

+ Southbridge: I/0
- PCT bus
- Disk controllers
- USB controllers

- Audio
- Serial I/0
- Interrupt controller
- Timers
10/27/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 16.26

How does the processor actually talk to the device? _
_—

Processor Memory Bus Regular
Memory l
Sapic Adapto Address+ Controller —x
1 Other Devices Data
Interrupt| or Buses < ntz:":ace ?ar‘;_j Wﬁl"e
Controller] Interrupt Request QIO LE
,;ﬁﬂi Addressable
+ CPU interacts with a Controller Eai Me:\;wy
- Contains a set of registers that Reaisters | O
. Queues
can be read and wriften (port 0x20)
emol

- May contain memory for request
queues or bit-mapped images
* Regardless of the complexity of the connections and
buses, processor accesses registers in two ways:
- I/0 instructions: in/out instructions
» Example from the Intel architecture: out 0x21,AL
- Memory mapped I/O: load/store instructions
» Registers/memory appear in physical address space

» I/0 accomplished with load and store instructions
10/27/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 16.27

M Mapped
Region: 0x8f008020

Example: Memory-Mapped Display Controller
* Memory-Mapped:
- Hardware maps control registers

and display memory into physical 0x80020000 | Grqphics
address space Command
» Addresses set by hardware jumpers Queue
or programming at boot time 0x80010000 [
- Simply wriﬁnc};\ to display memory Display
(also called the “frame buffer”) Memory
changes image on screen 0x8000F000

» Addr: 0x8000FO000—0x8000FFFF
- Writing graphics description to
command-queue area 0x0007F004 [Comman

» Say enter a set of triangles that
describe some scene 0x0007F000 | Status

» Addr: 0x80010000—0x8001FFFF
- Writing to the command register /, T

may cause on-board graphics
hardware to do something
» Say render the above scene

Physical Address
h Space

» Addr: 0x0007F004 I
- C i e tabl S——
o p rotect with eggfowlza 523 0UCE Fall ST Lec 16.28

Transfering Data To/From Controller

* Programmed I/O0:
- Each byte transferred via processor in/out or load/store
- Pro: Simple hardware, easy to program
- Con: Consumes processor cycles proportional to data size
* Direct Memory Access:
- Give controller access to memory bus
- Ask it to transfer data to/from memory direcﬂé
- Sample interaction with DMA controller (from book):

1. device driver is told |
to transfer disk data CPU
1o buffer at address X|
5. DMA controller 2. device driver tells
transfers bytes to disk controller to
buffer X, increasing transfer C bytes
memory address from disk to buffer
and decreasing C at addrass X

untilC =0
DMAbus/

: : | | X
:’]:1:[?”%[5 (%‘-‘STUAQIC i interrupt |- CPU memary bus —| memery | butfer
= il controllar : :

transter completion

cache

Ed

—PCl bus

B] 3. disk controller initiates
IDE disk DMA transfer
controller 4. disk controller sends
- each byte to DMA
controller

10/27/10 Lec 16.29

Summary

Second-Chance List algorithm: Yet another approx LRU
- Divide pages into two groups, one of which is truly LRU
and managed on page faults.
* Working Set:
- Set of pages touched by a process recently
 Thrashing: a process is busy swapping pages in and out
- Process will thrash if working set doesn't fit in memory
- Need to swap out a process
+ I/0 Devices Types:
- Many different speeds (0.1 bytes/sec to GBytes/sec)
- Different Access Patterns:
» Block Devices, Character Devices, Network Devices
- Different Access Timing:
» Blocking, Non-blocking, Asynchronous
I/0 Controllers: Hardware that controls actual device
- Processor Accesses through I/O instructions, load/store
to special physical memory
- Report their results through either interrupts or a status

register that processor looks at occasionally (polling)
10/27/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 16.30

CS162
Operating Systems and
Systems Programming
Lecture 17

Disk Management and
File Systems

November 1, 2010
Prof. John Kubiatowicz
http://inst.eecs.berkeley.edu/~cs162

Review: Want Standard Interfaces to Devices

* Block Devices: e.g. disk drives, tape drives, Cdrom
- Access blocks of data
- Commands include open(), read(), write(), seek()
- Raw I/0 or file-system access
- Memory-mapped file access possible
* Character Devices: e.g. keyboards, mice, serial ports,
some USB devices
- Single characters at a time
- Commands include get(), put(Q)
- Libraries layered on top allow line editing
* Network Devices: e.g. Ethernet, Wireless, Bluetooth
- Different enough from block/character to have own
interface
- Unix and Windows include socket interface
» Separates network protocol from network operation
» Includes select() functionality
- Usage: pipes, FIFOs, streams, queues, mailboxes
11/1/10 Kubiatowicz €S5162 ©UCB Fall 2010 Lec 17.2

Review: How Does User Deal with Timing?

+ Blocking Interface: “"Wait"

- When request data (e.g. read() system call), put
process to sleep until data is ready

- When write data (e.g. write() system call), put process
to sleep until device is ready for data

* Non-blocking Interface: “"Don't Wait"

- Returns quickly from read or write request with count of
bytes successfully transferred

- Read may return nothing, write may write nothing
* Asynchronous Interface: "Tell Me Later”

- When request data, take pointer to user's buffer, return
immediately; later kernel fills buffer and notifies user

- When send data, take pointer to user's buffer, return
immediately; later kernel takes data and notifies user

11/1/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 17.3

Goals for Today

+ Finish Discussing I/0 Systems
- Hardware Access
- Device Drivers
* Disk Performance
- Hardware performance parameters
- Queuing Theory
- File Systems
- Structure, Naming, Directories, and Caching

Note: Some slides and/or pictures in the following are

adapted from slides ©2005 Silberschatz, Galvin, and Gagne.

Many slides generated from my lecture notes by Kubiatowicz.
11/1/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 17.4

Main components of Intel Chipset: Pentium 4

* Northbridge:
- Handles memory
- 6raphics

+ Southbridge: I/0
- PCI bus
- Disk controllers
- USB controllers

Intel” w4
.w
Extrems Edition

- Audio
- Serial I/0
- Interrupt controller
- Timers
11/1/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 17.5

How does the processor talk to the device?

—T
Processor Memory Bus Regular
Memory
Device)\ﬂ
P Address+ Controller e
Other Devices Data
50“1"‘0"3:]‘ Interrupt Request ontrotier
,;ﬁﬁ% Addressable
+ CPU interacts with a Controller Contral Me:\;wy
- Contains a set of registers that Registers | Queues
can be read and written (port 0x20) y
- May contain memory for request R LT
. . 8 2
queues or bit-mapped images Region: Ch&1008020

* Regardless of the complexity of the connections and
buses, processor accesses registers in two ways:
- I/0 instructions: in/out instructions
» Example from the Intel architecture: out 0x21,AL
- Memory mapped I/O: load/store instructions
» Registers/memory appear in physical address space

» I/0 accomplished with load and store instructions
11/1/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 17.6

Memory-Mapped Display Controller Example
* Memory-Mapped:
- Hardware maps control registers

and display memory to physical 0x80020000 | Grqphics
address space Command
» Addresses set by hardware jumpers Queue
or programming at boot time 0x80010000 [,
- Simply wri‘l’in?‘ to display memory Display
(also called the “frame buffer”) Memory
changes image on screen 0x8000F000

» Addr: 0x8000F000—0x8000FFFF
- Writing graphics description to

» Say enter a set of triangles that 00000 FSTatus

describe some scene
» Addr: 0x80010000—0x8001FFFF
- Writing to the command register — (1
may cause on-board graphics
hardware to do something

» Say render the above scene Physucsal Address
» Addr: 0x0007F004 ~IZ pace
* Can protect with page tables =—'

11/1/10 ubfatowicz CS162 ©UCB Fall 201 Lec 17.7

Transferring Data To/From Controller

* Programmed 170"
- Each byte transferred via processor in/out or load/store
- Pro: Simple hardware, easy to program
- Con: Consumes processor cycles proportional to data size
+ Direct Memory Access:
- Give controller access to memory bus
- Ask it to transfer data to/from memory direcﬂg
- Sample interaction with DMA controller (from book):

1. davice driver is told |

to transfer disk data CPU
to buffer at address X|
5. DMA controller 2. device driver tells
transfers bytes to disk controller to
butter X, increasing transfer C bytes

memary address from disk to buffer cache

and decreasing C at address X
untilC =0 AYFE
¥ : us/ i | | Y
& :‘]:1:[?“%[5 gi.'-‘ghlﬂu,msugnal interrupt [}- CPU memory bus —! memory | buffer
transter completion contl.'uliur
T —PCI bus- —
] 3. disk controller initiates
IDE disk DMA transfer

controller 4. disk controller sends
2 . each byte to DMA
controller

11/1/10 Lec 17.8

A Kernel I/0 Structure

kernel
@
]
= kernel |/O subsystem
g T
SCsl keyboard | mouse PCI bus floppy ATAPI
device device device e device device device
driver driver driver driver driver driver
scsl keyboard | mouse PCI bus floppy ATAPI
device device device e device device device
i controller | controller | controller controller | controller | controller
0 T T T S S
2
2 ' ATAPI
scs| floppy- | | devices
dovices keyboard| | mouse sss PCI bus disk (disks,
drives tapes,
| drives)
11/1/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 17.9

11/1/10

Admi

nistrivia

Kubiatowicz €S5162 ©UCB Fall 2010

Lec 17.10

Device Drivers

+ Device Driver: Device-specific code in the kernel that
interacts directly with the device hardware
- Supports a standard, internal interface
- Same kernel I/0 system can interact easily with
different device drivers
- Special device-specific configuration supported with the
ioctl() system call
- Device Drivers typically divided into two pieces:
- Top half: accessed in call path from system calls

» implements a set of standard, cross-device calls like
open(), close(), read(), write(), ioctl(),
strategy()

» This is the kernel's interface to the device driver

» Top half will start I/0 to device, may put thread to sleep
until finished

- Bottom half: run as interrupt routine
» Gets input or transfers next block of output
» May wake sleeping threads if I/0 now complete

11/1/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 17.11

Life Cycle of An I/O Request

User
Program

T

VO

system call

Kernel I/0
Subsystem

Device Driver

Top Half

Device Driver

Bottom Half

11/1/10

Device
Hardware

Kubiat

O complated,
Input dada availabie, or
cutput completed

rabisn froen system call

bl transtar data
~canakoady . VO subsystem 0 el
sty RqUAsL? " yos Tgturm complation
~ — or Groe coda
I o
send request ko device i
driver, block process kamal
R 1O subrsystam
process requast, issus '
commands 1 controsar, e " "“"“_'I':n'“u;n‘m I:m
configurs controliorn 1o prrbn Ol lcata
Block untd inermipled changs to L0 subsystam
. recah intarrupt, store
infertupt
rvica-cOROIT COmmands harer data n davica-denved Dulor
! it ingrt, sagnad 10 unblock
davica drivee
....................................... '\;’:?'M T
monitor device, controier

ntarupt when U0
oempikited

[

1D complated

genatale irermupt

Lec 17.12

I/0 Device Notifying the OS

* The OS needs to know when:
- The I/0 device has completed an operation
- The I/0 operation has encountered an error
+ I/0 Interrupt:
- Device generates an interrupt whenever it needs service
- Handlec? in bottom half of device driver
» Often run on special kernel-level stack
-Pro: handles unpredictable events well
P- ﬁon: interrupts relatively high overhead
* Polling:
- OS periodically checks a device-specific status register
» 1/0 device puts completion information in status register
» Could use timer to invoke lower half of drivers occasionally
-Pro: low overhead
- Con: may waste many cycles on polling if infrequent or
unpredictable I/O operations
* Actual devices combine both polling and interrupts
- For instance: High-bandwidth network device:
» Interrupt for first incoming packet
» Poll for following packets until hardware empty
11/1/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 17.13

Hard Disk Drives

Cover Mounting Holes
{Cover not shown)

Base Casting
Spindle
Slider {and Head)

Actuator Aam

_ﬂ

Actuator Axis
Case R

Mounting

Holes Read/Write Head
Side View

Actuater

Platters

Ribbon Cable If .
(ataches heads
1o Logic Board)
- = -~
: e .

Tape Seal

SCSI Interface
Connector
Jumper Pins

Jumper Power
Connecior

Western Digital Drive
http://www.storagereview.com/guide/

IBM/Hitachi Microdrive

11/1/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 17.14

Properties of a Hard Magnetic Disk

Sect
Platters

Trac

* Properties
- Independently addressable element: sector
» OS always transfers groups of sectors together—"blocks"”
- A disk can access directly any given block of information
it contains (random access). Can access any file either
sequentially or randomly.
- A disk can be rewritten in place: it is possible to
read/modify/write a block from the disk
+ Typical numbers (depending on the disk size):
- 500 to more than 20,000 tracks per surface
- 32 to 800 sectors per track
» A sector is the smallest unit that can be read or written
* Zoned bit recording
- Constant bit density: more sectors on outer tracks

- Speed varies with track location
11/1/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 17.15

Disk I/0 Performance

Response
S 300 Time (ms)
User R R :3; 200
Thread " 12
Queue o
[0S Paths] L= 100
Response Time = Queue+Disk Service Time

0 100%

0%
Thr'ou?hput (Utilization)

- Performance of disk drive/file system fotal BW)
- Metrics: Response Time, Throughput
- Contributing factors to latency:
» Software paths (can be loosely modeled by a queue)
» Hardware controller
» Physical disk media
* Queuing behavior:
- Can lead to b(i)%oi/ncr'eases of latency as utilization

approaches 1
11/1/10 Kubiatowicz €S5162 ©UCB Fall 2010 Lec 17.16

Track
Magnetic Disk Characteristic / / Sector
* Cylinder: all the tracks under the
head at a given point on all surface \cad[
* Read/write data is a three-stage .
process: “Platter
- Seek time: position the head/arm over the proper track
(into proper cylinder)
- Rotational latency: wait for the desired sector
to rotate under the read/write head
- Transfer time: transfer a block of bits (sector)
under the read-write head

+ Disk Latency = Queueing Time + Controller time +
Seek Time + Rotation Time + Xfer Time

4 Software) % Media Ti o

I > Queue o3 g . : ';a ime 8

?n'_ (Device Driver) %9, (Seek+Rot+Xfer) ET-
S o

* Highest Bandwidth:

- Transfer large group of blocks sequentially from one track
11/1/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 17.17

Typical Numbers of a Magnetic Disk

+ Average seek time as reported by the industry:
- Typically in the range of 8 ms to 12 ms
- Due to locality of disk reference may only be 25% to 33%
of the advertised number
* Rotational Latency:

- Most disks rotate at 3,600 to 7200 RPM (Up to
15,000RPM or more)

- Approximately 16 ms to 8 ms per revolution, respectively

- An average latency to the desired information is halfway
around the disk: 8 ms at 3600 RPM, 4 ms at 7200 RPM

* Transfer Time is a function of:
- Transfer size (usually a sector): 512B - 1KB per sector
- Rotation speed: 3600 RPM to 15000 RPM
- Recording density: bits per inch on a track
- Diameter: ranges from 1 in to 5.25 in
- Typical values: 2 to 50 MB per second
+ Controller time depends on controller hardware
« Cost drops by factor of two per year (since 1991)

11/1/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 17.18

Disk Performance

* Assumptions:
- Ignoring queuing and controller times for now
- Avg seek time of Bms, avg rotational delay of 4ms
- Transfer rate of 4MByte/s, sector size of 1 KByte
* Random place on disk:
- Seek (5ms) + Rot. Delay (4ms) + Transfer (0.25ms)
- Roughly 10ms to fetch/put data: 100 KByte/sec
* Random place in same cylinder:
- Rot. Delay (4ms) + Transfer (0.25ms)
- Roughly 5ms to fetch/put data: 200 KByte/sec
* Next sector on same track:
- Transfer (0.25ms): 4 MByte/sec

* Key to using disk effectively (esp. for filesystems)

is to minimize seek and rotational delays
11/1/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 17.19

Disk Tradeoffs

- How do manufacturers choose disk sector sizes?

- Need 100-1000 bits between each sector to allow
system to measure how fast disk is spinning and to
tolerate small (thermal) changes in track length

* What if sector was 1 byte?
- Space efficiency - only 1% of disk has useful space

- Time efficiency - each seek takes 10 ms, transfer
rate of 50 - 100 Bytes/sec

* What if sector was 1 KByte?
- Space efficiency - only 90% of disk has useful space
- Time efficiency - transfer rate of 100 KByte/sec

* What if sector was 1 MByte?
- Space efficiency - almost all of disk has useful space

- Time efficiency - transfer rate of 4 MByte/sec
11/1/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 17.20

Introduction to Queuing Theory

[})
o
S
—— [[~ 3 | visk | f—77—
Arrivals Quee |5 Departures
Queuing System

* What about queuing time??
- Let's apply some queuing theory
- Queuing Theory applies to long term, steady state
behavior = Arrival rate = Departure rate
+ Little's Law:
Mean # tasks in system = arrival rate x mean response time
- Observed by many, Little was first to prove
- Simple interpretation: you should see the same number of
tasks in queue when entering as when leaving.
. Apglies to any system in equilibrium, as long as nothing
in black box is creating or destroying tasks

- Typical queuing theory doesn't deal with transient
behavior, only steady-state behavior
11/1/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 17.21

Background: Use of random distributions

+ Server spends variable time with customers
- Mean (Average) = Zp(T)xT o i

- Variance ¢? = Zp(T)x(T-m1)? = Zp(T)xT2-m1?2 ?ﬁm

- Squared coefficient of variance: C = 2/m12 Distribution
Aggregate description of the distribution. of service times

 Important values of C:

- No variance or deterministic = C=0 mean
- "memoryless” or exponential = C=1 \‘\
» Past tells nothing about future

» Many complex systems (or aggregates) Memoryless

well described as memoryless
- Disk response times C ~ 1.5 (majority seeks < avg)

11/1/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 17.22

A Little Queuing Theory: Some Results

+ Assumptions:
- System in equilibrium; No limit to the queue
- Time between successive arrivals is random and memoryless

Arrival Rate Service Rate @
)\' u= 1/TSZT‘

* Parameters that describe our system:
- A mean number of arriving customers/second
- T,.: mean time to service a customer ("m1")

s

-C squared coefficient of variance = ¢?/m1?

- W service rate = 1/T_,,

- u server utilization (O<u<1): u = A/p = A x T,
+ Parameters we wish to compute:

- Ty Time spent in queue

-L Length of queue = A x T, (by Little's law)
. Results:

- Memoryless service distribution (C = 1):
» Called M/M/1 queue: T, = T, x u/(1 - u)
- General service distribution (no restrictions), 1 server:
» Called M/6/1 queue: T, = T, x $(1+C) x u/(1 - u))
11/1/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 17.23

A Little Queuing Theory: An Example

- Example Usage Statistics:
- User requests 10 x 8KB disk I/Os per second
- Requests & service exponentially distributed (C=1.0)
- Avg. service = 20 ms (From controller+seek+rot+trans)
* Questions:
- How utilized is the disk?
» Ans: server utilization, u = AT,
- Whg‘r is _1'_rhe average time spent in the queue?
» Ans:
- Whg‘r is lfhe number of requests in the queue?
» ANns:
- What is the a_\'{g response time for disk request?
» Ans:. Ty = at Teer
+ Computation:
L (avg # arriving customers/s) = 10/s
T... (avg time to service customer) = 20 ms (0.02s

u (server utilization) = A x T,.= 10/s x .02s = 0.2
T, avz%'rime/customer- in ueuez = T X u/(1 - u)
= x 0.2/(1-0.2) = 20 x 0.25 = 5 ms 80 .005s)
L &avg length of queue) = A x T,=10/s x .005s = 0.05
T avg time/customer in system) =T _+ T .= 25 ms
11/1718 Kubiatowicz CS162 ©UCB Fall 20107 Lec 17.24

Summary

 I/0 Controllers: Hardware that controls actual device
- Processor Accesses through I/O instructions or load/store
to special physical memory
* Notification mechanisms
- Interrupts
- Polling: Report results through status register that
processor looks at periodically
- Disk Performance:
- Queuing time + Controller + Seek + Rotational + Transfer
- Rotational latency: on average % rotation
- Transfer time: spec of disk depends on rotation speed
and bit storage density
* Queuing Latency:
- M/M/1 and M/G/1 queues: simplest to analyze
- As utilization approaches 100%, latency — «
Ty = Teer x 3(1+€) x u/(1 - u))

11/1/10 Kubiatowicz €5162 ©UCB Fall 2010 Lec 17.25

Cs162
Operating Systems and
Systems Programming
Lecture 18

File Systems, Naming, and Directories

November 3, 2010
Prof. John Kubiatowicz
http://inst.eecs.berkeley.edu/~cs162

Review: Device Drivers

+ Device Driver: Device-specific code in the kernel that
interacts directly with the device hardware
- Supports a standard, internal interface
- Same kernel I/0 system can interact easily with
different device drivers
- Special device-specific configuration supported with the
ioctl () system call
+ Device Drivers typically divided into two pieces:
- Top half: accessed in call path from system calls

» implements a set of standard, cross-device calls like
open(), close(), read(), write(), ioctl(),
strategy()

» This is the kernel's interface to the device driver

» Top half will start I/O to device, may put thread to sleep
until finished

- Bottom half: run as interrupt routine
» Gets input or transfers next block of output
» May wake sleeping threads if I/0 now complete

11/03/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 18.2

Review: Disk Performance Model

+ Read/write data is a three-stage process:
- Seek time: position the head/arm over the proper track
(into proper cylinder)
- Rotational latency: wait for the desired sector
to rotate under the read/write head

- Transfer time: transfer a block of bits (sector)
under the read-write head

+ Disk Latency = Queueing Time + Controller time +
Seek Time + Rotation Time + Xfer Time

o
3 e Media Time x
?‘.. (Device Driver) (Seek+Rot+Xfer) %

* Highest Bandwidth:
- Transfer large group of blocks sequentially from one track
11/03/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 18.3

Review: Introduction to Queuing Theory

Q
o
S
| (i e
Arrivals Quee | § Departures
Queuing System

* What about queuing time??
- Let's apply some queuing theory
- Queuing Theory applies to long term, steady state
behavior = Arrival rate = Departure rate
+ Little’s Law:
Mean # tasks in system = arrival rate x mean response time
- Observed by many, Little was first to prove
- Simple interpretation: you should see the same number of
tasks in queue when entering as when leaving.
. Apglies to any system in equilibrium, as long as nothing
in black box is creating or destroying tasks

- Tyﬁicql queuing theory doesn't deal with transient
behavior, only steady-state behavior
11/03/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 18.4

Goals for Today

* Queuing Theory: Continued

- File Systems
- Structure, Naming, Directories

Note: Some slides and/or pictures in the following are

adapted from slides ©2005 Silberschatz, Galvin, and Gagne.

Many slides generated from my lecture notes by Kubiatowicz.
11/03/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 18.5

Background: Use of random distributions

- Server spends variable time with customers mﬁ
- Mean (Average) = Zp(T)xT
- Variance ¢? = Zp(T)x(T-m1)? = Xp(T)xT2-ml
- Squared coefficient of variance: C = c2/m12 [Distribution
Aggregate description of the distribution.

* Important values of C:

- No variance or deterministic = C=0 mean
- "memoryless” or exponential = C=1 ‘\\‘\
» Past tells nothing about future
» Many complex systems (or aggregates) Memoryless
well described as memoryless
- Disk response times C ~ 1.5 (majority seeks < avg)
* Mean Residual Wait Time, m1(z):
- Mean time must wait for server to complete current task
- Can derive m1(z) = $mlx(1 + C)
» Not just $m1 because doesn't capture variance
-C=0=>ml(z)=4m1; C=1=ml(2) = ml
11/03/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 18.6

A Little Queuing Theory: Mean Wait Time

_>‘
Arrival Rate Service Rate @
A H= l/Tser

* Parameters that describe our system:

- A mean number of arriving customers/second

- T... mean time to service a customer ("m1")

-C: squared coefficient of variance = ¢2/m12

- service rate = 1/T_,.

-u server utilization (53u£1): us=rp=irxTg,
* Parameters we wish to compute:

- T Time spent in queue

- L:: Length of queue = A x T, (by Little's law)
* Basic Approach:
- Customers before us must finish,-
- If something at server, takes ' m1(z) to complete-on—avg

» m1(z): mean residual wdit time at server= T x 3(1+
» Chance something-af server = u = mean time isCU x m1(zp
- Computation of wdit time in queue (T,):

- Tq = Lgx Ter + u x ml(2)
11/03/10 Kubiatowicz €S5162 ©UCB Fall 2010 Lec 18.7

A Little Queuing Theory: M/G/1 and M/M/1
T
T: x (1-u)=ml(z) xu=T, =ml(z) x u/(1-u) >
* Assumptions so far:
- Time between two successive arrivals in line are random
prior finishes
* Memoryless service distribution (C = 1):

- Computation_of wait time in queue (T,):
To =)l:q >f|_Tser:|_ +UuXx ml(ﬁ E)) Little's Law
X X Vg + U X MI(Z el o
T =uxT,+ux m1(z) Defn of utilization (u)
Tq = Tser‘ X %(1 +C) X U/(l - Ll)
* Notice that as u—1, T |
- System in_equilibrium; No limit to the queue: works
First-In-First-Out
and memoryless: (M for C=1 exponentially random)
- Server can start on next customer immediately after
- General service distribution (no restrictions), 1 server:
- Called M/G/1 queue: T, = T, x £(1+C) x u/(1 - u))
- Called M/M/1 queue: T = T x u/(1 - u)
11/03/10 Kubiatowicz €S5162 ©UCB Fall 2010 Lec 18.8

A Little Queuing Theory: An Example

+ Example Usage StafisTics:
- User requests 10 x 8KB disk I/Os per second
- Requests & service exponentially distributed $C=1.0)
- Avg. service = 20 ms (controller+seek+rot+Xfertime)
* Questions:
- How utilized is the disk?
» Ans: server utilization, u = AT,
- What is the average time spent in the queue?

» Ans: T,
- What is the number of requests in the queue?
» Ans: L, = AT,

- What is the a¥'§ response time for disk request?
» Ans: T, = T + T (Wait in queue, then get served)

+ Computation:

L (avg # arriving customers/s) = 10/s

T..- (avg time to service customer) = 20 ms (0.02s)

u (server utilization) = A x T.= 10/s x .02s = 0.2
T, a\ég time/customer in ueuezg = Ter x u/(1 - u)

= 20 x0.2/(1-0.2) = 20 x 0.25 = 5 ms (0O .005s)

L 2avg length of queue) = A x T,=10/s x .005s = 0.05
'l'qys avg time/customer in sysfemj =T, + T,,= 25 ms

/10

s
11/03/1 Kubiatowicz €5162 ©UCB Fall 2010 Lec 18.9

Queuing Theory Resources

* Handouts page contains Queueing Theory Resources:
- Scanned pages from Patterson and Hennesey book that

gives further discussion and simple proof for general eq.

