
2

Bolchini · Ferrandi · Fummi

Contents - 1

➤ The simulation process:
➤ The VHDL model
➤ The simulator engine

➤ VHDL Timing Models: delays
➤ Delta
➤ Inertial
➤ Transport

➤ Signal and driver
➤ Wait statement (Sensitivity List)

t

3

Bolchini · Ferrandi · Fummi

Contents - 2

➤ Statement analysis and comparison
➤ Signal vs. Variable assignment

➤ Wait vs. Sensitivity List

➤ Transaction vs, event

➤ Stimuli definition
➤ Test bench creation

➤ Simulator support

DUT

Sim ulator

VHDL
description

4

Bolchini · Ferrandi · Fummi

Simulation Goal

➤ The VHDL language has been defined for
simulation purposes, aiming at verifying:
➤ the correctness of the specification,

➤ the correctness of the device functionality w.r.t.
user’s requirements.

What is the system functionality?

How does the system work?

5

Bolchini · Ferrandi · Fummi

Simulation Goal

➤ When working with complex devices and adopting a
Top-Down or Bottom-Up design approach:
➤ correctness of each module/sub-module,

➤ correctness of partitioning into several sub-modules w.r.t. to
a more complex unique module at an higher description
level,

➤ correctness of connecting several sub-modules for achieving
a more complex functionality.

6

Bolchini · Ferrandi · Fummi

Simulation Goal

➤ Validation means for partitioning and
aggregation

f

7

Bolchini · Ferrandi · Fummi

Simulation: what we need ...

➤ Inputs:
➤ VHDL code description of the device

➤ compiled entity & architecture [package]

➤ Stimuli for the device
➤ test bench

➤ Outputs:
➤ Analysis of the device response to the stimuli:

➤ output monitoring

➤ additional component for autonomous result confrontation

8

Bolchini · Ferrandi · Fummi

The simulation process

➤ VHDL Timing model
➤ Simulation is event-driven
ª events on signals trigger the process

➤ Times advances to the instant an event occurs ª

there is not a continuous time evolution

➤ Preemptive time model

 ª there are events that are scheduled to occur

9

Bolchini · Ferrandi · Fummi

The simulation process

➤ Simulation cycle
➤ A dummy

execution is
performed to
initialize all
signals!

C <= ‘1’ or ‘0’

10

Bolchini · Ferrandi · Fummi

Simulation: dummy execution

E <= ‘0’ or ‘0’
D <= ‘1’ and ‘0’

11

Bolchini · Ferrandi · Fummi

Simulation: dummy execution

Fake event on sel to “resume” the process

Z <= ‘1’ or ‘0’

12

Bolchini · Ferrandi · Fummi

The simulation process

➤ Simulation cycle - 2
➤ At the beginning time is assumed to be 0.

➤ There are three steps:
➤ Time advances to the nearest instant when a driver

becomes active or a suspended process resumes

➤ Signal values are updated. This operation causes an event
(eventually delayed) on each signal changing value.

➤ Suspended process resume and are executed until they
suspend.

13

Bolchini · Ferrandi · Fummi

Simulation: VHDL model

➤ Each concurrent statement is equivalent to a
process sensitive to signals on the right-hand
side:
➤ Each statement and each process is executed

asynchronously with respect to each other
depending on events.

➤ To create a “control” on process (statement)
execution hand-shake protocols are implemented.

14

Bolchini · Ferrandi · Fummi

Simulation: VHDL model

➤ Process: once resumed, the “internal sequential”
code is concurrently executed.

➤ A process can be viewed as an infinite loop:
after the last statement is executed, the
first is executed again and if conditions
are met, the loop continues …

➤ Time does not advance while the process loop
evolves unless explicit timing is used:

➤ WAIT or AFTER …

15

Bolchini · Ferrandi · Fummi

➤ Different processes (or concurrent statements)
are synchronized by means of WAIT
statements:
➤ WAIT ON signal list

➤ WAIT FOR time delay

➤ WAIT UNTIL condition

➤ Interprocess communication is handled through
signals

Synchronization

16

Bolchini · Ferrandi · Fummi

Simulation: signals

➤ A signal is an object with a past history of
values.

