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Important: These notes will be updated on a regular basis during the course.

In the second part, many proofs are omitted or just sketched.
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1 RINGS

1.1 Reminder on rings

Recall that a ring (R,+, ·, 0, 1) is given by a set R together with two binary operations, an

addition (+) and a multiplication (·), and two elements 0 6= 1 of R, such that (R,+, 0) is

an abelian group, (R, ·, 1) is a monoid (i.e., a semigroup with unity 1), and multiplication

is left and right distributive over addition. A ring whose multiplicative structure is abelian

is called a commutative ring.

Given two rings R, S, a map ϕ : R→ S is a ring homomorphism if for any two elements

a, b ∈ R we have ϕ(a+ b) = ϕ(a) + ϕ(b), ϕ(a · b) = ϕ(a) · ϕ(b), and ϕ(1R) = 1S.

Examples:

1. Z, Q, R, C are commutative rings.

2. Let k be a field; the ring k[x1, . . . , xn] of polynomials in the variables x1, . . . , xn is a

commutative ring.

3. Let k be a field; consider the ring R = Mn(k) of n× n-matrices with coefficients in

k with the usual ”rows times columns” product. Then R is a non-commutative ring.

4. Given an abelian group (G,+), the group homomorphisms f : G → G form a ring

EndG, called the endomorphism ring of G, with respect to the natural operations

given by pointwise addition f + g : G → G, a 7→ f(a) + g(a) and composition

of maps g ◦ f : G → G, a 7→ g(f(a)). The unity is given by the identity map

1G : G→ G, a 7→ a.

5. Given a ring R, the opposite ring Rop has the same additive structure as R and

opposite multiplication (∗) given by a ∗ b = b · a.

1.2 Finite dimensional algebras

Definition: Let k be a field. A k-algebra Λ is a ring with a map k×Λ→ Λ, (α, a) 7→ αa,

such that Λ is a k-vector space and α(ab) = a(αb) = (ab)α for any α ∈ k and a, b ∈ Λ. Λ

is finite dimensional if dimk(Λ) <∞.

In other words, a k-algebra is a ring with a further structure of k-vector space, compatible

with the ring structure.

Remark: An element α ∈ k can be identified with an element of Λ by means of the

embedding k → Λ, α 7→ α · 1. Thanks to this identification, we get that k ≤ Λ.

Examples: Let k be a field.

1. The ring Mn(k) is a finite dimensional k-algebra with dimk(Mn(k)) = n2. Any

element α ∈ k is identified with the diagonal matrix with α on the diagonal elements.
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2. The ring k[x] is a k-algebra, it is not finite dimensional.

3. Given a finite group G = {g1, . . . , gn}, let kG be the k-vector space with basis

{g1, . . . , gn} and multiplication given by (
∑n

i=1 αigi) · (
∑n

j=1 βjgj) =
∑n

i,j=1 αiβjgigj.

Then kG is a finite dimensional k-algebra, called the group algebra of G over k.

1.3 Quivers and path algebras

Definition. A quiver Q = {Q0, Q1} is an oriented graph where Q0 is the set of vertices

and Q1 is the set of arrows i
α−→ j between the vertices. If Q0 and Q1 are finite sets, then

Q is called a finite quiver.

Examples: An : •
1

α1−→ •
2

α2−→ •
3
. . . • αn−1−−−→ •

n
, or •cc α , or •−→−→•

Definition. Let Q = {Q0, Q1} be a finite quiver.

(1) An ordered sequence of arrows •
i

α1−→ • α2−→ • . . . • αn−→ •
j

, denoted by (i|α1, . . . , αn|j),
is called a path in Q. A path (i|α1, . . . , αn|i) starting and ending in the same vertex is

called an oriented cycle. For each vertex i there is the trivial (or lazy) path ei = (i‖i).

(2) For a field k, let kQ be the k-vector space having the paths of Q as k-basis. We now

define an algebra structure on kQ. Hereby, the multiplication of two paths p and p′

with the end point of p′ coinciding with the starting point of p will correspond to the

composition of arrows.

For paths p′ = (k|β1, . . . , βm|l), and p = (i|α1, . . . , αn|j) of Q we set

p · p′ =

{
(k|β1, . . . , βm, α1, . . . , αn|j) if l = i

0 else.

In particular, the trivial paths satisfy p · ei = ej · p = p and

ei · ej =

{
ei if i = j

0 else

and the unity is given by 1kQ =
∑
i∈Q0

ei. The algebra kQ is called the path algebra of

Q over k. It is finite dimensional if and only if Q has no oriented cycles.

We simplify the notation and write αn . . . α1 = (i|α1, . . . , αn|j).
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Examples:

(1) kAn is isomorphic to

 k 0
...

. . .

k . . . k

 .

In fact, the only paths in An are the trivial paths and the paths αj−1 . . . αi =

(i | αiαi+1 . . . αj−1 | j) for 1 ≤ i < j ≤ n. So, if Eji is the n× n-matrix with 1 in the

i-th entry of the j-th row and zero elsewhere, we obtain the desired isomorphism by

mapping ei 7→ Eii, and αj−1 . . . αi 7→ Eji for 1 ≤ i < j ≤ n.

(2) The path algebra of the quiver •cc α is isomorphic to k[x] via the assignment

e1 7→ 1, and α 7→ x.

(3) The path algebra of the quiver •
α−→−→
β

• is called Kronecker algebra.

It is isomorphic to the triangular matrix ring

(
k 0

k2 k

)
via the assignment

e1 7→
(

1 0

0 0

)
, e2 7→

(
0 0

0 1

)
, α 7→

(
0 0

(1, 0) 0

)
, β 7→

(
0 0

(0, 1) 0

)

2 MODULES

2.1 Left and right modules

Definition: A left R-module is an abelian group M together with a map R ×M → M ,

(r,m) 7→ rm, such that for any r, s ∈ R and any x, y ∈M

(L1) 1x = x

(L2) (rs)x = r(sx)

(L3) r(x+ y) = rx+ ry

(L4) (r + s)x = rx+ sx

We write RM to express that M is a left R-module.

Examples:

1. Any abelian group G is a left Z-module by defining nx = x+ · · ·+ x︸ ︷︷ ︸
n times

for x ∈ G and

n > 0, and correspondingly for n ≤ 0.

2. Given a field k, any vector space V over k is a left k-module.

3. Any ring R is a left R-module, by using the left multiplication of R on itself. It is

called the regular module.
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4. Consider the zero element of the ring R. Then the abelian group {0} is trivially a

left R-module.

Remark. Consider M an abelian group with endomorphism ring EndM . Every ring

homomorphism λ : R → EndM, r 7→ λ(r) gives a structure of left R-module on M .

Indeed, from the properties of ring homomorphisms it follows that for any r, s ∈ R and

x, y ∈M

1. λ(1)(x) = x

2. λ(rs)(x) = λ(r)(λ(s)(x))

3. λ(r)(x+ y) = λ(r)(x) + λ(r)(y)

4. λ(r + s)(x) = λ(r)(x) + λ(s)(x)

in other words, we can consider λ(r) acting on the elements of M as a left multiplication

by the element r ∈ R, and we can define rx := λ(r)(x). Conversely, to any left R-module

M , we can associate a ring homomorphism λ : R → EndM by defining λ(r) : M →
M, x 7→ rx.

Similarly, we define right R-modules:

Definition: A right R-module is an abelian group M together with a map M ×R→M ,

(m, r) 7→ mr, such that for any r, s ∈ R and any x, y ∈M

(R1) x1 = x

(R2) x(rs) = (xr)s

(R3) (x+ y)r = xr + yr

(R4) x(r + s) = xr + xs

We write MR to express that M is a right R-module.