- A complete website full of resources
* Midterms with queueing theory questions:
- Midterm IIs from previous years that I've taught
+ Assume that Queueing theory is fair game for the final!

11/03/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 18.10

Administrivia

11/03/10 Kubiatowicz €S5162 ©UCB Fall 2010 Lec 18.11

- Diskcan oonJl

Disk Scheduling

one requesT at a fime; at order do
you choose to do queued requests?

User N o N2 v Head| ¢
Requests ~| N N S = wl S

- FIFO Order

- Fair among requesters, but order of arrival may be to
random spots on the disk = Very long seeks

- SSTF: Shortest seek time first

- Pick the request that's closest on the disk

- Although called SSTF, today must include
rotational delay in calculation, since
rotation can be as long as seek

- Con: SSTF good at reducing seeks, but
may lead to starvation

+ SCAN: Implements an Elevator Algorithm: take the

closest request in the direction of travel
- No starvation, but retains flavor of SSTF

- C-SCAN: Circular-Scan: only goes in one direction

- Skips any requests on the way back

- Fairer than SCAN, not biased towards pages in middle
11/03/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 18.12

poaH xsiq

Building a File System

- File System: Laier' of OS that transforms block
interface of disks (or other block devices) into Files,
Directories, etc.

* File System Components

- Disk Management: collecting disk blocks into files

- Naming: Interface to find %iles by name, not by blocks

- Protection: Layers to keep data secure

- Reliability/Durability: Keeping of files durable despite
crashes, media failures, attacks, etc

+ User vs. System View of a File

- User's view:
» Durable Data Structures
- System's view (system call interface):
» Collection of Bytes (UNIX)
» Doesn't matter to system what kind of data structures you
want to store on disk!
- System's view (inside OS):
» Collection of blocks (a block is a logical transfer unit, while
a sector is the physical transfer unit)
» Block size > sector size; in UNIX, block size is 4KB

11/03/10 Kubiatowicz €5162 ©UCB Fall 2010 Lec 18.13

Translating from User to System View

* What happens if user says: give me bytes 2—12?
- Fetch block corresponding to those bytes
- Return just the correct portion of the block
* What about: write bytes 2—12?
- Fetch block
- Modify portion
- Write out Block
- Everything inside File System is in whole size blocks

- For example, getcg), putc() = buffers something like
4096 bytes, even if interface is one byte at a time

* From now on, file is a collection of blocks
11/03/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 18.14

Disk Management Policies

* Basic entities on a disk:
- File: user-visible group of blocks arranged sequentially in
logical space
- Directory: user-visible index mapping names to files
(next lecture)
* Access disk as linear array of sectors. Two Options:
- Identify sectors as vectors [c¥\l|inder', surface, sector].
Sort in cylinder-major order. Not used much anymore.
- Logical Block Addressing (LBA). Every sector has integer
address from zero up tfo max number of sectors.
- Controller translates from address = physical position
» First case: OS/BIOS must deal with bad sectors
» Second case: hardware shields OS from structure of disk
* Need way to track free disk blocks
- Link free blocks together = too slow toda
- Use bitmap to represent free space on dis
* Need way to structure files: File Header
- Track which blocks belong at which offsets within the
logical file structure
- Optimize placement of files' disk blocks to match access
and usage patterns
11/03/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 18.15

Designing the File System: Access Patterns

+ How do users access files?
- Need to know type of access patterns user is likely to
throw at system
+ Sequential Access: bytes read in order (“give me the
next X bytes, then give me next, etc”)
- Almost all file access are of this flavor
+ Random Access: read/write element out of middle of
array (“give me bytes i—j")
- Less frequent, but still important. For example, virtual
memory backing file: page of memory stored in file
- Want this to be fast - don't want to have to read all
bytes to get to the middle of the file
+ Content-based Access: ("find me 100 bytes starting
with KUBT")
- Example: employee records - once Zou find the bytes,
increase my salary by a factor of
- Many systems don't provide this; instead, databases are
built on top of disk access to index content (requires

efficient random access)
11/03/10 Kubiatowicz €S5162 ©UCB Fall 2010 Lec 18.16

Designing the File System: Usage Patterns

* Most files are small (for example, .login, .c files)
- A few files are big - nachos, core files, etc.: the nachos
executable is as big as all of your .class files combined
- However, most files are small - .class’s, .o's, .C's, etc.
* Large files use up most of the disk space and
bandwidth to/from disk
- May seem contradictory, but a few enormous files are
equivalent to an immense # of small files
+ Although we will use these observations, beware usage
patterns:
- Good idea to look at usage patterns: beat competitors by
optimizing for frequent patterns
- Except: changes in performance or cost can alter usage
patterns. Maybe UNIX has lots of small files because big
files are really inefficient?
- Digression, danger of pr'edic‘rin% future:
-In 1950's, marketing sfud?l by IBM said total worldwide
need for computers was 7!
- Company (that you haven't heard of) called “"GenRad"
invented oscilloscope; thought there was no market, so

sold patent to Tektronix (6 et you have heard of them!)
11/03/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 18717

How to organize files on disk

* Goals:
- Maximize sequential performance
- Easy random access to file
- Easy management of file (growth, truncation, etc)
* First Technique: Continuous Allocation
- Use continuous range of blocks in logical block space
» Analogous to base+bounds in virtual memory
» User says in advance how big file will be (disadvantage)
- Search bit-map for space using best fit/first fit
» What if not enough contiguous space for new file?
- File Header Contains:
» First block/LBA in file
» File size (# of blocks)
- Pros: Fast Sequential Access, Easy Random access
- Cons: External Fragmentation/Hard to grow files
» Free holes get smaller and smaller
» Could compact space, but that would be really expensive
+ Continuous Allocation used by IBM 360
- Result of allocation and management cost: People would

create a big file, put their file in the middle
11/03/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 18.18

Linked List Allocation

- Second Technique: Linked List Approach
- Each block, pointer to next on disk

File Header

[

P Null

- Pros: Can grow files dynamically, Free list same as file
- Cons: Bad Sequential Access (seek between each block),
Unreliable (lose block, lose rest of file)
- Serious Con: Bad random accessl!!!!
- Technique originally from Alto (First PC, built at Xerox)
» No attempt to allocate contiguous blocks

11/03/10 Kubiatowicz €S5162 ©UCB Fall 2010 Lec 18.19

Linked Allocation: File-Allocation Table (FAT)

directory entry

tast see 217}
name start block

217 618

) :|

618 339

no. of disk blocks =1

FAT
+ MSDOS links pages together to create a file
- Links not in pages, but in the File Allocation Table (FAT)
» FAT contains an entry for each block on the disk
» FAT Entries corresponding to blocks of file linked together
- Access properties:
» Sequential access expensive unless FAT cached in memory
» Random access expensive always, but really expensive if

FAT not cached in memory
11/03/10 Kubiatowicz €S162"©@UCB Fall 2010 Lec 18.20

Indexed Allocation

Y
1 fle index block
o] 1 EL\E O 300 feep i

4[] s a&ﬂ]
8] eCJio[X110
o9
N - 16

1211314

= 10
16 181 19 oc
T -1
20 J21[J22[423] |
-1

24 Jas[fes[Jer[]

28[J20Js0[J310]
[~ -
* Third Technique: Indexed Files (Nachos, VMS)
- System Allocates file header block to hold array of
pointers big enough to point to all blocks
» User pre-declares max file size;
- Pros: Can easily grow up to space allocated for index
Random access is fast
- Cons: Clumsy to grow file bigger than table size
Still lots of seeks: blocks may be spread over disk
11/03/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 18.21

directory

* Multilevel Indexed Files: mode
Like multilevel address onners (2)
translation fivestamps (] e
(from UNIX 4.1 BSD) it e
- Key idea: efficient for small
iles, but still allow big fil il .
files, but still allow big files e :
: data
single indirect : e data
double indirect _| = data
+ File hdr contains 13 pointers | —

Multilevel Indexed Files (UNIX 4.1)

- Fixed size table, pointers not all equivalent
- This header is called an “inode” in UNIX
* File Header format:

- First 10 pointers are to data blocks

- Ptr 11 points to “indirect block” containing 256 block ptrs

- Pointer 12 points to “doubly indirect block” containing 256
indirect block ptrs for total of 64K blocks

- Pointer 13 points to a 'rr'ig indirect block (16M blocks)

|
11/03/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 18.22

Multilevel Indexed Files (UNIX 4.1): Discussion

* Basic technique places an upper limit on file size that
is approximately 16Gbytes

- Designers thought this was bigger than anK‘rhing anyone
would need. Much bigger than a disk at the time...

- Fallacy: today, EOS producing 2TB of data per day

* Pointers get filled in dynamically: need to allocate
indirect block only when file grows > 10 blocks

- On small files, no indirection needed

11/03/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 18.23

Example of Multilevel Indexed Files

- Sample file in multilevel mode
indexed format: owners (2
- How many accesses for DO
block #23? (assume file
header accessed on open)? .

» Two: One for indirect block, _
one for data direct blacks —

size block count

ﬁ&a
B |8 |E

g

- How about block #5? N —— _
» One: One for data |Isinals Inoiret - —
: (Gaa] ST
- Block #3402 b
» Three: double indirect block, :
indirect block, and data
* UNIX 4.1 Pros and cons
- Pros: Simple (more or less)
Files can easily expand (up to a point)
Small files particularly cheap and easy
- Cons: Lots of seeks
Very large files must read many indirect blocks (four
I/Os per block!)

11/03/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 18.24

]

|5

&
5

data |

File Allocation for Cray-1 DEMOS

bctsesize/f"s >
N I.3.3] Basic Segmentation Structure:
T3 Each segment contiguous on disk
.37
. 1,.3.8
file header .39

- DEMOS: File system structure similar to segmentation
- Idea: reduce disk seeks by
» using contiguous allocation in normal case
» but allow flexibility to have non-contiguous allocation
- Cray-1 had 12ns cycle time, so CPU:disk speed ratio about
the same as today (a few million instructions per seek)
* Header: table of base & size (10 “block group” pointers)
- Each block chunk is a contiguous group of disk blocks
- Sequential reads within a block chunk can proceed at high
speed - similar to continuous allocation
*+ How do you find an available block group?

- Use freelist bitmap to find block of O's.
11/03/10 Kubiatowicz €5162 ©UCB Fall 2010 Lec 18.25

- Discussion of DEM

Large File Version of DEMOS

i base s disK
bas:. size __,Dasesize s .175?3.“13
2 N 1.3.3
N 1.3 4]
\ T 3.9
9,0
S,/
: indirect 2.8
file header block group 3.9

* What if need much bigger' files?

- If need more than 10 groups, set flag in header: BIGFILE
» Each table entry now points to an indirect block group
- Suppose 1000 blocks in a block group = 806B max file
» Assuming 8KB blocks, 8byte enfries=
(10 ptrsx1024 goups/ﬁtrxlOOO blocks/group)*8K =806B
S scheme
- Pros: Fast sequential access, Free areas merge simpilry
Easy to find free block groups (when disk not ullg
- Cons: Disk full = No long runs of blocks (fragmentation),
so high overhead allocation/access
- Full disk = worst of 4.1BSD (lots of seeks) with worst of

continuous allocation (lots of recompaction needed)
11/03/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 18.26

How to keep DEMOS performing well?

+ In many systems, disks are always full
- CS department growth: 300 6B to 1TB in a year
» That's 26B/day! (Now at 3—4 TBI)

- How to fix? Announce that disk space is getting low, so
please delete files?

» Don't really work: people try to store their data faster
- Sidebar: Perhaps we are getting out of this mode with
new disks.. However, let's assume disks full for now
* Solution:
- Don't let disks get completely full: reserve portion
» Free count = # blocks free in bitmap
» Scheme: Don't allocate data if count < reserve
- How much reserve do you need?
» In practice, 10% seems like enough
- Tradeoff: pay for more disk, get contiguous allocation
» Since seeks so expensive for performance, this is a very
good tradeoff

11/03/10 Kubiatowicz €S5162 ©UCB Fall 2010 Lec 18.27

UNIX BSD 4.2

- Same as BSD 4.1 (same file header and triply indirect
blocks), except incorporated ideas from DEE\BS:
- Uses bitmap allocation in place of freelist
- Attempt to allocate files contiguously
- 10% reserved disk space
- Skip-sector positioning (mentioned next slide)
* Problem: When create a file, don't know how big it
will become (in UNIX, most writes are by appending)
- How much contiguous space do you allocate for a file?
- In Demos, power of 2 growth: once it grows past 1MB,
allocate 2MB, etc
- In BSD 4.2, just find some range of free blocks
» Put each new file at the front of different range
» To expand a file, you first try successive blocks in
bitmap, then choose new range of blocks
- Also in BSD 4.2: store files from same directory near
each other

11/03/10 Kubiatowicz CS5162 ©UCB Fall 2010 Lec 18.28

Attack of the Rotational Delay

* Problem 2: Missingb blocks due to rotational delay
- Issue: Read one block, do processing, and read next
block. In meantime, disk has continued turning: missed
next block! Need 1 revolution/block!

Skip Secto
|:> /]
@ @ Track Buffer
(Holds complete track)

- Solutionl: Skip sector positioning (“interleaving”)
» Place the blocks from one file on every other block of a
track: give time for processing to overlap rotation
- Solution2: Read ahead: read next block right after first,
even if application hasn't asked for it yet.
» This can be done either by OS (read ahead)
» By disk itself (track buffers). Many disk controllers have
internal RAM that allows them to read a complete track
* Important Aside: Modern disks+controllers do many
cor_r|\plex things “under the covers”
- Track buffers, elevator algorithms, bad block filtering
11/03/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 18.29

How do we actually access files?

+ All information about a file contained in its file header
- UNIX calls this an “inode”
» Inodes are global resources identified by index (“inumber”)
- Once you load the header structure, all the other blocks
of the file are locatable
* Question: how does the user ask for a particular file?
- One option: user specifies an inode by a number (index).
» Imagine: open('14553344")
- Better option: specify by textual name
» Have to map name—inumber
- Another option: Icon
» This is how Apple made its money. Graphical user
interfaces. Point to a file and click.
* Naming: The process by which a system translates from
user-visible names to system resources
- In the case of files, need to translate from strings
(textual names) or icons to inumbers/inodes
- For global file systems, data may be spread over
globe=need to translate from strings or icons to some

combination of physical server locafion and inumber
11/03/10 ubiatowicz €S162 ©UCB Fall 2010 Lec 18.30

Directories

* Directory: a relation used for naming
- Just a table of (file name, inumber) pairs

* How are directories constructed?
- Directories often stored in files
» Reuse of existing mechanism
» Directory named by inode/inumber like other files
- Needs to be quickly searchable
» Options: Simple list or Hashtable
» Can be cached into memory in easier form to search

* How are directories modified?
- Originally, direct read/write of special file
- System calls for manipulation: mkdir, rmdir
- Ties to file creation/destruction

» On creating a file by name, new inode grabbed and
associated with new file in particular directory

11/03/10 Kubiatowicz €S5162 ©UCB Fall 2010 Lec 18.31

Directory Organization

- Directories organized into a hierarchical structure
- Seems standard, but in early 70's it wasn't
- Permits much easier organization of data structures

+ Entries in directory can be either files or
directories

- Files named by ordered set (e.g., /programs/p/list)

11/03/10 Kubiatowicz €S5162 ©UCB Fall 2010 Lec 18.32

Directory Structure

root | avi | te | jim |
R JAN

cmml| bm;\k'| | book | mail ||mfrex1 hyp |

\

| avi | count; ;unhezll he.xl
| !

— 5 ¥ x

* Not really a hierarchy!
- Many systems allow directory structure to be organized
as an acyclic dgr'aph or even a (potentially) cyclic graph
- Hard Links: different names for the same f)ille
» Multiple directory entries point at the same file
- Soft Links: "shortcut” pointers to other files
» Implemented by storing the logical name of actual file
* Name Resolution: The process of converting a logical
name into a physical resource (like a file)
- Traverse succession of directories until reach target file

- Global file system: May be spread across the network
11/03/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 18.33

text | mail

Directory Structure (Con't)

* How many disk accesses to resolve “/my/book/count”?
- Read in file header for root (fixed spot on disk)
- Read in first data bock for root

» Table of file name/index pairs. Search linearly - ok since
directories typically very small

- Read in file header for “my"”

- Read in first data block for “my”: search for “"book"

- Read in file header for “book”

- Read in first data block for “"book”; search for “count”
- Read in file header for “count”

* Current working directory: Per-address-space pointer
to a directory %inode) used for resolving file names

- Allows user to specify relative filename instead of
absolute path (say CWD="/my/book” can resolve “count")

11/03/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 18.34

Where are inodes stored?

* In early UNIX and DOS/Windows' FAT file
system, headers stored in special array in
outermost cylinders

- Header not stored anywhere near the data blocks.
To read a small file, seek to get header, see
back to data.

- Fixed size, set when disk is formatted. At
formatting time, a fixed number of inodes were
created (They were each given a unique number,
called an “inumber”)

11/03/10 Kubiatowicz €S5162 ©UCB Fall 2010 Lec 18.35

Where are inodes stored?

+ Later versions of UNIX moved the header
information to be closer to the data blocks

- Often, inode for file stored in same “cylinder group”
as parent directory of the file (makes an Is of that
directory run fast).

- Pros:

» Reliability: whatever ha;:rens to the disk, you can find
all of the files (even if directories might be
disconnected)

» UNIX BSD 4.2 puts a portion of the file header array
on each cylinder. For small directories, can fit all
data, file headers, etc in same cylinder=no seeks!

» File headers much smaller than whole block (a few
hundred bytes), so multiple headers fetched from disk
at same time

11/03/10 Kubiatowicz €S5162 ©UCB Fall 2010 Lec 18.36

Summary

* Queuing Latency:
- M/M/1 and M/G/1 queues: simplest to analyze
- As utilization approaches 100%, latency — «
Tq = Tser' X %(1 +C) X U/(l - U))
+ File System:
- Transforms blocks into Files and Directories
- Optimize for access and usage patterns
- Maximize sequential access, allow efficient random access
* File (and directory) defined by header
- Called "inode” with index called “inumber”
* Multilevel Indexed Scheme
- Inode contains file info, direct pointers to blocks,
- indirect blocks, doubly indirect, etc..
- DEMOS:
- CRAY-1 scheme like segmentation
- Emphsized contiguous allocation of blocks, but allowed to
use non-contiguous allocation when necessary
Naming: the process of turning user-visible names into

resources (such gs files

11 ubiatowicz 235162 ©UCB Fall 2010 Lec 18.37

CS162
Operating Systems and
Systems Programming
Lecture 19

File Systems continued
Distributed Systems

November 8, 2010
Prof. John Kubiatowicz
http://inst.eecs.berkeley.edu/~cs162

Review: A Little Queuing Theory: Some Results

* Assumptions:
- System in equilibrium; No limit to the queue
- Time between successive arrivals is random and memoryless

Service Rate @
u=1/T,,

* Parameters that describe our system:

- A mean number of arriving customers/second

- T,..: mean time to service a customer ("m1")

- C: squared coefficient of variance = ¢?/m1?2

- W service rate = 1/T_,,

-u server utilization (O<u<1): u = A/p = A x T,
* Parameters we wish to compute:

- Ty Time spent in queue
Length of queue = A x T, (by Little's law)

—
Arrival Rate
A

-L
. Resuifs:
- Memoryless service distribution (C = 1):
» Called M/M/1 queue: T, = T, x u/(1 - u)
- General service distribution (no restrictions), 1 server:
» Called M/6/1 queue: T, = Ty, x £(1+C) x u/(1 - u))
11/08/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 19.2

Review: Disk Scheduling

- Diskcan oongtone request af a fime;
you choose to do queued requests?

User nf O N[ol v Head[%
Requests |:> ™ {qN S w |:>
* FIFO Order

- Fair among requesters, but order of arrival may be to
random spots on the disk = Very long seeks
+ SSTF: Shortest seek time first
- Pick the request that's closest on the disk
- Although called SSTF, today must include
rotational delay in calculation, since
rotation can be as long as seek
- Con: SSTF good at reducing seeks, but
may lead to starvation
* SCAN: Implements an Elevator Algorithm: take the
closest request in the direction of travel
- No starvation, but retains flavor of SSTF
- C-SCAN: Circular-Scan: only goes in one direction
- Skips any requests on the way back

1/a/fgirer than SCAN, not biased Jowards pages in middle,

at order do

3

poaH 3siIq

Goals for Today

- Finish Discussion of File Systems
- Structure, Naming, Directories
* File Caching
* Data Durability
* Beginning of Distributed Systems Discussion

Note: Some slides and/or pictures in the following are

adapted from slides ©2005 Silberschatz, Galvin, and Gagne.

Many slides generated from my lecture notes by Kubiatowicz.
11/08/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 19.4

Designing the File System: Access Patterns

* How do users access files?
- Need to know type of access patterns user is likely to
throw at system
+ Sequential Access: bytes read in order (“give me the
next X bytes, then give me next, etc”)
- Almost all file access are of this flavor

- Random Access: read/write element out of middle of
array (“give me bytes i—j")
- Less frequent, but still important. For example, virtual
memory backing file: page of memory stored in file
- Want this to be fast - don't want to have to read all
bytes to get to the middle of the file

+ Content-based Access: ("find me 100 bytes starting
with KUBIATOWICZ")

- Example: employee records - once Zou find the bytes,
increase my salary by a factor of

- Many systems don't provide this; instead, databases are
built on top of disk access to index content (requires

efficient random access)
11/08/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 19.5

Designing the File System: Usage Patterns

* Most files are small (for example, .login, .c files)
- A few files are big - nachos, core files, etc.; the nachos
executable is as big as all of your .class files combined
- However, most files are small - .class's, .0's, .c's, etc.
* Large files use up most of the disk space and
bandwidth to/from disk
- May seem contradictory, but a few enormous files are
equivalent to an immense # of small files
+ Although we will use these observations, beware usage
patterns:
- 6ood idea to look at usage patterns: beat competitors by
optimizing for frequent patterns

- Except: changes in performance or cost can alter usage
patterns. Maybe UNIX has lots of small files because big
files are really inefficient?

11/08/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 19.6

How to organize files on disk

+ Godls:
- Maximize sequential performance
- Easy random access to file
- Easy management of file (growth, truncation, etc)
* First Technique: Continuous Allocation
- Use continuous range of blocks in logical block space
» Analogous to base+bounds in virtual memory
» User says in advance how big file will be (disadvantage)
- Search bit-map for space using best fit/first fit
» What if not enough contiguous space for new file?
- File Header Contains:
» First sector/LBA in file
» File size (# of sectors)
- Pros: Fast Sequential Access, Easy Random access
- Cons: External Fragmentation/Hard to grow files
» Free holes get smaller and smaller
» Could compact space, but that would be really expensive
+ Continuous Allocation used by IBM 360
- Result of allocation and management cost: People would

create a big file, put their file in the middle
11/08/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 19.7

Linked List Allocation

- Second Technique: Linked List Approach
- Each block, pointer to next on disk

File Header

S

P Null

- Pros: Can grow files dynamically, Free list same as file
- Cons: Bad Sequential Access (seek between each block),
Unreliable (lose block, lose rest of file)
- Serious Con: Bad random accessl!!!!
- Technique originally from Alto (First PC, built at Xerox)
» No attempt to allocate contiguous blocks

11/08/10 Kubiatowicz €S5162 ©UCB Fall 2010 Lec 19.8

Linked Allocation: File-Allocation Table (FAT)

directory entry
test see 217 |
name start block

217 618

) :|

618 339

no. of disk blocks =1

FAT

+ MSDOS links pages together to create a file
- Links not in pages, but in the File Allocation Table (FAT)

» FAT contains an entry for each block on the disk
» FAT Entries corresponding to blocks of file linked together

- Access properies:
» Sequential access expensive unless FAT cached in memory
» Random access expensive always, but really expensive if

FAT not cached in memory
Kubiatowicz €S162°©UCB Fall 2010 Lec 19.9

11/08/10

Indexed Allocation

= __h:) directory
— fle index block

o 1D\2E <1m| i U

a1 50 E\rm —

a1 eCJ1o[X1100

12[sl a5

19 2

16 5
1
20 J21[Jea 423l] -
-1
24J2sf2e[127 (]

iﬂ%uwt31u
- Indexed Files (Nachos, VMS)

- System Allocates file header block to hold array of

pointers big enough to point to all blocks
» User pre-declares max file size;
- Pros: Can easily grow up to space allocated for index
Random access is fast

- Cons: Clumsy to grow file bigger than table size

Still lots of seeks:, Blegksmay,pe spread over disk

Multilevel Indexed Files (UNIX BSD 4.1)

+ Mulfilevel Indexe lles. LiKe muiTilevel address
translation (from UNIX 4.1 BSD)
- Key idea: efficient for small files, but still allow big files
- File header contains 13 pointers
» Fixed size table, pointers not all equivalent
» This header is called an “inode” in UNIX
- File Header format:
» First 10 pointers are to data blocks
» Block 11 points to “indirect block” containing 256 blocks
» Block 12 points to “doubly indirect block™ containing 256
indirect blocks for total of 64K blocks
» Block 13 points to a triply indirect block (16M blocks)

+ Discussion
- Basic technique places an upper limit on file size that is

approximately 16Gbytes
» Designers thought this was bigger than annﬂ'\ing anyone
would need. Much bigger than a disk at the time...

» Fallacy: today, EOS producing 2TB of data per day
- Pointers get filled in dynamically: need to allocate
indirect block only when file grows > 10 blocks.

11/08/10 > On small files, ng indirection needed, , Lec 19.11

11/08/10
Example of Multilevel Indexed Files
- Sample file in multilevel mode
indexed format: e
- How marl?'3 accesses for AU &E
block #23? (assume file (&)
header accessed on open)? . —
» Two: One for indirect block, | .
one for data direct blocks 7 s
- How about block #5? N —]
» One: One for data single indirect — __[: G
- BlOCk #3409 r.lu.uble indirect __ ! i - dala
» Three: double indirect block, g

indirect block, and data
* UNIX 4.1 Pros and cons
- Pros: Simple (more or less)
Files can easily expand (up to a point)
Small files particularly cheap and easy

- Cons: Lots of seeks
Very large files must read many indirect block (four

I/Os per block!)

