State Machine Timing

I Retiming
I Slosh logic between registers to balance latencies and
improve clock timings

I Accelerate or retard cycle in which outputs are asserted

B Parallelism
I Doing more than one thing at a time

I Pipelining
I Splitting computations into overlapped, smaller time steps
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Recall: Synchronous Mealy Machine
Discussion

I Placement of flipflops before and after the output logic changes the timing
of when the output signals are asserted ...
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Recall: Synchronous Mealy Machine with
Synchronizers Following Outputs

Case IITI: Synchronized Outputs
cycle0 : cycle1 - cycle 2 @

e | [ ] s
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f Signal goes
info effect one

©

cycle later

I >

A asserted during Cycle O, £ asserted in next cycle

Effect of f delayed one cycle
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Vending Machine State Machine

I Moore machine Mealy machine
I outputs associated with state outputs associated with transitions
Reset N’ D" + Reset Reset/0 (N’ D" + Reset)/0

Reset’ Reset’/1
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State Machine Retiming

B Moore vs. (Async) Mealy Machine
I Vending Machine Example
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State Machine Retiming

I Refiming the Moore Machine: Faster generation of outputs

I Synchronizing the Mealy Machine: Add a FF, delaying the output
I These two implementations have identical timing behavior
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State Machine Retiming

I Effect on timing of Open Signal (Moore Case)

Clk ]
—> P e—
State
Out |
R
Open i
Retimed —
Open YA G
_. ‘ <« Out calc
Plus set-up
Open J
Calculation

NOTE: overlaps with
Next State calculation
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State Machine Retiming

I Timing behavior is the same, but are the
implementations really identical?
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Parallelism

Doing more than one thing at a time: optimization in h/w often
involves using parallelism to trade between cost and performance

I Example, Student final grade calculation:
read mtl, mt2, mt3, project;
grade = 0.2 x mtl + 0.2 x mt2
+ 0.2 x mt3 + 0.4 x project;
write grade;
I High performance hardware implementation:
0.2 mt1 0.2 mt2 0.2 mt3 0.4 proj

\ Y /
O

As many operations as possible are done in parallel
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Parallelism

I Is there alower cost hardware implementation?
Different tree organization?

I Can factor out multiply by 0.2:

mt1 mt2 0.4 p;oj

grade

I How about sharing operators (multipliers and adders)?
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mt1 mt1

Time Multiplexing controller | » I3 proj

acc1 = mt1 + mt2;

accl=accl+mt3; | )
B Reuse single ALU for all acc! = 0.2 x acc;

. acc2 = 0.4 x proj;
adds and mUlTIPIICS grade = acc1 +acc2; |- > acct

I Lower hardware cost, longer latency 60‘02
I BUT must add muxes/registers/control e

B Consider the combinational hardware circuit diagram
as an abstract computation-graph:

0.2 mt1 0.2 mt2 0.2 mt3 0.4 proj A BC D

[ORCREIRE W
Hod  E Y
grade Alternative

building blocks
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Time Multiplexing 04  Proj

0.2 mt1 0.2 mt2 0.2 mt3 0.4 proj 0
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Time-multiplexing “covers” the computation graph by
performing the action of each node one at a time
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Time Multiplexing 02 mt3 04  Proj
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Pipelining Principle
I Pipelining review from CS61C:
Analog to washing clothes:
step 1 wash (20 minutes)

step 2: dry (20 minutes)
step 3: fold (20 minutes)

60 minutes X 4 loads = 4 hours

wash loadl 1load2 1load3 1load4
dry loadl | 1load2 | 1load3 | load4
fold loadl | load2 | load3 | load4
20 min
overlapped = 2 hours
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Pipelining

wash loadl| load2| load3| load4

dry
fold

loadl| load2| load3| load4
loadl| load2| load3| load4

Increase number of loads, average time per load approaches 20 minutes

Latency (time from start to end) for one load = 60 min
Throughput = 3 loads/hour

Pipelined throughput = # of pipe stages x un-pipelined throughput

Pipelining

I General principle:
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— T —

Assume T = 8 ns
CL [~ [~ovr Ter(setup +clk—q) = 1 ns
F=1/9 ns = 111 MHz

B Cut the CL block into pieces (stages) and separate with registers:

T

IN —» CL1

A
y

»CL2 —» OUT

T1
T=4ns+1

- Assume T1=T2 =4 ns
ns+4ns+lns=10ns

F =1/(4 ns +1 ns) = 200 MHz

I CL block produces a new result every 5 ns instead of every 9 ns
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Limits on Pipelining

I Without FF overhead, throughput improvement proportional fo # of stages

e After many stages are added. FF overhead begins to dominate:

_ " ideal
-
500 T -

throughput ~
(1/T) Z

FF “overhead"
is the setup and
clk to Q times.

\

half the élock period
in FF overhead

# of stages

«  Other limiters to effective pipelining:
e Clock skew contributes to clock overhead
* Unequal stages
* FFs dominate cost
e Clock distribution power consumption
« feedback (dependencies between loop iterations)
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Pipelining Example

I F(X)=y, =ax2+bx+c

X —»

F(x)

_»y

I xandy are assumed to be
"streams”

I Divide into 3 (nearly) equal
stages.

I Insert pipeline registers at
dashed lines.

I Can we pipeline basic operators?

I Computation graph:

,,,,,,,,,,, x,,,,, A

<
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Example: Pipelined Adder

I Possible, but usually b3a3 b2az bial b0a0
notdone ..  r R i | |
(arithmetic units can <A FA | FA FA—<0
often be made L L ‘""i ******** i ***********
sufficiently fast without s3 2 s1 <0
internal plpelmmg) b3 a3 b2 a2 b1 a1 b0 a0

| ||
reg reg

[ | | |
«|FAl|FAL |{FF [ |FA}F | FA} o0

FF| |FF
Lo
s3 s2 s1 s0
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State Machine Retiming Summary

I Retiming
I Vending Machine Example
| Very simple output function in this particular case

I But if output takes a long fime to compute vs. the next state computation

time -- can use retiming to "balance” these calculations and reduce the
cycle time

I Parallelism

I Tradeoffs in cost and performance

I Time reuse of hardware to reduce cost but sacrifice performance
I Pipelining

I Introduce registers to split computation fo reduce cycle time and allow
parallel computation

I Trade latency (number of stage delays) for cycle time reduction
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Annhouncements

B Midterm IT -- NEXT Thursday, 22 March in CS 150 Laboratory,
2:10 - 3:30+ (that is one week from today -- tell your friends!)
I Closed book, open double sided crib sheet
I TA review session next week
I Five or so design-oriented questions covering:
| State machine word problems
| Memory systems
| Datapath design
| Register transfer
| Controller implementation
* Time state
+ Jump Counter
* Branch Sequencer
* Horizontal and Vertical Microprogramming
| Retiming, Parallelism, Pipelining
| Labs 4, 5, Checkpoint O, 1
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