Remark (1) If R is a commutative ring, then left R-modules and right R-modules coin-

cide. Indeed, given a left R-module M with the map R ×M → M (r,m) 7→ rm, we can

define a map M ×R→M (m, r) 7→ mr := rm. This map satisfies the axioms (R1)–(R4)

and so M is also a right R-module. The crucial point is that, in the second axiom, since

R is commutative we have x(rs) = (rs)x = (sr)x = s(rx) = (rx)s = (xr)s.

(2) Consider M an abelian group with endomorphism ring EndM . Every ring homo-

morphism ρ : R → (EndM)op, r 7→ ρ(r) gives a structure of right R-module on

M , and conversely, to any right R-module M , we can associate a ring homomorphism

ρ : R→ (EndM)op by defining ρ(r) : M →M, x 7→ xr (check!).

We will mainly deal with left modules. So, in the following, unless otherwise is stated,

with module we always mean left module.
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Remark. Given RM , for any x ∈M and r ∈ R, we have

1. r0 = 0

2. 0x = 0

3. r(−x) = (−r)x = −(rx)

2.2 Submodules and quotient modules

Definition: Let RM be a left R-module. A subset L of M is a submodule of M if L is

a subgroup of M and rx ∈ L for any r ∈ R and x ∈ L (i.e. L is a left R-module under

operations inherited from M). We write L ≤M .

Examples:

1. Let G be a Z-module. The submodules of G are exactly the subgroups of G.

2. Let k a field and V a k-module. The submodules of V are exactly the k-subspaces

of V .

3. Let R a ring. The submodules of the left R-module RR are the left ideals of R. The

submodules of the right R-module RR are the right ideals of R.

Definition: Let RM be a left R-module and L ≤ M . The quotient module M/L is the

quotient abelian group together with the map R×M/L→M/L given by (r, x) 7→ rx

(indeed, the map R ×M/L → M/L given by (r, x) 7→ rx is well-defined, since if x = y

then x− y ∈ L and hence rx− ry = r(x− y) ∈ L, that is, rx = ry).

2.3 Homomorphisms of modules

Definition: Let RM and RN be R-modules. A map f : M → N is a homomorphism if

f(rx+ sy) = rf(x) + sf(y) for any x, y ∈M and r, s ∈ R.

Remarks: (1) From the definition it follows that f(0) = 0.

(2) Clearly if f and g are homomorphisms from M to N , also f + g is a homomorphism.

Since the zero map is obviously a homomorphism, the set HomR(M,N) = {f | f : M →
N is a homomorphism} is an abelian group.

(3) If f : M → N and g : N → L are homomorphisms, then gf : M → L is a homomor-

phism. Thus the abelian group EndR(M) = {f | f : M → M is a homomorphism} has

a natural structure of ring, called the endomorphism ring of M . The identity homomor-

phism idM : M →M , m 7→ m, is the unity of the ring.
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Definition: Given a homomorphism f ∈ HomR(M,N), the kernel of f is the set Ker f =

{x ∈M | f(x) = 0}. The image of f is the set Im f = {y ∈ N | y = f(x) for x ∈M}.
It is easy to verify that Ker f ≤M and Im f ≤ N . Thus we can define the cokernel of f

as the quotient module Coker f = N/ Im f .

A homomorphism f ∈ HomR(M,N) is called a monomorphism if it is injective, that is,

Ker f = 0. It is called an epimorphism if it is surjective, that is, Coker f = 0. It is is

called an isomorphism if it is both a monomorphism and an epimorphism. If f is an

isomorphism we write M ∼= N .

Remarks: (1) For any submodule L ≤M there is a canonical monomorphism i : L→M ,

which is the usual inclusion, and a canonical epimorphism p : M →M/L, m 7→ m which

is the usual quotient map.

(2) For any M the trivial map 0 → M , 0 7→ 0, is a monomorphism, and the trivial map

M → 0, m 7→ 0, is an epimorphism.

(3) Of course, f ∈ HomR(M,N) is an isomorphism if and only if there exist g ∈
HomR(N,M) such that gf = idM and fg = idN . In such a case g is unique, and we

usually denote it as f−1.

2.4 Homomorphism theorems

Proposition 2.4.1. (Factorization of homomorphisms) Given f ∈ HomR(M,N)

and a submodule L ≤ M which is contained in Ker f , there is a unique homomorphism

f ∈ HomR(M/L,N) such that f p = f. We have Ker f = Ker f/L and Im f = Im f .

In particular, f induces an isomorphism M/Ker f ∼= Im f .

Proof. The induced map f : M/L→ N , m 7→ f(m) is a homomorphism. Moreover, when

L = Ker f it is clearly a monomorphism, inducing an isomorphism M/Ker f → Im f .

The usual isomorphism theorems which hold for groups hold also for homomorphisms of

modules.

Proposition 2.4.2. ( Isomorphism theorems) (1) If L ≤ N ≤M , then

(M/L)/(N/L) ∼= M/N.

(2) If L,N ≤M , denote by L+N = {m ∈M | m = l + n for l ∈ L and n ∈ N}. Then

L+N is a submodule of M and

(L+N)/N ∼= L/(N ∩ L).
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2.5 Bimodules

Definition: Let R and S be rings. An abelian group M is an R-S-bimodule if M is

a left R-module and a right S-module such that the two scalar multiplications satisfy

r(xs) = (rx)s for any r ∈ R, s ∈ S, x ∈M . We write RMS.

Examples: Let RM be a left R-module. Then M is a right EndR(M)op-module via the

multiplication mf = f(m) (check!) and we have a bimodule

RMEndR(M)op .

Indeed (rm)f = f(rm) = rf(m) = r(mf) for any r ∈ R, m ∈M and f ∈ S.

Given a bimodule RMS and a left R-module N , the abelian group HomR(M,N) is nat-

urally endowed with a structure of left S-module, by defining (sf)(x) := f(xs) for any

f ∈ HomR(M,N) and any x ∈M . (crucial point: (s1(s2f))(x) = (s2f(xs1)) = f(xs1s2) =

((s1s2)f)(x)).

Similarly, if RNT is a leftR- right T -bimodule and RM is a leftR-module, then HomR(M,N)

is naturally endowed with a structure of right T -module, by defining (ft)(x) := f(x)t

(Check! crucial point: (f(t1t2))(x) = f(x)(t1t2) = (f(x))t1)t2 = ((ft1)(x))t2 = ((ft1)t2)(x)).

Moreover, if RMS and RNT are bimodules, we have an S-T -bimodule (check!)

S HomR(RMS, RNT )T .

Arguing in a similar way for right R-modules, if SMR and TNR are bimodules, we have

an T -S-bimodule

T HomR(SMR, TNR)S

via (tf)(x) = t(f(x)) and (fs)(x) = f(sx).

2.6 Sums and products of modules

Let I be a set and {Mi}i∈I a family of R-modules. The cartesian product∏
I

Mi = {(xi) | xi ∈Mi}

has a natural structure of left R-module, by defining the operations componentwise:

(xi)i∈I + (yi)i∈I = (xi + yi)i∈I , r(xi)i∈I = (rxi)i∈I .

This module is called the direct product of the modules Mi. It contains a submodule⊕
I

Mi = {(xi) | xi ∈Mi and xi = 0 for almost all i ∈ I}
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(recall that ”almost all” means ”except for a finite number”). The module ⊕IMi is called

the direct sum of the modules Mi. Clearly if I is a finite set then
∏

IMi = {(xi) | xi ∈
Mi} = ⊕IMi. For any component j ∈ I there are canonical homomorphisms

∏
I

Mi →Mj , (xi)i∈I 7→ xj and Mj →
∏
I

Mi , xj 7→ (0, 0, . . . , xj, 0, . . . , 0)

called the projection on the jth-component and the injection of the jth-component. They

are epimorphisms and monomorphisms, respectively, for any j ∈ I. The same is true for

⊕IMi.