Kubiatowicz €S162 ©UCB Fall 2010 Lec 19.12

11/08/10

Administrivia

11/08/10 Kubiatowicz €5162 ©UCB Fall 2010 Lec 19.13

File Allocation for Cray-1 DEMOS

bctsesize/f"s .gr‘ou
[33
\ I.3.3] Basic Segmentation Structure:
T3 Each segment contiguous on disk
137
. 1,.3.8
file header .39

- DEMOS: File system structure similar to segmentation
- Idea: reduce disk seeks by
» using contiguous allocation in normal case
» but allow flexibility to have non-contiguous allocation
- Cray-1 had 12ns cycle time, so CPU:disk speed ratio about
the same as today (a few million instructions per seek)
* Header: table of base & size (10 “block group” pointers)
- Each block chunk is a contiguous group of disk blocks
- Sequential reads within a block chunk can proceed at high
speed - similar to continuous allocation
* How do you find an available block group?

- Use freelist bitmap to find block of O's.
11/08/10 Kubiatowicz €5162 ©UCB Fall 2010 Lec 19.14

Large File Version of DEMOS

bas_e _S__if/baff s:z\e OI_S]K' gul-oup
) 3.3
) 3.3
3.9
3.5
3./
i indirect 3.0
file header block group 39

* What if need much bigger' files?
- If need more than 10 groups, set flag in header: BIGFILE
» Each table entry now points to an indirect block group
- Suppose 1000 blocks in a block group = 806B max file
» Assuming 8KB blocks, 8byte enfries=
. (10 ptrsx1024 goups/ﬁfr-xlooo blocks/group)*8K =806B
+ Discussion of DEMOS scheme
- Pros: Fast sequential access, Free areas merge simpP
Easy to find free block groups (when disk not ullg
- Cons: Disk full = No long runs of blocks (fragmentation),
so high overhead allocation/access
- Full disk = worst of 4.1BSD (lots of seeks) with worst of

continuous allocation (lots of recompaction needed)
11/08/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 19.15

How to keep DEMOS performing well?

+ In many systems, disks are always full
- CS department growth: 300 GB to 1TB in a year
» That's 26B/day! (Now at 6 TB?)
- How to fix? Announce that disk space is getting low, so
please delete files?
» Don't really work: people try to store their data faster
- Sidebar: Perhaps we are getting out of this mode with
new disks.. However, let's assume disks full for now
» (Rumor has it that the EECS department has 60TB of
spinning storage just waiting for use...)
+ Solution:
- Don't let disks get completely full: reserve portion
» Free count = # blocks free in bitmap
» Scheme: Don't allocate data if count < reserve
- How much reserve do you need?
» In practice, 10% seems like enough
- Tradeoff: pay for more disk, get contiguous allocation
» Since seeks so expensive for performance, this is a very
11/08/10 900d tradeoff . . . csi62 euce Fall 2010 Lec 19.16

UNIX BSD 4.2
+ Same as .1 (same file header and friply indirect
blocks), except incorporated ideas from DE :
- Uses bitmap allocation in place of freelist
- Attempt to allocate files contiguously
- 10% reserved disk space
- Skip-sector positioning (mentioned next slide)
* Problem: When create a file, don't know how big it
will become (in UNIX, most writes are by appending)
- How much contiguous space do you allocate for a file?
- In Demos, power of 2 growth: once it grows past 1MB,
allocate 2MB, etc
- In BSD 4.2, just find some range of free blocks
» Put each new file at the front of different range
» To expand a file, you first try successive blocks in
bitmap, then choose new range of blocks
- Also in BSD 4.2: store files from same directory near
each other
* Fast File System (FFS)

- Allocation and placement policies for BSD 4.2
11/08/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 19.17

Attack of the Rotational Delay

* Problem 2: Missingb blocks due to rotational delay
- Issue: Read one block, do processing, and read next
block. In meantime, disk has continued turning: missed
next block! Need 1 revolution/block!

Skip Secto
=)
@ @ Track Buffer
(Holds complete track)

- Solutionl: Skip sector positioning (“interleaving”)
» Place the blocks from one file on every other block of a
track: give time for processing to overlap rotation
- Solution2: Read ahead: read next block right after first,
even if application hasn't asked for it yet.
» This can be done either by OS (read ahead)
» By disk itself (track buffers). Many disk controllers have
internal RAM that allows them to read a complete track
+ Important Aside: Modern disks+controllers do many
cor%\plex things “under the covers”
- Track buffers, elevator algorithms, bad block filtering
11/08/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 19.18

How do we actually access files?

+ All information about a file contained in its file header
- UNIX calls this an “inode”
» Inodes are global resources identified by index (“inumber")
- Once you load the header structure, all the other blocks
of the file are locatable
* Question: how does the user ask for a particular file?
- One option: user specifies an inode by a number (index).
» Imagine: open("14553344")
- Better option: specify by textual name
» Have to map name—inumber
- Another option: Icon
» This is how Apple made its money. Graphical user
interfaces. Point to a file and click.
* Naming: The process by which a system translates from
user-visible names to system resources
- In the case of files, need to translate from strings
(textual names) or icons to inumbers/inodes
- For global file systems, data may be spread over
globe=need to translate from strings or icons to some

combination of Ehysical server location and inumber
11/08/10 ubiatowicz €S162 ©UCB Fall 2010 Lec 19.19

Directories

* Directory: a relation used for naming
- Just a table of (file name, inumber) pairs

* How are directories constructed?
- Directories often stored in files
» Reuse of existing mechanism
» Directory named by inode/inumber like other files
- Needs to be quickly searchable
» Options: Simple list or Hashtable
» Can be cached into memory in easier form to search

* How are directories modified?
- Originally, direct read/write of special file
- System calls for manipulation: mkdir, rmdir
- Ties to file creation/destruction

» On creating a file by name, new inode grabbed and
associated with new file in particular directory

11/08/10 Kubiatowicz CS5162 ©UCB Fall 2010 Lec 19.20

Directory Organization

- Directories organized into a hierarchical structure
- Seems standard, but in early 70's it wasn't
- Permits much easier organization of data structures

* Entries in directory can be either files or
directories

- Files named by ordered set (e.g., /programs/p/list)

11/08/10 Kubiatowicz €5162 ©UCB Fall 2010 Lec 19.21

Directory Structure

root | avi | te | jim |
R JAN

cmml| bm;\k'| | book | mail ||mfrex1 hyp |

\

| avi | count; ;unhezll he.xl
| !

— 5 ¥ x

text | mail

* Not really a hierarchy!

- Many systems allow directory structure to be organized
as an acyclic dgr'aph or even a (potentially) cyclic graph
- Hard Links: different names for the same f)ille
» Multiple directory entries point at the same file
- Soft Links: "shortcut” pointers to other files
» Implemented by storing the logical name of actual file

* Name Resolution: The process of converting a logical

name into a physical resource (like a file)
- Traverse succession of directories until reach target file

- Global file system: May be spread across the network
11/08/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 19.22

Directory Structure (Con't)

+ How many disk accesses to resolve “/my/book/count”?
- Read in file header for root (fixed spot on disk)
- Read in first data block for root

» Table of file name/index pairs. Search linearly - ok since
directories typically very small

- Read in file header for “my”

- Read in first data block for "my”; search for “book"

- Read in file header for “book”

- Read in first data block for “"book”; search for “count”
- Read in file header for “count”

* Current working directory: Per-address-space pointer
to a directory Szinode) used for resolving file names

- Allows user to specify relative filename instead of
absolute path (say CWD="/my/book” can resolve “count")

11/08/10 Kubiatowicz €S5162 ©UCB Fall 2010 Lec 19.23

Where are inodes stored?

* In early UNIX and DOS/Windows' FAT file
system, headers stored in special array in
outermost cylinders

- Header not stored near the data blocks. To read a
small file, seek to get header, seek back to data.

- Fixed size, set when disk is formatted. At
formatting time, a fixed number of inodes were
created (They were each given a unique number,
called an “inumber”)

11/08/10 Kubiatowicz €S5162 ©UCB Fall 2010 Lec 19.24

Where are inodes stored?

- Later versions of UNIX moved the header
information to be closer to the data blocks
- Often, inode for file stored in same “cylinder
group” as parent directory of the file (makes an Is
of that directory run fast).

- Pros:

» UNIX BSD 4.2 puts a portion of the file header
array on each cylinder. For small directories, can
fit all data, file headers, etc in same cylinder=no
seeks!

» File headers much smaller than whole block (a few
hundred bytes), so multiple headers fetched from

disk at same time
» Reliability: whatever happens to the disk, you can
find many of the files (even if directories
disconnected)
- Part of the Fast File System (FFS)
» General optimization to avoid seeks

Kubiatowicz €5162 ©UCB Fall 2010

11/08/10 Lec 19.25

In-Memory File System Structures

directory structure
open (file name) —l

iractony structure .
Gt i) file-control block

er space kemel memory secondary storage

- Open srstem call:
- Resolves file name, finds file control block (inode)
- Makes entries in per-process and system-wide tables
- Returns index (called “file handle”) in open-file table

Index

| | | /illil blocks
read (index) T

o process system-wide file-control block
operfil tabla opan-ile table

user space kemnel memory secondary storage

* Read/write system calls:
- Use file handle to locate inode
- Perform appropriate reads or writes

Kubiatowicz €S162 ©UCB Fall 2010

11/08/10 Lec 19.26

File System Caching

+ Key Idear Exploit focalify by caching data in memory

- Name translations: Mapping from paths—inodes
- Disk blocks: Mapping from block address—disk content
+ Buffer Cache: Memory used to cache kernel resources,
including disk blocks and name translations
- Can contain "dirty” blocks (blocks yet on disk)

* Replacement policy? LRU
- Can afford overhead of timestamps for each disk block

- Advantages:
» Works very well for name translation
» Works well in general as long as memory is big enough to
accommodate a host's working set of files.
- Disadvantages:
» Fails when some application scans through file system,
thereby flushing t?\e cache with data used only once

» Example: find . —exec grep foo {} \;
* Other Replacement Policies?
- Some systems allow applications to request other policies

- Example, 'Use Once':

» File system can discard blocks as soon as they are Ese1d9 .
ec .

11/08/10 Kubiatowicz €S162 ©UCB Fall 2010

File System Caching (con't)

* Cache Size: How much memory should the OS allocate
to the buffer cache vs virtual memory?
- Too much memory to the file system cache = won't be
able to run many applications at once
- Too little memory to file system cache = manz
applications may run slowly (disk caching not effective)
- Solution: adjust boundary dynamically so that the disk
access rates for paging and file access are balanced
* Read Ahead Prefetching: fetch sequential blocks early
- Key Idea: exploit fact that most common file access is
sequential by prefetching subsequent disk blocks ahead of
current read request (if they are not already in memory)
- Elevator algorithm can efficiently interleave groups of
prefetches from concurrent applications
- How much to prefetch?
» Too many imposes delays on requests by other applications
» Too few causes many seeks (and rotational delays) among
concurrent file requests

Kubiatowicz €S5162 ©UCB Fall 2010

11/08/10 Lec 19.28

File System Caching (con't)

* Delayed Writes: Writes to files not immediately sent
out to disk
- Instead, write() copies data from user space buffer
to kernel buffer (in cache)

» Enabled by presence of buffer cache: can leave written
file blocks in cache for a while

» If some other aqPIica‘l'ion tries to read data before
written to disk, file system will read from cache

- Flushed to disk periodically (e.g. in UNIX, every 30 sec)
- Advantages:
» Disk scheduler can efficiently order lots of requests

» Disk allocation algorithm can be run with correct size value
for a file

» Some files need never get written to disk! (e..g temporary
scratch files written /fmp often don't exist for 30 sec)

- Disadvantages
» What if system crashes before file has been written out?

» Worse yet, what if system crashes before a directory file
has been written out? (lose pointer to inodel)

11/08/10 Kubiatowicz €5162 ©UCB Fall 2010 Lec 19.29

Important “ilities”

+ Availability: the pr‘obabilif¥ that the system can
accept and process requests
- Often measured in “nines” of probability. So, a 99.9%
probability is considered “3-nines of availability”
- Key idea here is independence of failures
* Durability: the ability of a system to recover data
despite faults
- This idea is fault tolerance applied to data
- Doesn't necessarily implg availability: information on
pyramids was very durable, but could not be accessed
until discovery of Rosetta Stone
- Reliability: the ability of a system or component to
perform its required functions under stated conditions
for a specified period of time (IEEE definition)
- Usually stronger than simply availability: means that the
system is not only “up”, but also working correctly
- Includes availability, security, fault tolerance/durability

- Must make sure data survives system crashes, disk

crashes, other problems
11/08/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 19.30

How to make file system durable?

Disk blocks confain Reed-Solomon error correcfing
codes (ECC) to deal with small defects in disk drive
- Can allow recovery of data from small media defects
* Make sure writes survive in short term
- Either abandon delayed writes or
- use special, battery-backed RAM (called non-volatile RAM
or NVRAM) for dirty blocks in buffer cache.
* Make sure that data survives in long term
- Need to replicate! More than one copy of datal
- Important element: independence of failure
» Could put copies on one disk, but if disk head fails...
» Could put copies on different disks, but if server fails...
» Could put copies on different servers, but if building is
struck by lightning....
» Could put copies on servers in different continents...
* RAID: Redundant Arrays of Inexpensive Disks
- Data stored on multiple disks (redundancy)
- Either in software or hardware

» In hardware case, done by disk controller; file system may

not even know that there is more than one disk in use
11/08/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 19.31

Log Structured and Journaled File Systems

+ Betfer refiabilify Through use of fog

- All changes are treated as fransactions

- A transaction is committed once it is written to the log
» Data forced to disk for reliability
» Process can be accelerated with NVRAM

- Although File system may not be updated immediately,
data preserved in the log

- Difference between “Log Structured” and “Journaled”
- In a Log Structured filesystem, data stays in log form
- In a Journaled filesystem, Log used for recovery
* For Journaled system:
- Log used to asynchronously update filesystem
» Log entries removed after used
- After crash:
» Remaining transactions in the log performed ("Redo”)
» Modifications done in way that can survive crashes
- Examples of Journaled File Systems:
- Ext3 (Linux), XFS (rUnix etc.

11/08/10 KubiaYowicz €$162 ©UCB Fall 2010 Lec 19.32

Conclusion

* Multilevel Indexed Scheme
- Inode contains file info, direct pointers to blocks,
- indirect blocks, doubly indirect, etc..
+ Cray DEMOS: optimization for sequential access
- Inode holds set of disk ranges, similar to segmentation
4.2 BSD Multilevel index files
- Inode contains pointers to actual blocks, indirect blocks,
double indirect blocks, etc
- Optimizations for sequential access: start new files in
open ranges of free blocks
- Rotational Optimization
* Naming: act of translating from user-visible names to
actual system resources
- Directories used for naming for local file systems
* Important system properties
- Availability: how often is the resource available?
- Durability: how well is data preserved against faults?

- Reliability: how often is resource performing cor‘recﬂy?
11/08/10 Kubiatowicz C5162 ©UCB Fall 2010 Lec 19.33

CS162
Operating Systems and
Systems Programming
Lecture 20

Reliability and Access Control /
Distributed Systems

November 10, 2010
Prof. John Kubiatowicz
http://inst.eecs.berkeley.edu/~cs162

Review: Example of Multilevel Indexed Files

+ Multilevel Indexed Files:
(from UNIX 4.1 BSD)
- Key

idea: efficient for small

files, but still allow big files

- File Header format:

» First 10 ptrs to data blocks
» Block 11 points to “indirect

block” containing 256 bl

ocks

» Block 12 points to “doubly-

indirect block” containin
256 indirect blocks for
of 64K blocks

» Block 13 points to a triply ind

- UNIX 4.1 Pros and cons

gotal

- Pros: Simple (more or less)
Files can easily expand (up to a point)
Small files particularly cheap and easy

- Cons: Lots of seeks

mode

owners (2)

[timestamps (3) |

siza block count

da1a'_

direct blocks 7

:

single indirect —

double indirect _|

*—{dafa |

triple indirect

o
&
73

data

irect block (16M blocks)

Very large files must read many indirect block (four

I/Os per block!)
11/10/09

Kubiatowicz €S162 ©UCB Fall 2010

Lec 20.2

Review: UNIX BSD 4.2

+ Inode Structure Same as BSD 4.1 (same file header
and ‘tr‘i%lx\ indirect blocks), except incorporated ideas
from DEMOS:

- Uses bitmap allocation in place of freelist
- Attempt to allocate files contiguously
- 10% reserved disk space
- Skip-sector positioning
- BSD 4.2 Fast File System (FFS)
- File Allocation and placement policies
» Put each new file at front of different range of blocks
» To expand a file, you first try successive blocks in
bitmap, then choose new range of blocks
- Inode for file stored in same “cylinder group” as parent
directory of the file
- Store files from same directory near each other
- Note: I put up the original FFS paper as reading for
last lecture (and on Handouts pageg

* Later file systems

- Clustering of files used together, automatic defrag of
files, a number of additional optimizations

11/10/09 Kubiatowicz 5162 ©UCB Fall 2010

Lec 20.3

Goals for Today

* File Caching

* Durability

* Authorization

- Distributed Systems

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated from my lecture notes by Kubiatowicz.

11/10/09

Kubiatowicz €S162 ©UCB Fall 2010

Lec 20.4

Where are inodes stored?

* In early UNIX and DOS/Windows' FAT file
system, headers stored in special array in
outermost cylinders

- Header not stored near the data blocks. To read a
small file, seek to get header, seek back to data.

- Fixed size, set when disk is formatted. At
formatting time, a fixed number of inodes were
created (They were each given a unique number,
called an “inumber")

11/10/09 Kubiatowicz €S162 ©UCB Fall 2010 Lec 20.5

Where are inodes stored?

+ Later versions of UNIX moved the header
information to be closer to the data blocks

- Often, inode for file stored in same “cylinder
groua" as parent directory of the file (makes an Is
of that directory run fast).

- Pros:

» UNIX BSD 4.2 puts a portion of the file header
array on each cylinder. For small directories, can
fit all data, file headers, etc in same cylinder=no
seeks!

» File headers much smaller than whole block (a few
hundred bytes), so multiple headers fetched from
disk at same time

» Reliability: whatever happens to the disk, you can
find many of the files (even if directories
disconnected)

- Part of the Fast File System (FFS)
» General optimization to avoid seeks

11/10/09 Kubiatowicz €S162 ©UCB Fall 2010 Lec 20.6

Linux Example: Ext2/3 Disk Layout

. . . . T Block Group O
- Disk divided into block 5% ccrme
i f 3 . . - Hu?t Uuecl?w
groups L[| o emmm | [ien [name Jioe)
- Provides locality Block s of | o [16Jorizs [z008]
T Y Ceﬂl.unrs. |12 ‘r}-I | 5,033 |
- Each group has two Grow LI e
. o Descriptor Block 258
block-sized bitmaps Table : ,
(free blocks/inodes) o[|
- Block sizes settable - fremRe / —

. Inode Table 'dirt’ conlents
at format time: Blocks2-3 Y T Jvowe [wow
1K, 2K, 4K, 8K sow [Booktean [. | 2|

. . . bdd 16 12ipg 5,086

+ Actual Inode structure e O oy ey)
similar to 4.2BSD Bock inode \ B AN
Bitmap Bitmap .) !lle_1 Uﬂ'! con.wn'.?i

- with 12 direct pointers , ,

Block Block Blocks 20,002-20.003, 20,114-20,117
16,386

+ Ext3: Ext2 w/Journaling | e

- Several degrees of i .
rotection with more or Example: create a filel.dat

ess cost under /dir/ in Ext3
11/10/09 Kubiatowicz €S162 ©UCB Fall 2010 Lec 20.7

In-Memory File System Structures

directory structure
open (file name) —l

diractory structure

file-conirol block

er space kernel memory secondary slorage

+ Open system call:
- Resolves file name, finds file control block (inode)
- Makes entries in ner‘-gr‘ocess and system-wide tables

- Returns index (called “file handle”) in open-file table
mi-_: T
: | /:kuauluus
read (index) P
o process syshom-wid file-control block

fo
open-Fil ey opan-file table

user space kemnel memory secondary storage

* Read/write system calls:
- Use file handle to locate inode
- Perform appropriate reads or writes

11/10/09 Kubiatowicz €S162 ©UCB Fall 2010 Lec 20.8

File System Caching
+ Key Idear Exploit focalify by caching data in memory

- Name translations: Mapping from paths—inodes
- Disk blocks: Mapping from block address—disk content
* Buffer Cache: Memory used to cache kernel resources,
including disk blocks and name translations
- Can contain "dirty” blocks (blocks not yet on disk)
* Replacement policy? LRU
- Can afford overhead of timestamps for each disk block
- Advantages:
» Works very well for name translation
» Works well in general as long as memory is big enough to
accommodate a host's working set of files.
- Disadvantages:
» Fails when some application scans through file system,
thereby flushing f?\e cache with data used only once
» Example: find . —exec grep foo {} \;
* Other Replacement Policies?
- Some systems allow applications to request other policies
- Example, 'Use Once':

» File system can discard blocks as soon as they are used
11/10/09 Kubiatowicz €5162 ©UCB Fall 2010 Lec 20.9

File System Caching (con't)

* Cache Size: How much memory should the OS allocate
to the buffer cache vs virtual memory?
- Too much memory to the file system cache = won't be
able to run many applications at once
- Too little memory to file system cache = man%/
applications may run slowly (disk caching not effective)
- Solution: adjust boundary dynamically so that the disk
access rates for paging and file access are balanced
* Read Ahead Prefetching: fetch sequential blocks early

- Key Idea: exploit fact that most common file access is
sequential by prefetching subsequent disk blocks ahead of
current read request (if they are not already in memory)

- Elevator algorithm can efficiently interleave groups of
prefetches from concurrent applications

- How much to prefetch?

» Too many imposes delays on requests by other applications

» Too few causes many seeks (and rotational delays) among
concurrent file requests

11/10/09 Kubiatowicz €S162 ©UCB Fall 2010 Lec 20.10

File System Caching (con't)

* Delayed Writes: Writes to files not immediately sent
out to disk
- Instead, write() copies data from user space buffer
to kernel buffer (in cache)

» Enabled by presence of buffer cache: can leave written
file blocks in cache for a while

» If some other agylicaﬁon tries to read data before
written to disk, file system will read from cache
- Flushed to disk periodically (e.g. in UNIX, every 30 sec)
- Advantages:
» Disk scheduler can efficiently order lots of requests
» Disk allocation algorithm can be run with correct size value
for a file
» Some files need never get written to disk! (e..g temporary
scratch files written /fmp often don't exist for 30 sec)
- Disadvantages
» What if system crashes before file has been written out?
» Worse yet, what if system crashes before a directory file
has been written out? (lose pointer to inodel)

11/10/09 Kubiatowicz €S162 ©UCB Fall 2010 Lec 20.11

Administrivia

11/10/09 Kubiatowicz €S162 ©UCB Fall 2010 Lec 20.12

Aside: Command Queueing

* Mentioned that some disks do queueing

- Ability for disk to take multiple requests

- Do elevator algorithm automatically on disk
* First showed up in SCSI-2 timeframe

- Released in 1990, but later retracted

- Final release in 1994

» Note that "MSDOS" still under Windows-3.1

* Now prevalent in many drives

- SATA-II: "NCQ" (Native Command Queueing)
* Modern Disk (Seagate):

-2TB

- 7200 RPM

- 36bits/second SATA-II interface (serial)

- 32 MB on-disk cache

11/10/09 Kubiatowicz €S162 ©UCB Fall 2010 Lec 20.13

Important “ilities”

+ Availability: the pr‘obabilif¥ that the system can
accept and process requests
- Often measured in “nines” of probability. So, a 99.9%
probability is considered “3-nines of availability”
- Key idea here is independence of failures
* Durability: the ability of a system to recover data
despite faults
- This idea is fault tolerance applied to data
- Doesn't necessarily implg availability: information on
pyramids was very durable, but could not be accessed
until discovery of Rosetta Stone
- Reliability: the ability of a system or component to
perform its required functions under stated conditions
for a specified period of time (IEEE definition)
- Usually stronger than simply availability: means that the
system is not only “up”, but also working correctly
- Includes availability, security, fault tolerance/durability
- Must make sure data survives system crashes, disk

crashes, other problems
11/10/09 Kubiatowicz €S162 ©UCB Fall 2010 Lec 20.14

What about crashes?
Log Structured and Journaled File Systems
. Betfer reliability Through iise of Tog
- All changes are treated as fransactions.
» A transaction either happens completely or not at all
- A transaction is committed once it is written to the log
» Data forced to disk for reliability
» Process can be accelerated with NVRAM

- Although File system may not be updated immediately,
data preserved in the log

- Difference between “Log Structured” and “Journaled”
- Log Structured Filesystem (LFS): data stays in log form
- Journaled Filesystem: Log used for recovery
* For Journaled system:
- Log used to asynchronously update filesystem
» Log entries removed after used
- After crash:
» Remaining transactions in the log performed (“Redo”)
- Examples of Journaled File Systems:
- Ext3 (Linux), XFS (Unix

2 etc.
11/10/09 Kubiatowicz £5162 ©UCB Fall 2010 Lec 20.15

Other ways to make file system durable?

Disk blocks confain Reed-Solomon error correcfing
codes (ECC) to deal with small defects in disk drive
- Can allow recovery of data from small media defects

- Make sure writes survive in short term

- Either abandon delayed writes or
- use special, battery-backed RAM (called non-volatile RAM
or NVRAM) for dirty blocks in buffer cache.

* Make sure that data survives in long term

- Need to replicate! More than one copy of datal
- Important element: independence of failure
» Could put copies on one disk, but if disk head fails...
» Could put copies on different disks, but if server fails..
» Could put copies on different servers, but if building is
struck by lightning....
» Could put copies on servers in different continents...

