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Analisi multirisoluzione: teoria e applicazioni 



Course overview 

Course structure 

•  The course is about wavelets and 
multiresolution 

–  Theory: 4 hours per week (4 CFU) 
§  Mon.11.30-13.30, room G 
§  Tue. 8.30-10.30, room I 

–  Laboratory (2 CFU) 
§  Wed. 14.30-17.30 (Lab. Gamma) LM32 

•  Exam 
–  Theory: Oral (in general) 
–  Lab: Evaluation of lab. sessions and questions 

during the exam 
–  Projects: only in case of diploma project 

Contents 
•  Review of Fourier theory 

•  Wavelets and multiresolution 

•  Review of Information theoretic concepts 

•  Applications 
–  Image coding (JPEG2000) 
–  Feature extraction and signal/image analysis 

•  Wavelets and sparsity in neuroimaging 



Books 
Stephane Mallat  

(Ecole Polytechnique) 
Martin Vetterli (EPFL) 



Multiresolution analysis 

Good news 

•  It is fun! 

•  Get in touch with the state-of-the-art 
technology 

•  Convince yourself that the time spent on 
maths&stats was not wasted 

•  Learn how to map theories into applications 

•  Acquiring the tools for doing good research! 

Bad news 

•  Some theoretical background is unavoidable 
–  Mathematics 

§  Fourier transform 
§  Linear operators 
§  Digital filters 
§  Wavelet transform 

–  (some) Information theory 



Keywords & Concepts 



Multiresolution 



Multiresolution 



Approximation vs Details 



Multiresolution 



Multiresolution 



Multiresolution 



“Scale” 



“Scale” 



“Scale” 



Which scale should we trust? 



Sparsity 

Best	  bases:	  1	  
coefficient,	  NO	  
generaliza3on!	  

Fourier	  (DCT)	  bases:	  
many	  coefficients,	  
good	  generaliza3on!	  

Wavelet	  bases:	  few	  
coefficients,	  good	  
generaliza3on!	  



Some applications 



Brain tissue microstructure 

Axons 
bundles 

●  The brain is principally 
composed of a type of cells 
called neurons.  

●  A neuron is composed of a 
cellular body called soma and a 
tail called axon that is physical 
link between the neurons. 

●  The axons are usually group in 
bundles called fibers. 

●  In the brain the soma are 
positioned in the cortex and are 
generally called gray matter 
(GM), while the fibers are 
positioned in the central regions 
and are called white matter 
(WM). 

 



Magnetic Resonance Imaging 

●  Standard MRI is the principal 
non-invasive imaging technique 
used for clinical purposes. 

 
●  Using standard MRI techniques 

is possible to distinguish 
between GM, WM and CSF but 
not the complex structure of 
the White Matter fibers bundles. 

 
●  To overcome this limitation, 

using an additional pulse is 
possible to obtain a different 
type of images called Diffusion 
Weighted MRI. 

 
 
 



Diffusion Weighted MRI 

●  Diffusion MRI was born to observe the 
diffusion of water molecules in soft 
tissues. 

●  The diffusion signal can be modelled using 
some mathematical algorithms called 
reconstruction techniques. 

●  From the reconstructed signal is possible 
to calculate numerous measures to 
characterize the tissue and to calculate 
the orientation of the fibers tract in the 
voxel. 

●  From the single voxel orientation profile is 
possible to reconstruct the brain fibers 
tracts topology, this operation is called 
tractography.  



Objectives 

●  Find the optimal reconstruction technique for Diffusion 
MRI data  

●  Definition of a standard criterion for validation 
○  Synthetic data 

●  Identification of new scalar indices as numerical 
biomarkers of the structural properties of brain 
tissues 
○  Anatomically and biophysically plausible besides 

being objectively measurable 
○  Supporting and improving cortical connectivity 

modeling 
●  Uses of this indices features 

○  Tissues characterization by pattern recognition 
○  Patient vs Control classification 

 



Diffusion signal 

●  Invented by Stejskal and Tanner (1965) 
 
●  It exploits an additional sequence of pulses: Pulse 

Gradient Spin Echo (PSGE) to measure the 
attenuation of the signal due to the diffusion of 
water in the soft tissues 

 
●  Changing the gradient direction (u) and strength 

(b-value) it is possible to obtain different volumes 
called DWI, each one representing the attenuation 
of the diffusion in the chosen direction 

 
●  The b-value depends on the duration of the pulse 𝜏 

and the pulse frequency q: 
  



Sampling topologies 



From diffusion signal to water molecules pdf 

●  The signal attenuation E(q) is related to 
Ensemble Average Propagator (EAP) by a 
Fourier relationship: 

 
 
 

r: distance traveled by molecules in the unit 
time 
q: reciprocal vector 

 
●  The EAP represents the probability of a net 

displacement r in the unit time 



Continuous Analytical Basis for Diffusion Imaging 

●  Continuous analytical basis besides SH have been proposed to find an accurate 
mathematical description of the diffusion signal and its derivations 

 
●  Analytical models aim at approximating the signal E(q) by a truncated linear combination 

of basis functions Φ(q) up to the order N: 

cj  are the transform coefficients characterizing the signal. Usually these coefficients 
are obtained by linear fitting, e.g. using regularized mean squares  