When Mi = M for any i ∈ I, we use the following notations∏
I

Mi = M I ,
⊕
I

Mi = M (I), and if I = {1, . . . , n}, ⊕IMi = Mn

Let RM be a module and {Mi}i∈I a family of submodules of M . We define the sum of

the Mi as the module∑
I

Mi = {
∑
i∈I

xi | xi ∈Mi and xi = 0 for almost all i ∈ I}.

Clearly
∑

IMi ≤M and it is the smallest submodule of M containing all the Mi (notice

that in the definition of
∑

IMi we need almost all the components to be zero in order to

define properly the sum of elements of M).

Remark 2.6.1. Let RM be a module and {Mi}i∈I a family of submodules ofM . Following

the previous definitions we can construct both the module ⊕IMi and module
∑

IMi

(which is a submodule of M). We can define a homomorphism

α : ⊕IMi →M, (xi)i∈I 7→
∑
i∈I

xi.

Then Imα =
∑

IMi. If α is a monomorphism, then ⊕IMi
∼=
∑

IMi and we say that the

module
∑

IMi is the (innner) direct sum of its submodules Mi. Often we omit the word

”innner” and if M =
∑

IMi and α is an isomorphism, we say that M is the direct sum

of the submodules Mi and we write M = ⊕IMi.

Similarly, given a family of modules {Mi}i∈I with the (outer) direct sum M = ⊕IMi, we

can identify the Mi with their images under the injection in M and view M as an (inner)

direct sum of these submodules.
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2.7 Direct summands

Definition: (1) A submodule RL ≤ RM is a direct summand of M if there exists a

submodule RN ≤ RM such that M is the direct sum of L and N . Then N is called a

complement of L.

(2) A module M is said to be indecomposable if it only has the trivial direct summands

0 and M .

By the results in the previous section, if L is a direct summand of M and N a complement

of L, any m in M can be written in a unique way as m = l + n with l ∈ L and n ∈ N .

We write M = L⊕N and L
⊕
≤M .

Remark 2.7.1. (1) Let RL,RN ≤ RM . Then M = L⊕N if and only if L+N = M and

L ∩N = 0.

(2) Let f ∈ HomR(L,M) and g ∈ HomR(M,L) be homomorphisms such that gf = idL.

Then M = Im f ⊕ ker g.

Examples:

1. Consider the Z-module Z/6Z. Then Z/6Z = 3Z/6Z⊕ 2Z/6Z.

2. The regular module ZZ is indecomposable.

3. Let k be a field and V a k-module. Then, by a well-known result of linear algebra,

any L ≤ V is a direct summand of V .

4. Let R =

(
k 0

k k

)
. Then R = P1 ⊕ P2, where P1 = {

(
a 0

b 0

)
| a, b ∈ k} and

P2 = {
(

0 0

0 c

)
| c ∈ k}.

2.8 Representations of quivers

Definition. Let Q be a finite quiver without oriented cycles, k a field, and let Λ = kQ.

(1) A (finite dimensional) representation V of Q over k is given by a family of (finite

dimensional) k-vector spaces (Vi)i∈Q0 indexed by the vertices of Q and a family of

k-homomorphisms (fα : Vi → Vj)i α−→j∈Q1
indexed by the arrows of Q.

(2) Given two representations V and V ′ of Q over k, a morphism h : V → V ′ is given by

a family of k-homomorphism (hi : Vi → V ′i )i∈Q0 such that the diagram

Vi

hi
��

fα
// Vj

hj
��

V ′i f ′α

// V ′j
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commutes for all arrows i
α−→ j ∈ Q1.

Remark: Every representation of a quiver Q gives rise to a module over the path algebra

kQ, and morphisms of representations give rise to module homomorphisms between the

corresponding modules.

Indeed, if ((Vi)i∈Q0 , (fα : Vi → Vj)i α−→j∈Q1
) is a representation, we consider the vector space

M :=
⊕
i∈Q0

Vi

and we define a left kQ-module structure on it. For v = (vi)i∈Q0 , left multiplication

by the lazy path is given by ei · v = (0, . . . , vi, . . . , 0) and multiplication by a path p =

(i|α1, . . . , αn|j) yields an element p · v with j-th entry fαn . . . fα1(vi) and all other entries

zero.

In other words, denoting by ιj and πi the canonical injections and projections in the j-th

and on the i-th component, respectively, we have for the lazy paths

ei · v = ιiπi(v)

and for p = (i|α1, . . . , αn|j)
p · v = ιjfαn . . . fα1πi(v).

Multiplication with an arbitrary linear combination of paths is defined correspondingly.

Conversely, every kQ-module gives rise to a representation, and module homomorphisms

give rise to morphisms between the corresponding representations.

Indeed, if M is a left kQ-module, we set

Vi = eiM

to get a family of vector spaces indexed over Q0. Moreover, given an arrow i
α→ j, we

define a linear map

fα : eiM → ejM, eim 7→ ejαeim.

In this way we obtain a representation ((Vi)i∈Q0 , (fα : Vi → Vj)i α−→j∈Q1
) of Q.

The correspondence between modules and representations will be made more precise later.

Examples: (1) A representation of A2 : 1
α−→ 2 has the form V1

f−→ V2 with k-vector

spaces V1, V2 and a k-linear map f : V1 → V2. The corresponding kA2-module is given by

the vector space M = V1 ⊕ V2 and the multiplication

e1 · (v1, v2) = (v1, 0)

e2 · (v1, v2) = (0, v2)

α · (v1, v2) = (0, f(v1)).
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Every finite dimensional representation corresponds to a matrix A ∈ kn2×n1 where ni =

dimk(Vi), and homomorphisms between two such representations, in terms of matrices A

and A′, are given by two matrices P,Q such that PA = A′Q. The representations are

thus isomorphic if and only if there are matrices P ∈ GLn2(K) and Q ∈ GLn1(K) such

that A′ = PAQ−1.

(2) A representation of the quiver •
α−→−→
β

• has the form V1

fα−→−→
fβ

V2 where V1, V2 are k-vectorspaces

and fα, fβ : V1 → V2 are k-linear. In other words, every finite dimensional representation

of •
α−→−→
β

• corresponds to a pair of matrices (A,B) with A,B ∈ kn2×n1 and n1, n2 ∈ N0.

Moreover, isomorphism of two representations, in terms of matrix pairs (A,B) and (A′, B′)

corresponds to the existence of two invertible matrices P ∈ GLn(K) and Q ∈ GLm(K)

such that A′ = PAQ−1 and B′ = PBQ−1. So, the classification of the finite dimensional

representations of •−→−→• translates into the classification problem of “matrix pencils” con-

sidered by Kronecker in [?].

(3) A representation of Q : •cc α is given as (V, f) with a vectorspace V and a linear

map f . It corresponds to a module over the ring k[x]. Indeed, if M is a k[x]-module, then

we obtain a representation of Q by setting V = M and f : M →M, m 7→ xm.



12 3 PROJECTIVE MODULES, INJECTIVE MODULES

3 PROJECTIVE MODULES, INJECTIVE MODULES

3.1 Exact sequences

Definition: A sequence of homomorphisms of R-modules

· · · →Mi−1
fi−1→ Mi

fi→Mi+1
fi+1→ . . .

is called exact if Ker fi = Im fi−1 for any i.

An exact sequence of the form 0→M1 →M2 →M3 → 0 is called a short exact sequence

Observe that if L ≤ M , then the sequence 0→ L
i→ M

p→ M/L→ 0, where i and p are

the canonical inclusion and quotient homomorphisms, is short exact (Check!). Conversely,

if 0 → M1
f→ M2

g→ M3 → 0 is a short exact sequence, then f is a monomorphism, g is

an epimorphism, and M3
∼= Coker f (check!).