* RAID: Redundant Arrays of Inexpensive Disks

- Data stored on multiple disks (redundancy)
- Either in software or hardware

» In hardware case, done by disk controller; file system may

not even know that there is more than one disk in use
11/10/09 Kubiatowicz €S162 ©UCB Fall 2010 Lec 20.16

RAID 1: Disk Mirroring/Shadowing

~—_recovery

group

Each disk is fully duplicated onto its "shadow™
- For high I/0 rate, high availability environments
- Most expensive solution: 100% capacity overhead
Bandwidth sacrificed on write:
- Logical write = two physical writes
- Highest bandwidth when disk heads and rotation fully
synchronized (hard to do exactly)
* Reads may be optimized
- Can have two independent reads to same data
* Recovery:
- Disk failure = replace disk and copy data to new disk
- Hot Spare: idle disk already attached to system to be
used for immediate replacement
11/10/09 Kubiatowicz 5162 ©UCB Fall 2010 Lec 20.17

RAID 5+: High I/O Rate Parity

* Data sTr‘szed across o
multiple disks
- Successive blocks DOJ |B1] |B2] [B3] |Po
stored on successive Increasing
(non-parity) disks D4| |D5| |D6 P1 D7 ngiﬁal
- Increased bandwidth Addresses

over single disk D8| [D9| P2| |p10| |b11

* Parity block (in green)
constructed by XORing |[b12| |p3| [p13| [b14]| [p15
data bocks in stripe

- ga?(dezfroy"any one
isk and sti
reconstruct data D20 |p21f |D22| |D23| | P5

- Suppose D3 fails,
then can reconstruct:
D3=D0®D18D29PO

* Later in term: talk about spreading information widely
across internet for durability.
11/10/09 Kubiatowicz 5162 ©UCB Fall 2010 Lec 20.18

Disk 1 Disk 2 Disk 3 Disk 4 Disk 5

Hardware RAID: Subsystem Organization

D
single board —
CPU host | array disk
adapter| [controller controller
—
-~ A
manages interface single board
to host, DMA / disk
controller
control, buffering, —
parity logic S
single board
. . — disk
physical device controller
control ~——
S
singLe_ toard —
. . — is
Some systems duplicate controller

all hardware, namely —

controllers, busses, etc. often piggy-backed
in small format devices

11/10/09 Kubiatowicz €S162 ©UCB Fall 2010 Lec 20.19

Solid State Disk (SSD)

* Becoming Possible to store Fa ety ot
(relatively) large amounts of data _—
- E.g. Intel SSD: 806B - 16068 e =
- NAND FLASH most common =) \&]
» Weritten in blocks - similarity to L osm
DISK, without seek time =

Trapped Charge/No charge
on floating gate
MLC: MultiLevel Cell

- Non-volatile - just like disk,
so can be disk replacement

* Advantages over Disk
- Lower power, greater reliability, lower noise (no moving parts)
- 100X Faster reads than disk (no seek)
- Disadvantages
- Cost (20-100X) per byte over disk
- Relatively slow writes (but still faster than disk)
- Write endurance: cells wear out if used too many times
» 105 to 106 writes
» Multi-Level Cells = Single-Level Cells = Failed Cells

» Use of "wear-leveling” to distribute writes over less-used blocks
11/10/09 Kubiatowicz 5162 ©UCB Fall 2010 Lec 20.20

Remote File Systems: Virtual File System (VFS)

Ba-system intertace

VFS interface

X
local lile systom remote file system
type 2 type 1

local file system

s disk &
* VFS: Virtual abstraction similar to local file system
- Instead of “inodes” has “vnodes"”
- Compatible with a variety of local and remote file systems
» provides object-oriented way of implementing file systems
* VFS dllows the same system call interface (the APT) to
be used for different types of file systems

- The API is to the VFS interface, rather than any specific
. of file system

Kubiatowicz €S5162 ©UCB Fall 2010 Lec 20.21

Network File System (NFS)

+ Three Layers for NFS system
- UNIX file-system interface: open, read, write, close
calls + file descriptors
- VFS layer: distinguishes local from remote files
» Calls the NFS protocol procedures for remote requests
- NFS service layer: bottom layer of the architecture
» Implements the NFS protocol
* NFS Protocol: remote procedure calls (RPC) for file
operations on server
- Reading/searching a directory
- manipulating links and directories
- accessing file attributes/reading and writing files
* NFS servers are stateless; each request provides all
arguments require for execution
* Modified data must be committed to the server's disk
before results are returned to the client
- lose some of the advantages of caching
- Can lead to weird results: write file on one client, read
on other, get old data
11/10/09 Kubiatowicz 5162 ©UCB Fall 2010 Lec 20.22

Schematic View of NFS Architecture

client server
system-calls interface
VFS interface —-Iﬂierlace ‘
| , ! ,
other types of UNIX file NFS NFS UNIX file
file systems system client server system
A RPC/XDR ‘ RPC/XDR X
ol
[S h —
di@ J _ disi
— ‘ network ‘ — =
11/10/09 Kubiatowicz €S162 ©UCB Fall 2010 Lec 20.23

Authorization: Who Can Do What?

+ How do we decide who is ,
authorized to do actions in the
system?
+ Access Control Matrix: contains
all permissions in the system
- Resources across top
» Files, Devices, etc...

- Domains in columns bt
. . ; Fi F Fy | printer
» A domain might be a user or a |*™" -
group of users o, read read
» E.g. above: User D3 can read 0 ot
F2 or execute F3
. o, read | execule
- In practice, table would be B et
huge and sparsel! O | wie wie

11/10/09 Kubiatowicz €S5162 ©UCB Fall 2010 Lec 20.24

Authorization: Two Implementation Choices

* Access Control Lists: store permissions with object
- Still might be lots of users!
- UNIX limits each file to: r,w,x for owner, group, world

- More recent systems allow definition of groups of users
and permissions for each group

- ACLs allow easy changing of an object's permissions
» Example: add Users C, D, and F with rw permissions
* Capability List: each process tracks which objects has
permission to touch
- Popular in the past, idea out of favor today

- Consider page table: Each process has list of pages it
has access to, not each page has list of processes ..
- Capability lists allow easy changing of a domain's
permissions
» Example: you are promoted to system administrator and

should be given access to all system files
11/10/09 Kubiatowicz €5162 ©UCB Fall 2010 Lec 20.25

Authorization: Combination Approach

+ Objects have ACLs

- ACLs can refer to users or
- Everyone with particular groups

group access is “equivalent - Change object permissions

+ Users bave capabil'i"ries, .
called “groups” or “roles

when accessing group
resource

- Like passport (which gives
access to country of origin)

object by modifying ACL
- Change broad user
permissions via changes in
group membership
- Possessors of proper
credentials get access

11/10/09 Kubiatowicz €S5162 ©UCB Fall 2010 Lec 20.26

Authorization: How to Revoke?

+ How does one revoke someone's access rights to
a particular object?
- Easy with ACLs: just remove entry from the list
- Takes effect immediately since the ACL is checked
on each object access
* Harder to do with capabilities since they aren't
stored with the object being controlled:
- Not so bad in a single machine: could keep all

capability lists in a well-known place (e.g., the OS
capability table).

- Very hard in distributed system, where remote
hosts may have crashed or may not cooperate
(more in a future lecture)

11/10/09 Kubiatowicz €S162 ©UCB Fall 2010 Lec 20.27

Revoking Capabilities

* Various approaches to revoking capabilities:
- Put expiration dates on capabilities and force
reacquisition
- Put epoch numbers on capabilities and revoke all

capabilities by bumping the epoch number (which
gets checked on each access attempt)

- Maintain back pointers to all capabilities that have
been handed out (Tough if capabilities can be
copied)

- Maintain a revocation list that gets checked on
every access attempt

11/10/09 Kubiatowicz €S162 ©UCB Fall 2010 Lec 20.28

Peer-to-Peer odel

* Centralized System: System in which major functions
are performed by a single physical computer
- Originally, everything on single computer
- Later: client/server model
+ Distributed System: physicaIIK separate computers
working together on some tas
- Early model: multiple servers working together
» Probably in the same room or building
» Often called a “cluster”

- Later models: peer-to-peer/wide-spread collaboration
11/10/09 Kubiatowicz €5162 ©UCB Fall 2010 Lec 20.29

Distributed Systems: Motivation/Issues

Wl}?l do we want distributed systems?
- Cheaper and easier to build lots of simple computers
- Easier to add power incrementally
- Users can have complete control over some components
- Collaboration: Much easier for users to collaborate through
network resources (such as network file systems)
The promise of distributed systems:
- Higher availability: one machine goes down, use another
- Better durability: store data in multiple locations
- More security: each piece easier to make secure
Reality has been disappointing
- Worse availability: efend on every machine being Lclr
» Lamport: "a distributed system is one where I cant do work
because some machine I've never heard of isn't working!”
- Worse reliability: can lose data if ang machine crashes
- Worse security: anyone in world can break into system
Coordination is more difficult
- Must coordinate multiple copies of shared state information
(using only a network)
- What would be easy in a centralized system becomes a lot
more difficult
11/10/09 Kubiatowicz 5162 ©UCB Fall 2010 Lec 20.30

Distributed Systems: Goals/Requirements

* Transparency: the ability of the system to mask its
complexity behind a simple interface
* Possible transparencies:
- Location: Can't tell where resources are located
- Migration: Resources may move without the user knowing
- Replication: Can't tell how many copies of resource exist
- Concurrency: Can't tell how many users there are
- Parallelism: System may speed up large jobs by spliting
them into smaller pieces
- Fault Tolerance: System may hide varoius things that go
wrong in the system
* Transparency and collaboration require some way for
different processors to communicate with one another

11/10/09 Lec 20.31

Networking Definitions

+ Network: physical connection that allows two computers
to communicate
* Packet: unit of transfer, sequence of bits carried over
the network
- Network carries packets from one CPU to another
- Destination gets interrupt when packet arrives

* Protocol: agreement between two parties as to how
information is to be transmitted

11/10/09 Kubiatowicz €S162 ©UCB Fall 2010 Lec 20.32

Conclusion

* Important system properties
- Availability: how often is the resource available?
- Durability: how well is data preserved against faults?
- Reliability: how often is resource performing correctly?
*+ Use of Log to improve Reliability
- Journaled file systems such as ext3
RAID: Redundant Arrays of Inexpensive Disks
- RAID1: mirroring, RAID5: Parity block
+ Authorization
- Controlling access to resources using
» Access Control Lists
» Capabilities
* Network: physical connection that allows two
computers to communicate

- Packet: unit of transfer, sequence of bits carried over
the network

11/10/09 Kubiatowicz €S162 ©UCB Fall 2010 Lec 20.33

Cs162
Operating Systems and
Systems Programming
Lecture 21

Networking

November 15, 2010
Prof. John Kubiatowicz
http://inst.eecs.berkeley.edu/~cs162

Review: File System Caching

* Delayed Writes: Writes to files not immediately sent
out fo disk

- Instead, write() copies data from user space buffer
to kernel buffer (in cache)

» Enabled by presence of buffer cache: can leave written
file blocks in cache for a while

» If some other aqPIica‘l'ion tries to read data before
written to disk, file system will read from cache

- Flushed to disk periodically (e.g. in UNIX, every 30 sec)
- Advantages:
» Disk scheduler can efficiently order lots of requests

» Disk allocation algorithm can be run with correct size value
for a file

» Some files need never get written to disk! (e..g temporary
scratch files written /fmp often don't exist for 30 sec)
- Disadvantages
» What if system crashes before file has been written out?
» Worse yet, what if system crashes before a directory file
has been written out? (lose pointer to inodel)

11/15/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 21.2

Review: RAID 5+: High I/O Rate Parity

* Data strzrped across o
multiple disks
- Successive blocks DO| |b1] [D2] |D3 PO
stored on successive Increasing
(non-parity) disks D4| |D5| |D6| (P1| |D7| | Logical
. Disk
- Increased bandwidth Addresse
over single disk pD8| |D9| | P2| [D10| [D11
* Parity block (in gr'een)
constructed by XORing |[b12| P3| |p13| |p14| [b15
data bocks in stripe

- PO=DO®D1®D2®D3 P4
- gar;(desdtroy"any one
isk and sti
reconstruct data D20| [D21f [D22| |D23| | P5
B fﬁggocs:n ?'Zcf)?\g:éuct: Disk 1 Disk 2 Disk 3 Disk 4 Disk 5
D3=D0$D19D24PO

* Later in term: talk about spreading information widely
across internet for durability.
11/15/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 21.3

D16 |D17| |D18| (D19

Goals for Today

* Authorization
* Networking
- Broadcast
- Point-to-Point Networking
- Routing
- Internet Protocol (IP)

Note: Some slides and/or pictures in the following are

adapted from slides ©2005 Silberschatz, Galvin, and Gagne.

Many slides generated from my lecture notes by Kubiatowicz.
11/15/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 21.4

Authorization: Who Can Do What?

+ How do we decide who is
authorized to do actions in the
system?

« Access Control Matrix: contains
all permissions in the system

- Resources across top
» Files, Devices, etc...

- Domains in columns objec
. . ; Fi R R printer
» A domain might be a user or a |*™"
group of users o | read read
» E.g. above: User D3 can read o | ot
F2 or execute F3 |
. o, read | execule
- In practice, table would be e =t
huge and sparsel! % | wme wie
11/15/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 21.5

Authorization: Two Implementation Choices

* Access Control Lists: store permissions with object

- Still might be lots of users!
- UNIX limits each file to: r,w,x for owner, group, world

» More recent systems allow definition of groups of users
and permissions for each group

- ACLs allow easy changing of an object’s permissions
» Example: add Users C, D, and F with rw permissions

- Reguires mechanisms to prove identity

* Capability List: each process tracks which objects it
has permission to touch
- Consider page table: Each process has list of pages it
has access Yo, not each page has list of processes ..
» Capability list easy to change/augment permissions
» E.g.: you are promoted to system administrator and should
be given access to all system files
- Implementation: Capability like a "Key” for access

» Example: cryptographically secure (non-forgeable) chunk
of data that can be exchanged for access
11/15/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 21.6

Authorization: Combination Approach

+ Objects have ACLs

- ACLs can refer to users or
- Everyone with particular groups
group access is “equivalent - Change object permissions

+ Users ‘P‘\ave capabil‘i‘ﬂes, .
called “groups” or “roles

when accessing group
resource

- Like passport (which gives
access to country of origin)

object by modifying ACL
- Change broad user

permissions via changes in
group membership

- Possessors of proper
credentials get access

11/15/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 21.7

Authorization: How to Revoke?

+ How does one revoke someone's access rights to
a particular object?
- Easy with ACLs: just remove entry from the list
- Takes effect immediately since the ACL is checked
on each object access
* Harder to do with capabilities since they aren't
stored with the object being controlled:
- Not so bad in a single machine: could keep all

capability lists in a well-known place (e.g., the OS
capability table).

- Very hard in distributed system, where remote
hosts may have crashed or may not cooperate
(more in a future lecture)

11/15/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 21.8

Revoking Capabilities

* Various approaches to revoking capabilities:
- Put expiration dates on capabilities and force
reacquisition
- Put epoch numbers on capabilities and revoke all

capabilities by bumping the epoch number (which
gets checked on each access attempt)

- Maintain back pointers to all capabilities that have
been handed out (Tough if capabilities can be
copied)

- Maintain a revocation list that gets checked on
every access attempt

11/15/10 Kubiatowicz €5162 ©UCB Fall 2010 Lec 21.9

Peer-to-Peer Model

* Centralized System: System in which major functions
are performed by a single physical computer
- Originally, everything on single computer
- Later: client/server model
+ Distributed System: physicaIIK separate computers
working together on some tas
- Early model: multiple servers working together
» Probably in the same room or building
» Often called a “cluster”

- Later models: Eeer'—fo- eer/wide-spread collaboration
11/15/10 ubiatowicz €5162 ©UCB Fall 2010 Lec 21.10

Distributed Systems: Motivation/Issues

. Wizy do we want distributed systems?
- Cheaper and easier to build lots of simple computers
- Easier to add power incrementally
- Users can have complete control over some components
- Collaboration: Much easier for users to collaborate through
network resources (such as network file systems)
* The promise of distributed systems:
- Higher availability: one machine goes down, use another
- Better durability: store data in multiple locations
- More security: each piece easier to make secure
* Reality has been disappointing
- Worse availability: efend on every machine being lﬂ:)
» Lamport: “a distributed system is one where I cant do work
because some machine I've never heard of isn't working!”
- Worse reliability: can lose data if ang machine crashes
- Worse security: anyone in world can break into system
+ Coordination is more difficult
- Must coordinate multiple copies of shared state information
(using only a network)
- What would be easy in a centralized system becomes a lot
more difficult
11/15/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 21.11

Distributed Systems: Goals/Requirements

* Transparency: the ability of the system to mask its
complexity behind a simple interface
* Possible transparencies:
- Location: Can't tell where resources are located
- Migration: Resources may move without the user knowing
- Replication: Can't tell how many copies of resource exist
- Concurrency: Can't tell how many users there are
- Parallelism: System may speed up large jobs by spliting
them into smaller pieces
- Fault Tolerance: System may hide various things that go
wrong in the system
* Transparency and collaboration require some way for
different processors to communicate with one another

11/15/10 Lec 21.12

Administrivia

11/15/10 Kubiatowicz €5162 ©UCB Fall 2010 Lec 21.13

Networking Definitions

+ Network: physical connection that allows two computers
to communicate

* Packet: unit of transfer, sequence of bits carried over
the network
- Network carries packets from one CPU to another
- Destination gets interrupt when packet arrives

* Protocol: agreement between two parties as to how
information is to be transmitted

11/15/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 21.14

Broadcast Networks %jp
3

+ Broadcast Network: Shared Communication Medium \E%//
. I/0 I/0 I/0][
Processor Device | | Device | | Device Memory

- Shared Medium can be a set of wires
» Inside a computer, this is called a bus
» All devices simultaneously connected to devic'ss

- Originally, Ethernet was a broadcast network
» All computers on local subnet connected to one another

- More examples (wireless: medium is air): cellular phones,
GSM GPRS, EDGE, CDMA 1xRTT, and 1EvDO

11/15/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 21.15

Bod
(Da'rz) E

Message

: <" 1b:1
% (ignore)
D

ID:3
(sender)
'ID 4 N=
(ignore) ID:2
(receive)

<
* Delivery: When you acket, how does a
receiver know who it is for? (packet goes to everyonel!)

- Put header on front of packet: [Destination | Packet]

- Everyone gets packet, discards if not the target

- In Ethernet, this check is done in hardware

» No OS interrupt if not for particular destination
- This is layering: we're going to build complex network

protocols by layering on top of the packet
11/15/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 21.16

Broadcast Network Arbitration

* Arbitration: Act of negotiating use of shared medium
- What if two senders try to broadcast at same time?
- Concurrent activity but can't use shared memory to
coordinatel!
+ Aloha network (70's): packet radio within Hawaii
- Blind broadcast, with checksum at end of /
packet. If received correctly (not garbled), =7/
send back an acknowledgement. Ifg not
received correctly, discard.
» Need checksum anyway - in case airplane
flies overhead
- Sender waits for a while, and if doesn't
get an acknowledgement, re-transmits.
- If two senders try to send at same time, both get
garbled, both simply re-send later.
- Problem: Stability: what if load increases?
» More collisions = less gets through =more resent = more
load... = More collisions...
» Unfortunately: some sender may have started in clear, get
scrambled without finishing
11/15/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 21.17

Carrier Sense, Multiple Access/Collision Detection

+ Ethernet (early 80's): first practical local area network

- It is the most common LAN for UNIX, PC, and Mac

- Use wire instead of radio, but still broadcast medium

+ Key advance was in arbitration called CSMA/CD:
Carrier sense, multiple access/collision detection
- Carrier Sense: dont send unless idle
» Don't mess up communications already in process
- Collision Detect: sender checks if packet trampled.
» If so, abort, wait, and retry.
- Backoff Scheme: Choose wait time before trying a;;ain
* How long to wait after trying to send and failing:

- What if everyone waits the same length of time? Then,
they all collide again at some timel!

- Must find way to break up shared behavior with nothing
more than shared communication channel

* Adaptive randomized waiﬂng strategy:

- Adaptive and Random: First time, pick random wait time
with some initial mean. If collide again, pick random value
from bigger mean wait time. Etc.

- Randomness is important to decouple colliding senders

- Scheme figures out how many people are trying to send!
11/15/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 21.18

- Why have a shared bus at all? Why not simplify and
only have point-to-point links + routers/switches?
- Originally wasn't cost-effective
- Now, easy to make high-speed switches and routers that
can forward packets from a sender to a receiver.
* Point-to-point network: a network in which every
physical wire is connected to only two computers
+ Switch: a bridge that transforms a shared-bus
(broadcast) configuration into a point-to-point network.
* Router: a device that acts as a junction between two

networks to transfer data ?acke s among them.
11/15/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 21.19

Point-to-Point Networks Discussion

+ Advantages:
- Higher link performance
» Can drive point-to-point link faster than broadcast link
since less capacitance/less echoes (from impedance
mismatches)
- 6reater aggregate bandwidth than broadcast link
» Can have multiple senders at once
- Can add capacity incrementally
» Add more links/switches to get more capacity
- Better fault tolerance (as in"the Internet)
- Lower La'rencz
. » No arbitration to send, although need buffer in the switch
- Disadvantages:
- More expensive than having everyone share broadcast link
- However, technology costs now much cheaper
+ Examples
- ATM (asynchronous transfer mode)
» The first commercial point-to-point LAN
» Inspiration taken from telephone network
- Switched Ethernet
» Same facke*r format and signaling as broadcast Ethernet,

but only two machines on each ethernet.
11/15/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 21.20

Point-to-Point Network design

N

——
Outputs

b

ey

- Switches look like computers: inputs, memory, outputs
- In fact probably contains a processor

* Function of switch is to forward packet to output that
gets it closer to destination

* Can build big crossbar by combining smaller switches

ol—| ¢

S g
o153\ | @3
>

+ Can perform broadcast if necessary

11/15/10 Kubiatowicz €5162 ©UCB Fall 2010 Lec 21.21

Flow control options
AB T 1A

c B.C.D
D |

What if everyone sends to the same output?
- Congestion—packets don't flow at full rate
* In general, what if buffers fill up?
- Need flow control policy
Option 1: no flow control. Packets get dropped if
they arrive and there's no space

- If someone sends a lot, they are given buffers and
packets from other senders are dropped

- Internet actually works this way
Option 2: Flow control between switches
- When buffer fills, stop inflow of packets

- Problem: what if path from source to destination is

completely unused, but ?oes through some switch that
has buffers filled up with unrelated traffic?

11/15/10 Kubiatowicz €S162 ©UCB Fall 2010

Lec 21.22

Flow Control (con't)
+ Opfion 37 Per-fiow flow control.
- Allocate a separate set of buffers to each end-to-

end stream and use separate “don't send me more”
control on each end-to-end stream

aaaq ababab acbcac | dadcdbdc
bbbb, _cccc,)| _dddd,

- Problem: fairness

- Throughput of each stream is entirely dependent on
topology, and relationship to bottleneck
+ Automobile Analogy

- At traffic jam, one strategy is merge closest to the
bottleneck

» Why people get off at one exit, drive 50 feet, merge
back into flow
» Ends up slowing everybody else a huge emount
- Also why have control lights at on-ramps
» Try to keep from injecting more cars than capacity of
road (and thus avoid congestion)

11/15/10 Kubiatowicz €S5162° ©UCB Fall 2010 Lec 21.23

The Internet Protocol: “IP”

+ The Internet is a large network of computers spread
across the globe

- According to the Internet Systems Consortium, there
were over 681 million computers as of July 2009

- In principle, every host can speak with every other one
under the right circumstances

* IP Packet: a network packet on the internet
+ IP Address: a 32-bit integer used as the destination
of an IP packet
- Often written as four dot-separated integers, with each
integer from 0—255 (thus representing 8x4=32 bits)
- Example CS file server is: 169.229.60.83 = 0xA9E53C53
* Internet Host: a computer connected to the Internet
- Host has one or more IP addresses used for routing
» Some of these may be private and unavailable for routing
- Not every computer has a unique IP address
» Groups of machines may share a single IP address

» In this case, machines have private addresses behind a
"Network Address Translation” (NAT) gateway

11/15/10 Kubiatowicz €S162 ©UCB Fall 2010

Lec 21.24

Address Subnets

* Subnet: A network connecting a set of hosts with
related destination addresses
* With IP, all the addresses in subnet are related by a
prefix of bits
- Mask: The number of matching prefix bits

» Expressed as a single value (e.bg., 24) or a set of ones in a
32-bit value (e.g., 255.255.255.0)

* A subnet is identified by 32-bit value, with the bits
whicl:'t differ set to zero, followed by a slash and a
mas

- Example: 128.32.131.0/24 designates a subnet in which
all the addresses look like 128.32.131.XX

- Same subnet: 128.32.131.0/255.255.255.0
- Difference between subnet and complete network range
- Subnet is always a subset of address range

- Once, subnet meant single physical broadcast wire: now,

less clear exactly what it means (virtualized by switches)
11/15/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 21.25

Address Ranges in IP

+ IP address space divided into prefix-delimited ranges:
- Class A: NN.0.0.0/8
» NN is 1-126 (126 of these networks)
» 16,777,214 IP addresses per network
» 10.xx.yy.zz is private
» 127 .xx.yy.zz is loopback
- Class B: NN.MM.0.0/16
» NN is 128-191, MM is 0-255 (16,384 of these networks)
» 65,534 IP addresses per network
» 172.[16-31].xx.yy are private
- Class C: NN.MM_LL.0/24

» NN is 192-223, MM and LL 0-255
(2,097,151 of these networks)

» 254 IP addresses per networks
» 192.168.xx.yy are private
* Address ranges are often owned by organizations

- Can be further divided into subnets
11/15/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 21.26

Hierarchical Networking: The Internet

* How can we build a nefwork wi illions of hosfTs:
- Hierarchy! Not every host connected to every other one
- Use a network of Routers to connect subnets together

» Routing is often by prefix: e.g. first router matches first
8 bits of address, next router matches more, etc.

