
2

Bolchini Ferrandi Fummi

Contents -1

ä Built-in Types, Operators and Expressions

ä Structural VHDL
ä Signals
ä Components
ä Netlist

ä Dataflow VHDL
ä Concurrent statements

ä Behavioral VHDL
ä Variables

ä Sequential Statements

3

Bolchini Ferrandi Fummi

Contents -2

äAdvanced Topics
äUser Defined Types

äSubprograms

äResolution Functions

äAttribute

äFile

4

Bolchini Ferrandi Fummi

Built-in Types

äTypes determine the values an object can
assume and operations that can be
performed on it.

äPackages STANDARD and IEEE provide
several data types and operators.
äScalar types

äArray types

5

Bolchini Ferrandi Fummi

Built-in Scalar Types

ä real: -1.0E-38 to +1.0E+38.

ä integer, positive and natural (32 bit).

äboolean: false, true.

ä character: ‘a’, ‘b’, ‘c’, …

äbit: ‘0’, ‘1’.
ä time: number plus physical unit (fs, ps, ns, us, ms,

sec, min, hr)

ä std_logic: ‘U’, ‘X’, ‘0’, ‘1’, ‘Z’, ‘W’, ‘L’, ‘H’, ‘-’

6

Bolchini Ferrandi Fummi

IEEE Standard Logic

ä U: unitialized

ä X: forcing an unknown

ä 0: forcing 0

ä 1: forcing 1

ä Z: high impedance

ä W: weak unknown

ä L: weak 0

ä H: weak 1

ä -: don’t care

ä Objects defined in package IEEE are “visible” when:
Library IEEE;

Use IEEE.STD_LOGIC_1164.all;

ä There are two versions std_logic and std_ulogic.
std_ulogic is the unresolved version of std_logic.

7

Bolchini Ferrandi Fummi

Built-in Array Types

äString: “hold time error”.

äBit_Vector: “0000_0100”.

äStd_Logic_Vector: “101Z”

äSometime it can be necessary to explicitly
provide the type name. For example:
ästring’(“10”)

Qualified expression

8

Bolchini Ferrandi Fummi

Names- Identifier

ä All names must begin with an alphabetic letter (a-
z), followed by a letter, an underscore, or a digit.

ä VHDL is case insensitive (xyz ≡ xYZ).

ä Two different objects cannot have the same name.

ä Elements requiring unique names are:
ä Two entities in a library.

ä Two architectures of a single entity.

ä Two processes within the same architecture.

9

Bolchini Ferrandi Fummi

Range Constraint

äA range constraint declares the valid values
for a particular type.

integer range 1 to 10;

range_constraint

range index_constraint

index_constraint

{low_val to high_val | high_val downto low_val}

10

Bolchini Ferrandi Fummi

Expressions

ä An expression is a formula that uses operators and
defines how to compute or qualify a value.

ä Operands must be of the same type. Type
conversion can be done through conversion
functions or by using qualified expressions:

integer(3.0)

signed’(”1010”)

ä There are four kinds of operators:
ä logical

ä relational

äarithmetic

äconcatenation

11

Bolchini Ferrandi Fummi

Operators -1

Logic operators and Logical And
or Logic Or
nand Complement of And
nor Complement of Or
xor Logical Exclusive Or

Relational operators = Equal
/= Not Equal
< Less Than
<= Less Than or Equal
>= Greater Than or Equal

Concatenation operator & Concatenation
Arithmetic operators + Addition

– Subtraction

P
recedence

L

H

12

Bolchini Ferrandi Fummi

Operators -2

Arithmetic operators + Unary Plus
– Unary Minus

Arithmetic operators * Multiplication
/ Division
mod Modulus
rem Remainder

Arithmetic operators ** Exponentiation
abs Absolute Value

Logical operator not Complement

P
recedence

L

H

13

Bolchini Ferrandi Fummi

New VHDL’92 Operators

ä sll: shift left logical

ä sla: shift left arithmetic

ä rol : rotate left

ä xnor: exclusive nor

ä ror : rotate right

ä slr: shift right logical

ä sla: shift right arithmetic

14

Bolchini Ferrandi Fummi

Objects Declaration

äEach element of a VHDL description must
be declared before its use.

