
CS 150 - Spring 2007 – Lec #16 – Retiming - 1

State Machine Timing

! Retiming
" Slosh logic between registers to balance latencies and

improve clock timings

" Accelerate or retard cycle in which outputs are asserted

! Parallelism
" Doing more than one thing at a time

! Pipelining
" Splitting computations into overlapped, smaller time steps

CS 150 - Spring 2007 – Lec #16 – Retiming - 2

Synchronizer
Circuitry at
Inputs and

Outputs

Output

Logic

Output

Logic

Output

Logic

D

D

D

D

STATE STATE STATE

Q Q

Q

A A

A' A'

Q

ƒ

ƒ' ƒ

ƒ

ƒ'

A

Recall: Synchronous Mealy Machine
Discussion

! Placement of flipflops before and after the output logic changes the timing
of when the output signals are asserted …

CS 150 - Spring 2007 – Lec #16 – Retiming - 3

Recall: Synchronous Mealy Machine with
Synchronizers Following Outputs

Case III: Synchronized Outputs

A asserted during Cycle 0, ƒ' asserted in next cycle

Effect of ƒ delayed one cycle

cycle 0 cycle 1 cycle 2

CLK

A

ƒ

ƒ'

S0

S1

A/ƒ

Signal goes
into effect one
cycle later

CS 150 - Spring 2007 – Lec #16 – Retiming - 4

Vending Machine State Machine
! Moore machine

" outputs associated with state

0¢
[0]

10¢
[0]

5¢
[0]

15¢
[1]

N’ D’ + Reset

D

D

N

N+D

N

N’ D’

Reset’

N’ D’

N’ D’

Reset

Mealy machine
outputs associated with transitions

0¢

10¢

5¢

15¢

(N’ D’ + Reset)/0

D/0

D/1

N/0

N+D/1

N/0

N’ D’/0

Reset’/1

N’ D’/0

N’ D’/0

Reset/0

CS 150 - Spring 2007 – Lec #16 – Retiming - 5

Open asserted only when
in state 15

State Machine Retiming
! Moore vs. (Async) Mealy Machine

" Vending Machine Example

Open asserted when last
coin inserted leading to

state 15

CS 150 - Spring 2007 – Lec #16 – Retiming - 6

State Machine Retiming
! Retiming the Moore Machine: Faster generation of outputs

! Synchronizing the Mealy Machine: Add a FF, delaying the output

! These two implementations have identical timing behavior

Push the AND gate through the
State FFs and synchronize with

an output FF
Like computing open in the prior

state and delaying it one state time

CS 150 - Spring 2007 – Lec #16 – Retiming - 7

Out calc
Plus set-up

NOTE: overlaps with
Next State calculation

State Machine Retiming

! Effect on timing of Open Signal (Moore Case)

Clk
FF prop
delay

State

Open

Out
 prop
delay

Retimed
Open

Open
Calculation

CS 150 - Spring 2007 – Lec #16 – Retiming - 8

State Machine Retiming
! Timing behavior is the same, but are the

implementations really identical?

FF input in synchronous Mealy

implementation
FF input in retimed Moore

implementation

Only difference
in don’t care case
of nickel and dime
at the same time

CS 150 - Spring 2007 – Lec #16 – Retiming - 9

Parallelism

! Example, Student final grade calculation:

read mt1, mt2, mt3, project;

grade = 0.2 ! mt1 + 0.2 ! mt2

+ 0.2 ! mt3 + 0.4 ! project;

write grade;

! High performance hardware implementation:

As many operations as possible are done in parallel

Doing more than one thing at a time: optimization in h/w often
involves using parallelism to trade between cost and performance

xx xx

+
+

+

0.2 mt1 0.2 mt2 0.4 proj0.2 mt3

grade

CS 150 - Spring 2007 – Lec #16 – Retiming - 10

Parallelism

! Is there a lower cost hardware implementation?
Different tree organization?

! Can factor out multiply by 0.2:

! How about sharing operators (multipliers and adders)?

x

+

+

0.2

mt1 mt2 0.4 proj

mt3

grade

x

+

CS 150 - Spring 2007 – Lec #16 – Retiming - 11

Time Multiplexing

! Reuse single ALU for all
adds and multiplies
" Lower hardware cost, longer latency

" BUT must add muxes/registers/control

! Consider the combinational hardware circuit diagram
as an abstract computation-graph:

acc1 = mt1 + mt2;

acc1 = acc1 + mt3;

acc1 = 0.2 x acc1;

acc2 = 0.4 x proj;

grade = acc1 + acc2;

controller

ALU

mt1 mt1

mt3 proj

acc1

acc2

xx xx

+
+

+

0.2 mt1 0.2 mt2 0.4 proj0.2 mt3

grade

+

A B

Cx

Alternative
building blocks

xx

+

A B C D

CS 150 - Spring 2007 – Lec #16 – Retiming - 12

Time Multiplexing

xx xx

+
+

+

0.2 mt1 0.2 mt2 0.4 proj0.2 mt3

grade

x

+

0.2 mt1

x

+

0.4 Proj

0

x

+

0.2 mt3

x

+

0.2 mt2

x

+

0.2
0.4

mt1
mt2
mt3
proj

0

Time-multiplexing “covers” the computation graph by
performing the action of each node one at a time