Other
subnets

Transcontinen

Lec 21.27

Simple Network Terminology

* Local-Area Network (LAN) - designed to cover small
geographical area

- Multi-access bus, ring, or star network
- Speed ~ 10 - 1000 Megabits/second
- Broadcast is fast and cheap

- In small organization, a LAN could consist of a single
subnet. In large organizations (like UC Berkeley), a LAN
contains many subnets

+ Wide-Area Network (WAN) - links geographically
separated sites

- Point-to-point connections over long-haul lines (often
leased from a phone company)

- Speed ~ 1.544 - 45 Megabits/second
- Broadcast usually requires multiple messages

11/15/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 21.28

Routing

* Routing: the process of forwarding packets hop-by-hop
through routers to reach their destination
- Need more than just a destination address!
» Need a path
- Post Office Analogy:
» Destination address on each letter is not
sufficient to get it to the destination
» To get a letter from here to Florida, must route to local
ost office, sorted and sent on plane to somewhere in
lorida, be routed to post office, sorted and sent with
carrier who knows where street and house is...
* Internet routing mechanism: routing tables
- Each router does table lookup to decide which link to use
to get packet closer to destination
- Don't need 4 billion entries in table: routing is by subnet
- Could packets be sent in a loop? VYes, if tables incorrect

* Routing table contains:
- Destination address range — output link closer to

destination
- Default entry (for subnets without explicit entries)
11/15/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 21.29

Setting up Routing Tables

* How do you set up routing tables?
- Internet has no centralized statel
» No single machine knows entire topology
» Topology constantly changing (faults, reconfiguration, etc)
- Need dynamic algorithm that acquires routing tables
» Ideally, have one entry per subnet or portion of address
» Could have “default” routes that send packets for unknown
subnets to a different router that has more information
+ Possible algorithm for acquiring routing table
- Routing table has “cost” for each entry
» Includes number of hops to destination, congestion, etc.
» Entries for unknown subnets have infinite cost
- Neighbors periodically exchange routing tables
» If neighbor knows cheaper route to a subnet, replace your
entry with neighbors entry (+1 for hop to neighbor)
* In reality:
- Internet has networks of many different scales

- Different algorithms run at different scales
11/15/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 21.30

Naming in the Internet

P
* How to map human-readable names to IP addresses?
- E.g. www.berkeley.edu = 128.32.139.48

- E.g. www.google.com = different addresses depending on
location, and load

* Why is this necessary?
- IP addresses are hard to remember

- IP addresses change:
» Say, Server 1 crashes gets replaced by Server 2
» Or - google.com handled by different servers

* Mechanism: Domain Naming System (DNS)

11/15/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 21.31

Name | —> |Address

Lenaggtiratttannte,

Domain Name System ¥ Top-level.. %

.
&

PRRTIICTI ...a,___.o’\
RO ‘1.‘ .‘...g"y"%"'o..‘
4 1
o 4 4 com
; K
. i MIT 4 . o

g

3 N\,
‘. - L R R R IR e .
N . 3 -
X ~uzberkeley: s\ ..
/ﬂ..-v e d .
9 ARSI

.......

o

v

+ DNS is a hierarchical mechanism for naming 128.32.135.48

- Name divided in domains, right to left: www.eecs.berkeley.edu
+ Each domain owned by a particular organization
- Top level handled by ICANN (Internet Corporation for
Assigned Numbers and Names
- Subsequent levels owned by organizations
+ Resolution: series of queries to successive servers

* Caching: queries take time, so results cached for period of time
11/15/10 Kubiatowicz €5162 ©UCB Fall 2010 Lec 21.32

How Important is Correct Resolution?
+ If affacker manages To give incorrect mapping:
- Can get someone to route to server, thinking that they are
routing to a different server
» Get them to log into "bank” - give up username and password
- Is DNS Secure?
- Definitely a weak link
» What if “response” returned from different server than
original query?
» Get person to use incorrect IP address!
- Attempt to avoid substitution attacks:
» Query includes random number which must be returned
+ This summer (July 2008), hole in DNS security located!
- Dan Kaminsky (security researcher) discovered an attack
that broke DNS globally

» One person in an ISP convinced to load particular web page,
then a// users of that ISP end up pointing at wrong address

- High profile, highly advertised need for patching DNS
» Big press release, lots of mystery

» Security researchers told no speculation until patches agPIied
11/15/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 21.33

Conclusion

* Network: physical connection that allows two
computers to communicate
- Packet: sequence of bits carried over the network
* Broadcast Network: Shared Communication Medium
- Transmitted packets sent to all receivers
- Arbitration: act of negotiating use of shared medium
» Ethernet: Carrier Sense, Multiple Access, Collision Detect
* Point-to-point network: a network in which every
physical wire is connected to only two computers
- Switch: a bridge that transforms a shared-bus
(broadcast) configuration into a point-to-point network.
* Protocol: Agreement between two parties as to how
information is to be transmitted
+ Internet Protocol (IP)
- Used to route messages through routes across globe
- 32-bit addresses, 16-bit ports
* DNS: System for mapping from names=IP addresses
- Hierarchical mapping from authoritative domains
- Recent flaws discovered

11/15/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 21.34

Cs162
Operating Systems and
Systems Programming
Lecture 22

Networking IT

November 17, 2010
Prof. John Kubiatowicz
http://inst.eecs.berkeley.edu/~cs162

Review: Point-to-point networks

Jaudajur

* Point-to-point network: a network in which every

physical wire is connected to only two computers

+ Switch: a bridge that transforms a shared-bus
(broadcast) configuration into a point-to-point network.

* Hub: a multiport device that acts like a repeater
broadcasting from each input to every output

* Router: a device that acts as a junction between two
networks to transfer data packets among them.

11/17/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 22.2

Review: Address Subnets

+ Subnet: A network connecting a set of hosts with
related destination addresses

+ With IP, all the addresses in subnet are related by a
prefix of bits

- Mask: The number of matching prefix bits
» Expressed as a single value (e.g., 24) or a set of ones in a
32-bit value (e.g., 255.255.2595.0)

* A subnet is identified by 32-bit value, with the bits
whicl? differ set to zero, followed by a slash and a
mas

- Example: 128.32.131.0/24 designates a subnet in which
all the addresses look like 128.32.131.XX

- Same subnet: 128.32.131.0/255.255.255.0
- Difference between subnet and complete network range
- Subnet is always a subset of address range

- Once, subnet meant single physical broadcast wire: now,
less clear exactly what it means (virtualized by switches)
11/17/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 22.3

Goals for Today

* Networking
- Routing
- DNS
- Routing
- TCP/IP Protocols

Note: Some slides and/or pictures in the following are

adapted from slides ©2005 Silberschatz, Galvin, and Gagne.

Many slides generated from my lecture notes by Kubiatowicz.
11/17/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 22.4

Simple Network Terminology

* Local-Area Network (LAN) - designed to cover small
geographical area

- Multi-access bus, ring, or star network

- Speed ~ 10 - 1000 Megabits/second

- Broadcast is fast and cheap

- In small organization, a LAN could consist of a single
subnet. In large organizations (like UC Berkeley), a LAN
contains many subnets

+ Wide-Area Network (WAN) - links geographically
separated sites

- Point-to-point connections over long-haul lines (often
leased from a phone company)

- Speed ~ 1.544 - 45 Megabits/second
- Broadcast usually requires multiple messages

11/17/10 Kubiatowicz €5162 ©UCB Fall 2010 Lec 22.5

Routing

* Routing: the process of forwarding packets hop-by-hop
through routers to reach their destination
- Need more than just a destination address! &
» Need a path
- Post Office Analogy:
» Destination address on each letter is not
sufficient to get it to the destination
» To get a letter from here to Florida, must route to local
ost office, sorted and sent on plane to somewhere in
lorida, be routed to post office, sorted and sent with
carrier who knows where street and house is...
* Internet routing mechanism: routing tables
- Each router does table lookup to decide which link to use
to get packet closer to destination
- Don't need 4 billion entries in table: routing is by subnet
- Could packets be sent in a loop? VYes, if tables incorrect

* Routing table contains:
- Destination address range — output link closer to

destination
- Default entry (for subnets without explicit entries)
11/17/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 22.6

Setting up Routing Tables

* How do you set up routing tables?
- Internet has no centralized statel
» No single machine knows entire topology
» Topology constantly changing (faults, reconfiguration, etc)
- Need dynamic algorithm that acquires routing tables
» Ideally, have one entry per subnet or portion of address
» Could have “default” routes that send packets for unknown
subnets to a different router that has more information
+ Possible algorithm for acquiring routing table
- Routing table has “cost” for each entry
» Includes number of hops to destination, congestion, etc.
» Entries for unknown subnets have infinite cost
- Neighbors periodically exchange routing tables
» If neighbor knows cheaper route to a subnet, replace your
entry with neighbors entry (+1 for hop to neighbor)
* In reality:
- Internet has networks of many different scales

- Different algorithms run at different scales
11/17/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 22.7

Naming in the Internet

P
* How to map human-readable names to IP addresses?
- E.g. www.berkeley.edu = 128.32.139.48

- E.g. www.google.com = different addresses depending on
location, and load

* Why is this necessary?
- IP addresses are hard to remember

- IP addresses change:
» Say, Server 1 crashes gets replaced by Server 2
» Or - google.com handled by different servers

* Mechanism: Domain Naming System (DNS)

Name | —> |Address

11/17/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 22.8

Domain Name System :Top-level.. %
prpe .“"v‘%

o edu

NG

et NG L aae
. o

. antagtietiette

t

Y

www

i i eecs NPT

128.32.61.103 "‘.,.."_:‘ :.‘ N+ eecs.

128.32.139.48

. o

+ DNS is a hierarchical mechanism for naming
- Name divided in domains, right to left: www.eecs.berkeley.edu
+ Each domain owned by a particular organization

- Top level handled by ICANN (Internet Corporation for
Assigned Numbers and Names

- Subsequent levels owned by organizations
+ Resolution: series of queries to successive servers

* Caching: queries take time, so results cached for period of time
11/17/10 Kubiatowicz €5162 ©UCB Fall 2010 Lec 22.9

How Important is Correct Resolution?
+ If affacker manages To give incorrect mapping:
- Can get someone to route to server, thinking that they are
routing to a different server
» Get them to log into "bank” - give up username and password
- Is DNS Secure?
- Definitely a weak link
» What if “"response” returned from different server than
original query?
» Get person to use incorrect IP address!
- Attempt to avoid substitution attacks:
» Query includes random number which must be returned
+ In July 2008, hole in DNS security located!
- Dan Kaminsky (security researcher) discovered an attack
that broke DNS globally

» One person in an ISP convinced to load particular web page,
then a// users of that ISP end up pointing at wrong address

- High profile, highly advertised need for patching DNS
» Big press release, lots of mystery

» Security researchers told no speculation until patches agglied
11/17/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 22.10

Performance Considerations

+ Before we continue, need some performance metrics
- Overhead: CPU time to put packet on wire
- Throughput: Maximum number of bytes per second

» Depends on “wire speed”, but also limited by slowest router
(routing delay) or by congestion at routers

- Latency: time until first bit of packet arrives at receiver
» Raw transfer time + overhead at each routing hop

+ Contributions to Latency
- Wire latency: depends on speed of light on wire
» about 1-1.5 ns/foot
- Router latency: depends on internals of router
» Could be < 1 ms (for a good router)
» Question: can router handle full wire throughput?
11/17/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 22.11

Sample Computations

. E.q_.: Ethernet within Soda
-Latency: speed of light in wire is 1.5ns/foot, which
implies latency in building < 1 ps (if no routers in path)
- Throughput: 10-1000Mb/s
- Throughput delay: packet doesn't arrive until all bits
» So: 4KB/100Mb/s = 0.3 milliseconds (same order as disk!)
. E.%: ATM within Soda
- atencn (same as above, assuming no routing)
- Throughput: 155Mb/s
- Thr'qu;\XtuT delay: 4KB/155Mb/s = 200y
. E.%: ATM cross-country
-Latency (assuming no routing):
» 3000miles * 5000ft/mile = 15 milliseconds
- How many bits could be in transit at same time?
» 15ms * 155Mb/s = 290KB
- In fact, Berkeley—>MIT Latency ~ 45ms
» 872KB in flight if routers have wire-speed throughput
* Requirements for good performance:
- Local area: minimize overhead/improve bandwidth
- Wide area: keep pipeline fulll

11/17/10 Kubiatowicz €S5162 ©UCB Fall 2010 Lec 22.12

Administrivia

11/17/10 Kubiatowicz €5162 ©UCB Fall 2010 Lec 22.13

* Protocols on today's Internet:

Network Protocols

+ Profocol: Agreement between two par“l'les as Yo how

information is to be transmitted
- Example: system calls are the protocol between the
operating system and application
- Networking examples: many levels
» Physical level: mechanical and electrical network (e.g. how
are 0 and 1 represented)
» Link level: packet formats/error control (for instance, the
CSMA/CD protocol)
» Network level: network routing, addressing
» Transport Level: reliable message delivery

www e-mail

NFS
Sppc S
.../.
Transport UDP /

....... T
...........‘....... Seeeesssssssssssssssssssssssssssns
Physical/Link Ethernet ATM Packet radio
11/17/10 Kubiatowicz €5162 ©UCB Fall 2010 Lec 22.14

Network Layering

* Layering: building complex services from simpler ones
- Each layer provides services needed by higher layers by
utilizing services provided by lower layers
* The physical/link layer is pretty limited
- Packets are of limited size (called the "Maximum Transfer
Unit or MTU: often 200-1500 bytes in size)
- Routing is limited to within a physical link (wire) or perhaps
through a switch
* Our goal in the following is to show how to construct a
secure, ordered, message service routed to anywhere:

Physical Reality: Packets

Abstraction: Messages

Limited Size Arbitrary Size
Unordered (sometimes) Ordered
Unreliable Reliable

Machine-to-machine

Process-to-process

Only on local area net

Routed anywhere

Asynchronous

Synchronous

11/17/10 Insecure

Secure

Lec 22.15

Building a messaging service

* Handling Arbitrary Sized Messages:
- Must deal with limited physical packet size
- Split big message into smaller ones (called fragments)
» Must be reassembled at destination
- Checksum computed on each fragment or whole message
+ Internet Protocol (IP): Must find way to send packets
to arbitrary destination in network

- Deliver messages unreliably ("best effort”) from one
machine in Internet to another
- Since intermediate links may have limited size, must be
able to fragment/reassemble packets on demand
- Includes 256 different “sub-protocols” build on top of IP
» Examples: ICMP(1), TCP(6), UDP (17), IPSEC(50,51)

11/17/10 Kubiatowicz CS5162 ©UCB Fall 2010 Lec 22.16

IP Packet Format

- IP Packet Format:

IP Header Size of datagram Flags &
Length (header+data) Fragmentation
{ 15 16 J 31 Yo split large

IP Ver4 —5F TTHL] _ToS | Total length(T6-bmts) [" 0o

16-bit identification [flags| 13-bit frag off IP header

Lil- ;m(eh:os)\’ TTL Ly protocol [16-bit header checksum| 20 bytes
P _~ 32-bit source IP address
Type of _~ _ 32-bit destination IP address
transport~"g options (if any) S
protocol o P
Data
11/17/10 Kubiatowicz €5162 ©UCB Fall 2010 Lec 22.17

Building a messaging service

* Process To process communication
- Basic routing gets packets from machine—machine
- What we really want is routing from process—process
» Add “ports”, which are 16-bit identifiers
» A communication channel (connection) defined by 5 items:
[source addr, source port, dest addr, dest port, protocol]
+ UDP: The Unreliable Datagram Protocol
- Layered on top of basic IP (IP Protocol 17)

» Datagram: an unreliable, unordered, packet sent from
source user —> dest user (Call it UDP/IP)

IP Header
(20 bytes)

16-bit source port |16-bit destination port
16-bit UDP length 16-bit UDP checksum
< <

UDP Data

- ImporTanT aspect: low overhead!
» Often used for high-bandwidth video streams
» Many uses of UDP considered “anti-social” - none of the
“well-behaved” aspects of (say) TCP/IP
11/17/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 22.18

Sequence Numbers

* Ordered Messages
- Several network services are best constructed by
ordered messaging
» Ask remote machine to first do x, then do y, etc.
- Unfortunately, underlying network is packet based:
» Packets are routed one at a time through the network
» Can take different paths or be delayed individually
- IP can reorder packets! P,,P; might arrive as P,,P,
+ Solution requires queuing at destination
- Need to hold onto packets to undo misordering
- Total degree of reordering impacts queue size
* Ordered messages on top of unordered ones:
- Assign seguence numbers to packets
»0,1,2,3,4....
» If packets arrive out of order, reorder before delivering to
user application
» For instance, hold onto #3 until #2 arrives, etc.
- Sequence numbers are specific to particular connection
» Reordering among connections normally doesn't matter
- If restart connection, need to make sure use different

range of sequence numbers than previously...
11/17/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 22.19

Reliable Message Delivery: the Problem

+ All physical nefworks can garble and/or drop packets
- Physical media: packet not transmitted/received

» If transmit close to maximum rate, get more throughput -
even if some packets get lost

» If transmit at lowest voltage such that error correction just
starts correcting errors, get best power/bit

- Congestion: no place to put incoming packet
» Point-to-point network: insufficient queue at switch/router
» Broadcast link: two host try to use same link
» In any network: insufficient buffer space at destination
» Rate mismatch: what if sender send faster than receiver
can process?
+ Reliable Message Delivery on top of Unreliable Packets
- Need some way to make sure that packets actually make
it to receiver
» Every packet received at least once
» Every packet received at most once
- Can combine with ordering: every packet received by
process at destination exactly once and in order
11/17/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 22.20

Using Acknowledgements
AL B

Packer -.-.-.._....gr
}s Timeout { """ >
P,

* How to ensure transmission of packets?
- Detect garbling at receiver via checksum, discard if bad

- Receiver acknowledges (by sending “"ack”) when packet
received properly at destination

- Timeout at sender: if no ack, retransmit
* Some questions:
- If the sender doesn't get an ack, does that mean the
receiver didn't get the original message?
» No
- What if ack gets dropped? Or if message gets delayed?

» Sender doesn't ﬁet ack, retransmits. Receiver gets message
twice, acks each.
11/17/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 22.21

How to deal with message duplication
+ Solufion: put sequence number in message fo identity
re-transmitted packets
- Receiver checks for duplicate #'s; Discard if detected
* Requirements:
- Sender keeps copy of unack'ed messages
» Easy: only need to buffer messages
- Receiver tracks possible duplicate messages
» Hard: when ok to forget about received message?
+ Alternating-bit protocol:
- Send one message at a time; don't send A
next message until ack received
- Sender keeps last message:; receiver
tracks sequence # of last message received
* Pros: simple, small overhead

>
S
o)

;

- Con: Poor performance w H#1
- Wire can hold multiple messages; want to AA}%k/
fill up at (wire latency x throughput) \LEOL,
+ Con: doesn't work if network can delay W
or duplicate messages arbitrarily

11/17/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 22.22

Better messaging: Window-based acknowledgements

+ Windowing protocol (not quite TCP):
- Send up to N packets without ack
» Allows pipelining of packets N=5 {
» Window size (l\?) < queue at destination
- Each packet has sequence number
» Receiver acknowledges each packet
» Ack says “receivedall packets up
to sequence number X"/send more
* Acks serve dual purpose:
- Reliability: Confirming packet received
- Flow Control: Receiver ready for packet
» Remaining space in queue at receiver
can be returned with ACK
* What if packet gets garbled/dropped?
- Sender will timeout waiting for ack packet
» Resend missing packets= Receiver gets packets out of order!
- Should receiver discard packets that arrive out of order?
» Simple, but poor performance
- Alternative: Keep copy until sender fills in missing pieces?
» Reduces # of retransmits, but more complex
- What if ack gets garbled/dropped?

- Timeout and resend just the un-acknowledged packets
11/17/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 22.23

Transmission Control Protocol (TCP)

Stream in: Stream out:
.|.zyxwvut} Router Router edcba

+ Transmission Control Protocol (TCP)
- TCP (IP Protocol 6) layered on top of IP
- Reliable byte stream between two processes on different

machines over Internet (read, write, flush)
« TCP Details

- Fragments byte stream into packets, hands packets to IP
» IP may also fragment by itself
- Uses window-based acknowledgement protocol (to minimize
state at sender and receiver)
» "Window" reflects storage at receiver - sender shouldn't
overrun receiver's buffer space
» Also, window should reflect speed/capacity of network -
sender shouldn't overload network
- Automatically retransmits lost packets
- Adjusts rate of transmission to avoid congestion
» A “good citizen”
11/17/10 Kubiatowicz €S5162 ©UCB Fall 2010 Lec 22.24

TCP Windows and Sequence Numbers

——>Sequence Numbers ——

Sent Sent Not yet Send
acked not acked sent ender

Given to app| Buffered received

Received Received Not yet
" Receiver

+ Sender has three regions:
- Sequence regions
» sent and ack'ed
» Sent and not ack'ed
» not yet sent
- Window (colored region) adjusted by sender
* Receiver has three regions:
- Sequence regions
» received and ack'ed (given to application)
» received and buffered

» not yet received (or discarded because out of order)
11/17/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 22.25

Window-Based Acknowledgements (TCP)

100 140 190 230 260 300 340 380 400
(B (R DOl 0O 0| 0o
NS NS NS INS|I NS | NS | NS
— ® .- o .. ® - o] o o .. o ..
HENEIE EH Y
So oo So oo 80 80 30

Kubiatowicz C5162 ©UCB Fall 2010

Selective Acknowledgement Option (SACK)

_ 7 = _
2 ~n e~ [Els
S| |82 38| B
ZI8 R 5 S
c Qa Q
b E*alj»’ NAZIIo 2
8|3 &9 sy Sl
'!g- g
= 2]

TCP Header TCP Header

* Vanilla TCP Acknowledgement
- Every message encodes Sequence number and Ack
- Can include data for forward stream and/or ack for
reverse stream
+ Selective Acknowledgement
- Acknowledgement information includes not just one
number, but rather ranges of received packets
- Must be specially negotiated at beginning of TCP setup

» Not widely in use (although in Windows since Windows 98)
11/17/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 22.27

Congestion Avoidance

+ Congestion
- How long should timeout be for re-sending messages?
» Too long—»wastes time if message lost
» Too short—retransmit even though ack will arrive shortly
- Stability problem: more congestion = ack is delayed =
unnecessary timeout = more traffic = more congestion
» Closely related to window size at sender: too big means
utting too much data into network
* How does the sender’'s window size get chosen?
- Must be less than receiver's advertised buffer size
- Try to match the rate of sending packets with the rate
that the slowest link can accommodate
- Sender uses an adaptive algorithm to decide size of N
» Goal: fill network between sender and receiver
» Basic technique: slowly increase size of window until
acknowledgements start being delayed/lost
* TCP solution: “slow start” (start sending slowly)
- If no timeout, slowly increase window size (throughput)
by 1 for each ack received
- Timeout = congestion, so cut window size in half

- “Additive Increase, Multiplicative Decrease"
11/17/10 Kubiatowicz CS162 ©UCB Fall 2010 Lec 22.28

Sequence-Number Initialization

* How do you choose an initial sequence number?
- When machine boots, ok to start with sequence #0?
» No: could send two messages with same sequence #!

» Receiver might end up discarding valid packets, or duplicate
ack from original transmission might hide lost packet

- Also, if it is possible to predict sequence numbers, might
be possible for attacker to hijack TCP connection
- Some ways of choosing an initial sequence number:
- Time to live: each packet has a deadline.
» If not delivered in X seconds, then is dropped

» Thus, can re-use sequence numbers if wait for all packets
in flight to be delivered or to expire

- Epoch #: uniquely identifies which set of sequence
numbers are currently being used
» Epoch # stored on disk, Put in every message

» Epoch # incremented on crash and/or when run out of
sequence #

- Pseudo-random increment to previous sequence number

» Used by several protocol implementations
11/17/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 22.29

Use of TCP: Sockets

- Socket: an abstraction of a network I/O queue
- Embodies one side of a communication channel
» Same interface regardless of location of other end
» Could be local machine ﬁ:alled “"UNIX socket”) or remote
machine (called “network socket”)
- First introduced in 4.2 BSD UNIX: big innovation at time
» Now most operating systems provide some notion of socket
+ Using Sockets for Client-Server (C/C++ interface):
- On server: set up “server-socket”
» Create socket, Bind to protocol (TCP), local address, port
» Call listen(): tells server socket to accept incoming requests

» Perform multiple accept() calls on socket to accept incoming
connection request

» Each successful accept() returns a new socket for a new
connection; can pass this off to handler thread

- On client:
» Create socket, Bind to protocol (TCP), remote address, port
» Perform connect() on socket to make connection
» If connect() successful, have socket connected to server

11/17/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 22.30

Socket Setup (Con't)

Client
+ Things to remember:
- Connection involves 5 values:
[Client Addr, Client Port, Server Addr, Server Port, Protocol]
- Often, Client Port “randomly” assigned
» Done by OS during client socket setup
- Server Port often “well known”
» 80 (web), 443 (secure web), 25 (sendmail), etc
» Well-known ports from 0—1023

* Note that the uniqueness of the tuple is really about two
Addr/Port pairs and a protocol
11/17/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 22.31

Server

Socket Example (Java)

server:
//Makes socket, binds addr/port, calls listen()
ServerSocket sock = new ServerSocket(6013);
while(true) {
Socket client = sock.accept();
PrintWriter pout = new
PrintWriter(client.getOutputStream(),true);

pout_println(“Here is data sent to client!”);

cliént.close();

client:
// Makes socket, binds addr/port, calls connect()
Socket sock = new Socket(*169.229.60.38",6013);
BufferedReader bin =
new BufferedReader(
new InputStreamReader(sock.getlnputStream));
String line;
whille ((line = bin.readLine(Q))!=null)
System.out.printin(line);
sock.close();
11/17/10 Kubiatowicz CS5162 ©UCB Fall 2010 Lec 22.32

Conclusion

* DNS: System for mapping from names=IP addresses
- Hierarchical mapping from authoritative domains
- Recent flaws discovered
+ Datagram: a self-contained message whose arrival,
arrival time, and content are not guaranteed
* Performance metrics
- Overhead: CPU time to put packet on wire
- Throughput: Maximum number of bytes per second
- Latency: time until first bit of packet arrives at receiver
* Ordered messages:
- Use sequence numbers and reorder at destination
* Reliable messages:
- Use Acknowledgements

* TCP: Reliable byte stream between two processes on
different machines over Internet (read, write, flush)
- Uses window-based acknowledgement protocol
- Congestion-avoidance dynamically adapts sender window to

account for congestion in network
11/17/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 22.33

Review: Window-Based Acknowledgements (TCP)

Csl 62 100 140 190 230 260 300 340 380 400
. On [W w0 0 0 W
Operating Systems and 8| §8 | RS [RE|FS[FS| RS
M oo oo pmb oo pma s N N W W
Systems Programming 33| 95 | 3%5|a3| 88| 58| 3%
Lecture 23 T 1 .

Network Communication Abstractions /
Distributed Programming

November 22, 2010
Prof. John Kubiatowicz
http://inst.eecs.berkeley.edu/~cs162

Kubiatowicz C5162 ©UCB Fall 2010

Review: Congestion Avoidance

Goals for Today
+ Congestion

- How long should timeout be for re-sending messages? * Finish Discussion of TCP/IP
» Too long—»wastes time if message lost - M
» Too short—retransmit even though ack will arrive shortly essages
- Stability pro?!em: Tore conge:tk#_: ack is delayedf:> - Send/receive
unnecessary timeout = more traffic = more congestion o
» Closely r?;.la*red to window size at sender: too big rgecms - One vs. two-way communication
Uﬂ'ing too much data into ne*wof‘k . Dis"’rlibufed Decision Making
* How does the sender’'s window size get chosen? T h it/B e Commmi
- Must be less than receiver's advertised buffer size - Two-phase commit/Byzantine Commit
- Try to match the rate of sending packets with the rate - Remote Procedure Call
that the slowest link can accommodate - .
- Sender uses an adaptive algorithm to decide size of N - Distributed File Systems (Part I)
» Goal: fill network between sender and receiver

» Basic technique: slowly increase size of window until
acknowledgemenfs start being delayed/lost

* TCP solution: “slow start” (start sending slowly)
- If no timeout, slowly increase window size (throughput)

by 1 for each ack received Note: Some slid.es and/or pic1:ur'es in the fO"O\.Niﬂg are
_ T)i’meouf — congestion, so cut window size in half adap'red' from slides ©2005 Silberschatz, Galvin, and. Gagr.ne.
- “ Additive Increase, Multivlicative Decrease’ Many slides generated from my lecture notes by Kubiatowicz.
11/22/10 Kubiatowicz €5162 ©UCB Fall 2010 Lec 23.3

11/22/10 Kubiatowicz €S5162 ©UCB Fall 2010 Lec 23.4

Sequence-Number Initialization

* How do you choose an initial sequence number?
- When machine boots, ok to start with sequence #0?
» No: could send two messages with same sequence #!