äThe only exceptions regard index of loops
that can be an integer values only.

äElements to be declared are:

äconstants

äsignals

äentities

äarchitectures

äcomponents

ävariables

15

Bolchini Ferrandi Fummi

Constant Declaration

äA constant is a name assigned to a fixed
value.

äGenerally, constants increase readability.

constant_declaration

constant name: type := expression;

constant name:array_type[(index_constraint)] := expression;

äExamples:
constant Vdd: Real := -4.5;

constant FIVE: std_logic_vector(8 to 11) := ”0101”;

Scalar

Array

16

Bolchini Ferrandi Fummi

Signal Declaration

ä Signals connect design entities and communicate
changes in values between processes.

ä The default initial value is the lowest value of the
associated type, if not specified.

signal_declaration

signal names: type[range_constraint] [:= expression];

signal names:array_type[(index_constraint)] [:=expression];

Examples:
signal count: integer range 1 to 50;

signal SYS_BUS: std_logic_vector(7 downto 0);

signal bogus: bit_vector;

Scalar

Array

?

17

Bolchini Ferrandi Fummi

Entity Declaration -1

ä Design entities are used to represent VHDL models.

ä They have a declaration part that defines the interface
between the model and its environment.

ä They have also a body that describes the relations
between inputs and outputs of the model.
ä The model body must follow its entity declaration.

ä The entity declaration is mandatory but the architecture not.

ä The distinction between entity and architecture allows the
definition of more than one architecture for the same entity.

18

Bolchini Ferrandi Fummi

Entity Declaration -2

entity_declaration

entity entity_name is

[generic ({names: type[:= expression]})];

[port ({names: direction type[:= expression]});]

end [entity_name];

ä Ports identifiers are used to interface the design

entity with the environment:
ä IN: data enter into the design entity.

ä OUT: data come from the design entity.

ä INOUT: data enter into and come from the design
entity.

19

Bolchini Ferrandi Fummi

Entity Declaration -3

ä Example:
entity nor_gate is

generic (delay: time := 5 ns);

port (a,b: in bit;

 c: out bit);

end nor_gate;

ä a and b can only receive values.

ä c produces the result of the computation.

ä delay is a constant value that can be used into the
architecture body. It assumes the value of 5 ns if it
is not assigned.

bit

bit

bit

nor_gate

a
b

c

delay

20

Bolchini Ferrandi Fummi

Architecture Declaration-1

äAn architecture design unit specifies the
behavior, interconnections, and components
of a previously compiled entity.

ä It specifies the relationships between the
inputs and outputs.

architecture_declaration

architecture architecture_name of entity_name is

[declarations]

begin

concurrent_statements

end [architecture_name];

21

Bolchini Ferrandi Fummi

Architecture Declaration-2

äExample:
architecture dataflow of nor_gate is

begin

c <= a nor b after delay;

end dataflow;

äThere are three architecture styles:
äBehavioral: defines a sequentially described

process.

äDataflow: implies a structure and a behavior.

äStructural: defines interconnections of
components.

22

Bolchini Ferrandi Fummi

Structural VHDL

äStructural style is similar to a netlisting
language in other CAD systems.

23

Bolchini Ferrandi Fummi

Components -1

äComponent declaration and instantiation
allow the structural kind of VHDL
description.

äComponents must be declared, specified
and instantiated for their use.

component_declaration

component component_name

port ({names: direction type[:= expression]})

end component ;

24

Bolchini Ferrandi Fummi

Components -2

äExample:
entity rsflop is

port(set,reset: in bit;

 q,qbar: inout bit);

end rsflop;

architecture netlist of rsflop is

component nor2

generic(delay: time);

port(a,b: in bit; c: out bit);

end component;

… … …

begin

… … …

end netlist;

25

Bolchini Ferrandi Fummi

Components -3

ä The component configuration statement allows the
specification of the selected architecture related to
the declared component.