➤ A signal acts as a medium waveform
propagation:

➤ physical wires

when??
➤ memory elements (latches)

17

Bolchini · Ferrandi · Fummi

Waveforms

➤ All transient values are discarded

➤ Waveform is a sequence of elements called
transactions

➤ Each change of value is called event

���P U��PU��PU��PU��PU

� 8

H� I

H� I

� �� 8

18

Bolchini · Ferrandi · Fummi

Signal assignment

➤ A waveform “wants” to describe the physical
circuit behavior: carry values at any time.

P1: Process
begin
 wait until CK = ‘1’;
 A <= B or C;
end process;

P2: Process
begin
 A <= B or C;
 wait until CK = ‘1’;
end process;

?

A=? B=?
before the 1st clock

edge

19

Bolchini · Ferrandi · Fummi

Simulation: WAIT position

entity update_sig is
port(CK: in std_ulogic);

end update_sig;

architecture arch of update_sig is
signal A: std_ulogic := '1';
signal D: std_ulogic := '1';

begin
B <= '0' after 3 ns, '1' after 6 ns, '0' after 12 ns;
C <= '1' after 3 ns, '0' after 6 ns, '1' after 9 ns,'0' after 12 ns;

P1: process
begin

wait until CK = '1';
A <= B or C;

end process P1;

P2: process
begin

D <= B or C;
wait until CK = '1';

end process P2;

end arch;

20

Bolchini · Ferrandi · Fummi

Simulation: WAIT position

21

Bolchini · Ferrandi · Fummi

Simulation: signal driver

➤ SIGNAL

B <= ‘1’,'0' after 3 ns,'1' after 6 ns,'0' after 12 ns;

 waveform elements

 signal

➤ The simulator creates a DRIVER for the signal, which is a source for the
values it will assume.

➤ Each time the signal assignment statement executes, the value of the
waveform is appended to the driver when the fixed time arrives.

➤ The DRIVER is the item the simulator accesses for determining the value of
the signal.

22

Bolchini · Ferrandi · Fummi

Simulation: signal driver

➤ SIGNAL

B <= ‘1’,'0' after 3 ns,'1' after 6 ns,'0' after 12 ns;

Driver
value time
 ‘1’ 0 ns
 ‘0’ 3 ns
 ‘1’ 6 ns
 ‘0’ 12 ns

23

Bolchini · Ferrandi · Fummi

Simulation: signal driver

➤ SIGNAL

➤ A signal has as many drivers as the number of signal
assignments which are not mutually exclusive (i.e. in
different processes).

➤ If a signal has more than one driver a resolution
function is required: determines which value prevails.

➤ The resolution function is necessary even if no conflict
arises.

24

Bolchini · Ferrandi · Fummi

Simulation: signal driver

➤ The signal is not a mere container of data.

➤ It also contains attribute information on:
➤ past values

➤ past events

➤ It can be used to generate new signals (delayed
waveforms)

Current value

Driver Driver Driver

Attributes

25

Bolchini · Ferrandi · Fummi

Simulation: special signals

➤ Guarded signals - 1
➤ There is a guard (a boolean expression) which

“turns off” the signal driver when a specified
condition is not true.

➤ Signal needs to be declared as:
REGISTER or BUS

➤ REGISTER: retains the last output while the driver is
disconnected

➤ BUS: re-evaluates the output value

26

Bolchini · Ferrandi · Fummi

Simulation: special signals

➤ Guarded signals - 2
SIGNAL temp: wired_or bit_vector (0 to 7) BUS;

It applies to busses or buffers on bus

Resolution function
(it’s a bus!)

27

Bolchini · Ferrandi · Fummi

Time and delay in VHDL

➤ Delay: the time period between the current time
and the instant time when an event will occur.

➤ An implicit delay model:
➤ delta delay

➤ Two explicit kinds of delay models:
➤ inertial

➤ transport

28

Bolchini · Ferrandi · Fummi

Delays: delta

➤ Although no time is specified for the signal assignment
statement, its execution does not affect the current
value of the signal

➤ effects occur after an infinitesimally small delay
called delta delay

➤ A signal assignment never modifies the past or current
value of a signal, it only affects the scheduled future
values.

