
Java and Android Concurrency

Sharing Objects

fausto.spoto@univr.it

git@bitbucket.org:spoto/java-and-android-concurrency.git

git@bitbucket.org:spoto/java-and-android-concurrency-examples.git

Fausto Spoto Università di Verona, Italy - 1 / 32

Visibility

Synchronization has two goals:

ensure mutual exclusion (everybody knows this)
ensure visibility (nobody knows this)

What does this print?

public class NoVisibility {

private static boolean ready;

private static int number;

private static class ReaderThread extends Thread {

public void run() {

while (!ready) Thread.yield();

System.out.println(number);

}

}

public static void main(String[] args) {

new ReaderThread().start();

number = 42;

ready = true;

}

}

Fausto Spoto Università di Verona, Italy - 2 / 32

The Heisenberg Principle of Concurrent Programming

In the absence of synchronization, the compiler, processor, and runtime can
do some downright weird things to the order in which operations appear
to execute. Attempts to reason about the order in which memory actions
”must” happen in insufficiently synchronized multithreaded programs will
almost certainly be incorrect

A field might contain any of the values ever written into the field, but not
necessarily the last one (out-of-thin-air safety). For long and double

fields, even a value never written into the field might be seen!

Fausto Spoto Università di Verona, Italy - 3 / 32

Synchronization Guarantees Visibility

@NotThreadSafe

public class MutableInteger {

private int value;

public int get() {

return value;

}

public void set(int value) {

this.value = value;

}

}

Fausto Spoto Università di Verona, Italy - 4 / 32

Synchronization Guarantees Visibility

@NotThreadSafe

public class MutableInteger {
private int value;

public int get() {
return value;

}

public synchronized void set(int value) {
this.value = value;

}
}

Fausto Spoto Università di Verona, Italy - 5 / 32

Synchronization Guarantees Visibility

@ThreadSafe

public class SynchronizedInteger {
private @GuardedBy("this") int value;

public synchronized int get() {
return value;

}

public synchronized void set(int value) {
this.value = value;

}
}

Fausto Spoto Università di Verona, Italy - 6 / 32

Locking, Visibility and volatile Fields

Locking guarantees visibility

When thread A executes a synchronized block, and subsequently thread
B enters a synchronized block guarded by the same lock, the values of
variables that were visible to A prior to realeasing the lock are guaranteed
to be visible to B upon acquiring the lock

volatile guarantees visibility

When thread A writes to a volatile field and subsequently thread B reads
the same field, the values of all variables that were visible to A prior to
writing become visible to B after reading

volatile boolean asleep;

void tryToSleep() {

while (!asleep)

countSomeSheep();

}

Fausto Spoto Università di Verona, Italy - 7 / 32

Use volatile Variables Sparingly

they have higher access cost

compound operations are not atomic: count++

Locking can guarantee both visibility and atomicity; volatile variables can
only guarantee visibility

Use volatile variables only if

1 writes do not depend on previous value or only one thread performs
writes

2 the variable does not participatre in invariants with other variables

3 locking is not needed for any other reason

Fausto Spoto Università di Verona, Italy - 8 / 32

Publication and Escape

Publication

Publishing an object means making it available to code outside of its current
scope:

publishing internal state can compromise encapsulation and
thread-safety

publishing not fully constructed objects can compromise thread-safety

Escape

An object that is published when it should not have been is said to have
escaped its intended scope

Fausto Spoto Università di Verona, Italy - 9 / 32

Examples of Escape

Escape through public fields

public static Set<Secret> knownSecrets;

public void initialize() {

knownSecrets = new HashSet<Secret>();

}

Escape through return value

private String[] states = new String[]{ "AK", "AL" ... };

public String[] getStates() {

return states;

}

Fausto Spoto Università di Verona, Italy - 10 / 32

Examples of Escape

Escape through overriddable methods

private String[] states = new String[]{ "AK", "AL" ... };

...doSomething(states);

protected void doSomething(String[] ss) { ... }

Escape through non-static inner classes

public class ThisEscape {

public ThisEscape(EventSource source) {

source.registerListener(new EventListener() {

public void onEvent(Event e) { doSomething(e); }

});

}

...