ä If no architecture is specified, the default
architecture is selected.

configuration_specification

for names: comp_name use entity ent_name(arch_name);

ä Local names after the FOR statement specify the
number of instantiated components.

ä Example:
for u1,u2: nor2 use entity nor_gate(dataflow);

26

Bolchini Ferrandi Fummi

Components -4

component_instantiation

label : component_name port map ([named|positional]);

ä Example:
U1: nor2 generic map (10.2 ns)

port map(reset, qbar_int,q_int);

port map(b => qbar_int, c => q_int, a => reset);

ä The local port names (reset, qbar_int, q_int) are
put in relation with the formal names (a, b, c).

ä The generic value 10.2 ns overrides the default
value 5.0 ns.

positional

named

27

Bolchini Ferrandi Fummi

Components -5

ä Example:
architecture netlist of rsflop is

… … …

for u1,u2: nor2 use entity nor_gate(dataflow);

 signal q_int, qbar_int: bit;

begin

U1: nor2

generic map (10.2 ns)

port map(reset, qbar_int,q_int);

U2: nor2

generic map (10.3 ns)

port map(q_int, set, qbar_int);

q <= q_int;

qbar <= qbar_int;

end netlist;

28

Bolchini Ferrandi Fummi

Generate Components -1

generate_components
label : for parameter in range generate

component_instantiation

end generate ;

äExample
gen1: for i in 0 to 3 generate

U: dff port map (x(i), clk, x(i+1));

end generate;

Q

CLK

X(4)X(3)X(2)X(1)X(0)

D QD QD QD

29

Bolchini Ferrandi Fummi

Generate Components -2

äNested GENERATE are allowed for bi-
dimensional arrays.

ä Internal label must not be indexed.

äSome customization can be done with the
if_generate statement.

30

Bolchini Ferrandi Fummi

Dataflow VHDL

ä A set of VHDL statements is concurrently
executed whenever they are placed into an
architecture body.

ä There are different versions of the same statement
if it is executed concurrently or sequentially.

ä Concurrent statements are:
ä Signal assignment

ä Conditional signal assignment

ä Selected signal assignment

ä Instantiation statement

ä Block statement

ä Procedure call

ä Assertion statement

ä Process statement

31

Bolchini Ferrandi Fummi

Signal Assignment -1

signal_assignment

signal_name <= value;

ä Examples:
architecture probe of halfadder is

begin

 sum <= a xor b;

 carry <= a and b;

end probe;

ä Array values assignment:
bus_out(4) <= data(5);

rotate_sig(7:0) := sig(0:7);

sum <= a xor b after 5 ns;

carry <= a and b after 10 ns;

With or without delays:

32

Bolchini Ferrandi Fummi

Signal Assignment -2

äAggregation
äPositional association:

SIGNAL z_bus : bit_vector (3 DOWNTO 0);

SIGNAL a_bit, b_bit, c_bit, d_bit : bit;

… … …

z_bus <= (a_bit, b_bit, c_bit, d_bit);

äNamed association:
z_bus <= (2 => b_bit, 1 => c_bit, 0 => d_bit; 3 => a_bit);

äOthers keyword:
z_bus <= (3 DOWNTO 2 => '1', OTHERS => '0');

z_bus <= (OTHERS => '1');

z_bus <= (2 => b_bit, 1 => c_bit, 0 => d_bit; 3 => a_bit);

33

Bolchini Ferrandi Fummi

Conditional Signal Assignment-1

conditional_assignment
signal_name <= expression_1 WHEN condition_1 ELSE

 expression_2 WHEN condition_2 ELSE
 … … …

 expression_N;

