Numero Seriale: 1

3: 5: 6: 7: 8: 9: 10: Risposte ai Quesiti: 1: 2: 4:

Nome, Cognome e Matricola:

Università degli Studi di Verona - Corso di Laurea in Informatica

Esame di Analisi Matematica - A.A. 2006/2007, Marco Squassina

Appello d'esame N.3, 3 Luglio 2007 - Sessione Estiva

Indicazioni importanti: Scrivere nome, cognome e matricola in stampatello. I compiti anonimi non saranno corretti. La durata dell'esame è di **120** min. Nessun libro è consentito. Nessuna calcolatrice grafica è consentita. Scrivere le lettere delle risposte in maiuscolo, in modo chiaro e negli spazi appositi. Restituire solo il presente foglio con le risposte. Annotare e conservare il numero seriale del compito e le risposte date. Le risposte corrette valgono +7/2 punti. Le risposte errate valgono -7/6 punti. Le risposte non date valgono 0 punti. Ogni domanda ammette una ed una sola risposta esatta. Se C denota il numero di risposte date corrette e S indica il numero di risposte date errate, il punteggio del compito è dato dalla formula: $P = \frac{7}{2}C - \frac{7}{6}S$.

Quesito 1: Sia $\alpha > 0$ e si consideri, per $m \ge 1$, l'area I_m della regione piana compresa tra la funzione $\frac{1}{x}$, l'asse x e le due rette verticali di equazioni α e $m\alpha$. Allora:

A: I_m cresce meno rapidamente di $\log m$. B: I_m cresce come $\log m$. C: I_m cresce più rapidamente di $\log m$. D: I_m cresce come una retta di coefficiente angolare α .

Quesito 2: Sia $f:[-1,1] \to \mathbb{R}$ una funzione derivabile due volte tale che f(0)=1, f'(0)=2 e che verifica, per ogni $x \in [-1, 1]$, la relazione

$$f''(x) = f'(x) - 3(f(x))^{2}.$$

Allora il polinomio di Taylor di f di ordine 3 centrato in x=0 risulta:

Alteria if pointomic diffayior diff difference 3 centrato in
$$x = 0$$
 risulta:
 $A: P_3(x) = 1 + 2x - \frac{x^2}{3} - \frac{13x^3}{4}$. $B: P_3(x) = 1 + 2x - \frac{x^2}{2} - \frac{13x^3}{6}$. $C: P_3(x) = 1 + 2x + \frac{x^2}{2} + \frac{13x^3}{6}$. $D: P_3(x) = 1 + 2x - \frac{x^2}{6} - \frac{13x^3}{5}$.

Quesito 3: Sia $\alpha > 0$ e si consideri, per $m \ge 1$, l'area I_m della regione piana compresa tra la funzione $\frac{1}{x}$, l'asse x e le due rette verticali di equazioni α e α^m . Allora:

 $A: I_m$ cresce come una retta di termine noto -1. $B: I_m$ cresce come una retta di coefficiente angolare $\log \alpha$. $C: I_m$ cresce come una retta di termine noto $\log \alpha$. $D: I_m$ cresce come una retta di coefficiente angolare 1.

Quesito 4: Si $f:[0,3]\to\mathbb{R}$ una funzione derivabile due volte e tale che f(0)=f(2)=f(3)=0. Quale affermazione è corretta?

A: f non ha altri zeri oltre a 0, 2, 3. *B*: per ogni punto $\xi \in]0, 3[$ risulta $f''(\xi) < 0$. *C*: esiste un punto $\xi \in]0,3[$ con $f''(\xi) = 0$. D: f risulta concava su [0,3].

Quesito 5: Sia $f:(0,\infty)\to\mathbb{R}$ la funzione definita da $f(x)=\frac{1}{x}$ e $f^{(n)}(x)$ denoti la derivata di f di ordine n nel punto x. Allora:

A: la successione $f^{(2n)}(1)$ risulta negativamente divergente. B: la successione $f^{(2n+1)}(1)$ risulta positivamente divergente. C: la successione $f^{(3)}(2) = -\frac{3}{8}$. D: la successione $f^{(2n+1)}(2)$ risulta positiva per ogni n.