Continuous Analytical Basis for Diffusion Imaging 

The principal advantages of Continuous Basis are: 
 
●  Continuous analytical signal representation in q-space independently from the 

acquisition sampling scheme 
 
●  Possibility to calculate the EAP and the ODF analytically, obtaining an exact solution for 

all the computations 
 

Principal open issues: 

●  Identification of the sampling topology 
●  Identification of the optimal basis for signal approximation 



Simple Harmonic Oscillator based Reconstruction and Estimation 

●  SHORE is a continuous analytical basis introduced by Ozarslan in 2009 
●  The signal is approximated using a combination of orthonormal functions which are the 

solutions of the 3D quantum mechanical harmonic oscillator  
●  Separable solution (Merlet 2013): Laguerre Polynomials for the radial part and Spherical 

Harmonics for the angular part  



Wiring the brain 



Modeling and recognition of waveforms by 
multiresolution methods with application to hdEEG 

The purpose of this work was to focus on a particular 
pathology, namely temporal lobe epilepsy, in order to detect, 
analyze and model the so-called interictal spikes. 











JPEG2000 



Mathematical tools 



Introduction 

•  Sparse representations: few coefficients reveal the information we are looking for.  
–  Such representations can be constructed by decomposing signals over elementary waveforms 

chosen in a family called a dictionary. 
–  An orthogonal basis is a dictionary of minimum size that can yield a sparse representation if 

designed to concentrate the signal energy over a set of few vectors. This set gives a geometric 
signal description. 
§  Signal compression and noise reduction 

–  Dictionaries of vectors that are larger than bases are needed to build sparse representations of 
complex signals. But choosing is difficult and requires more complex algorithms.  
§  Sparse representations in redundant dictionaries can improve pattern recognition, compression and noise 

reduction 

•  Basic ingredients: Fourier and Wavelet transforms 
–  They decompose signals over oscillatory waveforms that reveal many signal properties and 

provide a path to sparse representations 



Signals as functions 

•  CT analogue signals (real valued functions of continuous independent variables) 
–  1D: f=f(t) 
–  2D: f=f(x,y) x,y 
–  Real world signals (audio, ECG, pictures taken with an analog camera) 

•  DT analogue signals (real valued functions of discrete variables) 
–  1D: f=f[k] 
–  2D: f=f[i,j] 
–  Sampled signals 

•  Digital signals (discrete valued functions of DT variables) 
–  1D: y=y[k] 
–  2D: y=y[i,j] 
–  Sampled and discretized signals 



Images as functions 

•  Gray scale images: 2D functions 
–  Domain of the functions: set of (x,y) values for which f(x,y) is defined : 2D lattice [i,j] defining 

the pixel locations 
–  Set of values taken by the function : gray levels 

•  Digital images can be seen as functions defined over a discrete domain {i,j: 0<i<I, 0<j<J} 
–  I,J: number of rows (columns) of the matrix corresponding to the image 
–  f=f[i,j]: gray level in position [i,j] 



Example 1: δ function 
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Example 2: Gaussian 
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Continuous function 

Discrete version 



Example 3: Natural image 



Example 3: Natural image 



The Fourier kingdom qui 

•  Frequency domain characterization of signals 

Frequency domain 

Signal domain 
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The Fourier kingdom 
Gaussian function 



The Fourier kingdom 
rect function 

sinc function 



2D Fourier transform 
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Parseval formula 

Plancherel equality 



The Fourier kingdom 



Wavelets 

Wavalet in signal (time or space) domain 

Wavalet in frequency (Fourier) domain 



Wavelet representation 



Wavelet representation 



Wavelets are good for transients 

scalogram 



Wavelets&Pyramids 
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Wavelets&Pyramids 



Wavelets&Pyramids 



Wavelets&Pyramids 



Wavelets&Filterbanks 
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Wavelets&Filterbanks 
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Very efficient implementation by recursive filtering 



Fourier versus Wavelets 

Fourier 
–  Basis functions are sinusoids 

§  More in general, complex exponentials 

–  Switching from signal domain t to 
frequency domain f  
§  Either spatial or temporal  

–  Good localization either in time or in 
frequency 
§  Transformed domain: Information on the 

sharpness of the transient but not on its 
position   

–  Good for stationary signals but unsuitable 
for transient phenomena 

Wavelets 
–  Different families of basis functions are 

possible 
§  Haar, Daubechies’, biorthogonal 

–  Switching from the signal domain to a 
multiresolution representation 

–  Good localization in time and frequency 
§  Information on both the sharpness of the 

transient and the point where it happens 

–  Good for any type of signal 



Applications 

•  Compression and coding 
–  Critically sampled representations (discrete wavelet transforms, DWT) 

•  Feature extraction for signal analysis 
–  Overcomplete bases (continuous wavelet transform, wavelet frames) 

•  Image modeling 
–  Modeling the human visual system: Objective metrics for visual quality assessment 
–  Texture synthesis 

•  Image enhancement  
–  Denoising by wavelet thresholding, deblurring, hole filling 

•  Image processing on manyfolds 
–  Wavelet transform on the sphere: applications in diffusion MRI 