ä equivalent to IF / THEN / ELSE / END IF
ä Each condition is a boolean expression.
ä The expression of the first TRUE condition is assigned.
ä There must be always an ELSE expression,
ä The expression may be delayed.

a <= '1' AFTER 2 ns WHEN b = '0' ELSE

 '0' AFTER 3 ns;

34

Bolchini Ferrandi Fummi

Conditional Signal Assignment-2

äExample:

ENTITY tri_state IS

PORT(bit_1, en_1, en_2: IN std_logic;
bus_1: IN std_logic_vector (0 TO 7);

tri_bit: OUT std_logic;
tri_bus: OUT std_logic_vector (0 TO 7));

END tri_state;
ARCHITECTURE condition OF tri_state IS

BEGIN

tri_bit <= bit_1 WHEN en_1 = '1' ELSE 'Z';
tri_bus <= bus_1 WHEN en_2 = '1' ELSE (OTHERS => 'Z');

END condition;

35

Bolchini Ferrandi Fummi

Selected signal assignment

Selected signal assignment
with expression select

signal_name <= expression_1 when choice_1,
… … …
expression_n when choice_n;

ä equivalent to CASE / WHEN / END CASE
ä All choices must be included unless the OTHERS

keyword is used.
ä A range may be used for a choice.

ä Example
with B select

z <= '1' when "00" | "01",
'0' when others;

ä No overlapping in the choices is accepted.

36

Bolchini Ferrandi Fummi

Block statement -1

äConventional blocks represent a way to
group any combination of concurrent
statements that may appear into an
architecture.

äBlocks may contain further blocks thus
implying an hierarchy.

ä Items declared within a block are only
visible inside it.

37

Bolchini Ferrandi Fummi

Block statement -2

block_statement
[label:] block [(guard_condition)]
[declarations]
begin

concurrent_statements
end block [label];

ä Signals, constants, procedure, etc. may be declared
into a block.

ä The guard condition must return a Boolean value:
it controls guarded signal assignments within the
block.

38

Bolchini Ferrandi Fummi

Guarded Block

ä Whenever the guard condition evaluates to FALSE,
the driver to any guarded signal is switched off.

ä Example:
g_sig_es: block (clk = '1')
 sig_out <= guarded sig_in;
end block g_sig_es ;

no_g_proc:PROCESS(clk)
begin
 if(clk ='1) then
 sig_out <= sig_in;
 end if;
end process no_g_proc;

g_proc_es : block (clk = '1')
 equiv : process
 begin
 if guard then
 sig_out <= sig_in;
 end if:
 wait on guard ;
 end process equiv;
end block g_proc_es ;

39

Bolchini Ferrandi Fummi

Assertions -1

ä Provide a method to communicate results,errors,…
assertions_declaration

assert condition report string severity level;

ä If the condition is FALSE the string is displayed on the
simulator screen.

ä Severity levels allow different kinds of simulation abort.
They may be:

ä note, warning, error, failure (default is error)

ä The concurrent ASSERT statement monitors the Boolean
condition continuously.

ä Assertions are used to debug the code or to provide
information about the simulation.

40

Bolchini Ferrandi Fummi

Assertions -2

d_latch : PROCESS (clk,d)

BEGIN

 IF(clk'EVENT and clk='1') THEN

 q <= d;

 ASSERT d'STABLE (setup_time)

 REPORT "Setup violation …"

 SEVERITY warning;

 END IF;

END PROCESS d_latch ;

d_latch : BLOCK (clk = '1')

 q <= GUARDED d;

 ASSERT clk'EVENT and clk = '1' and d'STABLE(setup_time)

 REPORT "Setup violation ..."

 SEVERITY warning;

END BLOCK d_latch;

Sequential assertion

Concurrent assertion

41

Bolchini Ferrandi Fummi

Behavioral VHDL

ä Describe an architecture in a program-like style.

äProcess statement

ä A set of VHDL statements is sequentially
executed whenever they are placed into process.