Quesito 6: Sia $f: [-1,1] \to \mathbb{R}$ una funzione derivabile due volte tale che f(0) = 1, f'(0) = 1 e che verifica, per ogni $x \in [-1,1]$, la relazione

$$f''(x) = f'(x) - 3(f(x))^{2}.$$

Allora il polinomio di Taylor di f di ordine 3 centrato in x = 0 risulta:

A:
$$P_3(x) = 1 + x - x^2 + \frac{4x^3}{5}$$
. B: $P_3(x) = 1 + x - x^2 - \frac{3x^3}{4}$. C: $P_3(x) = 1 + x - x^2 - \frac{4x^3}{3}$. D: $P_3(x) = 1 + x + x^2 + \frac{4x^3}{3}$.

Quesito 7: Sia $f:(0,\infty)\to\mathbb{R}$ la funzione definita da $f(x)=\frac{1}{x}$ e $f^{(n)}(x)$ denoti la derivata di f di ordine n nel punto x. Allora:

A: la successione $f^{(5)}(2) = -\frac{15}{8}$. B: la successione $f^{(2n)}(1)$ risulta negativamente divergente. C: la successione $f^{(2n)}(1)$ cresce meno rapidamente di n^2 . D: la successione $f^{(2n+1)}(1)$ risulta positivamente divergente.

Quesito 8: Siano $\alpha, \beta \in \mathbb{R}$ e si consideri la successione $a_n = ne^{-2\alpha n} \left(1 + \frac{\beta}{n}\right)^n$, definita per $n \in \mathbb{N}$ con n > 1. Allora:

A: $\frac{a_n}{n}$ risulta positivamente divergente se $2\alpha = \beta$. B: a_n risulta negativamente divergente se $2\alpha < \beta$. C: a_n converge a zero se $2\alpha > \beta$. D: a_n risulta limitata se $2\alpha = \beta$.

Quesito 9: Si consideri l'equazione

$$iz^2 - 2z + 3i = 0.$$

Allora:

A: esiste una soluzione con con modulo minore di 1. B: esiste una soluzione con parte reale non nulla. C: esiste una soluzione con parte immaginaria uguale a -3. D: esiste una soluzione con parte immaginaria uguale a 3.

Quesito 10: Sia $f: [-1,1] \to \mathbb{R}$ una funzione derivabile due volte tale che f(0) = 1, f'(0) = 0 e che verifica, per ogni $x \in [-1,1]$, la relazione

$$f''(x) = f'(x) - 3(f(x))^{2}.$$

Allora il polinomio di Taylor di f di ordine 3 centrato in x=0 risulta:

A:
$$P_3(x) = 1 - \frac{2x^2}{3} - \frac{x^3}{3}$$
. B: $P_3(x) = 1 - \frac{3x^2}{2} - \frac{x^3}{2}$. C: $P_3(x) = 1 + \frac{3x^2}{2} - \frac{x^3}{3}$. D: $P_3(x) = 1 - \frac{3x^2}{2} + \frac{x^3}{2}$.

Quesito 11: Sia $\alpha>0.$ Allora l'integrale improprio

$$\int_{1}^{+\infty} \left(1 - \cos\frac{1}{x^2}\right)^{\alpha} dx$$

risulta convergente se e solo se:

A:
$$\alpha > \frac{1}{4}$$
. B: $\alpha > 1$. C: $\alpha \le 1$. D: $\alpha \le \frac{1}{4}$.

Quesito 12: Sia $f: \mathbb{R} \to \mathbb{R}$ la funzione definita ponendo

$$f(x) = \begin{cases} x^4 & \text{se } x \in \mathbb{Q}, \\ -x^4 & \text{se } x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$$

Allora:

A: f risulta discontinua in ogni $x \neq 0$. B: f risulta continua in un numero finito (≥ 2) di punti. C: f risulta continua in un'infinità di punti. D: f risulta discontinua in tutti i punti.

Quesito 13: Sia $\alpha > 0$ e si consideri, per $m \ge 1$, l'area I_m della regione piana compresa tra la funzione $\frac{1}{x}$, l'asse x e le due rette verticali di equazioni α e $m^2\alpha$. Allora:

 $A: I_m$ cresce come $2 \log m$. $B: I_m$ cresce meno rapidamente di $2 \log m$. $C: I_m$ cresce come una retta di coefficiente angolare α . $D: I_m$ cresce più rapidamente di $2 \log m$.