➤ Example statement:
gamma <= alpha or beta;

29

Bolchini · Ferrandi · Fummi

Delays: inertial

➤ Appropriate for modeling switching circuits.

➤ A pulse shorter than the switching time of the circuit
is not transmitted.

➤ It is modeled with an AFTER clause.

➤ Example statement:
gamma <= alpha or beta AFTER 5 ns;

➤ All signal assignments are assumed to have an inertial
delay of 0 ns whenever no specification is given.

30

Bolchini · Ferrandi · Fummi

Delays: transport

➤ Allows modeling transmission lines where every pulse,
independent of its duration, should be transmitted.

➤ It is achieved by adding a TRANSPORT keyword.

➤ Example statement:
gamma <= TRANSPORT alp or bet AFTER 5 ns;

31

Bolchini · Ferrandi · Fummi

Signal and its driver

➤ The relation on the values in the driver and the
values the signal assumes:

➤ Current value update

➤ Driver filtering

➤ Driver erasing

32

Bolchini · Ferrandi · Fummi

Current value update - 1

➤ After a sequential signal assignment with no delay
(zero-delay assignment), the current value of the target
signal is not the result of the right expression. The
value is placed in the driver.

➤ The current value of the signal is only updated on
synchronization points: wait statements.

➤ When a sensitivity list is used, the current values of the
target signals are updated just before the end process
keywords.

33

Bolchini · Ferrandi · Fummi

Current value update - 2

➤ When no wait statement is necessary but
updated values are required, it is possible to
create dummy synchronization points.

➤ Goal: force the updating of the current values of
the zero-delay assignment target signals.

➤ Possible forms of synchronization points:
➤ wait for 0ns;

➤ … <= … AFTER 0ns;

34

Bolchini · Ferrandi · Fummi

Current value update - 3

➤ Variables are immediately updated. If target
signals have no interprocesses communication
functionality, a variable should be used.

➤ The use of a signal (instead of a local variable)
to store only an intermediate result of a process
is very expensive.

35

Bolchini · Ferrandi · Fummi

Current value update - 4

➤ The mechanism of signal current value updating
provides the concurrency among signal
assignment statements.

➤ Signal assignment is not variable assignment
even in the sequential domain!

process
begin

a <= b;
c <= a;
wait;

end process;

process
begin

c <= a;
a <= b;
wait;

end process;

36

Bolchini · Ferrandi · Fummi

Driver filtering - 1

entity assign is
end assign;

architecture arch of assign is
signal A: BIT := '0';
signal B: BIT := '0';

begin
Wave_gen: process
begin

A <= '1' after 5 ns, '0' after 12ns;
wait;

end process Wave_gen;

C <= A or B after 40 ns;

X <= transport A or B after 40 ns;

end arch;

37

Bolchini · Ferrandi · Fummi

Driver filtering - 2

➤ Driver Analysis
TIME Events Scheduled events

 ns C X

0 A = '0' 40:'0' 40:'0'

5 A = ’1' 40:'0’,45:'1' 40:'0’,45:'1'

12 A = '0' 45:'1’,52:'0' 40:'0’,45:'1’,52:'0’

40 X <='0' 52:'0’ ---- 45:'1’,52:'0'

45 X <=’1' 52:'0’ ---- 52:'0'

52 C <='0'
X <='0'

transportinertial

38

Bolchini · Ferrandi · Fummi

Driver erasing - 1

➤ When trying to preserve a value of a signal in
case some conditions are not met, it may occur
that the driver is re-written modifying the
current signal driver.

➤ Cause: inappropriate use of else clause in
selected/conditional state assignments.

39

Bolchini · Ferrandi · Fummi

Driver erasing - 2

40

Bolchini · Ferrandi · Fummi

Simulation: variables

➤ Variables within subprograms are initialized

each time the subprogram is called.

➤ Variable assignments cannot be delayed.