}

Fausto Spoto Università di Verona, Italy - 11 / 32

Escape of Raw Objects

The examples with overriddable methods and non-static inner classes are
particularly bad since they can allow a partially initialized object (raw) to
escape its constructor

Partially initialized objects might not be usable from other threads, even if
the class seems thread-safe

Do not allow the this reference to escape during construction

Fausto Spoto Università di Verona, Italy - 12 / 32

Thread Confinement

If an object is confined to a thread, that is, it can only be accessed by that
single thread, then there is no need to make it thread-safe, since all its uses
are automatically thread-safe

Ad-hoc thread confinement

Java’s Swing graphical library

Android graphical library

database connections from a connection pool

Stack confinement

Local variables are intrinsically confined to the executing thread

always for primitive values

if not published, for reference values

Fausto Spoto Università di Verona, Italy - 13 / 32

Thread Confinement through ThreadLocal

ThreadLocals are a sort of per-thread static fields. Calls to get yield the
value associated to the currently executing thread, either initialized
through initialValue or subsequently modified through set

private ThreadLocal<Connection> connectionHolder

= new ThreadLocal<>() {
public Connection initialValue() {
return DriverManager.getConnection(DB URL);

}
};

public Connection getConnection() {
return connectionHolder.get();

}

Fausto Spoto Università di Verona, Italy - 14 / 32

Immutability

Immutable objects are good

Immutable objects are thread-safe and can be shared and published without
synchronization

An object is immutable if

1 its state cannot be modified after construction

2 all its fields are final

3 it is properly constructed (this does not escape during construction)

Fausto Spoto Università di Verona, Italy - 15 / 32

An Immutable Object Can Well Use Modifiable Objects

@Immutable

public final class ThreeStooges {
private final Set<String> stooges = new HashSet<>();

public ThreeStooges() {
stooges.add("Moe");

stooges.add("Larry");

stooges.add("Curly");

}

public boolean isStooge(String name) {
return stooges.contains(name);

}

public String getStoogeNames() {
return stooges.toString();

}
}

Fausto Spoto Università di Verona, Italy - 16 / 32

Immutable Objects and Collections in State

Frequently, one is tempted to return a modifiable collection from the state
of an object: this breaks encapsulation, makes the state escape and makes
the object mutable:

@Mutable

public class C {
private final Set<Element> set = new HashSet<>();

...

public Set<Element> getElements() {
return set;

}
}

Fausto Spoto Università di Verona, Italy - 17 / 32

Immutable Objects and Collections in State

Bad solution: return a copy of the set

the user might modify the copy and think this actually does something

@Immutable

public class C {
private final Set<Element> set = new HashSet<>();

...

public Set<Element> getElements() {
return new HashSet<>(set);

}
}

Fausto Spoto Università di Verona, Italy - 18 / 32

Immutable Objects and Collections in State

Bad solution: return a Collections.unmodifiableSet

the user might modify the copy, because he thinks this actually does
something, and get an exception, but only at runtime

@Immutable

public class C {
private final Set<Element> set = new HashSet<>();

...

public Set<Element> getElements() {
return Collections.unmodifiableSet(set);

}
}

Fausto Spoto Università di Verona, Italy - 19 / 32

Immutable Objects and Collections in State

Good solution: make the class iterable or return a new Iterable instead
of a Set

in 99% of the cases, iterations is all the user wants to do

@Immutable

public class C implements Iterable<Element> {
private final Set<Element> set = new HashSet<>();

...

public Iterator<Element> iterator() {
return set.iterator();

}
}

Fausto Spoto Università di Verona, Italy - 20 / 32

Immutable Objects and Collections in State

Good solution: use internal iteration, passing a task as an interface or
lambda-expression

@Immutable

public class C {
private final Set<Element> set = new HashSet<>();

public interface Task {
void process(Element e);

}

...

public void forEach(Task task) {
for (Element e: set)

task.process(e);

}
}

Fausto Spoto Università di Verona, Italy - 21 / 32

Immutable Objects and Collections in State

Good solution: define and return a new ImmutableSet copy

for the 1% of the cases, when the user wants to do more than iterate

public interface ImmutableSet<E> extends Iterable<E> {
int size();

}

@Immutable

public class C {
private final Set<Element> set = new HashSet<>();

...

public ImmutableSet<Element> getElements() {
return new ImmutableSet<Element>() {
public int size() { return set.size(); }
public Iterator<Element> iterator() { return set.iterator(); }

};
}

}

Fausto Spoto Università di Verona, Italy - 22 / 32

Don’t Be Afraid of Immutability

An immutable object has only a single state, but references to an
immutable object can be updated!