» Receiver might end up discarding valid packets, or duplicate
ack from original transmission might hide lost packet

- Also, if it is possible to predict sequence numbers, might
be possible for attacker to hijack TCP connection
- Some ways of choosing an initial sequence number:
- Time to live: each packet has a deadline.
» If not delivered in X seconds, then is dropped

» Thus, can re-use sequence numbers if wait for all packets
in flight to be delivered or to expire

- Epoch #: uniquely identifies which set of sequence
numbers are currently being used
» Epoch # stored on disk, Put in every message

» Epoch # incremented on crash and/or when run out of
sequence #

- Pseudo-random increment to previous sequence number

» Used by several protocol implementations
11/22/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 23.5

Use of TCP: Sockets

- Socket: an abstraction of a network I/O queue
- Embodies one side of a communication channel
» Same interface regardless of location of other end
» Could be local machine ﬁ:alled “"UNIX socket”) or remote
machine (called “network socket”)
- First introduced in 4.2 BSD UNIX: big innovation at time
» Now most operating systems provide some notion of socket
+ Using Sockets for Client-Server (C/C++ interface):
- On server: set up “server-socket”
» Create socket, Bind to protocol (TCP), local address, port
» Call listen(): tells server socket to accept incoming requests

» Perform multiple accept() calls on socket to accept incoming
connection request

» Each successful accept() returns a new socket for a new
connection; can pass this off to handler thread

- On client:
» Create socket, Bind to protocol (TCP), remote address, port
» Perform connect() on socket to make connection
» If connect() successful, have socket connected to server

11/22/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 23.6

Socket Setup (Con't)

Client
+ Things to remember:
- Connection involves 5 values:
[Client Addr, Client Port, Server Addr, Server Port, Protocol]
- Often, Client Port “randomly” assigned
» Done by OS during client socket setup
- Server Port often “well known”
» 80 (web), 443 (secure web), 25 (sendmail), etc
» Well-known ports from 0—1023

* Note that the uniqueness of the tuple is really about two
Addr/Port pairs and a protocol
11/22/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 23.7

Server

Socket Example (Java)

server:
//Makes socket, binds addr/port, calls listen()
ServerSocket sock = new ServerSocket(6013);
while(true) {
Socket client = sock.accept();
PrintWriter pout = new
PrintWriter(client.getOutputStream(),true);

pout_println(“Here is data sent to client!”);

cliént.close();

client:
// Makes socket, binds addr/port, calls connect()
Socket sock = new Socket(*169.229.60.38",6013);
BufferedReader bin =
new BufferedReader(
new InputStreamReader(sock.getlnputStream));
String line;
whille ((line = bin.readLine(Q))!=null)
System.out.printin(line);
sock.close();
11/22/10 Kubiatowicz CS5162 ©UCB Fall 2010 Lec 23.8

Distributed Applications

+ How do you actually program a distributed application?
- Need to synchronize multiple threads, running on

different machines
» No shared memory, so cannot use testéset

.Y
{ :
S |::> RCNE
3~. : @,J

- One Abstraction: send/receive messages
» Already atomic: no receiver gets portion of a message and
two receivers cannot get same message
* Interface:
- Mailbox (mbox): temporary holding area for messages
» Includes both destination location and queue

— Send(message, mbox)
» Send message to remote mailbox identified by mbox

—Receive(buffer,mbox)
» Wait until mbox has message, copy into buffer, and return

» If threads sleeping on this mbox, wake up one of them
11/22/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 23.9

Using Messages: Send/Receive behavior

+ When should send(message,mbox) return?
- When receiver gets message? (i.e. ack received)
- When message is safely buffered on destination?
- Right away, if message is buffered on source node?

+ Actually two questions here:
- When can the sender be sure that receiver actually
received the message?
- When can sender reuse the memory containing message?
* Mailbox provides 1-way communication from T1->T2

- T1»buffer—»T2
- Very similar to producer/consumer
» Send = V, Receive = P
» However, can't tell if sender/receiver is local or not!

11/22/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 23.10

Messaging for Producer-Consumer Style

+ Using send/receive for producer-consumer style:

Producer:
int msgl[1000];

prepare message; Message

send(msgl,mbox) ;

Consumer:
int buffer[1000];

while(1l) { -
receive(buffer,mbox); ‘
3 process message; Message

* No need for producer/consumer to keep track of space
in mailbox: handled by send/receive
- One of the roles of the window in TCP: window is size of
buffer on far end
- Restricts sender to forward only what will fit in buffer

11/22/10 Kubiatowicz €S5162 ©UCB Fall 2010 Lec 23.11

Messaging for Request/Response communication

* What about two-way communication?
- Request/Response
» Read a file stored on a remote machine
» Request a web page from a remote web server
- Also called: client-server
» Client = requester, Server = responder
» Server provides “service” (file storage) to the client
+ Example: File service
Client: (requesting the file)
char response[1000];

send(*“read rutabaga”, server_mbox);
receive(response, client_mbox) ;—e=—f Get
) Response

Server: (responding with the file
char command[1000], answer[1000];

receive(command, server_mbox) ;<= Receive
decode command; Request

read file into answer;

send(answer, client_mbox) ;=] Send
11/22/10 Kubiatowicz €S5162 ©UCB Fall 2010 Response 23.12

Request
File

General's Paradox

* Genéral's paradox:
- Constraints of problem:
» Two generals, on separate mountains
» Can only communicate via messengers
» Messengers can be captured
- Problem: need to coordinate attack
» If they attack at different times, they all die
» If they attack at same time, they win
- Named after Custer, who died at Little Big Horn because
he arrived a couple of days too early
+ Can messages over an unreliable network be used to
guarantee two entities do something simultaneously?
- Remarkably, “no”, even if all messages get through

11 am ok>

but what if you
\/eDa;‘,.# ;e*\' this ack?

- No way to be sure last message gets through!

11/22/10 Kubiatowicz €S5162 all 2010 Lec 23.13

Administrivia

11/22/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 23.14

Two-Phase Commit

+ Since we canT solve e eneral s Faradox (l.e.
simultaneous action), let's solve a related problem
- Distributed transaction: Two machines agree to do
something, or not do it, atomically
+ Two-Phase Commit protocol does this
- Use a persistent, stable log on each machine to keep track
of whether commit has happened
» If a machine crashes, when it wakes up it first checks its
log to recover state of world at time of crash
- Prepare Phase:
» The global coordinator requests that all participants will
Fromlse to commit or rollback the transaction
» Participants record promise in log, then acknowledge
» If anyone votes to abort, coordinator writes “Abort” in its
log and tells everyone to abort; each records “Abort” in log
- Commit Phase:
» After all participants respond that they are prepared, then
the coordinator writes “Commit” to its log
» Then asks all nodes to commit; they respond with ack
» After receive acks, coordinator writes “Got Commit” to log
- Log can be used to complete this process such that all
machines either commit or don't commit

11/22/10 Kubiatowicz €S5162 ©UCB Fall 2010 Lec 23.15

Two phase commit example

- Simple Example: A=WellsFargo Bank, B=Bank of America
- Phase 1: Prepare Phase
» A writes “Begin transaction” to log
A—B: OK to transfer funds to me?
» Not enough funds:
B—A: transaction aborted; A writes “Abort” to log
» Enoufh funds:
B: Write new account balance & promise to commit to log
B—A: OK, I can commit
- Phase 2: A can decide for both whether they will commit
» A: write new account balance to log
» Write “Commit” to log
» Send message to B that commit occurred:. wait for ack
» Write “Got Commit” to log
* What if B crashes at begmnmﬁ?
- Wakes up, does nothing:” A will timeout, abort and retry
* What if A crashes at beginning of phase 2?
- Wakes up, sees that there is a transaction in progress;
sends “Abort” to B o
* What if B crashes at beginning of phase 2?
- B comes back up, looks at log; when A sends it “Commit”

message, it will say, “"oh, ok, commit”
11/22/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 23.16

Distributed Decision Making Discussion
. thﬁﬁwwmﬁﬁ?%

- Fault Tolerance!
- A group of machines can come to a decision even if one or
more of them fail during the process
» Simple failure mode called “failstcc)r" (different modes later)
- After decision made, result recorded in mulfigle places
* Undesirable feature of Two-Phase Commit: Blocking
- One machine can be stalled until another site recovers:
» Site B writes “prepared to commit” record to its log,
sends a “yes” vote to the coordinator (site A) and crasfiwes
» Site A crashes
» Site B wakes up, check its log, and realizes that it has
voted “yes” on the update. If sends a message to site A
asking what happened. At this point, B cannot decide to
abort, because update may have committed
» B is blocked until A comes back
- A blocked site holds resources (locks on updated items,
pages pinned in memory, etc) until learns fate of update
+ Alternative: There are alternatives such as "Three
Phase Commit” which don't have this blocking problem
* What happens if one or more of the nodes is malicious?

- Malicious: attempting to compromise the decision making
11/22/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 23.17

Byzantine General’'s Problem

; | Lieutenant

W
«‘ A4 rfac

Retreat!

==

Lieutenant

" | Lieutenant
Rc‘\'f‘eo - |
AY

* Byazantine General's Problem (n players):
- One General
- n-1 Lieutenants
- Some number of these (f) can be insane or malicious
- The commanding general must send an order to his n-1
lieutenants suc at:
- IC1: All loyal lieutenants obey the same order
- IC2: If the commanding general is loyal, then all loyal

lieutenants obe¥ the order he sends
11/22/10 ubiatowicz €5162 ®UCB Fall 2010 Lec 23.18

Byzantine General's Problem (con't)

+ Impossibility Results:
- Cannot solve Byzantine General's Problem with n=3
because one malicious player can mess up things

- With f faults, need n > 3f to solve problem
* Various algorithms exist to solve problem
- Original algorithm has #messages exponential in n
- Newer algorithms have message complexity O(n?)
» One from MIT, for instance (Castro and Liskov, 1999)
* Use of BFT (Byzantine Fault Tolerance) algorithm
- Allow multiple machines to make a coordinated decision
even if some subset of them (< n/3) are malicious

000

Request— OO Distributed
Decision
11/22/10 Ku . il 2010 Lec 23.19

Remote Procedure Call

- Raw messaging is a biT Too low-level for programming
- Must wrap up information into message at source
- Must decide what to do with message at destination
- May need to sit and wait for multiple messages to arrive
+ Better option: Remote Procedure Call (RPC)
- Calls a procedure on a remote machine
- Client calls:
remoteFileSystem—Read(“rutabaga™);
- Translated automatically into call on server:
fileSys—»Read(“rutabaga’);
* Implementation:
- Request-response message passing (under covers!)
- "Stub” provides glue on client/server
» Client stub is responsible for “"marshalling” arguments and
“unmarshalling” the return values
» Server-side stub is responsible for “unmarshalling”
arguments and “marshalling” the return values.
* Marshalling involves (depending on system)
- Converting values to a canonical form, serializing

objects, copying arguments passed bX reference, etc.
11/22/10 ubiatowicz €S162 @UCB Fall 201 Lec 23.20

RPC Information Flow

bundle
args
: call : send
Client »| Client »| Packet
" |(caller)}« Stub |« - Handler
> return receive
u'ﬁwmltz mbo
. ret vals ~
Machine A 5 %
........... et L LR L L LN LR L C LR LU I LIEELCL LI E3 -+
Machine B] S
bundle Zl 13
ret vals box1
= return send
\‘ Ij' Server »Serven »| Packet
=L |(callee Stub |e - andle
\‘\@ () call receive
unbundle
args
11/22/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 23.21

RPC Details

+ Equivalence with regular procedure call
- Parameters < Request Message
- Result < Reply message
- Name of Procedure: Passed in request message
- Return Address: mbox2 (client return mail box)
+ Stub generator: Compiler that generates stubs
- Input: interface definitions in an “interface definition
language (IDL)"
» Contains, among other things, types of arguments/return
- Output: stub code in the appropriate source language
» Code for client to pack message, send it off, wait for
result, unpack result and return to caller
» Code for server to unpack message, call procedure, pack
results, send them ofF
* Cross-platform issues:
- What if client/server machines are different
architectures or in different languages?
» Convert everything to/from some canonical form
» Tag every item with an indication of how it is encoded
(avoids unnecessary conversions).

11/22/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 23.22

RPC Details (continued)
- How does client know which mbox fo send f07

- Need to translate name of remote service into network
endpoint (Remote machine, port, possibly other info)
- Binding: the process of converting a user-visible name
into a network endpoint
» This is another word for “naming” at network level
» Static: fixed at compile time
» Dynamic: performed at runtime
* Dynamic Bmdmg
- Most RPC systems use dynamic binding via name service
» Name service provides dynamic translation of service—>mbox
- Why dynamic binding?
» Access control: check who is permitted to access service
» Fail-over: If server fails, use a different one
* What if there are multiple servers?
- Could give flexibility at binding time
» Choose unloaded server for each new client
- Could provide same mbox (router level redirect)
» Choose unloaded server for each new request
» Only works if no state carried from one call to next
* What if multiple clients?
- Pass pointer to client-specific return mbox in request
11/22/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 23.23

Problems with RPC

* Non-Atomic failures
- Different failure modes in distributed system than on a
single machine
- Consider many different types of failures
» User-level bug causes address space to crash
» Machine failure, kernel bug causes all processes on same
machine to fail
» Some machine is compromised by malicious party
- Before RPC: whole system would crash/die
- After RPC: One machine crashes/compromised while
others keep working
- Can easily result in inconsistent view of the world
» Did my cached data get written back or not?
» Did server do what I requested or not?
- Answer? Distributed transactions/Byzantine Commit
* Performance
- Cost of Procedure call « same-machine RPC « network RPC
- Means programmers must be aware that RPC is not free
» Caching can help, but may make failure handling complex

11/22/10 Kubiatowicz CS5162 ©UCB Fall 2010 Lec 23.24

Cross-Domain Communication/Location Transparency

* How do address spaces communicate with one another?
- Shared Memory with Semaphores, monitors, etc..
- File System
- Pipes (1-way communication)
- "Remote” procedure call (2-way communication)

+ RPC's can be used to communicate between address
spaces on different machines or the same machine

- Services can be run wherever it's most appropriate
- Access to local and remote services looks the same
- Examples of modern RPC systems:
- CORBA (Common Object Request Broker Architecture)
- DCOM (Distributed COM)
- RMI (Java Remote Method Invocation)

11/22/10 Kubiatowicz €5162 ©UCB Fall 2010 Lec 23.25

Microkernel operating systems

- Example: split kernel into application-level servers.
- File system looks remote, even though on same machine

App| | App| | App App F;‘J: windows
file system Windowing RPC address
VM Networking h s:aces
Threads Threads
Microkernel Structure

Monolithic Structure

* Why split the OS into separate domains?
- Fault isolation: bugs are more isolated (build a firewall)
- Enforces modularity: allows incremental upgrades of pieces
of software (client or server)
- Location transparent: service can be local or remote

» For example in the X windowing system: Each X client can
be on a separate machine from X server: Neither has to run
on the machine with the frame buffer.

11/22/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 23.26

~ Distributed File Systems

‘/\ Nefwork
< ! !
Data

Client

- Distributed File System:
- Transparent access to files stored on a remote disk

* Naming choices (always an issue):
- Hostname:localname: Name files explicitly mount
» No location or migration transparency kubi:/jane
- Mounting of remote file systems
» System manager mounts remote file system
by giving name and local mount point
» Transparent to user: all reads and writes
look like local reads and writes to user
e.g. /users/sue/foo—/sue/foo on server
- A single, %/oba/ name space: every file
in the world has unique name
» Location Transparency: servers mount
can change and files can move coeus:/sue

without involvinlg user
biatowicz 5162 ©UCB Fall 2010

—_—

Server

11/22/10

Virtual File System (VFS)

Ha-system intoertace

VFS interface

l |

local file system local fila system remate file systom
type 1 type 2 type 1

3 8

* VFS: Virtual abstraction similar to local file system
- Instead of “inodes” has “vnodes”
- Compatible with a variety of local and remote file systems
» provides object-oriented way of implementing file systems
* VFS dllows the same system call interface (the APT) to
be used for different types of file systems
- The API is to the VFS interface, rather than any specific

'rgtpe of file system
11/22/1 Kubiatowicz €S162 ©UCB Fall 2010 Lec 23.28

cache

Client

- Remote Disk: Reads and writes forwarded to server
- Use RPC to translate file system calls
- No local caching/can be caching at server-side
* Advantage: Server provides completely consistent view
of file system to multiple clients
* Problems? Performance!
- 6oing over network is slower than going to local memory
- Lots of network traffic/not well pipelined

- Server can be a bottleneck
11/22/10 Kubiatowicz €5162 ©UCB Fall 2010 Lec 23.29

Use of caching to reduce network load

_ il
ety i WD o
read(f1)-V1 ~" $Refurn (Data)

read(f1)-V1

Client

; Server|CAGche
\ F1:v2
cache ;

write(f1)->OK ‘
r‘ead(s‘l))—_;VZ Client
* Idea: Use caching to reduce network load

- In practice: use buffer cache at source and destination
* Advantage: if open/read/write/close can be done

locally, gon"t need to do any network traffic..fast!

* Problems:

- Failure:

» Client caches have data not committed at server

- Cache consistency!

» Client caches not consistent with server/each other
11/22/10 Kubiatowicz CS162 ©UCB Fall 2010

Lec 23.30

Failures

[

* What if server crashes? Can client wait until server
comes back up and continue as before?
- Any data in server memory but not on disk can be lost
- Shared state across RPC: What if server crashes after
seek? Then, when client does “read”, it will fail
- Message retries: suppose server crashes after it does
UNIX “rm foo“, but before acknowledgment?
» Message system will retry: send it again
» How does it know not to delete it again? (could solve with
two-phase commit protocol, but NF5 takes a more ad hoc
approach)
+ Stateless protocol: A protocol in which all information
required to process a request is passed with request
- Server keeps no state about client, except as hints to
help improve performance (e.g. a cache)
- Thus, if server crashes and restarted, requests can
continue where left off (in many cases)
* What if client crashes?
- Might lose modified data in client cache
11/22/10 Kubiatowicz €S5162 ©UCB Fall 2010 Lec 23.31

Schematic View of NFS Architecture

client server
‘ system-calls interface
VFES interface — VFSinterface
' ‘
other types of UNIX file NFS NFS UNIX file
file systems system client server system
| ‘ RPC/XDR RPC/XDR ‘ ‘

C__TD : ' A) [-

L disk disk
S ‘ network ‘ —

11/22/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 23.32

Network File System (NFS)

+ Three Layers for NFS system

- UNIX file-sgtsfem interface: open, read, write, close
calls + file descriptors

- VFS layer: distinguishes local from remote files
» Calls the NFS protocol procedures for remote requests
- NFS service layer: bottom layer of the architecture
» Implements the NFS protocol
* NFS Protocol: RPC for file operations on server
- Reading/searching a directory
- manipulating links and directories
- accessing file attributes/reading and writing files
* Write-through caching: Modified data committed to
server's disk before results are returned to the client
- lose some of the advantages of caching
- time to perform write() can be long

- Need some mechanism for readers to eventually notice
changes! (more on this later)

11/22/10 Kubiatowicz €5162 ©UCB Fall 2010 Lec 23.33

NFS Continued

- NFS servers are stateless,; each request provides all
ar'gEumen‘rs require for execution
- E.g. reads include information for entire operation, such
as ReadAt(inumber,position), not Read(openfile)
- No need to perform network open() or close() on file -
each operation stands on its own
+ Idempotent: Performing requests multiple times has
same effect as performing it exactly once
- Example: Server crashes between disk I/0 and message
send, client resend read, server does operation again
- Example: Read and write file blocks: just re-read or re-
write file block - no side effects
- Example: What about “"remove”? NFS does operation
twice and second time returns an advisory error
- Failure Model: Transparent to client system
- Is this a good idea? What if you are in the middle of
reading a file and server crashes?
- Options (NFS Provides both):
» Hang until server comes back up (next week?)

» Return an error. (Of course, most applications don't know

they are Talking over network
Kubia

11/22/10 towicz €S162 ©UCB Fall 2010 Lec 23.34

NFS Cache consistency

* NFS protocol: weak consistency
- Client polls server periodically to check for changes

» Polls server if data hasn't been checked in last 3-30
seconds (exact timeout it tunable parameter).

» Thus, when file is changed on one client, server is notified,

but other clients use old version of file until timeout.

Server|cache
F1:v2

‘ F1 still ok?
< — = 5

Client

- What if multiple clients write to same file?
» In NFS, can get either version (or parts of both)

» Completely arbitrary!
11/22/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 23.35

Conclusion

+ Two-phase commit: distributed decision making

- First, make sure everyone guarantees that they will commit if
asked (prepare)
- Next, ask everyone to commit

+ Byzantine General's Problem: distributed decision making with

malicious failures
- One general, n-1 lieutenants: some number of them may be
malicious (often “f” of them)
- All non-malicious lieutenants must come to same decision
- If general not malicious, lieutenants must follow general
- Only solvable if n > 3f+1

* Remote Procedure Call (RPC): Call procedure on remote machine

- Provides same interface as procedure
- Automatic packing and unpacking of arguments without user
programming (in stub)

* VFS: Virtual File System layer

- Provides mechanism which gives same system call interface for
different types of file systems

- Distributed File System:

- Transparent access to files stored on a remote disk

- Caching for performance
11/22/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 23.36

Cs162
Operating Systems and
Systems Programming
Lecture 24

Distributed File Systems

November 24, 2010
Prof. John Kubiatowicz
http://inst.eecs.berkeley.edu/~cs162

Review: RPC Information Flow

Goals for Today

* Finish Remote Procedure Call
+ Examples of Distributed File Systems
- Cache Coherence Protocols for file systems

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Slides on Testing from George Necula (CS169)

Many slides generated from my lecture notes by Kubiatowicz.

11/24/10 Kubiatowicz €S5162 ©UCB Fall 2010 Lec 24.3

bundle
' args q
: ca : sen
Client »| Client »| Packet
(caller)}e Stub |« - Handlen
return receive
uﬁBuﬁallz mbo.
ret vals
Machine A 'sz- Z
.. 3 -+
Machine B BB
bundle Zl 13
ret vals box1
P — return
‘ﬁl‘% Server »Serven send o Packet
—=~."J|(callee Stub |« . Handle
\ = (= receive
unbundle
args
11/24/10 Kubiatowicz €5162 ©UCB Fall 2010 Lec 24.2
RPC Details

+ Equivalence with regular procedure call
- Parameters < Request Message
- Result < Reply message
- Name of Procedure: Passed in request message
- Return Address: mbox2 (client return mail box)
+ Stub generator: Compiler that generates stubs
- Input: interface definitions in an “interface definition
language (IDL)"
» Contains, among other things, types of arguments/return
- Output: stub code in the appropriate source language
» Code for client to pack message, send it off, wait for
result, unpack result and return to caller
» Code for server to unpack message, call procedure, pack
results, send them of?
* Cross-platform issues:
- What if client/server machines are different
architectures or in different languages?
» Convert everything to/from some canonical form
» Tag every item with an indication of how it is encoded
(avoids unnecessary conversions).

11/24/10 Kubiatowicz €S5162 ©UCB Fall 2010 Lec 24.4

RPC Details (continued)
- How does clientT Know which mbox fo send fo?

- Need to translate name of remote service into network
endpoint (Eemo're machine, port, possibly other info)
- Binding: the process of converting a user-visible name
into a network endpoint
» This is another word for “naming” at network level
» Static: fixed at compile time
» Dynamic: performed at runtime
+ Dynamic Bmdmg
- Most RPC systems use dynamic binding via name service
» Name service provides dynamic translation of service—»>mbox
- Why dynamic binding?
» Access control: check who is permitted to access service
» Fail-over: If server fails, use a different one
* What if there are multiple servers?
- Could give flexibility at binding time
» Choose unloaded server for each new client
- Could provide same mbox (router level redirect)
» Choose unloaded server for each new request
» Only works if no state carried from one call to next
* What if multiple clients?
- Pass pointer to client-specific return mbox in request
11/24/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 24.5

Problems with RPC

* Non-Atomic failures

- Different failure modes in distributed system than on a
single machine
- Consider many different types of failures
» User-level bug causes address space to crash
» Machine failure, kernel bug causes all processes on same
machine to fail
» Some machine is compromised by malicious party
- Before RPC: whole system would crash/die
- After RPC: One machine crashes/compromised while
others keep working
- Can easily result in inconsistent view of the world
» Did my cached data get written back or not?
» Did server do what I requested or not?
- Answer? Distributed transactions/Byzantine Commit

+ Performance

- Cost of Procedure call « same-machine RPC « network RPC
- Means programmers must be aware that RPC is not free
» Caching can help, but may make failure handling complex

11/24/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 24.6

Cross-Domain Communication/Location Transparency

* How do address spaces communicate with one another?
- Shared Memory with Semaphores, monitors, etc...
- File System
- Pipes (1-way communication)
- "Remote” procedure call (2-way communication)

* RPC's can be used to communicate between address
spaces on different machines or the same machine

- Services can be run wherever it's most appropriate
- Access to local and remote services looks the same
+ Examples of modern RPC systems:
- CORBA (Common Object Request Broker Architecture)
- DCOM (Distributed COM)
- RMI (Java Remote Method Invocation)

11/24/10 Kubiatowicz €S5162 ©UCB Fall 2010 Lec 24.7

Microkernel operating systems

+ Example: split kernel into application-level servers.
- File system looks remote, even though on same machine

App||App || App App fs:;!: windows
file system Windowing RPC address
M Networking h sgaces
Threads fhreads

Monolithic Structure Microkernel Structure

* Why split the OS into separate domains?
- Fault isolation: bugs are more isolated (build a firewall)
- Enforces modularity: allows incremental upgrades of pieces
of software (client or server)
- Location transparent: service can be local or remote

» For example in the X windowing system: Each X client can
be on a separate machine from X server: Neither has to run
on the machine with the frame buffer.

11/24/10 Kubiatowicz CS5162 ©UCB Fall 2010 Lec 24.8

Distributed File Systems

—
Rv\'} |__Network |

- Distributed File System:
- Transparent access to files stored on a remote disk
* Naming choices (always an issue):

Server

- Hostname:localname: Name files explicitly
» No location or migration transparency
- Mounting of remote file systems
» System manager mounts remote file system
by giving name and local mount point
» Transparent to user: all reads and writes
look like local reads and writes to user

mount
kubi:/jane

users l /

e.g. /users/sue/foo—/sue/foo on server
- A single, %/oba/ name space: every file
in the world has unique name
» Location Transparency: servers mount

can change and files can move coeus:/sue

without involvinlg user
biatowicz €S162 ©UCB Fall 2010

11/24/10

Virtual File System (VFS)

Ho-system intertace

I

VFS interface

J |

local file system local lile systom remote file systom
type 1 type 1
!