Example 3.1.1. (1) Consider the representations 0
0−→ K, K

1−→ K, and K
0−→ 0 of A2

together with the morphisms

0

0
��

0 // K

1
��

K
1
// K

and

K

1
��

1 // K

0
��

K
0
// 0

They correspond to modules M1,M2,M3 over kA2 and to homomorphisms f : M1 →M2

and g : M2 →M3 giving rise to a short exact sequence 0→M1
f→M2

g→M3 → 0.

(2) For any n ≥ 2 consider the short exact sequence 0→ Z n·→ Z→ Z/nZ→ 0.

The following result is very useful:

Proposition 3.1.2. Consider the commutative diagram with exact rows

0 // L
f //

α
��

M
g //

β
��

N

γ
��

// 0

0 // L′
f ′ //M ′ g′ // N ′ // 0

If α and γ are monomorphisms (epimorphims, or isomorphisms, respectively), so is β

Proof. (1) Suppose α and γ are monomorphisms and let m such that β(m) = 0. Then

γ(g(m)) = 0 and so m ∈ Ker g = Im f . Hence m = f(l), l ∈ L and β(m) = β(f(l)) =

f ′(α(l)) = 0. Since f ′ and α are monomorphism, we conclude l = 0 and so m = 0.
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(2) Suppose α and γ are epimorphisms and let m′ ∈ M ′. Then g′(m′) = γ(g(m)) =

g′(β(m)); hence m′ − β(m) ∈ Ker g′ = Im f ′ and so m′ − β(m) = f ′(l′), l′ ∈ L′. Let

l ∈ L such that l′ = α(l): then m′ − β(m) = f ′(α(l)) = β(f(l)) and so we conclude

m′ = β(m− f(l)).

3.2 Split exact sequences

If L and N are R-modules, there is a short exact sequence

0→ L
iL→ L⊕N πN→ N → 0, with iL(l) = (l, 0) πN(l, n) = n, for any l ∈ L, n ∈ N.

More generally:

Definition: A short exact sequence 0 → L
f→ M

g→ N → 0 is said to be split exact if

there is an isomorphism M ∼= L⊕N such that the diagram

0 // L
f //M

g //

α∼=
��

N // 0

0 // L
iL // L⊕N πN // N // 0

commutes. Then f is a split monomorphism and g a split epimorphism.

Proposition 3.2.1. The following properties of an exact sequence 0→ L
f→M

g→ N → 0

are equivalent:

1. the sequence is split

2. there exists a homomorphism ϕ : M → L such that ϕf = idL

3. there exists a homomorphism ψ : N →M such that gψ = idN

Under these conditions, L and N are isomorphic to direct summands of M .

Proof. 1 ⇒ 2. Since the sequence splits, then there exists α as in Definition 3.2. Let

ϕ = πL ◦ α. So for any l ∈ L we have ϕf(l) = πLαf(l) = πL(l, 0) = l.

1⇒ 3 Similar (Check!)

2 ⇒ 1. Define α : M → L ⊕ N , m 7→ (ϕ(m), g(m)). Since αf(l) = (ϕ(f(l)), g(f(l))) =

(l, 0) and πNα(m) = g(m) we get that the diagram

0 // L
f //M

g //

α
��

N // 0

0 // L
iL // L⊕N πN // N // 0

commutes. Finally, by Proposition 3.1.2, we conclude that α is an isomorphism.

2⇒ 3 Similar (check!)

Example. The short exact sequence in Example 3.1.1 is not a split exact sequence.
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3.3 Free modules and finitely generated modules

Definition: A module RM is said to be generated by a family {xi}i∈I of elements of M

if every x ∈ M can be written as x =
∑

I rixi, with ri ∈ R for any i ∈ I, and ri = 0

for almost every i ∈ I. Then {xi}i∈I is called a set of generators of M and we write

M =< xi, i ∈ I >.

If the coefficients ri are uniquely determined by x, the set {xi}i∈I is called a basis of M .

The module M is said to be free if it admits a basis.

Proposition 3.3.1. A module RM is free if and only M ∼= R(I) for some set I.

Proof. The module R(I) is free with basis (ei)i∈I , where ei is the canonical vector with all

components zero except for the i-th equal to 1.

Conversely if M is free with basis (xi)i∈I , then we can define a homomorphism α : R(I) →
M , (ri)i∈I 7→

∑
I rixi. It is easy to show that α is an isomorphism, as a consequence of

the definition of a basis: indeed, it is clearly an epimorphism and if α(ri) =
∑
rixi = 0,

since the ri are uniquely determined by 0, we conclude that ri = 0 for all i, i.e. α is a

monomorphism.

Given a free module M with basis (xi)I , every homomorphism f : M → N is uniquely

determined by its value on the xi, and the elements f(xi) can be chosen arbitrarily in N .

Indeed, once we choose the f(xi), we define f on x =
∑
rixi ∈ M as f(x) =

∑
rif(xi)

(which is well defined since (xi)i∈I is a basis - notice the analogy with vector spaces!).

Proposition 3.3.2. Any module is quotient of a free module.

Proof. Let M be an R-module. Since we can always choose I = M , the module M admits

a set of generators. Let (xi)i∈I a set of generators for M and define a homomorphism

α : R(I) →M , (ri)i∈I 7→
∑

i rixi. Clearly α is an epimorphism and soM ∼= R(I)/Kerα

Definition: A module RM is finitely generated it there exists a finite set of generators

for M . A module is cyclic if it can be generated by a single element.

By Proposition 3.3.2, a module RM is finitely generated if and only if there exists an

epimorphism Rn → M for some n ∈ N. Similarly, RM is cyclic if and only if M ∼= R/J

for a left ideal J ≤ R.

Example 3.3.3. Let R be a ring.

1. The regular module RR is cyclic, generated by the unity element: RR =< 1 >.

2. Let Λ be a finite dimensional k-algebra. Then a module ΛM is finitely generated if

and only if dimk(M) <∞.

Indeed, assume dimk(Λ) = n, and let {a1, . . . , an} be a k-basis of Λ.
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If {m1, . . . ,mr} is a set of generators of M as Λ-module, then one verifies that

{aimj}j=1,...,r
i=1,...,n is a set of generators for M as k-module.

Conversely, if M is generated by {m1, . . . ,ms} as k-module, since k ≤ Λ, one gets

that M is generated by {m1, . . . ,ms} also as Λ-module.

Proposition 3.3.4. Let RL ≤ RM .

1. If M is finitely generated, then M/L is finitely generated.

2. If L and M/L are finitely generated, so is M

Proof. (1) If {x1, . . . , xn} is a set of generators for M , then {x1, . . . , xn} is a set of gener-

ators for M/L.

(2) Let < x1, . . . , xn >= L and < y1, . . . , ym >= M/L, where x1, . . . , xn, y1, . . . , ym ∈
M . Let x ∈ M and consider x =

∑
i=1,...m riyi in M/L. Then x −

∑
i=1,...m riyi ∈ L

and so x −
∑

i=1,...m riyi =
∑

j=1,...,n rjxj. Hence x =
∑

i=1,...m riyi +
∑

j=1,...,n rjxj, i.e.

{x1, . . . , xn, y1 . . . , ym} is a finite set of generators of M .

Notice that M finitely generated doesn’t imply that L is finitely generated. For example,

let R be the ring R = k[xi, i ∈ N], and consider the regular module RR with its submodule

L =< xi, i ∈ N >.

3.4 Projective modules

Definition: A module RP is projective if for any epimorphism M
g→ N → 0 of left

R-modules, the homomorphism of abelian groups

HomR(P, g) : HomR(P,M)→HomR(P,N), ψ 7→ gψ

is surjective, that is, for any ϕ ∈ HomR(P,N) there exists ψ ∈ HomR(P,M) such that

gψ = φ.

M
g // N // 0

P
ψ

``B
B
B
B
ϕ

OO

Examples: Any free module is projective. Indeed, let R(I) a free R-module with (xi)i∈I
a basis. Given homomorphisms M

g→ N → 0 and ϕ : R(I) → N , let mi ∈ M such that

g(mi) = ϕ(xi) for any i ∈ I. Define ψ(xi) = mi and, for x =
∑
rixi, ψ(x) =

∑
rimi.