ä Signal assignment

ä Variable assignment

ä Wait

ä Procedure call

ä Function call

ä Branches

ä Control flow

ä Assertion writes messages

NOTE: underlined statements are also concurrent statements.

42

Bolchini Ferrandi Fummi

Variable Declaration

variable_declaration

 variable names: type[range_constraint] [:= expression];

 variable names:array_type[(index_constraint)][:=expression];

ä Declaration examples:
variable sum : real;

variable voltage : integer := 0;

variable clock : bit := ’1’;

variable data : std_ulogic;

ä Arrays:
variable data_bus : bit_vector (0 to 7) := "11111111";

variable inputs : std_ulogic_vector (15 downto 0);

initial value?

Scalar

Array

43

Bolchini Ferrandi Fummi

Signals and Variables -1

ä Declaration place:

äSignals can be declared only between the
ARCHITECTURE statement and its BEGIN
(declarative part of the architecture).

äVariables can be declared only between the
PROCESS statement and its BEGIN
(declarative part of the process).

ä Default value:

äBoth objects assume the left-most or minimum
value of the corresponding type.

44

Bolchini Ferrandi Fummi

Signal vs.Variable Assignment-1

ä Signal and variable assignments are performed by
using different symbols to emphasize the different
meaning of the two objects.

variable_assignment

 variable_name := value;

signal_assignment

 signal_name := value;

ä Note that the assignment of the initial value to a

signal uses the same symbol of variable

assignment.

45

Bolchini Ferrandi Fummi

Signal vs.Variable Assignment-2

ä The main difference is the nature of the
assignment:
ä Signal assignment → concurrent statement
ä Variable assignment → sequential statement

ä Such a difference implies some other differences:
ä Variables can be assigned only in the sequential part of

a VHDL description (into a process statement)
ä Signals can be assigned in the sequential or concurrent

part.

ä A variable assignment takes effect immediately!
ä A signal assignment may depend on a delay.

46

Bolchini Ferrandi Fummi

Signal vs.Variable Assignment-3

var_ex: PROCESS

 VARIABLE num,sum:INTEGER:=0;

BEGIN

 WAIT FOR 20 ns;

 num := num + 1;

 sum := sum + num;

END PROCESS var_ex;

SIGNAL num, sum: INTEGER:=0;

sig_ex: PROCESS

BEGIN

 WAIT FOR 20 n;

 num <= num + 1;

 sum <= sum + num;

END PROCESS sig_ex;

• The two processes are apparently equal, but …
• Do they produce the same result?

• NO! Signals and variables are updated at
different times.

47

Bolchini Ferrandi Fummi

Process -1

ä It is a concurrent statement that delineates a
set of sequentially executed statements.

process_statement

[label:] process [(sensitivity_list)]

[declarations]

begin

sequential_statements

end process [label] ;

48

Bolchini Ferrandi Fummi

Process -2

äThe sensitivity list is a list of signals. The
change of one or more of such signals
causes the process to be activated.

äAlternatively the WAIT statement may
control the execution of a process.

äThe sensitivity list and the WAIT statement
are mutually exclusive.

49

Bolchini Ferrandi Fummi

Process -3

ä Both processes show the same behavior.

ä Signals in the sensitivity list help the reader to understand
the behavior of the process.

ä Multiple WAIT statements may represent a more complex
behavior.

wait_style_proc: PROCESS

IF (alarm_t = current_t)
THEN

sound <= '1';

ELSE

sound <= '0';

WAIT on alarm_t, current_t;

END PROCESS wait_style_proc

äComparison
sens_list_style_proc:
PROCESS (alarm_t, current_t)

IF (alarm_t = current_t)
THEN

sound <= '1';
ELSE

sound <= '0';
END PROCESS;

50

Bolchini Ferrandi Fummi

Process -3

ä Execution:

äEvery process is executed once in the
initialization phase.
ä a process based on the sensitivity list runs until its

last instruction;

ä a process based on the wait keyword runs until the
first wait.