Moreover:

no locking cost

no defensive copies

instances can be shared instead of duplicated

reduced generational garbage-collection

Fausto Spoto Università di Verona, Italy - 23 / 32

An Immutable Object for the Factorization Cache

@Immutable

public class OneValueCache {
private final BigInteger lastNumber;

private final BigInteger[] lastFactors;

public OneValueCache(BigInteger i, BigInteger[] factors) {
lastNumber = i;

lastFactors = Arrays.copyOf(factors, factors.length);

}

public BigInteger[] getFactors(BigInteger i) {
if (lastNumber == null || !lastNumber.equals(i))

return null;

else

return Arrays.copyOf(lastFactors, lastFactors.length);

}
}

Fausto Spoto Università di Verona, Italy - 24 / 32

Cached Factorizer without Synchronization

@ThreadSafe

public class VolatileCachedFactorizer extends StatelessFactorizer {
private volatile OneValueCache cache

= new OneValueCache(null, null);

@Override

protected void doPost(HttpServletRequest request,

HttpServletResponse response) {

BigInteger i = extractFromRequest(request);

BigInteger[] factors = cache.getFactors(i);

if (factors == null) {
factors = factor(i);

cache = new OneValueCache(i, factors);

}
encodeIntoResponse(response, factors);

}
}

Fausto Spoto Università di Verona, Italy - 25 / 32

Unsafe Publication

Very often, we do want to share objects. But publication must be done in
a safe way, or otherwise very weird things might happen

public class StuffIntoPublic {

public Holder holder;

public void initialize() { holder = new Holder(42); }

}

public class Holder {

private int n;

public Holder(int n) { this.n = n; }

public void assertSanity() {

if (n != n) throw new AssertionError("This is false");

}

}

1 holder might be seen to contain null or a stale, old Holder

2 n’s value might suddenly change, making the assertion fail

Fausto Spoto Università di Verona, Italy - 26 / 32

Safe Publication

public class StuffIntoPublic {
public volatile Holder holder;

public void initialize() { holder = new Holder(42); }
}

public class Holder {
private final int n;

public Holder(int n) { this.n = n; }
public void assertSanity() {
if (n != n) throw new AssertionError("This is false");

}
}

Making just n final would only satisfy the assertion: the object is
published, but the reference to it might be stale

Making holder volatile solves all problems

Fausto Spoto Università di Verona, Italy - 27 / 32

Safe Publication Idioms

Immutable objects can be published in any way. Mutable objects must be
safely published, so that their internal state is guaranteed to be visible.
This can happen in many ways:

by storing the object into a volatile field

by storing the object into a final field of a properly constructed
object

by initializing the object inside a class static initializer

by storing the object into a properly guarded field

by passing the object to a synchronized collection class from the
standard Java library

Fausto Spoto Università di Verona, Italy - 28 / 32

Exercise 1: Parallel Matrix Multiplication

Make the matrix multiplication constructor in the following code parallel,
through the use of multithreading

how much faster do you think it will run then on a n-core machine?

once the multiplication is divided across different threads, why is the
resulting matrix safely published to the calling thread?

Fausto Spoto Università di Verona, Italy - 29 / 32

Exercise 1: Sequential Matrix Multiplication

public class Matrix {

private final double[][] elements;

private final static Random random = new Random();

public Matrix(int m, int n) {

this.elements = new double[m][n];

for (int x = 0; x < n; x++)

for (int y = 0; y < m; y++)

elements[y][x] = random.nextDouble() * 100.0 - 50.0;

}

public int getM() {

return elements.length;

}

public int getN() {

return elements[0].length;

}

Fausto Spoto Università di Verona, Italy - 30 / 32

Exercise 1: Sequential Matrix Multiplication

// modify this constructor, make it run in parallel!

private Matrix(Matrix left, Matrix right) {
int m = left.getM();

int p = left.getN();

int n = right.getN();

this.elements = new double[m][n];

for (int x = 0; x < n; x++)

for (int y = 0; y < m; y++) {
double sum = 0.0;

for (int k = 0; k < p; k++)

sum += left.elements[y][k] * right.elements[k][x];

this.elements[y][x] = sum;

}
}

...

}

Fausto Spoto Università di Verona, Italy - 31 / 32

Esercise 2: Implement a Swing GUI for the Chat Servlets

Build a Swing GUI for the chat servlets

it should include a button that allows one to send a new chat
message (author and text)

and a text area that can be refreshed to show the last 20 messages
from the chat

Fausto Spoto Università di Verona, Italy - 32 / 32