We get that gψ = ϕ. It is clear from the construction that the homomorphism ψ is not

unique in general.

Proposition 3.4.1. Let P be a left R-module. The following are equivalent:

1. P is projective

2. P is a direct summand of a free module
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3. every exact sequence 0→ L
f→M

g→ P → 0 splits.

Proof. 1 ⇒ 3 Let 0 → L
f→ M

g→ P → 0 be an exact sequence and consider the

homorphism 1P : P → P . Since P is projective there exists ψ : P → M such that

gψ = 1P . By Proposition 3.2.1 we conclude that the sequence splits.

3 ⇒ 2 The module P is a quotient of a free module, so there exist an exact sequence

0→ K
f→ R(I) g→ P → 0, which is split.

2 ⇒ 1 If R(I) = P ⊕ L, then HomR(R(I), N) ∼= HomR(P,N) ⊕ HomR(L,N) for any RN .

So let us consider the homorphisms

M
g // N // 0

P

ϕ

OO and M
g // N // 0

R(I)

α

bbD
D
D
D (ϕ,0)

OO

where (ϕ, 0)(p + l) = ϕ(p) + 0(l) = ϕ(p) for any p ∈ P and l ∈ L and α exists since

R(I) is projective. Then α = (ψ, β), with ψ ∈ HomR(P,N) and β ∈ HomR(L,N), where

α(p+ l) = ψ(p) + β(l) for any p ∈ P and l ∈ L. Hence g(ψ(p)) = g(α(p)) = ϕ(p) for any

p ∈ P . So we conclude that P is projective.

Examples:

1. Let R be a principal ideal domain (for instance, R = Z). Then any projective module

is free. In particular, free abelian groups and projective abelian groups coincide.

2. Let R = Z/6Z. Then Z/6Z = 3Z/6Z ⊕ 2Z/6Z. The ideals 3Z/6Z and 2Z/6Z are

projective R-modules, but not free R-modules. The elements e = 3 and f = 4 are

orthogonal idempotents (see Definition below) corresponding to this decomposition.

Definition. An element e ∈ R is said to be idempotent if e2 = e. Two idempotents

e, f ∈ R are said to be orthogonal if ef = fe = 0.

Remark 3.4.2. (1) If e is idempotent, then (1− e) is idempotent and

R = Re⊕R(1− e)

where Re and R(1−e) denote the cyclic modules generated by e and (1−e), respectively.

Conversely, if R = I ⊕ J , with I and J left ideals of R, then there exist orthogonal

idempotents e and f such that 1 = e+ f , I = Re and J = Rf .

(2) More generally, if e1, . . . , en ∈ R are pairwise orthogonal idempotent elements such

that 1 = e1 + . . . en, then

R = Re1 ⊕ . . .⊕Ren,

and every direct sum decomposition of the regular module RR arises in this way.

(3) If k is a field and Λ = kQ is the path algebra of a quiver Q with |Q0| = n, the

lazy paths e1, . . . , en are orthogonal idempotent elements of Λ as above. For each vertex
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i ∈ Q0, the paths starting in i form a k-basis of Λei. The representation corresponding to

the module Λei is given by the vector spaces Vj = ejΛei having as basis all paths starting

in i and ending in j, and by the linear maps fα corresponding to concatenation of paths

with the arrow α. Moreover, EndΛ Λei ∼= eiΛei via f 7→ f(ei) and if Q is acyclic, the

latter is isomorphic to kei ∼= k.

Example. (1) For Λ = kA3 the module Λe1 corresponds to the representation

Ke1
α→ Kα

β→ Kβα

which we write, up to isomorphism, as K → K → K.

(2) If Λ = kQ is the Kronecker algebra with Q : •
α−→−→
β

•, then the representations corre-

sponding to Λei are

Λe1 : K
α−→−→
β

K2

Λe2 : 0−→−→K.

Proposition 3.4.3. (Dual Basis Lemma) A module RP is projective if and only if

it has a dual basis, that is, a pair ( (xi)i∈I , (ϕi)i∈I ) consisting of elements (xi)i∈I in P

and homomorphisms (ϕi)i∈I in P ∗ = HomR(P,R) such that every element x ∈ P can be

written as

x =
∑
i∈I

ϕi(x)xi

with ϕi(x) = 0 for almost all i ∈ I.

Proof. Let P be projective and let R(I) β→ P → 0 be a split epimorphism. Let (ei)i∈I be

the canonical basis of R(I) and denote xi = β(ei). Observe that β(
∑

i riei) =
∑

i riβ(ei) =∑
i rixi. By Proposition 3.2.1, there exists ϕ : P → R(I) such that βϕ = idP , which

induces homomorphisms ϕi = πiϕ ∈ P ∗ where πi is the projection on the i-th component.

Then ϕi(x) ∈ R is zero for almost all i ∈ I, and ϕ(x) =
∑
ϕi(x)ei. Hence for any x ∈ P

one has x = βϕ(x) = β(
∑

i ϕi(x)ei) =
∑

i ϕi(x)xi, so ((ϕi)i∈I , (xi)i∈I) satisfies the stated

properties.

Conversely, let ((ϕi)i∈I , (xi)i∈I) satisfy the statement. Define β : R(I) → P by ei 7→
xi. The homomorphism β is an epimorphism since the family (xi)i∈I generates P , and

β(
∑
riei) =

∑
rixi. Set ϕ : P → R(I), x 7→

∑
ϕi(x)ei. Then for any x ∈ P one gets

βϕ(x) = β(
∑
ϕi(x)ei) =

∑
ϕi(x)xi = x. By Proposition 3.2.1 we conclude that β is a

split epimorphism and so P is projective.

Note that, from the results in the previous sections, the projective module RR plays a

crucial role, since for any module RM there exists an epimorphism R(I) → M → 0, for

some set I. A module with such property is called a generator, and so R is a projective

generator.
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In particular, for any module RM there exists a short exact sequence 0 → K → P0 →
M → 0, with P0 projective. The same holds for the module K, and so, iterating the

argument, we can construct an exact sequence

· · · → Pi → · · · → P1 → P0 →M → 0

where all the Pi are projective. Such a sequence is called a projective resolution of P . It

is clearly not unique.

It is natural to ask if, for a given module RM , there exists a projective module P and a

”minimal” epimorphism P →M → 0, in the sense that there is no proper direct summand

P ′ of P with an epimorphism f|P ′ : P ′ →M . More precisely, we define:

Definition: (1) A homomorphism f : M → N is right minimal if any g ∈ EndR(M)

such that fg = f is an isomomorphism.

(2) A projective cover of M is a right minimal epimorphism PM → M where PM is a

projective module.

Remark 3.4.4. Projective covers are “minimal” in the sense announced above. Indeed,

consider another epimorphism P → M where P is a projective module. Since both PM
and P are projective, there exist ϕ and ψ such that the diagram

0

PM
f //

ϕ

!!C
C

C
C M //

OO

0

P
ψ

aaC
C
C
C

g

OO

commutes. Hence fψ = g and gϕ = f , so fψϕ = f and, since f is right minimal, ψϕ is

an isomorphism. Then θ : P → PM as θ = (ψϕ)−1ψ satisfies θϕ = idP , so ϕ is a split

monomorphism and PM is isomorphic to a direct summand of P (see Proposition 3.2.1).

More precisely, P = Imϕ⊕Ker θ with Imϕ ∼= PM and g(Ker θ) = 0.

In particular, if g : P →M is also a projective cover of M , then we can see as above that

also ϕψ is an isomorphism, so ϕ = ψ−1 and PM is isomorphic to P . We have shown that

the projective cover is unique (up to isomorphism).