äA process is restarted when a signal in the
sensitivity list or in the wait statement changes.

51

Bolchini Ferrandi Fummi

Process -4

äA process is considered as a UNIQUE
concurrent operation.

äSignals of a process are all updated at the
end of the process execution.

äAll internal operations are sequentially
executed, thus only sequential operators can
be used.

52

Bolchini Ferrandi Fummi

Wait -1

ä Provides the control of the process execution.
 wait ;

ä suspends a process indefinitely (useful in test benches).
 wait for time;

ä suspends a process for time units (useful in test benches
and behavioral models).

 wait on signal_list;

ä suspends a process until a change occurs on one or more of
the signals in the list (it is equivalent to the sensitivity list).

 wait until condition;

ä suspends a process until a change occurs on one or more of
the signals in the condition and it evaluates to TRUE.

53

Bolchini Ferrandi Fummi

Wait -2

ä Examples:
d_ff_1 : process
begin
 wait until clk'event and clk='1';
 q <= d;
end process d_ff_1 ;

d_ff_2 : process begin
 if clk='1' then
 q <= d;
 end if;
 wait on clk;
end process d_ff_2 ;

stimuli : process
begin
 en_1 <= '0';
 en_2 <= '1';
 wait for 10 ns;
 en_1 <= '1';
 en_2 <= '0';
 wait for 10 ns;
 en_1 <= '0';
 wait ;
end process stimuli ;

semantically equivalent to:
wait until clk='1';

54

Bolchini Ferrandi Fummi

Branches -1

if_statement
if condition then sequential_statements
{ elsif condition then sequential_statements}
[else sequential_statements]
end if ;

ä Example:
counter: process (clk, reset)
begin

if reset = '1' then
count <= '0';

elsif clk'event and clk = '1' then
if count >= 9 then

count <= '0';
else

count <= count + 1;
end if;

end if;
end process counter;

55

Bolchini Ferrandi Fummi

Branches -2

case_statement
case expression is

when choice-1 => sequential_statements
… … …
when choice-n => sequential_statements

end case ;

ä Equivalent to WITH /SELECT

ä ALL possible choices must be included, RANGE is allowed.

ä Choices cannot overlap

ä Example:
CASE int_a IS

WHEN 0 => z <= a;
WHEN 1 TO 3 => z <= b;
WHEN 2 | 6 | 8 => z <= c;
WHEN OTHERS => z <= 'X';

END CASE ;

error !

56

Bolchini Ferrandi Fummi

Loops

for_statement
[label:] for index in range loop

sequential_statements
end loop [label];

ä index is automatically declared as integer and
cannot be modified within the loop.

ä range may be an enumerative type.
loop_statement
[label:] [while condition] loop

sequential_statements
end loop [label];

ä condition is tested before each iteration.

57

Bolchini Ferrandi Fummi

Control Flow

exit_statement
exit [label:] [when condition];

ä terminates the execution of a while, for, loop.
ä exit may be conditioned and it allows the exit from any

loop even if it is not the innermost one.
l1: FOR i IN 0 TO 7 LOOP

l2: FOR j IN 0 TO 7 LOOP
EXIT l1 WHEN quit_both_loops = '1'

next_statement
next [label:] [when condition];

ä terminates of the current iteration of a while, for, loop.
ä it may be conditioned and it allows the termination of an

iteration of any loop.