* VFS: Virtual abstraction similar to local file system
- Instead of “inodes” has “vnodes”
- Compatible with a variety of local and remote file systems
» provides object-oriented way of implementing file systems
* VFS dllows the same system call interface (the APT) to
be used for different types of file systems

- The API is to the VFS interface, rather than any specific

type of file system
11/24/1 Kubiatowicz €S162 ©UCB Fall 2010 Lec 24.10

Administrivia

11/24/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 24.11

Simple Distributed File System

Client

- Remote Disk: Reads and writes forwarded to server
- Use RPC to translate file system calls
- No local caching/can be caching at server-side
* Advantage: Server provides completely consistent view
of file system to multiple clients
* Problems? Performance!
- 6oing over network is slower than going to local memory
- Lots of network traffic/not well pipelined

- Server can be a bottleneck
11/24/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 24.12

Use of caching to reduce network load

— o
read(f1)-»V1 u
r‘ead(fl)—>V1 cac C\!\\/y"/\llgl_d\/(RPC) \

read(fl) —V1 ||F1:v1 Return (Data)

Client : :
read(f1)-V1 . sorver[cache
- s
cache =

write(f1)->OK :
r‘ead(g‘l))—_;vz Client
* Idea: Use caching to reduce network load

- In practice: use buffer cache at source and destination
* Advantage: if open/read/write/close can be done

locally, don't need to do any network traffic..fast!

* Problems:

- Failure:

» Client caches have data not committed at server

- Cache consistency!

» Client caches not consistent with server/each other
11/24/10 Kubiatowicz €S5162 ©UCB Fall 2010

Lec 24.13

Failures

[

* What if server crashes? Can client wait until server
comes back up and continue as before?
- Any data in server memory but not on disk can be lost
- Shared state across RPC: What if server crashes after
seek? Then, when client does “read”, it will fail
- Message retries: suppose server crashes after it does
UNIX “rm foo“, but before acknowledgment?
» Message system will retry: send it again
» How does it know not to delete it again? (could solve with
two-phase commit protocol, but NF5 takes a more ad hoc
approach)
- Stateless protocol: A protocol in which all information
required to process a request is passed with request
- Server keeps no state about client, except as hints to
help improve performance (e.g. a cache)
- Thus, if server crashes and restarted, requests can
continue where left off (in many cases)
* What if client crashes?
- Might lose modified data in client cache
11/24/10 Kubiatowicz €S5162 ©UCB Fall 2010 Lec 24.14

Schematic View of NFS Architecture

client server
‘ system-calls interface
VFES interface — VFSinterface
' ‘
other types of UNIX file NFS NFS UNIX file
file systems system client server system
| ‘ RPC/XDR RPC/XDR ‘ ‘

C__TD : ' A) [-

L disk disk
S ‘ network ‘ —

11/24/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 24.15

Network File System (NFS)

* Three Layers for NFS system

- UNIX file-system interface: open, read, write, close
calls + file descriptors

- VFS layer: distinguishes local from remote files
» Calls the NFS protocol procedures for remote requests
- NFS service layer: bottom layer of the architecture
» Implements the NFS protocol
* NFS Protocol: RPC for file operations on server
- Reading/searching a directory
- manipulating links and directories
- accessing file attributes/reading and writing files
* Write-through caching: Modified data committed to
server's disk before results are returned to the client
- lose some of the advantages of caching
- time to perform write() can be long

- Need some mechanism for readers to eventually notice
changes! (more on this later)

11/24/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 24.16

NFS Continued
- NFS servers are stateless, each request provides all

ar'gé_lmenfs require for execution
- E.g. reads include information for entire operation, such
as ReadAt(inumber,position), not Read(openfile)
- No need to perform network open() or close() on file -
each operation stands on its own
+ Idempotent: Performing requests multiple times has
same effect as performing it exactly once
- Example: Server crashes between disk I/0 and message
send, client resend read, server does operation again
- Example: Read and write file blocks: just re-read or re-
write file block - no side effects
- Example: What about “"remove”? NFS does operation
twice and second time returns an advisory error
- Failure Model: Transparent to client system
- Is this a good idea? What if you are in the middle of
reading a file and server crashes?
- Options (NFS Provides both):
» Hang until server comes back up (next week?)
» Return an error. (Of course, most applications don't know

they are Talking over network
Kubia

11/24/10 towicz CS162 ©UCB Fall 2010 Lec 24.17

NFS Cache consistency

* NFS protocol: weak consistency
- Client polls server periodically to check for changes

» Polls server if data hasn't been checked in last 3-30
seconds (exact timeout it tunable parameter).

» Thus, when file is changed on one client, server is notified,
but other clients use old version of file until timeout.

\\/& Fo' sﬁll‘ok? ‘

Client

cache

Client

- What if multiple clients write to same file?
» In NFS, can get either version (or parts of both)

» Completely arbitrary!
11/24/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 24.18

Sequential Ordering Constraints

* What sort of cache coherence might we expect?
- i.e. what if one CPU changes file, and before it's done,
another CPU reads file?

+ Example: Start with file contents = "A”
[Read: parts of B or (]

Client 1: [[Read: gets A_ [Write B__|
Client 2: |Read: gets A or Bl Write C |
Client 3: [Read: parts of B or (]

Time

* What would we actually want?
- Assume we want distributed system to behave exactly the
same as if all processes are running on sin?le system

» If read finishes before write starts, get old copy
» If read starts after write finishes, get new copy
» Otherwise, get either new or old copy

- For NFS:
» If read starts more than 30 seconds after write, get new

copy: otherwise, could get partial update
11/24/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 24.19

NFS Pros and Cons

* NFS Pros:
- Simple, Highly portable
* NFS Cons:
- Sometimes inconsistent!
- Doesn't scale to large # clients
» Must keep checking to see if caches out of date
» Server becomes bottleneck due to polling traffic

11/24/10 Kubiatowicz €S5162 ©UCB Fall 2010 Lec 24.20

Andrew File System

+ Andrew File System (AFS, late 80's) —» DCE DFS
(commercial product)

* Callbacks: Server records who has copy of file
- On changes, server immediately tells all with old copy
- No polling bandwidth (continuous checking) needed

* Write through on close
- Changes not propagated to server until close()

- Session semantics: updates visible to other clients only
after the file is closed

» As a result, do not get partial writes: all or nothing!

» Although, for processes on local machine, updates visible
immediately to other programs who have file open

- In AFS, everyone who has file open sees old version
- Don't get newer versions until reopen file

11/24/10 Kubiatowicz €5162 ©UCB Fall 2010 Lec 24.21

Andrew File System (con't)

* Data cached on local disk of client as well as memory
- On open with a cache miss (file not on local disk):
» Get file from server, set up callback with server
- On write followed by close:

» Send copy to server; tells all clients with copies to fetch
new version from server on next open (using callbacks)

« What if server crashes? Lose all callback statel!

- Reconstruct callback information from client: go ask
everyone “who has which files cached?”

+ AFS Pro: Relative to NFS, less server load:
- Disk as cache = more files can be cached locally
- Callbacks = server not involved if file is read-only

* For both AFS and NFS: central server is bottleneck!
- Performance: all writes—server, cache misses—server
- Availability: Server is single point of failure
- Cost: server machine’s high cost relative to workstation

11/24/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 24.22

World Wide Web

* Key idea: graphical front-end to RPC protocol

* What happens when a web server fails?
- System breaks!
- Solution: Transport or network-layer redirection
» Invisible to applications
» Can also help with scalability (load balancers)
» Must handle “sessions” (e.g., banking/e-commerce)

+ Initial version: no caching
- Didn't scale well - easy to overload servers

11/24/10 Kubiatowicz €S5162 ©UCB Fall 2010 Lec 24.23

WWW Caching

- Use client-side caching to reduce number of
interactions between clients and servers and/or
reduce the size of the interactions:

- Time-to-Live (TTL) fields - HTTP “Expires” header
from server

- Client polling - HTTP "If-Modified-Since” request
headers from clients

- Server refresh - HTML "META Refresh tag”
causes periodic client poll

* What is the polling frequency for clients and
servers?

- Could be adaptive based upon a page's age and its
rate of change

- Server load is still significant!

11/24/10 Kubiatowicz CS5162 ©UCB Fall 2010 Lec 24.24

WWW Proxy Caches

* Place caches in the network to reduce server load
- But, increases latency in lightly loaded case
- Caches near servers called “"reverse proxy caches”
» Offloads busy server machines

- Caches at the “edges” of the network called “content
distribution networks”

» Offloads servers and reduce client latency
* Challenges:
- Caching static traffic easy, but only ~40% of traffic
- Dynamic and multimedia is harder
» Multimedia is a big win: Megabytes versus Kilobytes
- Same cache consistency problems as before
* Caching is changing the Internet architecture

- Places functionality at higher levels of comm. protocols
11/24/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 24.25

Conclusion

+ Remote Procedure Call (RPC): Call procedure on remote

machine
- Provides same interface as procedure
- Automatic packing and unpacking of arguments without
user programming (in stub)

* VFS: Virtual File System layer

- Provides mechanism which gives same system call interface
for different types of file systems

+ Distributed File System:

- Transparent access to files stored on a remote disk
» NFS: Network File System
» AFS: Andrew File System

- Caching for performance

* Cache Consistency: Keeping contents of client caches

consistent with one another
- If multiple clients, some reading and some writing, how do
stale cached copies get updated?
- NFS: check periodically for changes
- AFS: clients register callbacks so can be notified by
server of changes
11/24/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 24.26

CS162
Operating Systems and
Systems Programming
Lecture 25

Protection and Security
in Distributed Systems

November 29, 2010
Prof. John Kubiatowicz
http://inst.eecs.berkeley.edu/~cs162

Review: RPC Information Flow

bundle
args
: call : send
Client »| Client »| Packet
=/ |(caller)} Stub |« - Handlen
return receive
Uwz mbo:
. ret vals ~
Machine A P %
e e e L R L LU L L LU LI L L IECL L LIEELL LR LU 3 -+
Machine B Y 3
bundle Zl 13
ret vals box1
= return send
\‘ E Server »Serven »| Packet
—~.|(callee Stub |« . andle
\‘@ () call receive
unbundle
args
11/29/10 Kubiatowicz €5162 ©UCB Fall 2010 Lec 25.2

Review: Distributed File Systems

Read Fil
‘/\,v Network
Data

Client

* VFS: Virtual File System layer
- Provides mechanism which gives same system call interface
for different types of file systems
+ Distributed File System:
- Transparent access to files stored on a remote disk
» NFS: Network File System
» AFS: Andrew File System
- Caching for performance
* Cache Consistency: Keeping contents of client caches
consistent with one another
- If multiple clients, some reading and some writing, how do
stale cached copies get updated?
- NFS: check periodically for changes
- AFS: clients register callbacks so can be notified by

server of changes
11/29/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 25.3

Server

Goals for Today

- Security Mechanisms
- Authentication
- Authorization
- Enforcement
* Cryptographic Mechanisms

Note: Some slides and/or pictures in the following are

adapted from slides ©2005 Silberschatz, Galvin, and Gagne.

Many slides generated from my lecture notes by Kubiatowicz.
11/29/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 25.4

Protection vs Security

* Protection: one or more mechanisms for controlling the
access of programs, processes, or users to resources
- Page Table Mechanism
- File Access Mechanism
+ Security: use of protection mechanisms to prevent
misuse of resources
- Misuse defined with respect to policy
» E.g.: prevent exposure of certain sensitive information
» E.g.: prevent unauthorized modification/deletion of data
- Requires consideration of the external environment
within which the system operates
» Most well-constructed system cannot protect information
if user accidentally reveals password
* What we hope to gain today and next time
- Conceptual understanding of how to make systems secure
- Some examples, to illustrate why providing security is
really hard in practice

Preventing Misuse

* Types of Misuse:
- Accidental:
» If I delete shell, can't log in to fix it!
» Could make it more difficult by asking: “do you really want
to delete the shell?”

- Intentional:
» Some high school brat who can't get a date, so instead he
transfers $3 billion from B to A.
» Doesn't help to ask if they want to do it (of coursel)
*+ Three Pieces to Security
- Authentication: who the user actually is
- Authorization: who is allowed to do what
- Enforcement: make sure people do only what they are
supposed to do
* Loopholes in any carefully constructed system:
- Log in as superuser and you've circumvented
authentication
- Log in as self and can do anything with your resources:
for instance: run program that erases all of your files
- Can you trust software to correctly enforce
Authentication %nd Authorization?????

11/29/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 25.5 11/29/10 ubiatowicz €S162 ©UCB Fall 2010 Lec 25.6
Authentication: Identifying Users 9’*@ Passwords: Secrecy
== - Sysfem must Keep copy of secref To
. - : > =Bl L p copy
HO\';J to |d§n1'lfy users to the system: A <\ check against passwords
asswords . = - What if malicious user gains access to list
» Shared secret between two parties of passwords?

» Since only user knows password, someone types correct
password = must be user typing it

» Very common technique
- Smart Cards

» Electronics embedded in card capable of
providing long passwords or satisfying
challenge — response queries

» May have display to allow reading of password
» Or can be c!:alugged in directly; several
s

credit cards now in this category
- Biometrics
» Use of one or more intrinsic physical or
behavioral traits to identify someone =
» Examples: fingerprint reader, a‘@ 5’%\
palm reader, retinal scan E/\

i

» Becoming quite a bit more common
11/29/10 Kubiatowicz €S5162 ©UCB Fall 2010 Lec 25.7

» Need to obscure information somehow

- Mechanism: utilize a transformation that is difficult to
reverse without the right key (e.g. encryption)

- Example: UNIX /etc/passwd file
- passwd—one way transform(hash)—encrypted passwd

- System stores only encrypted version, so OK even if
someone reads the filel

- When ¥ou type in your password, system compares
encrypted version

* Problem: Can you trust encryption algorithm?
- Example: one algorithm thought safe had back door
» Governments want back door so they can snoop
- Also, security through obscurity doesn't work
» 6GSM encryption ai?ori'rhm was secret; accidentally released;

1172010 Berkeley grad students cracked, in a few hours Lec 25.8

Passwords: How easy to guess?

* Ways of Compromising Passwords
- Password Guessing:

» Often people use obvious information like birthday,
favorite color, girlfriend's name, etc...

- Dictionary Attack:

» Work way through dictionary and compare encrypted
version of dictionary words with entries in /etc/passwd

- Dumpster Diving:
» Find pieces of paper with passwords written on them
» (Also used to get social-security numbers, etc)
* Paradox:
- Short passwords are easy to crack
- Long ones, people write down!
* Technology means we have to use longer passwords
- UNIX initially required lowercase, 5-letter passwords:
total of 26%=10million passwords
» In 1975, 10ms to check a password—1 day to crack
» In 2005, .Olps to check a password—0.1 seconds to crack
- Takes less time to check for all words in the dictionary!

11/29/10 Kubiatowicz €5162 ©UCB Fall 2010 Lec 25.9

Passwords: Making harder to crack

* How can we make passwords harder to crack?
- Can't make it impossible, but can help
* Technique 1: Extend everyone's password with a unique
number (stored in password file)

- Called “salt”. UNIX uses 12-bit “salt”, making dictionary
attacks 4096 times harder

- Without salt, would be possible to pre-compute all the
words in the dictionary hashed with the UNIX algorithm:
would make comparing with /etc/passwd easy!

- Also, way that salt is combined with password designed to
frustrate use of off-the-shelf DES hardware

* Technique 2: Require more complex passwords

- Make people use at least 8-character passwords with
upper-case, lower-case, and numbers
» 708=6x10!4=6million seconds=69 days@0.01ps/check
- Unfortunately, people still pick common patterns
» e.g. Capitalize first letter of common word, add one digit

11/29/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 25.10

Passwords: Making harder to crack (con't)

+ Technique 37 Delay checking of passwords
- If attacker doesn't have access to /etc/passwd, delay
every remote login attempt by 1 second
- Makes it infeasible for rapid-fire dictionary attack
* Technique 4: Assign very long passwords
- Long passwords or pass-phrases can have more entropy
(randomness—harder to crack)
- Give everyone a smart card (or ATM card) to carry around
to remember password
» Requires physical theft to steal password
» Can require PIN from user before authenticates self
- Better: have smartcard generate pseudorandom number
» Client and server share initial seed
» Each second/login attempt advances to next random number
* Technique 5: "Zero-Knowledge Proof”
- Require a series of challenge-response questions
» Distribute secret algorithm to user
» Server presents a number, say "5”; user computes something
from the number and returns answer to server
» Server never asks same “question” twice
- Often performed by smartcard plugged into system
11/29/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 25.11

Administrivia

11/29/10 Kubiatowicz CS5162 ©UCB Fall 2010 Lec 25.12

Authentication in Distributed Systems
* What if identity must be established across network?

<

é - (Network |
-«

oulb :sSV(

- Need way to prevent exposure of information while still
proving identity to remote system
- Many of the original UNIX tools sent passwords over the
wire “in clear text”
» E.g.: telnet, ftp, yp (yellow pages, for distributed login)
» Result: Snooping programs widespread
* What do we need? Cannot rely on physical security!
- Encryption: Privacy, restrict receivers
- Authentication: Remote Authenticity, restrict senders

11/29/10 Kubiatowicz €5162 ©UCB Fall 2010 Lec 25.13

Private Key Cryptography

* Private Key (Symmetric) Encryption:
- Single key used for both encryption and decryption

* Plaintext: Unencrypted Version of message

* Ciphertext: Encrypted Version of message

AN (——Encrypt Decrypt
1@9 ‘? Insecure %’
5 Transmission 5
SPY s I (ciphertext) I s CIA
% Key Key 3

* Important properties
- Can't derive plain text from ciphertext (decode) without
access to key
- Can't derive key from plain text and ciphertext
- As long as password stays secret, get both secrecy and
authentication
- Symmetric Key Algorithms: DES, Triple-DES, AES

11/29/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 25.14

Key Distribution

* How do you get shared secret to both places?
- For instance: how do you send authenticated, secret mail
to someone who you have never met?
- Must negotiate key over private channel
» Exchange code book
» Key cards/memory stick/others
+ Third Party: Authentication Server (like Kerberos)
- Notation:
» K, is key for talking between x and y
» (...S" means encrypt message (..) with the key K
» Clients: A and B, Authentication server S
- A asks server for key:
» A—S: [Hi! I'd like a key for talking between A and B]
» Not encrypted. Others can find out if A and B are talking
- Server returns session key encrypted using B's key
» S—>A: Message [Use K, (This is Al Use K,)b] Kksa
» This allows A to know, "S said use this key”
- Whenever A wants to talk with B
» A—>B: Ticket [This is Al Use K, J¢°

» Now, B knows that K, is sanctioned by S
11/29/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 25.15

Authentication Server Continued [Kerberos]

Ticket

JA Y
>ecure communication w
+ Details

- Both A and B use passwords (shared with key server) to
decrypt return from key servers
- Add in timestamps to limit how long tickets will be used
to prevent attacker from replaying messages later
- Also have to include encrypted checksums (hashed
version of message) to prevent malicious user from
inserting things into messages/changing messages
- Want to minimize # times A types in password
» A—S (Give me temporary secret)
» 5—A (Use Ki,pp-sq for next 8 hours)<se

» Can now use K, .. in place of K., in prototcol
11/29/10 KuBitowicz €S162 ©UCB Fall 2010 Lec 25.16

Public Key Encryption
. CGWWWWWIGI\:

authentication server?
- Yes. Use a Public-Key Cryptosystem.
* Public Key Details
- Don't have one key, have two: K, iic, Kirivate
» Two keys are mathematically related to one another
» Really hard to derive K. from K. and vice versa
- Forward encryption:
» Encrypt: (cleartext)kpublic= ciphertext,
» Decrypt: (ciphertext,)kprivate = cleartext
- Reverse encryption:
» Encrypt: (cleartext)kerivate = ciphertext,
» Decrypt: (ciphertext,)kpwlic = cleartext
- Note that ciphertext; = ciphertext,
» Can't derive one from the other!
* Public Key Examples:
- RSA: Rivest, Shamir, and Adleman
» K ublic of form (kpl.lb“Cl N), K rivate of form (kpr'ivafel N)
» Nz pq. Can break code if know p and q

- ECC: Elliptic Curve Cryptograph
11/29/10 P Kubiafowiczycpslég @lEB xall 2010 Lec 25.17

Public Key Encryption Details
* Idéar K can be made public, Keep Kt private

Insecure Channel

public === Bpr-ivaf
. _ .
private Apubll "

Alice Insecure Channel Bob
+ Gives message privacy (restricted receiver):

- Public keys (secure destination points) can be acquired
by anyone/used by anyone

- Only person with private key can decrypt message
* What about authentication?

- Use combination of private and public key

- Alice—»>Bob: [(I'm Alice)“rrivate Rest of message]Brublic

- Provides restricted sender and receiver

« But: how does Alice know that it was Bob who sent

her B,;.? And vice versa..
Kubiatowicz €S5162 ©UCB Fall 2010 Lec 25.18

Secure Hash Function

Hash DFCD3454BBEA788A

Fox =1 netion =P Zigggg%zmg?oog

T [[T Toah 52EDB79E70F 71D92

runs across jmap! Functi | 6GEB6957008E03CE4
the ice unction [™| cap9asna

* Hash Function: Short summary of data (message)
- For instance, h;=H(M,) is the hash of message M,
» h; fixed length, despite size of message M.
» Often, h, is called the “digest” of M.
+ Hash function H is considered secure if
- It is infeasible to find M, with h;=H(M,); ie. can't easily
find other message with same digest as given message.
- It is infeasible to locate two messages, m; and m,,
which “collide”, i.e. for which H(m,) = H(m,)
- A small change in a message changes many bits of
digest/can't tell anything about message given its hash

11/29/10 Kubiatowicz €S5162 ©UCB Fall 2010 Lec 25.19

Use of Hash Functions

+ Several Standard Hash Functions:
- MD5: 128-bit output
- SHA-1: 160-bit output, SHA-256: 256-bit output
+ Can we use hashing to securely reduce load on server?
- Yes. Use a series of insecure mirror servers (caches)
- First, ask server for digest of desired file
» Use secure channel with server
- Then ask mirror server for file
» Can be insecure channel
» Check digest of result and catch faulty or malicious mirrors

Read File X
Here is h, = H(X)

Client kubiNowicz cs162 ©UCB Fall 2010

11/29/10 Server Lec 25.20

Signatures/Certificate Authorities
+ Canuse X .. for person X 1o define their identiTy oplc or person X fo define their identity

- Presumab y they are the only ones who know X ...
- Often, we think of X, as a “principle” (user)
* Suppose we want X to sign message M? _
- Use private key to encrypt the digest, i.e. H(M)Xprivate
- Send both M and its signature:
» Signed message = [M, (l'A‘A)XP'"""“e]
- Now, “anyone can verify that M was signed by X
» Simply decrypt the digest with X
» Verify that result matches H(M) .
* Now: How do we know that the version of X, that
we have is really from X???
- Answer: Certificate Authority
» Examples: Verisign, Entrust, Etc.
- X goes to organization, ﬁr‘esenfs identifyin Jpapers
» Organization signs X's key: [Xpypiic, H(Xpupic)#P™ere]
» Called a “Certificate”
- Before we use X, ... ask X for certificate verifying key
» Check that sigﬁatur'e over X produced by trusted
Jlufhori'ry P]
* How do we get keys of certificate authority?
- Compiled into your browser, for instance!
11/29/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 25.21

Security through SSL

- SSL Web Protocol —Cf’
- Port 443: secure http) Nns.cert;
< > (pms)s

- Use public-key encryption
for l?euy-disfr%uﬁonyp
+ Server has a certificate signed by certificate authority
- Contains server info (organization, IP address, etc)
- Also contains server's public key and expiration date
+ Establishment of Shared, 48-byte "master secret”
- Client sends 28-byte random value n_ to server
- Server returns its own 28-byte random value n_, plus its
certificate cert,
- Client verifies certificate by checking with public key of
certificate authority compiled into browser
» Also check expiration date
- Client picks 46-byte “premaster” secret (pms), encrypts
it with public key of server, and sends to server
- Now, both server and client have n_, n,, and pms

» Each can compute 48-byte master secret using one-way
and collision-resistant function on three values

» Random “nonces” n. and n, make sure master secret fresh

11/29/10 Kubiatowicz CS162 ©UCB Fall 2010 Lec 25.22

Recall: Authorization: Who Can Do What?
- How do we decide who is authorized 1

to do actions in the system? EUN R R | A | e
+ Access Contfrol Matrix: contains
all permissions in the system
- Resources across top D. print
» Files, Devices, etc.. P i : T
- Domains in columns |
» A domain might be a user or a o, | ™| read

domain

o, | read read

o, read | execule

gr‘oup of permissions B Sl b
» E.g. above: User D; can read F, or execute F;
- In practice, table would be huge and sparsel!
+ Two approaches to implementation
- Access Control Lists: store Per‘missions with each object
» Still might be lots of users!
» UNIX limits each file to: r,w,x for owner, group, world
» More recent systems allow definition of groups of users
and permissions for each group
- Capability List: each process tracks objects has
permission to touch
» Popular in the past, idea out of favor today
» Consider page table: Each process has list of pages it has
access to, not each page has list of processes ..
11/29/10 Kubiatowicz €S5162 ©UCB Fall 2010 Lec 25.23

How fine-grained should access control be?

- Exampte of The problem:
- Suppose you buy a copy of a new game from “"Joe's Game
W:rﬁd" a%d ch\ run Fry 9
- It's running with your userid
» It removes all the files you own, including the project due
the next day..
* How can you prevent this?
- Have to run the program under some userid.
» Could create a second garmes userid for the user, which
has no write privileges.
» Like the “nobody” userid in UNIX - can't do much
- But what if the game needs to write out a file recording
scores?
» Would need to give write privileges to one particular file
(or directory) to your games userid.
- But what about non-game programs you want to use,
such as Quicken?
» Now you need to create your own private quicken userid, if
you want to make sure tha the copy of Quicken you bought
can't corrupt non-quicken-related f)gles

- But - how to get this right??? Pretty complex...
11/29/10 Kubiatowicz €5162 ©UCB Fall 2010 Lec 25.24

Authorization Continued

* Principle of least privilege: programs, users, and
sxs‘rems should get only enough privileges to perform
their tasks

- Very hard to do in practice

» How do you figure out what the minimum set of privileges
is needed to run your programs?

- People often run at higher privilege then necessary
» Such as the “administrator” privilege under windows
* One solution: Signed Software

- Only use software from sources that you trust, thereby

dealing with the problem by means of authentication
- Fine for big, established firms such as Microsoft, since
they can make their signing keys well known and people
trust them
» Actually, not always fine: recently, one of Microsoft's
signing keys was compromised, leading to malicious
software that looked valid
- What about new startups?
» Who “validates” them?
» How easy is it to fool them?