➤ What’s a variable transformed into?

41

Bolchini · Ferrandi · Fummi

Simulation: getting deep ...

➤ Statements Comparison
➤ Sensitivity List vs. WAIT

➤ ‘TRANSACTION and ‘EVENT

➤ Statement analysis
➤ Sensistivity list control

➤ Wait until condition

42

Bolchini · Ferrandi · Fummi

Statements comparison

➤ Sensitivity list vs. WAIT - 1

P1:process(clk)

begin

 if (clk='1') then

A <= B and C;

 end if;

end process; P2:process

begin

wait until clk='1';

A <= B and C;

end process;

P3:process

begin

 A <= B and C;

 wait until clk='1';

end process;

43

Bolchini · Ferrandi · Fummi

Statements comparison

architecture arch of wait_st is
…

begin
B <= '0' after 3ns, '1' after 6ns;

C <= '1' after 3ns, '0' after 6ns, '1' after 9ns;
P1: process P3: process(CK)
begin begin

wait until CK = '1'; if (CK = ‘1’) then
A <= B or C; E <= B or C;

end process P1; end if;
end process P3;

P2: process
begin

D <= B or C;
wait until CK = '1';

end process P2;
end arch;

44

Bolchini · Ferrandi · Fummi

Statements comparison

➤ Sensitivity list vs. WAIT - 3

45

Bolchini · Ferrandi · Fummi

Statements comparison

➤ 'TRANSACTION and 'EVENT - 1
➤ Transaction: re-evaluation of the signal value (does

not imply a change in the value) operation on the
signal.

➤ Event: change of the signal value.

46

Bolchini · Ferrandi · Fummi

Statements comparison

DIV: process MAIN: process

begin begin

R <= A/B; wait on M;

M <= A MOD B; A <= M;

wait on A, B; end process MAIN;

end process DIV;

M = 0, A = 6, B = 2 M = 0

➤ No event on M.

➤ Processes are stalled!

➤ wait on A wait until A'TRANSACTION

➤ wait on M wait until M'TRANSACTION

47

Bolchini · Ferrandi · Fummi

Statement Analysis

➤ Sensitivity List Control - 1
➤ For avoiding possible critical initialization and

racing problems the following suggestions should
be taken into account while defining the module
behavior:

➤ a signal must not be read before a wait until statement;

➤ signal assignment statements are not allowed before a
wait until statement, because the value read from the
signal according to the simulation semantics might
deviate from the value produced by the corresponding
logic network.

48

Bolchini · Ferrandi · Fummi

Statement anaysis

➤ Sensitivity List Control - 2
➤ The more explicit the sensitivity list is, the more

efficient is the running of the code, and the easier is
the tracking of erroneous behaviors.

B1: block (S'EVENT and S='1')

begin

X <= guarded Z1;

Y <= guarded Z2;

end block B1;

49

Bolchini · Ferrandi · Fummi

Statement analysis

➤ Sensistivity list control - 3
➤ Assignments of X and Y are supposed to be carried

out only on the rising edge of S, in fact they are
executed on the high state of S. Each time an event
occurs on Z1 or Z2, the value of the guard is
checked (not re-evaluated) and if the value of
S'EVENT is true (due to a previous change of
value) and S='1' the assignments are performed.

GUARD STATEMENT: not S'STABLE and S='1'

50

Bolchini · Ferrandi · Fummi

Statement analysis

➤ Wait until conditions - 1
wait until CLK='1';
wait on CLK until CLK='1';

➤ Implicitly assumed since no explicit sensitivity list was
expressed

wait on RESET until CLK='1';

➤ No sensitivity to CLK, condition verified only for an
event on RESET

1

2

51

Bolchini · Ferrandi · Fummi

Statement analysis

➤ Wait until conditions - 2

 wait until (CLK='1' and ENABLE='1')

Interpreted as
wait on CLK,ENABLE until (CLK='1' and ENABLE='1')

Desired to be?
wait on CLK until (CLK='1' and ENABLE='1')

3

52

Bolchini · Ferrandi · Fummi

Simulation

➤ Source code optimization
➤ Guidelines for writing a VHDL specification that

can be easily simulated.