Observe that, given a module RM , a projective cover for M need not exist. A ring over

which any finitely generated module admits a projective cover is called semiperfect. If all

modules admit a projective cover, then R is called perfect.

Definition. Suppose there exists a projective resolution of the module RM

. . . P2
f2→ P1

f1→ P0
f0→M → 0



3.5 Injective modules 19

such that P0 is a projective cover of M and Pi is a projective cover of Ker fi−1 for any

i ∈ N. Such a resolution is called a minimal projective resolution of M .

Examples. (1) The canonical epimorphism Z → Z/2Z is not right minimal, and the

Z-module Z/2Z has no projective cover.

(2) The exact sequence in Example 3.1.1 is a minimal projective resolution of M3. Indeed,

by Example 3.4.2(4) we can rewrite the sequence as

0→ Λe2
f→ Λe1

g→M3 → 0

where the first two terms are projective modules with endomorphism ring k. It follows

that g is right minimal, thus a projective cover.

3.5 Injective modules

We now turn to the dual notion of an injective module. Observe that many results will

be dual to those proved for projective modules.

Definition: A module RE is injective if for any monomorphism 0 → L
f→ M of

left R-modules, the homomorphism of abelian groups HomR(f, E) : HomR(M,E) →
HomR(L,E) is an epimorphism, that is for any ϕ ∈ HomR(L,E) there exists ψ ∈
HomR(M,E) such that ψf = ϕ.

0 // L

ϕ
��

f //M

ψ~~}
}
}
}

E

Any module is quotient of a projective module. Does the dual property hold? That is,

is it true that every module M embeds in a injective R-module? In the sequel we will

answer this crucial question.

An abelian group G is divisible if, for any n ∈ Z and for any g ∈ G, there exists t ∈ G
such that g = nt. We are going to show that an abelian group is injective if and only if it

is divisible. We need the following useful criterion to check whether a module is injective.

Lemma 3.5.1. (Baer’s Criterion) A module E is injective if and only if for any left

ideal I of R and for any ϕ ∈ HomR(I, E) there exists ψ ∈ HomR(R,E) such that ψi = ϕ,

where i is the canonical inclusion 0→ I
i→ R.

The lemma states that it suffices to check the extending property only for the left ideals

of the ring. In particular, it says that E is injective if and only if for any RI ≤ RR and

for any h ∈ HomR(I, E) there exists y ∈ E such that h(a) = ay for any a ∈ I.

Proposition 3.5.2. An Z-module G is injective if and only if it is divisible.
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Proof. Let us assume G injective, consider n ∈ Z and g ∈ G and the commutative diagram

0 // Zn i //

ϕ
��

Z

ψ~~|
|
|
|

G

where ϕ(sn) = sg for any s ∈ Z and ψ exists since G is injective. Let t = ψ(1), t ∈ G.

Then ϕ(n) = ψ(i(n)) implies g = nt and we conclude that G is divisible.

Conversely, suppose G divisible and apply Baer’s Criterion. The ideals of Z are of the

form Zn for n ∈ Z, so we have to verify that for any ϕ ∈ HomZ(Zn,G) there exists ψ

such that

0 // Zn i //

ϕ
��

Z

ψ~~|
|
|
|

G

commutes. Let g ∈ G such that ϕ(n) = g. Since Z is a free Z-module, we can define ψ

by setting ψ(1) = t where g = nt, so ψ(r) = rt for any r ∈ Z. Hence ϕ(sn) = sg = snt =

ψ(i(sn)).

The result stated in the previous proposition holds for any Principal Ideal Domain R.

Examples: (1) The Z-module Q is injective.

(2) Let p ∈ N be a prime number and M = { a
pn
∈ Q | a ∈ Z, n ∈ N}. Then Z ≤M ≤ Q,

and Zp∞ = M/Z is a divisible group, see Exercise ??.

One can show that Q and Zp∞ , p prime, are representatives of the indecomposable injective

Z-modules, up to isomorphism.

Remark 3.5.3. Any abelian group G embeds in an injective abelian group. Indeed,

consider a short exact sequence 0 → K → Z(I) → G → 0 and the canonical inclusion

0 → Z → Q. One easily check that Q(I)/K is divisible (check!) and so injective. Then

we get the induced monomorphism 0→ G ∼= Z(I)/K → Q(I)/K.

Proposition 3.5.4. Let R be a ring. If D is an injective Z-module, then HomZ(R,D) is

an injective left R-module

Proof. First notice that, since ZRR is a bimodule, HomZ(R,D) is naturally endowed with

a structure of left R-module. In order to verify that it is injective, we apply Baer’s

Criterion: let RI ≤ RR and h : I → HomZ(R,D) be an R-homomorphism. We have to

find an element y ∈ HomZ(R,D) such that h(a) = ay for any a ∈ I. Notice that h defines

a Z-homomorphism γ : I → D, a 7→ h(a)(1) and, since D is an injective abelian group,

there exists γ : R→ D which extends γ. Now we have, for any a ∈ I and r ∈ R,

(aγ)(r) = γ(ra) = γ(ra) = [h(ra)](1) = [rh(a)](1) = [h(a)](r)

so the element γ ∈ HomZ(R,D) satisfies h(a) = aγ for any a ∈ I, proving the claim.
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Corollary 3.5.5. Every module RM embeds in an injective R-module.

Proof. As an abelian group, M embeds in an injective abelian group D by Remark 3.5.3.

In other words, there is a monomorphism of Z-modules 0 → M
g→ D, from which we

obtain a monomorphism of R-modules 0 → HomZ(RR,M) → HomZ(RR, D) given by

f 7→ gf . Now E := HomZ(RR, D) is an injective left R-module by Proposition 3.5.4.

Moreover, there is an isomorphism of R-modules ϕ : HomR(R,M) → M , f 7→ f(1) (see

Exercise ??) yielding

RM ∼= HomR(RR,M) ≤ HomZ(RR,M)→ E = HomZ(RR, D)

which is the desired monomorphism.

Since any module M embeds in an injective one, it is natural to ask whether there exists

a ”minimal” injective module containing M .

Definition: (1) A homomorphism f : M → N is left minimal if any g ∈ EndR(N) such

that gf = f is an isomomorphism.

(2) An injective envelope of M is a left minimal monomorphism M → EM where EM is

an injective module.

Remark 3.5.6. Consider a diagram

0

��
0 //M

f //

g

��

EM

ϕ
}}{
{
{
{

E

ψ
=={

{
{

{

where g : M → E is another monomorphism where E is an injective module. Since EM
and E are both injective, there exist ϕ and ψ such that the diagram commutes. Hence

ψg = f and ϕf = g, so ψϕf = f and, since f is left minimal, we conclude that ψϕ

is an isomorphism. Then ϕ is a split monomorphism, and EM is isomorphic to a direct

summand of E.

In particular, if also g is an injective envelope of M , also ϕψ is an isomorphism, so ϕ is

an isomorphism and EM is isomorphic to E. We have shown that the injective envelope

is unique (up to isomorphisms).

We state a characterization of injective envelopes, for which we need the following notions.

Definition. (1) A submodule RN ≤ RM is essential if for any submodule L ≤ M ,

L ∩N = 0 implies L = 0.

(2) A monomorphism 0 → L
f→ M is essential if Im f is essential in M . Equivalently:

every g ∈ HomR(M,N) with the property that gf is a monomorphism is itself a monomor-

phism (see Exercise ??).
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Theorem 3.5.7. Let E be an injective module. Then 0 → M
f→ E is an injective

envelope of M if and only if f is an essential monomorphism.

Proof. Let 0→M
f→ E be an injective envelope and pick L ≤ E such that L∩ Im f = 0.