58

Bolchini Ferrandi Fummi

Advanced Types -1

ä The enumerated type declaration lists a set of names or
values defining a new type.

enumerated_type_declaration
type identifier is (item, {item});

ä Built-in scalar types: (standard packages)
type bit is (‘0’, ‘1’) ;

type character is (‘a’, ‘b’, ‘c’, ...

type boolean is (false, true);

type std_ulogic is (‘u’,‘x’,‘0’,‘1’,‘z’,‘w’,‘l’,‘h’,‘-’);

ä Built-in scalar physical types: (standard packages)
type time is range -922337036854775808 to 92…

units

fs; ps = 1000 fs; … hr = 60 min ;

end units

59

Bolchini Ferrandi Fummi

Advanced Types -2

array_type_declaration

type array_type_name is array (range) of type;

ä Example
type string is array (positive range <>) of character;

type bit_vector is array (natural range <>) of bit;

ä Subtypes are based upon existing type and is a
restriction of that type in some way using a range
constraint.

subtype_declaration

subtype subtype_name is type_name range range;

60

Bolchini Ferrandi Fummi

Advanced Types -3

äSubtype examples:
SUBTYPE natural IS integer RANGE 0 TO 2147483647;

TYPE car IS (ford, buick, chevy, chrysler);

SUBTYPE gm IS car RANGE buick TO chevy;

TYPE data IS ARRAY (natural RANGE <>) OF bit;

SUBTYPE low_range IS data range (0 TO 7);

SUBTYPE high_range IS data range (8 TO 15);

äA subtype does not represent a new type.

61

Bolchini Ferrandi Fummi

Advanced Types -4

ä Record types allow the group of objects of
different types into a single object.

record_declaration

type record_type_name is

record

identifier : type;

… … …

end record ;

ä Example:
type instruct is record

source: integer range 0 to 7;

det: integer range 0 to 15

end record;

62

Bolchini Ferrandi Fummi

Procedure call -1

äRepresents a method to perform complex
operation.

äMay produce multiple output values:
ämay affect input parameters (INOUT type);

ämay have OUT parameters.

äParameters may be signals, variables,
constants.

63

Bolchini Ferrandi Fummi

Procedure call -2

procedure_declaration
procedure proc_name (parameters) is

[declarations]
begin

sequential_statements
end proc_name;

äProcedures are concurrently executed
whenever any of their IN or INOUT
parameters changes.

äProcedure can contain wait statements.
äLocal variable are initialized each time the

procedure is called.

64

Bolchini Ferrandi Fummi

Procedure call -3

äExample:
procedure find_min (variable values : in int_array;

 variable min_val : inout integer ;
 variable old_min : out integer) is

 variable temp : integer;
begin
 temp := old_min := min_val;
 for i in values'range loop
 if values(i) < temp then
 temp := values(i)
 end if;
 end loop;
 min_val := temp;
end find_min;
… … …
find_min (my_array, minimum, old_value);

65

Bolchini Ferrandi Fummi

Functions -1

ä Return the result of a computation. They may be
used in any expression, in either a concurrent or
sequential statement.

ä Declaration:
ä it may be separated by its body part.
ä it must be placed before its body and before its first use.

function_declaration
function fun_name (parameters) return type;

function_body
function fun_name (parameters) return type is

[declarations]
begin

sequential_statements and return
end [fun_name];

66

Bolchini Ferrandi Fummi

Functions -2

ä A function body can contain any sequential
statement except SIGNAL assignments and WAIT
statements.

ä Local variables do not retain values between
successive calls; they are re-initialized each time.

ä Functions are described into the package body or
architecture declarative part.

function bit_to_boolean (bit_in : in bit) return boolean is

begin
if bit_in = '1' then return true;
else return false;
end if;

end bit_to_boolean;

67

Bolchini Ferrandi Fummi

Overloading -1

äThe way of giving more than one meanings
to the same item.

äOverloading possibilities:
äenumeration identifiers

type count_cnt is (load , clear , accumulate);
type reg_cnt is (hold, clear , load);

ä functions and procedures
function min (a, b : integer) return integer;
function min (float_a, float_b : real) return real;

äoperator symbols
function " +" (a : state; b : integer) return state;

68

Bolchini Ferrandi Fummi

Overloading -2

ä Subprograms selection:
ä number of parameters;
ä types of parameters;
ä names of parameters (named association);
ä return type.