➤ Not necessarily these suggestions hold when dealing
with the synthesis task

53

Bolchini · Ferrandi · Fummi

Source code optimization - 1

➤ VHDL offers a wide range of data types.
➤ When a complex algorithm has to be used,

performance depends on the selected datatypes.
Arithmetic operation will be more efficient when
working on integers than on bit vectors.

54

Bolchini · Ferrandi · Fummi

Source code optimization - 2

➤ A signal is expensive
➤ The simulator needs to build a driver and to

schedule future values.

➤ Whenever a variable can fit, the use of a signal
should be avoided.

➤ Signals should be used only for interprocess
communication.

55

Bolchini · Ferrandi · Fummi

Source code optimization - 3

➤ File operations:
➤ I/O is always time consuming but …

➤ if a complex test bench needs to be created, the final
system Device Under test and Test Bench, may
require a too big amount of memory.

➤ It’s a more flexible solution.

56

Bolchini · Ferrandi · Fummi

Source code optimization - 4

➤ Sensitivity lists:
➤ Split the VHDL into processes sensitive to a

minimal number of signals.
➤ Conditional statements try to know which signal is active.

This may imply the storing of previous values for a
comparison.

➤ For activating a suspended process is necessary to verify
a high number of signals to detect if events have
occurred.

57

Bolchini · Ferrandi · Fummi

Source code optimization - 5

➤ Wait statement
➤ prefer wait on and wait for statements to the wait

until form
➤ the former two are cheaper because they are static and

most of the work is done (once) at compilation time.

58

Bolchini · Ferrandi · Fummi

Simulating …

➤ Stimuli generation: possible approaches
➤ Creation of a test bench which autonomously

generates stimuli and controls the output produced
by the Device Under Test.

➤ Definition of the stimuli directly in the simulator
and manual control of the output traces.

➤ Creation of a Test Bench for producing stimuli and
manual evaluation of the results.

59

Bolchini · Ferrandi · Fummi

Simulation: Test Bench

➤ Structure:

6GUV

$GPEJ

&GXKEG

7PFGT

6GUV

&76�
&76
KPRWVU

4GUWNVKPI
612A'PVKV[

&76
QWVRWVU

%QTTGEV�0QV EQTTGEV

60

Bolchini · Ferrandi · Fummi

Test Bench

➤ For the generation of the waveforms constituting the
DUT inputs, two strategies can be adopted:

➤ Architecture explicitly generating waveforms
➤ standard architecture with signal assignments (concurrent

or process)

➤ Text I/O
➤ access to an external file defining the signal assignments,

through procedures

➤ The Test Bench entity (or the Top entity) has no
outputs in case it does not control the correct
behavior of the Device Under Test.

61

Bolchini · Ferrandi · Fummi

Test Bench - 1

➤ The resulting system to be simulated is constituted by
the two components: DUT and Test_DUT.

ENTITY DUT IS
 PORT(DUT_ouputs: OUT DUT_type;

DUT_inputs: IN DUT_type);
END DUT;

ENTITY Test_DUT IS
 PORT(DUT_ouputs: IN DUT_type;

DUT_inputs: OUT DUT_type;
Correct: OUT Bit);

END Test_DUT;

62

Bolchini · Ferrandi · Fummi

Test Bench - 2

ENTITY Top_Test_DUT IS
PORT(Correct: OUT Bit);

END Top_Test_DUT;
ARCHITECTURE Top_ST OF Top_Test_DUT IS

COMPONENT DUT
PORT(...)

END COMPONENT;
COMPONENT Test_DUT

PORT(...)
END COMPONENT;
SIGNAL x, y: DUT_type;

...
BEGIN

u1: DUT PORT MAP (x,y);
u2: Test_DUT PORT MAP (x,y);

END Top_ST;

63

Bolchini · Ferrandi · Fummi

Test Bench - 3

➤ Instead of having a specific Test Bench entity
and then a Top entity including the two
components it is possible to have a Test Bench
instantiating as a component and providing the
desired stimuli at its inputs.
➤ Synopsys autonomously produces the “frame”.