Quesito 14: Sia $f: [-1,1] \to \mathbb{R}$ una funzione derivabile due volte tale che f(0) = 1, f'(0) = -1 e che verifica, per ogni $x \in [-1,1]$, la relazione

$$f''(x) = f'(x) - 3(f(x))^{2}.$$

Allora il polinomio di Taylor di f di ordine 3 centrato in x = 0 risulta:

A:
$$P_3(x) = 1 + x + 2x^2 + \frac{4x^3}{3}$$
. B: $P_3(x) = 1 - x + 2x^2 - \frac{x^3}{3}$. C: $P_3(x) = 1 - x - 2x^2 + \frac{x^3}{3}$. D: $P_3(x) = 1 + x + 2x^2 - \frac{3x^3}{2}$.

Quesito 15: Sia $\alpha \geq 0$ e consideriamo la serie numerica

$$\sum_{n=1}^{\infty} \log \frac{n^2 + \alpha n + 1}{n(n+\alpha)}.$$

Allora:

A: la serie risulta convergente per ogni $\alpha \neq 0$. B: la serie risulta positivamente divergente per ogni α . C: la serie risulta positivamente divergente per ogni $\alpha \neq 0$. D: la serie risulta convergente per ogni α .

Quesito 16: Gli insiemi

$$A = \{\alpha\}, \quad B = \left\{a_n = \frac{n}{n^2 + 1} : n \in \mathbb{N}, \ n \ge 1\right\}$$

A: ammettono un unico elemento separatore se $\alpha < 0$. B: non ammettono elementi separatori per nessun $\alpha \in \mathbb{R}$. C: ammettono un unico elemento separatore se $\alpha = 0$. D: ammettono un unico elemento separatore se $\alpha > 0$.

Quesito 17: Si consideri l'equazione

$$iz^2 - 2z + 3i = 0.$$

Allora:

A: il prodotto delle parti immaginarie delle 2 soluzioni risulta positivo. *B*: esiste una soluzione con con modulo minore di 1. *C*: il prodotto delle parti immaginarie delle 2 soluzioni risulta negativo. *D*: il prodotto delle parti reali delle 2 soluzioni risulta positivo.

Quesito 18: Si $f:[0,4]\to\mathbb{R}$ una funzione derivabile due volte e tale che f(0)=f(2)=f(4)=0. Quale affermazione è corretta?

A: esiste un punto $\xi \in]0,4[$ con $f''(\xi)=0$. B: esiste un unico punto $\xi \in]0,4[$ con $f'(\xi)=0$. C: esistono almeno quattro punti $\xi_1,\xi_2,\xi_3,\xi_4\in]0,4[$ con $f'(\xi_1)=f'(\xi_2)=f'(\xi_3)=f'(\xi_4)=0$. D: non esiste alcun punto $\xi \in]0,4[$ con $f''(\xi)=0$.

Quesito 19: Sia $f: \mathbb{R} \to \mathbb{R}$ la funzione definita ponendo

$$f(x) = \begin{cases} x^2 & \text{se } x \in \mathbb{Q}, \\ -x^2 & \text{se } x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$$

Allora:

A: f risulta continua in un'infinitá di punti. B: f risulta continua solo in x = 0. C: f risulta continua in tutti i punti. D: f risulta continua in un numero finito (≥ 2) di punti.

Quesito 20: Sia $f:(0,\infty)\to\mathbb{R}$ la funzione definita da $f(x)=\frac{1}{x}$ e $f^{(n)}(x)$ denoti la derivata di f di ordine n nel punto x. Allora:

A: la successione $f^{(2n)}(1)$ risulta negativamente divergente. B: la successione $f^{(n)}(1)$ risulta limitata. C: la successione $f^{(2n+1)}(1)$ risulta positivamente divergente. D: la successione $f^{(n)}(1)$ risulta indeterminata.

Quesito 21: Sia $\alpha \in \mathbb{R} \setminus \{0\}$ e consideriamo la serie numerica

$$\sum_{n=1}^{\infty} \log \frac{n^2 + \alpha^2 n + 1}{\alpha^2 n^2 + \alpha^2 n}.$$

Allora:

A: la serie risulta convergente se $\alpha = -1, 1$. *B*: la serie risulta convergente se $\alpha < -1$. *C*: la serie risulta convergente se $\alpha > 1$. *D*: la serie risulta positivamente divergente per ogni $\alpha \neq 1$.

Quesito 22: Sia $\alpha > 0$. Allora l'integrale improprio

$$\int_{1}^{+\infty} \left(1 - \cos \frac{1}{x} \right)^{\alpha} dx$$

risulta divergente se e solo se:

 $A: \alpha > 1$. $B: \alpha \le \frac{1}{2}$. $C: \alpha > \frac{1}{2}$. $D: \alpha \le 1$.