SIGNAL res : real;
SIGNAL in1, in2 : integer;
res <= min (in1, in2);

ä Overloaded operator call:

ä function notation
x := "+" (y, z);

ä operator notation
x := y + z ;

69

Bolchini Ferrandi Fummi

Signal Drivers

ä They are containers for the assignments scheduled
for a signal.

ä A driver is created every time a signal assignment
is made.

ä Example:
clock <= '0', '1' after 5 ns, '0' after 10 ns;

ä Times must be in ascending order.
ä Multiple executions of the same assignment

modify the driver.
ä Multiple concurrent statement assignments create

multiple drivers which must be resolved.

Time Value

0

5

10

0

1

0

70

Bolchini Ferrandi Fummi

Resolution Functions -1

äDefinition:
äsubprograms defining the single value that the

signal should assume when there are multiple
values concurrently assigned.
ä Input: array that contains the current value of all

drivers.
äOutput: the selected single value.

begin
o <= a when e1 = '1' else 'z';
o <= b when e2 = '1' else 'z';
o <= b when e3 = '1' else 'z';

end

type s_state is ('x','0','1','z');
architecture ds of exam is

signal o : wired_or s_state;
signal a, b, c : s_state;
signal e1, e2, e3 : bit;

71

Bolchini Ferrandi Fummi

Resolution Functions -2

ä Multiple drivers are created for the same signal o.

ä Conflict assignments may occur.

ä Es:
ä e1 = '1' AND e2 = '1'

ä e1 = '1' AND e2 = '0' AND e3 = '0'

ä Resolution function:
FUNCTION wired_or (dr_out: s_state) RETURN s_state IS
…

1 X 0 Z

1 1 X X 1

X X X X X

0 X X 0 0

Z 1 X 0 Z

72

Bolchini Ferrandi Fummi

Attributes

ä General attributes can be attached to variables
also:
x' high x' low x' left x' right

ä Attributes for array types:
array' range array' reverse_range array' length

ä Example in a resolution function:
function wired_or (dr_out: s_state) return s_state is

begin

for i in dr_out' range

ä User defined attributes:
ATTRIBUTE clock_source OF ck: SIGNAL is TRUE;

73

Bolchini Ferrandi Fummi

Signal Attributes

ä Attributes of a signal are automatically generated
and can be obtained by using the ' symbol.

signal'EVENT
boolean

signal'QUIET(t)
boolean

signal'LAST_EVENT
boolean

signal'ACTIVE
boolean

signal'TRANSACTION
boolean

signal'LAST_ACTIVE
time

signal'STABLE(t)
boolean

signal'DELAYED(t)
signal

signal'LAST_VALUE
value

ä Example:
if (clock = '1' and clock'active and clock'last_value = '0')

then

74

Bolchini Ferrandi Fummi

File I/O -1

ä Access to files is provided by the textio package
specified by IEEE:

type line is access string;

type text is file of string;

procedure readline (logical_file_name, line_name);

ä reads a line of strings from the file.
procedure read (line_name, object_name);

ä extracts an object from the line.
procedure writeline (logical_file_name, line_name);

ä writes a line of strings to the file.
procedure write (line_name, object_name);

ä writes an object to the line.
function endfile (op : IN text) RETURN boolean;

75

Bolchini Ferrandi Fummi

File I/O -2

äFile declaration:
file logical_name : type is mode "physical name";

äMode may be IN or OUT;

äExample:
file data_in : text is in "./input_file";

äFile data analysis:
while not (endfile(data_in)) loop

äData read:
variable in_line : line;

readline (data_in, in_line);

read (in_line, object1) ; read (in_line, object2) … … …

76

Bolchini Ferrandi Fummi

File I/O -3

ä Data write:
file data_out : text is out "./output_file" ;

variable out_line : line;

… … …

write (out_line, object1) ; write(out_line, object2) … … …

writeline (data_out, out_line) ;

ä File open and close:
ä Files are automatically open at the beginning of the

simulation and close at the end.

ä Primary uses:
ä store simulation results;

ä application of stimuli.