Then Im f ⊕ L ≤ E, and we can consider the commutative diagram

0 //M
f //

f
��

Im f ⊕ L
(id,0)

zzttt
ttt

ttt
t

i // E

ϕ

ttj j j j j j j j j j j

E

where i is the canonical inclusion of Im f ⊕L in E and ϕ exists since E is injective. Then

ϕf = f , and ϕ is an isomorphism, so L = 0.

Conversely, let Im f be essential in M and let g ∈ EndR(E) such that gf = f . Since f

is an essential monomorphism, g is a monomorphism, hence a split monomorphism (see

3.5.9). Further, the direct summand Im g
⊕
≤ E of E contains the essential submodule Im f ,

so it must have a trivial complement, that is, Im g = E and g is an isomorphism.

Not every module has a projective cover. Thus the next result is especially remarkable

Theorem 3.5.8. Every module has an injective envelope.

Proof. Let RM be a module; by Corollary 3.5.5 there exists an injective module Q such

that 0 → M → Q. Consider the set {E ′ | M ≤ E ′ ≤ Q and M essential in E ′}. One

easily checks that it is an inductive set, and by Zorn’s Lemma, it contains a maximal

element E. Let us show that E is injective by verifying that it is a direct summand of

Q (see Exercise ??). To this end, consider the set {F ′ | F ′ ≤ Q and F ′ ∩ E = 0}. It is

inductive so, again by Zorn’s Lemma, it contains a maximal element F . We claim that

E⊕F = Q. Notice that there exists an obvious monomorphism g : (E ⊕ F )/F ∼= E ≤ Q;

further (E ⊕ F )/F ≤ Q/F is an essential inclusion by the maximality of F (check!). We

obtain the diagram

0 // (E ⊕ F )/F

g

��

j // Q/F

ϕ
xxrrr

rrr
rrr

rrr

Q

where j is the canonical inclusion, ϕ exists since Q is injective, and moreover, ϕ is a

monomorphism since ϕj = g is a monomorphism and j is an essential monomorphism.

Then also E = Im g = ϕ(E ⊕ F/F ) is essential in Imϕ. Since M is essential in E, we

conclude that M is essential in Imϕ, and by the maximality of E, it follows E = Imϕ.

Hence ϕ(E ⊕ F/F ) = ϕ(Q/F ). Since ϕ is a monomorphism we conclude E⊕F = Q.

Proposition 3.5.9. Let RE be a module. The following are equivalent:

1. E is injective
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2. every exact sequence 0→ E
f→M

g→ N → 0 splits.

Proof. 1⇒ 2 Consider the commutative diagram

0 // E
f //

idE
��

M

ϕ
~~}
}
}
}

E

where ϕ exists since E is injective. Since ϕf = idE, by Proposition 3.2.1 we conclude that

f is a split monomorphism.

2⇒ 1 By Corollary 3.5.5 there exists an exact sequence 0→ E → F → N → 0, where F

is an injective module. Since the sequence splits, we get that E is a direct summand of a

injective module, and so E is injective (see Exercise ??).

Comparing the previous proposition with the analogous one for projective modules (Propo-

sition 3.4.1), there is an evident difference. For projective modules, we saw that a special

role is played by the projective generator RR. Does a module with the dual property

exist? We will see in ?? that such a module always exists.

Dually to the projective case, for any module RM there exists a long exact sequence

0 → M
f0→ E0

f1→ E1
f2→ E2 → . . . , where the Ei are injective. This is called an injective

coresolution of M . If E0 is an injective envelope of M and Ei in an injective envelope of

Ker fi for any i ≥ 1, then the sequence is called a minimal injective coresolution of M .
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4 ON THE LATTICE OF SUBMODULES OF M

Let R be a ring.

4.1 Simple modules

For a left R-module M , we consider the partially ordered set LM = {L | L ≤ M}.
Observe that LM is a complete lattice, where for any N,L ∈ L, the join is given by

sup{N,L} = L+N and the meet by inf{N,L} = L ∩N . The greatest element of LM is

M and the smallest if {0}.
Moreover, LM satisfies the Modular Law : Given RA,RB,R C ≤ RM with B ≤ C,

(A+B) ∩ C = (A ∩ C) +B.

It is natural to ask whether L has minimal or maximal elements. They are exactly the

maximal submodules of M and the simple submodules of M , respectively. More precisely:

Definition: A module S is simple if L ≤ S implies L = {0} or L = S.

Given a module RM , a proper submodule RN < RM is a maximal submodule of M if

N ≤ L ≤M implies L = N or L = M .

Examples:

1. Let k be a field. Then k is the unique simple k-module up to isomorphism.

2. Any abelian group Z/Zp with p prime is a simple Z-module. So there are infinitely

many simple Z-modules.

3. The regular module Z does not contain any simple submodule, since any ideal of Z
is of the form Zn and Zm ≤ Zn whenever n divides m.

4. The Z-module Q has no maximal submodules, see Exercise ??.

5. Let p be a prime number. The lattice of the subgroups of Zp∞ is a well-ordered chain,

and Zp∞ has no maximal submodules, see Exercise ??.

We have just seen that in general, it is not true that any module contains a simple or a

maximal submodule. Nevertheless, we have the following important result.

Proposition 4.1.1. Let R be a ring and RI < RR a proper left ideal. There exists a

maximal left ideal m of R such that I ≤ m < R. In particular R admits maximal left

ideals.

More generally, if M is a finitely generated left R-module, then every proper submodule

of M is contained in a maximal submodule.

Proof. Let F = {L | I ≤ L < R}. The set F is inductive since, given a sequence

L0 ≤ L1 ≤ . . . , the left ideal
⋃
Li contains all the Li and it is a proper ideal of R. Indeed,
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if
⋃
Li = R, there would exist an index j ∈ N such that 1 ∈ Lj and so Lj = R. So by

Zorn’s Lemma, F has a maximal element, which is clearly a maximal left ideal of R.

For the second statement, see Exercise ??.

Examples: Consider the regular module Z. Then Zp is a maximal submodule of Z for

any prime number p. Moreover the ideal Zn is contained in Zp for any p such that p|n.

Remark 4.1.2. Let m ≤ R be a maximal left ideal of R. Clearly R/m is a simple

R-module, and this shows that simple modules always exist over any ring R.

Conversely, if S is a simple module, any nonzero element x ∈ S satisfies S = Rx, and

AnnR(x) = {r ∈ R | rx = 0} is the kernel of the epimorphism ϕ : R→ S, 1 7→ x. Hence

AnnR(x) is a maximal left ideal of R and S ∼= R/AnnR(x).

Proposition 4.1.3. The following statements are equivalent for a module RM :

1. There is a family of simple submodules (Si)i∈I of M such that M =
∑

i∈I Si.

2. M is a direct sum of simple submodules.

3. Every submodule RL ≤ RM is a direct summand.

Under these conditions, M is said to be semisimple.

Proof. Let us sketch the proof. In order to see that (1) implies (2) and (3), one uses Zorn’s

Lemma to show that for any RL ≤R M there is a subset J ⊆ I such that M = L⊕
⊕

i∈J Si.

(3)⇒(1): Using the Modular Law, we see that every submodule RN ≤ RM satisfies

condition (3), that is, every submodule RL ≤ RN is a direct summand of N . Furthermore,

if we consider a non-zero element x ∈M and choose N = Rx, then N contains a maximal

submodule N ′ by Proposition 4.1.1, which then must be a direct summand of N . Since

the complement of N ′ in N is simple, we conclude that Rx contains a simple submodule.

Now consider the submodule L =
∑

i∈I Si defined as the sum of all simple submodules of

M . We know that M = L ⊕ L′ for some submodule L′. But by the discussion above L′

cannot contain any nonzero element, hence L′ = 0 and the claim is proven.

4.2 Socle and radical

Definition: Let M be a left R-module. The socle of M is the submodule

Soc(M) =
∑
{S | S is a simple submodule of M}.

The radical of M is the submodule

Rad(M) =
⋂
{N | N is a maximal submodule of M}.