Quesito 23: Siano $\alpha \in \mathbb{R}$ e si consideri la successione $a_n = ne^{-\alpha n} \left(1 + \frac{\alpha^2}{n}\right)^n$, definita per $n \in \mathbb{N}$ con $n \ge 1$. Allora:

A: a_n risulta limitata se $\alpha=1$. B: $\frac{a_n}{n}$ risulta positivamente divergente se $\alpha=1$. C: a_n risulta negativamente divergente se $\alpha<0$. D: a_n converge a zero se $0<\alpha<1$.

Quesito 24: Sia $\alpha > 0$ e si consideri, per $m \ge 1$, l'area I_m della regione piana compresa tra la funzione $\frac{1}{x}$, l'asse x e le due rette verticali di equazioni α e $m!\alpha$. Allora:

 $A: I_m$ cresce come una retta di coefficiente angolare α . $B: I_m$ rimane limitata. $C: I_m$ cresce come $\sum_{i=1}^m \log i$. $D: I_m$ cresce meno rapidamente di $\frac{\log(m)}{2}$.

Quesito 25: Gli insiemi

$$A = \left\{ a_n = \frac{n-1}{n} : n \in \mathbb{N}, \ n \ge 1 \right\}, \quad B = \left\{ a_n = \frac{n+1}{n} : n \in \mathbb{N}, \ n \ge 1 \right\}$$

A: A risulta superiormente illimitato mentre B risulta limitato. B: ammettono un estremo in comune (tra estremi inferiori e superiori). C: B risulta superiormente illimitato mentre A risulta limitato. D: non ammettono alcun estremo in comune (tra estremi inferiori e superiori).

Quesito 26: Siano $\alpha, \beta \in \mathbb{R}$ e si consideri la successione $a_n = ne^{-\alpha n} \left(1 + \frac{\beta}{n}\right)^n$, definita per $n \in \mathbb{N}$ con n > 1. Allora:

A: a_n risulta negativamente divergente se $\alpha < \beta$. *B*: $\frac{a_n}{n}$ risulta positivamente divergente se $\alpha = \beta$. *C*: a_n converge a zero se $\alpha > \beta$. *D*: a_n risulta limitata se $\alpha = \beta$.

Quesito 27: Sia $\alpha > 0$. Allora l'integrale improprio

$$\int_{1}^{+\infty} \left(1 - \cos\frac{1}{x^2}\right)^{\alpha} dx$$

risulta divergente se e solo se:

$$A: \alpha > \frac{1}{2}$$
. $B: \alpha \le \frac{1}{2}$. $C: \alpha > \frac{1}{4}$. $D: \alpha \le \frac{1}{4}$.

Quesito 28: Gli insiemi

$$A = \left\{ a_n = \frac{n-1}{n} : n \in \mathbb{N}, \ n \ge 1 \right\}, \quad B = \left\{ a_n = \frac{n+1}{n} : n \in \mathbb{N}, \ n \ge 1 \right\}$$

A: ammettono dei punti in comune. *B*: l'estremo inferiore di *B* risulta minore di 1. *C*: l'estremo superiore di *A* risulta maggiore di 1. *D*: ammettono un estremo in comune (tra estremi inferiori e superiori).

Quesito 29: Si consideri l'equazione

$$iz^2 - 2z + 3i = 0.$$

Allora:

A: esiste una soluzione con parte reale non nulla. B: esiste una soluzione con con modulo maggiore di A: esiste una soluzione con parte immaginaria uguale a A: A: esiste una soluzione con parte immaginaria uguale a A: A: esiste una soluzione con parte immaginaria uguale a A:

Quesito 30: Gli insiemi

$$A = \left\{ a_n = \frac{n}{n+1} : n \in \mathbb{N}, \ n \ge 1 \right\}, \quad B = \left\{ a_n = \frac{n+1}{n} : n \in \mathbb{N}, \ n \ge 1 \right\}$$

A: ammettono un intero intervallo di punti di separazione. B: ammettono un unico elemento separatore. C: l'estremo inferiore di B risulta minore di B: l'estremo superiore di B risulta maggiore di B: l'estremo superiore di B risulta maggiore di B: l'estremo superiore di B risulta maggiore di B: l'estremo superiore di B: l'estremo superiore

Quesito 31: Si consideri l'equazione

$$iz^2 - 2z + 3i = 0.$$

Allora:

A: esiste una soluzione con con modulo minore di A. B: il prodotto delle parti reali delle A: il prodotto dell

Quesito 32: Si $f:[0,3]\to\mathbb{R}$ una funzione derivabile due volte e tale che f(0)=f(2)=f(3)=0. Quale affermazione è corretta?