11/29/10 Kubiatowicz €5162 ©UCB Fall 2010 Lec 25.25

How to perform Authorization for Distributed Systems?

Different
Authorization
Domains

+ Issues: Are all user names in world unique?
- No! They only have small number of characters

» kubi@mit.edu — kubitron@Ilcs.mit.edu —
kubitron@cs.berkeley.edu

» However, someone thought their friend was kubi@mit.edu
and T got very private email intended for someone else...
- Need something better, more unique to identify person
+ Suppose want to connect with any server at any time?
- Need an account on every machine! (possibly with
different user name for each account)
- OR: Need to use something more universal as identity
» Public Keys! (Called “Principles”)

» People are their public keys

11/29/10 Kubiatowicz CS162 ©UCB Fall 2010 Lec 25.26

Distributed Access Control
Access Control List (ACL) for X:

File X

Owner Key: __,

Ox22347EE. Key: Ox546DFEFA34..

Signature (owner)/RW: Key: 0x467D34EF83..
RX: Group Key: 0xA2D3498672..

Client 1 o s

D in 1 \; JP ACL-

omas - of DACL verifier : OXA786EFS89A..
: Ox6647DBCOAC..

Server 2: Domain 3

J

- Distributed Access Control List (ACL)
- Contains list of attributes (Read, Write, Execute, etc)
with attached identities (Here, we show public keys)
» ACLs signed by owner of file, only changeable by owner
» Group lists signed by group key
- ACLs can be on different servers than data
» Signatures allow us to validate them

» ACLs could even be stored separately from verifiers
11/29/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 25.27

Analysis of Previous Scheme

* Positive Points:
- Identities checked via signatures and public keys
» Client can't gener‘afe request for data unless they have
private key Yo go with their public idenﬁ?
» Server won't use ACLs not properly signed by owner of file
- No problems with multiple domains, since identities
designed to be cross-domain (public keys domain neutral)
* Revocation:
- What if someone steals your private key?
» Need to walk through all ACLs with your key and change..!
» This is very expensive
- Better to have unique string identifying you that people
place into ACLs
» Then, ask Certificate Authority to give you a certificate
matching unique string to your current public key
» Client Request: (request + unique ID)%rivate; give server
certificate if they ask for it.
» Key compromise=>must distribute “certificate revocation”,
since can't wait for previous certificate to expire.
- What if you remove someone from ACL of a given file?
» If server caches old ACL, then person retains access!
» Here, cache inconsistency leads to security violations!

11/29/10 Kubiatowicz CS5162 ©UCB Fall 2010 Lec 25.28

Conclusion

+ User Identification
- Passwords/Smart Cards/Biometrics
+ Passwords
- Encrypt them to help hid them
- Force them to be longer/not amenable to dictionary attack
- Use zero-knowledge request-response techniques
+ Distributed identity
- Use cryptography
+ Symmetrical (or Private Key) Encryption
- Single Key used to encode and decode
- Introduces key-distribution problem
* Public-Key Encryption

- Two keys: a public key and a private key
+ Secure Hash Function

- Used to summarize data
- Hard to find another block of data with same hash

11/29/10 Kubiatowicz €5162 ©UCB Fall 2010 Lec 25.29

CS162
Operating Systems and
Systems Programming
Lecture 26

Protection and Security II,
ManyCore Operating Systems

December 1, 2010
Prof. John Kubiatowicz
http://inst.eecs.berkeley.edu/~cs162

Review: Use of Hash Functions

+ Several Standard Hash Functions:
- MD5: 128-bit output
- SHA-1: 160-bit output, SHA-256: 256-bit output
* Can we use hashing to securely reduce load on server?
- Yes. Use a series of insecure mirror servers (caches)
- First, ask server for digest of desired file
» Use secure channel with server
- Then ask mirror server for file
» Can be insecure channel
» Check digest of result and catch faulty or malicious mirrors

nsecure
Data
Mirror

Read File X
Here is h, = H(X)

12/01/10 Cllerﬁ' Kubidtowicz €S162 ©UCB Fall 2010

Server Lec26.2

Review: Public Key Encryption Details

* Idea: K. can be made public, keep K.t private
Insecure Channel

Alice Insecure Channel Bob

+ Gives message privacy (restricted receiver):
- Public keys can be acquired by anyone/used by anyone
- Only person with private key can decrypt message
* What about authentication?
- Alice—>Bob: [(I'm Alice)#rrivate Rest of message]Brublic
- Provides restricted sender and receiver
+ Suppose we want X to sign message M?
- Use private key to encrypt the digest, i.e. H(M)Xerivate
- Send both M and its signature: [M,H(M)Xprivate]
- Now, anyone can verify that M was signed by X
» Simply decrypt the digest with X,

» Verify that result matches Hg)M)
12/01/10 Kubiatowicz 5162 ©UCB Fall 2010

Lec 26.3

Goals for Today

* Use of Cryptographic Mechanisms

- Distributed Authorization/Remote Storage
- Worms and Viruses

* ManyCore operating systems

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Also, slides on Taint Tracking adapted from Nickolai Zeldovich

12/01/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 26.4

Recall: Authorization: Who Can Do What?
+ How do we decide who is authorized . | f

to do actions in the system? N6 | h | A | e

* Access Control Matrix: contains
all permissions in the system

- Resources across top D, _ pi

» Files, Devices, etc... g i i T T

- Domains in columns |

» A domain might be a user or a o, | ™| read

domain

D, read read

o, read | execule

group of permissions B B b
» E.g. above: User D; can read F, or execute F;
- In practice, table would be huge and sparsel!
+ Two approaches to implementation
- Access Control Lists: store Per‘missions with each object
» Still might be lots of users!
» UNIX limits each file to: r,w,x for owner, group, world
» More recent systems allow definition of groups of users
and permissions for each group
- Capability List: each process tracks objects has
permission to touch
» Popular in the past, idea out of favor today
» Consider page table: Each process has list of pages it has
access to, not each page has list of processes ..
12/01/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 26.5

How to perform Authorization for Distributed Systems?

Different
Authorization
Domains

+ Issues: Are all user names in world unique?
- No! They only have small number of characters
» kubi@mit.edu — kubitron@Ics.mit.edu —
kubitron@cs.berkeley.edu
» However, someone thought their friend was kubi@mit.edu
and T got very private email intended for someone else...
- Need something better, more unique to identify person
+ Suppose want to connect with any server at any time?
- Need an account on every machine! (possibly with
different user name for each account)
- OR: Need to use something more universal as identity
» Public Keys! (Called “Principles”)

» People are their public keys
12/01/10 Kubiatowicz €5162 ©UCB Fall 2010 Lec 26.6

Distributed Access Control
Access Control List (ACL) for X:

File X

Owner Key: __,
0x22347EF..

ash, Timestamp, R: Key: Ox546DFEFA34...
Signature (owner)/RW: Key: 0x467D34EF83..
RX: Group Key: 0xA2D3498672..

Client 1 (S —
Domain 1 4 up ACL:

a Key: OXA786EF889A..
0x6647DBCIAC...

ash, Timestamp, :
Signature (group) Key:

Server 2: Domain 3 W,

- Distributed Access Control List (ACL)
- Contains list of attributes (Read, Write, Execute, etc)
with attached identities (Here, we show public keys)
» ACLs signed by owner of file, only changeable by owner
» Group lists signed by group key
- ACLs can be on different servers than data
» Signatures allow us to validate them

» ACLs could even be stored separately from verifiers
12/01/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 26.7

Analysis of Previous Scheme

* Positive Points:
- Identities checked via signatures and public keys
» Client can't generate request for data unless they have
private key go go with their public idenﬁ?
» Server won't use ACLs not properly signed by owner of file
- No problems with multiple domains, since identities
designed to be cross-domain (public keys domain neutral)

* Revocation:
- What if someone steals your private key?
» Need to walk through all ACLs with your key and change..!
» This is very expensive
- Better to have unique string identifying you that people
place into ACLs
» Then, ask Certificate Authority to give you a certificate
matching unique string to your current public key
» Client Request: (request + unique ID)CPrivate; give server
certificate if they ask for it.
» Key compromise=>must distribute “certificate revocation”,
since can't wait for previous certificate to expire.
- What if you remove someone from ACL of a given file?
» If server caches old ACL, then person retains access!
» Here, cache inconsistency leads to security violations!

12/01/10 Kubiatowicz €S5162 ©UCB Fall 2010 Lec 26.8

Analysis Continued

- WHho signs The data?
- Or: How does client know they are getting valid data?
- Signed by server?
» What if server compromised? Should client trust server?
- Signed by owner of file?
» Better, but now only owner can update filel
» Pretty inconvenient!
- Signed by group of servers that accepted latest update?
» If must have signatures from all servers = Safe, but one
bad server can prevent ugdafe from h?penin
» Instead: ask for a threshold number of signatures
» Byzantine agreement can help here
* How do you know that data is up-to-date?
- Valid signature only means data is valid older version
- Freshness attack:
» Malicious server returns old data instead of recent data
» Problem with both ACLs and data
» E.g.: you just got a raise, but enemy breaks into a server
and prevents payroll from seeing latest version of update
- Hard problem
» Needs to be fixed by invalidating old copies or having a
trusted group of servers (Byzanfine Agrement?)

12/01/10 Kubiatowicz €5162 ©UCB Fall 2010 Lec 26.9

Administrivia

12/01/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 26.10

Involuntary Installation

* What about software loaded without your consent?
- Macros attached to documents (such as Microsoft Word)
- Active X controls (programs on web sites with potential
access to whole machine)
- Spyware included with normal products
+ Active X controls can have access to the local machine
- Install software/Launch programs
+ Sony Spyware [Sony XCP] (October 2005)
- About 50 CDs from Sony automatically installed software
when you played them on Windows machines
» Called XCP (Extended Copy Protection)

» Modify operating system to prevent more than 3 copies
and to prevent peer-to-peer sharing
- Side Effects:
» Reporting of private information to Sony
» Hiding of generic file names of form $sys_xxx; easy for
other virus writers to exploit
» Hard to remove (crashes machine if not done carefully)
- Vendors of virus protection software declare it spyware

» Computer Associates, Symantec, even Microsoft
12/01/10 Kubiatowicz €5162 ©UCB Fall 2010 Lec 26.11

Enforcement

Enforcer checks passwords, ACLs, etc
- Makes sure the only authorized actions take place
- Bugs in enforcer=things for malicious users to exploit
In UNIX, superuser can do anything
- Because of coarse-grained access control, lots of stuff
has to run as superuser in order to work
- If there is a bug in any one of these programs, you losel!
Paradox
- Bullet-proof enforcer
» Only known way is to make enforcer as small as possible
» Easier to make correct, but simple-minded protection model
- Fancy protection
» Tries to adhere to principle of least privilege
» Really hard to get right
Same argument for Java or C++: What do you make
private vs public?
- Hard to make sure that code is usable but only necessary
modules are public
- Pick something in middle? Get bugs and weak protection!
12/01/10 Kubiatowicz €S5162 ©UCB Fall 2010 Lec 26.12

State of the World

- State of the World in Security
- Authentication: Encryption
» But almost no one encrypts or has public key identity
- Authorization: Access Control
» But many systems only provide very coarse-grained access
» In UNIX, need to turn off protection to enable sharing
- Enforcement: Kernel mode
» Hard to write a million line program without bugs
» Any bug is a potential security loophole!
- Some types of security problems
- Abuse of privilege
» If the superuser is evil, we're all in trouble/can't do anything

» What if sysop in charge of instructional resources went
crazy and deﬂafed everybody's files (and backups)???
- Imposter: Pretend to be someone else
» Example: in unix, can set up an .rhosts file to allow logins
from one machine to another without retyping passwor
» Allows "rsh” command to do an operation on a remote node
» Result: send rsh request, pretending to be from trusted
user—install .rhosts file granting you access

12/01/10 Kubiatowicz €5162 ©UCB Fall 2010 Lec 26.13

Other Security Problems

* Virus:
- A piece of code that attaches itself to a program or file

so it can spread from one computer to another, leaving
infections as it travels

- Most attached to executable files, so don't get
activated until the file is actually executed
- Once caught, can hide in boot tracks, other files, OS
* Worm:
- Similar to a virus, but capable of traveling on its own
- Takes advantage of file or information transport
features
- Because it can replicate itself, your computer might send
out hundreds or thousands of copies of itself
* Trojan Horse:
- Named after huge wooden horse in Greek rrc\?'fhology
given as gift to enemy. contained army inside

- At first glance appears to be useful software but does
damage once installed or run on your computer

12/01/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 26.14

Security Problems: Buffer-overflow Condition

#define BUFFER SIZE 256

int process(int argc, e .
char *argv[]) e sholl code
{ saved frame pointer 7
char buffer[BUFFER SI1ZE]; EeT—— NoZoP
if (argc < 2) i = L copied ¢ -
return -1; S
else { buffer(1) modified shell code
strcpy(buffer,argv[1]);
return O; BHbae) L
} Before attack After attack

* Technique exploited by many network attacks
- Anytime input comes from network request and is not
checked for size
- Allows execution of code with same privileges as running
program - but happens without any action from user!
* How to prevent?
- Don't code this way! (ok, wishful thinking)
- New mode bits in Intel, Amd, and Sun processors

» Put in page table; says “"don't execute code in this page”
12/01/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 26.15

The Morris Internet Worm

* Internet worm (Self-reproducing)
- Author Robert Morris, a first-year Cornell grad student
- Launched close of Workday on November 2, 1988

- Within a few hours of release, it consumed resources to
the point of bringing down infected machines

* Techniques [_cmoeen Bk s
- Exploited UNIX networking features (remote access)

- Bugs in fifzfer- (buffer overflow) and sendmail programs
(debug mode allowed remote login)

- Dictionary lookup-based password cracking

- 6rappling hook program uploaded main worm program
12/01/10 Kubiatowicz €S5162 ©UCB Fall 2010 Lec 26.16

Some other Attacks

*+ Trojan Horse Example: Fake Login
- Construct a program that looks like normal login program
- Gives "login:” and “password:” prompts
» You type information, it sends password to someone, then
either logs you in or says "Permission Denied” and exits

- In Windows, the "ctrl-alt-delete” sequence is supposed to
be really hard to change, so you “know" that you are
getting official login program

+ Salami attack: Slicing things a little at a time
- Steal or corrupt something a little bit at a time
- E.g.: What happens to partial pennies from bank interest?
» Bank keeps them! Hacker re-programmed system so that
partial pennies would go into his account.
» Doesn't seem like much, but if you are large bank can be
millions of dollars
- Eavesdropping attack

- Tap into network and see everything typed

- Catch passwords, etc

- Lesson: never use unencrypted communication!

12/01/10 Kubiatowicz €5162 ©UCB Fall 2010 Lec 26.17

Timing Attacks: Tenex Password Checking

* Tenex - early 70's, BBN
- Most popular system at universities before UNIX

- Thought to be very secure, gave “red team” all the
source code and documentation (want code to be
publicly available, as in UNIX)

- In 48 hours, they figured out how to get every
password in the system

* Here's the code for the password check:
for (i = 0; i < 8; i++)
it (userPasswd[i] '= realPasswd[i])
go to error

+ How many combinations of passwords?
- 2568?
- Wrong!

12/01/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 26.18

Defeating Password Checking

+ Tenex used VM, and it interacts badly with the above code

- Key idea: force page faults at inopportune times to break
passwords quickly

*+ Arrange 15' char in string to be last char in pg, rest on next pg

- Then arrange for pg with 15" char to be in memory, and rest
to be on disk (e.g., ref lots of other pgs, then ref 15" page)

alaaaaaa
I
page in memory| page on disk
+ Time password check to determine if first character is correct!
- If fast, 1s* char is wrong
- If slow, 1t char is right, pg fault, one of the others wrong
- So try all first characters, until one is slow
- Repeat with first two characters in memory, rest on disk
* Only 256 * 8 attempts to crack passwords

- Fix is easy, don't stop until you look at all the characters
12/01/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 26.19

ManyCore Chips: The future is here (for EVERYONE)

- Intel 80-core multicore chip (Feb 2007)
- 80 simple cores
- Two floating point engines /core
- Mesh-like "network-on-a-chip"
- 100 million transistors
- 65nm feature size

* “ManyCore” refers to many processors/chip
- 64? 128? Hard to say exact boundary
* Question: How can ManyCore change our view of OSs?
- ManyCore is a challenge
» Need to be able to take advantage of parallelism
» Must utilize many processors somehow
- ManyCore is an opportunity
» Manufacturers are desperate to figure out how to program
» Willing to change many things: hardware, software, etc.
- Can we improve: security, responsiveness, programmability?
12/01/10 Kubiatowicz €S5162 ©UCB Fall 2010 Lec 26.20

PARLab OS Goals: RAPP/dS

Responsiveness: Meets real-time guarantees

- Good user experience with UL expected

- Illusion of Rapid I/O while still providing guarantees !

- Real-Time applications (speech, music, video) will be dssu
Agility: Can deal with rapidly changing environment

- Programs not completely assembled until runtime

- User may request complex mix of services at moment's notice

- Resources change rapidly (bandwidth, power, etc)
Power-Efficiency: Efficient power-performance tradeoffs

- Application-Specific parallel scheduling on Bare Metal
partitions

- Explicitly parallel, power-aware OS service architecture

Persistence: User experience persists across device failures
- Fully integrated with persistent storage infrastructures
- Customizations not be lost on “reboot”

* Security and Correctness: Must be hard to compromise

- Untrusted and/or buggy components handled gracefully
- Combination of verification and isolation at many levels
- Privacy, Integrity, Authenticity of information asserted

12/01/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 26.21

The Problem with Current OSs

* What is wrong with current Operating Systems?

- They do not allow expression of application requirements

» Minimal Frame Rate, Minimal Memory Bandwidth, Minimal QoS
from system Services, Real Time Constraints, ..

» No clean interfaces for reflecting these requirements
- They do not provide guarantees that applications can use
» They do not provide performance isolation
» Resources can be removed or decreased without permission
» Maximum response time to events cannot be characterized
- They do not provide fully custom scheduling

» In a parallel ﬁrogr‘amming environment, ideal scheduling can depend
crucially on the programming model

- They do not provide sufficient Security or Correctness
» Monolithic Kernels get compromised all the time

» Applications cannot express domains of trust within themselves
without using a heavyweight process model

* The advent of ManyCore both:

- Exacerbates the above with greater number of shared resources

- Provides an opportunity to change the fundamental model
12/01/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 26.22

A First Step: Two Level Scheduling

Resource Allocation

And
Distribution
Monolithic
CPU and Resource Two-Level Scheduling
Scheduling

Application Specific
Scheduling

+ Split monolithic scheduling into two pieces:
- Course-Grained Resource Allocation and Distribution

» Chunks of resources (CPUs, Memory Bandwidth, QoS to Services)
distributed to application (system) components

» Option to simply turn off unused resources (Important for Power)
- Fine-6rained Application-Specific Scheduling

» Applications are allowed to utilize their resources in any way
they see fit
» Other components of the system cannot interfere with their use
of resources
12/01/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 26.23

Important New Mechanism: Spatial Partitioning

- Spatial Partition: group of processors acfing within
hardware boundary
- Boundaries are “hard”, communication between partitions controlled
- Anything goes within partition
+ Each Partition receives a vector of resources
- Some number of dedicated processors
- Some set of dedicated resources (exclusive access)
» Complete access to certain hardware devices
» Dedicated raw storage partition
- Some guaranteed fraction of other resources (QoS guarantee):
» Memory bandwidth, Network bandwidth
» fractional services from other partitions

* Key Idea: Resource Isolation Between Partitions
12/01/10 Kubiatowicz €5162 ©UCB Fall 2010 Lec 26.24

Tessellation: The Exploded OS

Normal Components split
into pieces
- Device drivers
(Security/Reliability)
- Network Services
(Performance)
» TCP/IP stack
» Firewall
» Virus Checking
» Intrusion Detection
- Persistent Storage
Performance,
ecurity, Reliability)
- Monitoring services
» Performance counters
» Introspection
- Identity/Environment
services (Security)
» Biometric, GPS,

Utra Possession Tracking
% Applications Given
. 3200 Larger Partitions
. - Freedom to use
12/01/10 Kubiatowicz C5162 ®UCB Fall 2010 Tesources arbitrarily

Device
Drivers

Use lessons from from Large Distributed Systems
- Like Peer-to-Peer on chip
- OS is a set of independent interacting components

g I E alanced
Gang
S ndividual
Partition
- Shared state across components minimized
Component-based design:

- All applications designed with pieces from many sources
- Requires composition: Performance, Interfaces, Security
Spatial Partitioning Advantages:
- Protection of computing resources ot required within partition
» High walls between partitions = anything goes within partition
» “Bare Metal” access to hardware resources
- Partitions exist simultaneously = fast communication between domains
» Applications split into distrusting partitions w/ controlled communication
» Hardware acceleration/tagging for fast secure messaging
12/01/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 26.26

It's all about the communication

* We are interested in communication for many reasons:
- Communication represents a security vulnerability
- Quality of Service (QoS) boils down message tracking
- Communication efficiency impacts decomposability

+ Shared components complicate resource isolation:

- Need distributed mechanism for tracking and accounting
of resource usage

» E.g.: How do we guarantee that each partition gets a
guaranteed fraction of the service:

Application A o0
PP o0

Shared File Service

Application B ::

12/01/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 26.27

Space-Time Partitioning
[y \

]
\\
I~

aoeds

Sp ace

Spatial Partitioning Varies over Time

- Partitioning adapts to needs of the system

- Some partitions persist, others change with time

- Further, Partititions can be Time Multiplexed
» Services (i.e. file system), device drivers, hard realtime partitions
» User-level schedulers may time-multiplex threads within partition

Global Partitioning Goals:

- Power-performance tradeoffs

- Setup to achieve QoS and/or Responsiveness guarantees

- Isolation of real-time partitions for better guarantees

Monitoring and Adaptation

- Integration of performance/power/efficiency counters

12/01/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 26.28

Another Look: Two-Level Scheduling
+ FirsT CevelT Gross partitioning of resources
- Goals: Power Budget, Overall Responsiveness/QoS, Security
- Partitioning of CPUs, Memory, Interrupts, Devices, other
resources
- Constant for sufficient period of time to:
» Amortize cost of global decision making
» Allow time for partition-level scheduling to be effective
- Hard boundaries = interference-free use of resources
+ Second Level: Application-Specific Scheduling
- Goals: Performance, Real-time Behavior, Responsiveness,
Predictability
- CPU scheduling tuned to specific applications
- Resources distributed in application-specific fashion
- External events (I/0, active messages, etc) deferrable as
appropriate
+ Justifications for two-level scheduling?
- Global/cross-app decisions made by 15 level
» E.g. Save power by focusing I/0 handling to smaller # of cores
- App-scheduler (2" level) better tuned to application
» Lower overhead/better match to app than global scheduler

» No global scheduler could handle all applications
12/01/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 26.29

Space-Time Resource Graph

Resources:
4 Proc, 50% time
1GB network BW

259% File Server

Lightweight
Protection Domains

+ Space-Time resource graph: the explicit instantiation of
resource assignments

- Directed Arrows Express Parent/Child Spawning Relationship
- All resources have a Space/Time component
» E.g. X Processors/fraction of time, or ¥ Bytes/Sec
+ What does it mean to give resources to a Cell?
- The Cell has a position in the Space-Time resource graph and
- The resources are added to the cell's resource label

- Resources cannot be taken awa excegf via explicit APIs
12/01/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 26.30

Implementing the Space-Time Graph

Partition Policy layer (allocation)

- Allocates Resources to Cells Partition Policy Layer
based (Resource Allocator)

on Global policies Reflects Global Goals

- Produces only implementable
space-time resource graphs

- May deny resources to a cell that
requests them (admission control)

*+ Mapping layer (distribution)
- Makes no decisions

- Time-Slices at a course
granularity

- performs bin-packing like to
implement space-time graph

- In limit of many processors, no
time multiplexing processors,
merely distribufing resources

Partition Mechanism Layer

- mglemenfs hardware partitions
and secure channels

- Device Dependent: Makes use of
more or less hardware support for

Partition Mechanism Layer
ParaVirtualized Hardware
To Support Partitions

12/0Q@P> and Partitions .. . cs162 eUCB Fall 2010 Lec 26.31

Tessellation Architecture

Library OS
Functionalit Scheduler

Sched | comm. Res. Part_iti_on
Regs. Regs Regs. Resizing

Callback API
Mapnaa[tltt-ztlr?]r(]en t Partition Partition ?
9 Scheduler Allocator n
Layer 2]
DT e =
arti . " y S
M : Configure Partition Configure)
echanism R f db HW. ted =
Layer esources enforced by -supporte g

(Trusted) HW at runtime Communication

Interconnect ||Message Cache Physical CPUs Performance

Bandwidth || Passing Memory Counters
Hardware Partitioning Mechanisms

32
12/01/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 26.32

Example of Music Application

Music program

Audio-processing / Synthesis Engine

(Pinned/TT partition) \

Time-sensitive
Network
Input device Output device Subsystem GUI Subsystem
(Pinned/TT Partition)] | (Pinned/TT Partition) 1 I
7 5 Y Network Graphical
_ Service Interface
. (Net Partition) (GUI Partition)

Preliminar Communication with other
Y. atowicz €5162 ©UCB Fall 2010 | audio-processingcnosles

12/01/10

Conclusion

Distributed identity

- Use cryptography (Public Key, Signed by PKI)
Distributed storage example

- Revocation: How to remove permissions from someone?

- Integrity: How to know whether data is valid

- Freshness: How to know whether data is recent
Buffer-Overrun Attack: exploit bug to execute code

*+ Space-Time Partitioning: grouping processors & resources
hardware boundary
- Focus on Quality of Service
- Two-level scheduling
1) Global Distribution of resources
2) Application-Specific scheduling of resources
- Bare Metal Execution within partition
- Composable performance, security, QoS
+ Tessellation Paper:
- Off my "publications” page (near top):
http://www.cs.berkeley.edu/~kubitron/papers
12/01/10 Kubiatowicz 5162 ©UCB Fall 2010

behind

Lec 26.34

	lec01-intro
	lec02-structures
	lec03-concurrency
	lec04-threads
	lec05-cooperating
	lec06-synchronization
	lec07-exclusion
	lec08-readerwriter
	lec09-deadlock
	lec10-scheduling
	lec11-protection
	lec12-translation
	lec13-cachetlb
	lec14-demandpage
	lec15-pagereplace
	lec16-io
	lec17-disks
	lec18-filesystems
	lec19-filesystems2
	lec20-distributed
	lec21-networking
	lec22-networking2
	lec23-rpc
	lec24-distfiles
	lec25-security
	lec26-security2