64

Bolchini · Ferrandi · Fummi

Test Bench - 4

ENTITY Top_Test_DUT IS

PORT(Correct: OUT Bit);

END Top_Test_DUT;

ARCHITECTURE Top_ST2 OF Top_Test_DUT IS

COMPONENT DUT

PORT(...)

END COMPONENT;

SIGNAL x, y: DUT_type;
...

BEGIN

u1: DUT PORT MAP (x, y);

x<= stimuli generation ...

y<= stimuli generation ...

END Top_ST2;

65

Bolchini · Ferrandi · Fummi

Test Bench: Example - 1

➤ DUT: full adder

ENTITY FAdd IS
PORT(A, B: in bit;
 Cin: in bit;
 Sum: out bit;
 Cout: out bit);

END FAdd;

66

Bolchini · Ferrandi · Fummi

Test Bench: Example - 2

ENTITY Test_FAdd IS

PORT(Correct: out bit);

END FAdd;

ARCHITECTURE Test_Arc OF Test_FAdd IS

COMPONENT FAdd

PORT(A, B, Cin: in bit;

 Sum, Cout: out bit);

END COMPONENT;

SIGNAL A, B, Sum, Cin, Cout: bit;

BEGIN

UUT: FAdd PORT MAP(A,B,Cin,Sum,Cout);

67

Bolchini · Ferrandi · Fummi

Test Bench: Example - 3

stim: process
type Entry is record

A,B,Cin: bit;
Sum,Cout: bit;

end record;
type Tab is array (0 to 7) of Entry;
constant TTab: Tab :=

 (------A----B---Cin--Sum-Cout----
 (‘0’, ‘0’, ‘0’, ‘0’, ‘0’),

(‘0’, ‘0’, ‘1’, ‘1’, ‘0’),
(‘0’, ‘1’, ‘0’, ‘1’, ‘0’),
(‘0’, ‘1’, ‘1’, ‘0’, ‘1’),
(‘1’, ‘0’, ‘0’, ‘1’, ‘0’),
(‘1’, ‘1’, ‘0’, ‘0’, ‘1’),
(‘1’, ‘1’, ‘0’, ‘0’, ‘1’),
(‘1’, ‘1’, ‘1’, ‘1’, ‘1’)

);

68

Bolchini · Ferrandi · Fummi

Test Bench: Example - 4

begin
for i in TTab’range loop

A <= TTab(i).A;
B <= TTab(i).B;
Cin <= TTab(i).Cin;
wait for 1 ns;
if (Sum = TTab(i).Sum) and
 (Cout = TTAb(i).Cout) then

Correct <= ‘1’;
else

Correct <= ‘0’;
end if;

end loop;
wait;

end process;
end Test_Arch;

69

Bolchini · Ferrandi · Fummi

Test Bench: TEXT I/O

0 0 00000000

1 0 00000000

1 0 00000000

0 1 00000000

0 1 00000000

0 0 00000001

1 0 00000001

1 0 00000001

0 1 00000001

0 1 00000001

0 0 00000001

 process(clk)
 file dt_in: text is in "stimulus_sender.vec";
 variable in_line: line;
 variable ack_v,data_received_v: STD_LOGIC;
 variable dummy_char: character;
 begin
 if(not(endfile(dt_in)) and (clk = '1')) then
 readline (dt_in, in_line);
 read(in_line, ack_v);
 read(in_line, dummy_char);
 read(in_line, data_received_v);
 data_received <= data_received_v;
 ack <= ack_v;
 end if;
 end process;

➤ Reading vectors from a data file

70

Bolchini · Ferrandi · Fummi

Simulating ...

➤ The alternative to Test Bench definition is the use of
the simulator itself which allows the user to directly
force (even randomly) the input values to simulated
entities.

➤ It is possible to save input waveforms for re-using
them at different levels of abstractions or for
comparing different and, presumably, equivalent
implementations.

➤ It is possible to save output waveforms but there is no
mechanism for automatically controlling the
correctness of the obtained simulation results.