CS 150 - Spring 2007 – Lec #16 – Retiming - 13

Time Multiplexing

xx xx

+
+

+

0.2 mt1 0.2 mt2 0.4 proj0.2 mt3

grade

x

0.2 mt3

x

+

0.4 Proj

x

0.2 mt1

x

+

0.2 mt2

x

1

x

+

1

x

0.2
1

mt3
mt1

x

+

0.4
0.2
1

Proj
mt2

CS 150 - Spring 2007 – Lec #16 – Retiming - 14

Pipelining Principle
! Pipelining review from CS61C:

Analog to washing clothes:

step 1: wash (20 minutes)

step 2: dry (20 minutes)

step 3: fold (20 minutes)

 60 minutes x 4 loads " 4 hours

wash load1 load2 load3 load4

dry load1 load2 load3 load4

fold load1 load2 load3 load4

 20 min

overlapped " 2 hours

CS 150 - Spring 2007 – Lec #16 – Retiming - 15

Pipelining
wash load1 load2 load3 load4

dry load1 load2 load3 load4

fold load1 load2 load3 load4

• Increase number of loads, average time per load approaches 20 minutes

• Latency (time from start to end) for one load = 60 min

• Throughput = 3 loads/hour

• Pipelined throughput $ # of pipe stages x un-pipelined throughput

CS 150 - Spring 2007 – Lec #16 – Retiming - 16

Pipelining
! General principle:

! Cut the CL block into pieces (stages) and separate with registers:

T’ = 4 ns + 1 ns + 4 ns +1 ns = 10 ns

F = 1/(4 ns +1 ns) = 200 MHz

! CL block produces a new result every 5 ns instead of every 9 ns

CL OUTIN

T

CL1 OUTIN

T'

CL2

T1 T2

Assume T = 8 ns
TFF(setup +clk#q) = 1 ns
F = 1/9 ns = 111 MHz

Assume T1 = T2 = 4 ns

CS 150 - Spring 2007 – Lec #16 – Retiming - 17

Limits on Pipelining
! Without FF overhead, throughput improvement proportional to # of stages

• After many stages are added. FF overhead begins to dominate:

• Other limiters to effective pipelining:
• Clock skew contributes to clock overhead

• Unequal stages

• FFs dominate cost

• Clock distribution power consumption

• feedback (dependencies between loop iterations)

1 2 3 4 5 6 7 8

500

of stages

throughput

(1/T)

ideal

real

half the clock period

in FF overhead

FF “overhead”
is the setup and
clk to Q times.

CS 150 - Spring 2007 – Lec #16 – Retiming - 18

Pipelining Example

! F(x) = yi = a xi
2 + b xi + c

! x and y are assumed to be
“streams”

! Divide into 3 (nearly) equal
stages.

! Insert pipeline registers at
dashed lines.

! Can we pipeline basic operators?

! Computation graph:

F(x)x y

x

x

+

a

b

c

x

x

+

y

CS 150 - Spring 2007 – Lec #16 – Retiming - 19

Example: Pipelined Adder

FA

s3

a3b3

FA

s2

a2b2

FA

s1

a1b1

FA

s0

a0b0

c0

FA

s3

a3b3

FA

s2

a2b2

FA

s1

a1b1

FA

s0

a0b0

c0FF

reg reg

FF FF

! Possible, but usually
not done …

(arithmetic units can
often be made
sufficiently fast without
internal pipelining)

CS 150 - Spring 2007 – Lec #16 – Retiming - 20

State Machine Retiming Summary

! Retiming
" Vending Machine Example

Very simple output function in this particular case

" But if output takes a long time to compute vs. the next state computation
time -- can use retiming to “balance” these calculations and reduce the
cycle time

! Parallelism
" Tradeoffs in cost and performance

" Time reuse of hardware to reduce cost but sacrifice performance

! Pipelining
" Introduce registers to split computation to reduce cycle time and allow

parallel computation

" Trade latency (number of stage delays) for cycle time reduction

CS 150 - Spring 2007 – Lec #16 – Retiming - 21

Announcements

! Midterm II -- NEXT Thursday, 22 March in CS 150 Laboratory,
2:10 - 3:30+ (that is one week from today -- tell your friends!)
" Closed book, open double sided crib sheet
" TA review session next week
" Five or so design-oriented questions covering:

State machine word problems
Memory systems
Datapath design
Register transfer
Controller implementation

• Time state
• Jump Counter
• Branch Sequencer
• Horizontal and Vertical Microprogramming

Retiming, Parallelism, Pipelining
Labs 4, 5, Checkpoint 0, 1