In particular, if M does not contain any simple module, Soc(M) = 0, and if M does not

contain any maximal submodule, Rad(M) = M .
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Remark 4.2.1. (1) Soc(M) is the largest semisimple submodule of M .

This follows immediately from Proposition 4.1.3.

(2) Rad(M) = {x ∈M | ϕ(x) = 0 for every ϕ : M → S with S simple}.
Indeed, notice that the kernel of any homomorphism ϕ : M → S with S simple is a

maximal submodule of M . Conversely, if N is a maximal submodule of M , then consider

π : M →M/N , keeping in mind that M/N is simple.

In order to study RadM , we need the following notion, which also leads to a characteri-

zation of projective covers dual to Theorem 3.5.7.

Definition. A submodule RN ≤ RM is superfluous if for any submodule L ≤ M ,

L+N = M implies L = M .

Theorem 4.2.2. Let P a projective module. Then P
f→ M → 0 is a projective cover of

M if and only if Ker f is a superfluous submodule of P .

It follows from Proposition 4.1.1 that Rad(M) is a superfluous submodule of M whenever

M is finitely generated. We collect some further properties of the socle and of the radical

of a module in the proposition below.

Proposition 4.2.3. Let M be a left R-module.

1. Soc(M) =
⋂
{L | L is an essential submodule of M}.

2. Rad(M) =
∑
{U | U is a superfluous submodule of M}.

3. f(Soc(M)) ≤ Soc(N) and f(Rad(M)) ≤ Rad(N) for any f ∈ HomR(M,N).

4. If M = ⊕λ∈ΛMλ, then Soc(M) =
⊕

λ∈Λ Soc(Mλ) and Rad(M) =
⊕

λ∈Λ Rad(Mλ).

5. Rad(M/Rad(M)) = 0 and Soc(Soc(M)) = Soc(M).

A crucial role is played by the radical of the regular module RR.

Proposition 4.2.4. (1) Rad(RR) =
⋂
{AnnR(S) | S is a simple left R-module }.

(2) Rad(RR) = {r ∈ R | 1− xr has a (left) inverse for any x ∈ R}.
(3) Rad(RR) = Rad(RR) is a two-sided ideal.

Proof. (1) For any simple module S, consider AnnR(S) =
⋂
x∈S AnnR(x) of R, which is

a two-sided ideal by Exercise ??. The intersection of all annihilators AnnR(S) of simple

left R-modules coincides with Rad(RR) by Remarks 4.1.2 and 4.2.1.

(2) is Exercise ??. In fact, one can even show that the elements 1 − xr are invertible:

taking r ∈ Rad(RR) and x ∈ R, we have s = xr ∈ Rad(RR), and if a is a left inverse of

1 − s, that is, a(1 − s) = 1, then a = 1 + as = 1− (−a)s has again a left inverse, which

must coincide with its right inverse 1− s, showing that a and 1− s are mutually inverse.

(3) It follows from (1) that Rad(RR) is a two-sided ideal of R. So, if r ∈ Rad(RR), and

x ∈ R, then rx ∈ Rad(RR), and the element 1 − rx has a (right) inverse by (2). From

the right version of statement (2) we infer r ∈ Rad(RR). So Rad(RR) ⊆ Rad(RR), and

the other inclusion follows by symmetric arguments.
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Definition: Let R be a ring. The ideal

J(R) = Rad(RR) = Rad(RR)

is called Jacobson radical of R.

Lemma 4.2.5. (1) For every module RM we have J(R)M ≤ Rad(M).

(2) (Nakayama’s Lemma) Let M be a finitely generated R-module. If L is a submodule

of M such that L+ J(R)M = M , then L = M .

Proof. (1) Since J(R) annihilates any simple module S, all homomorphisms ϕ : M → S

vanish on J(R)M , so J(R)M ≤ Rad(M) by Remark 4.2.1.

(2) L + J(R)M = M implies L + Rad(M) = M and since Rad(M) is superfluous in M

by Remark 4.2.1, we get L = M .

Example 4.2.6. (1) J(Z) =
⋂
p prime pZ = 0.

(2) Let Λ = kQ be the path algebra of a finite acyclic quiver over a field k.

(i) The Jacobson radical J(Λ) is the ideal of Λ generated by all arrows. Hence, as a

k-vectorspace, Λ = (⊕i∈Q0kei)⊕ J(Λ). Moreover, Λ/J(Λ) ∼= k|Q0| as k-algebras.

(ii) Let i ∈ Q0 be a vertex, and denote by α1, . . . , αt the arrows i • αk−→ • jk of Q which

start in i. Then

Rad Λei = Jei =
t⊕

k=1

Λejkαk
∼=

t⊕
k=1

Λejk

is the unique maximal submodule of Λei, and it is a projective module.

(iii) Let i ∈ Q0 be a vertex. Then Λei/Jei is simple. In particular, the projective module

Λei is simple if and only if i is a sink of Q, that is, there is no arrow starting in i.

Indeed, let i ∈ Q0 be a vertex. Then the vector space generated by all paths of length

at least one starting in i is the unique maximal submodule of Λei, so it coincides with

Rad Λei. Now use that Λ =
⊕

i∈Q0
Λei by Remark 3.4.2, hence J(Λ) =

⊕
i∈Q0

Rad Λei by

Proposition 4.2.3.

4.3 Local rings

Definition:

(1) A ring R is a skew field (or a division ring) if all non-zero elements are invertible.

(2) A ring R is local if it satisfies the equivalent conditions in the proposition below.

Proposition 4.3.1. The following statements are equivalent for a ring R with J = J(R).

(1) R/J is a skew field.

(2) x or 1− x is invertible for any x ∈ R.
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(3) R has a unique maximal left ideal.

(3’) R has a unique maximal right ideal.

(4) The non-invertible elements of R form a left (or right, or two-sided) ideal of R.

Proof. (1)⇒(2): If x ∈ J , then 1 − x is invertible by Proposition 4.2.4. If x /∈ J , then

x 6= 0 is invertible in R/J , so there is y ∈ R/J such that xy = yx = 1. Then 1− xy and

1 − yx belong to J , hence xy and yx are invertible. But then x is invertible, because it

has a right inverse and a left inverse.

(2)⇒(3): Any maximal left ideal m contains J . Conversely, if r ∈ m and x ∈ R, then

xr ∈ m can’t be invertible, so 1− xr is invertible, and r ∈ J by Proposition 4.2.4. Hence

m = J is the unique maximal left ideal.

(3)⇒(1): Assume that R has a unique maximal left ideal m. Then m = J , and R/J is a

simple left module. Then every non-zero element x ∈ R/J satisfies Rx = R/J , so there

is y ∈ R such that 1 = yx = yx. In other words, every non-zero element in R/J has a

left inverse, and therefore an inverse (because the left inverse of y must coincide with its

right inverse x).

(1)⇔(3’) is shown symmetrically.

(3)⇒(4): J is the set of all non-invertible elements of R. Indeed, J is a maximal left

ideal and therefore it consists of non-invertible elements. Conversely, if x ∈ R has no left

inverse, then Rx is a proper left ideal of R and thus it is contained in the unique maximal

left ideal J . If x has no right inverse, use the equivalent condition (3’).

(4)⇒(2): otherwise 1 = x+ (1− x) would be non-invertible.

Remark 4.3.2. Let R be a local ring.

(1) We have seen above that J is the ideal from conditions (3), (3’) and (4) above.

(2) S = R/ J(R) is the unique simple left (or right) R-module up to isomorphism, and

E(R/ J(R)) is a minimal injective cogenerator.

(3) The unique idempotent elements in R are 0 and 1. Indeed, if e is idempotent, then

e(1 − e) = 0. So, either e is invertible, and then e = 1, or 1 − e is invertible, and then

e = 0.

(4) RR is an indecomposable R-module by Remark 3.4.2.
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