A: esiste un unico punto $\xi \in]0,3[$ con $f'(\xi)=0.$ B: esistono almeno tre punti $\xi_1,\xi_2,\xi_3\in]0,3[$ con $f'(\xi_1)=f'(\xi_2)=f'(\xi_3)=0.$ C: esiste un punto $\xi \in]0,3[$ con $f''(\xi)=0.$ D: non esiste alcun punto $\xi \in]0,3[$ con $f''(\xi)=0.$

Quesito 33: Sia $\alpha > 0$ e consideriamo la serie numerica

$$\sum_{n=1}^{\infty} \log \frac{n^2 + \alpha n + 1}{\alpha n^2 + \alpha n}.$$

Allora:

A: la serie risulta positivamente divergente se $\alpha \neq 1$. *B*: la serie risulta convergente per $\alpha = 1$. *C*: la serie risulta convergente se $\alpha < 1$. *D*: la serie risulta convergente se $\alpha > 1$.

Quesito 34: Sia $f: \mathbb{R} \to \mathbb{R}$ la funzione definita ponendo

$$f(x) = \begin{cases} x^2 & \text{se } x \in \mathbb{Q}, \\ -x^2 & \text{se } x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$$

Allora:

A: f risulta continua in un'infinitá di punti. B: f risulta continua in un numero finito (≥ 2) di punti. C: f risulta discontinua in tutti i punti. D: f risulta discontinua in ogni $x \neq 0$.

Quesito 35: Sia $f : \mathbb{R} \to \mathbb{R}$ la funzione definita ponendo

$$f(x) = \begin{cases} x^6 & \text{se } x \in \mathbb{Q}, \\ -x^6 & \text{se } x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$$

Allora:

A: f risulta continua in un numero finito (≥ 2) di punti. B: f risulta discontinua in tutti i punti. C: f risulta discontinua in ogni $x \neq 0$. D: f ha in 0 una discontinuitá di prima specie.

Quesito 36: Si $f:[0,2]\to\mathbb{R}$ una funzione derivabile due volte e tale che f(0)=f(1)=f(2)=0. Quale affermazione è corretta?

A: esiste un unico punto $\xi \in]0,2[$ con $f'(\xi)=0$. B: non esiste alcun punto $\xi \in]0,2[$ con $f''(\xi)=0$. C: esistono almeno tre punti $\xi_1,\xi_2,\xi_3\in]0,2[$ con $f'(\xi_1)=f'(\xi_2)=f'(\xi_3)=0$. D: esiste un punto $\xi \in]0,2[$ con $f''(\xi)=0$.

Quesito 37: Siano $\alpha \in \mathbb{R}$ e si consideri la successione $a_n = ne^{-\alpha^2 n} \left(1 + \frac{\alpha}{n}\right)^n$, definita per $n \in \mathbb{N}$ con $n \ge 1$. Allora:

A: a_n converge a zero se $\alpha > 1$. *B*: $\frac{a_n}{n}$ risulta positivamente divergente se $\alpha = 1$. *C*: a_n risulta limitata se $\alpha = 1$. *D*: a_n risulta negativamente divergente se $\alpha < 1$.

Quesito 38: Sia $\alpha > 0$ e consideriamo la serie numerica

$$\sum_{n=1}^{\infty} \log \frac{n^2 + \alpha n + 1}{\alpha n^2 + \alpha n}.$$

Allora:

A: la serie risulta convergente se $\alpha < 1$. B: la serie risulta convergente se $\alpha > 1$. C: la serie risulta positivamente divergente per ogni $\alpha \neq 1$. D: la serie risulta convergente se $\alpha = 1$.

Quesito 39: Sia $f:(0,\infty)\to\mathbb{R}$ la funzione definita da $f(x)=\frac{1}{x}$ e $f^{(n)}(x)$ denoti la derivata di f di ordine n nel punto x. Allora:

A: la successione $f^{(2n)}(2)$ risulta negativa per ogni n. B: $f^{(4)}(2) = \frac{3}{4}$. C: la successione $f^{(2n)}(1)$ risulta negativamente divergente. D: la successione $f^{(2n+1)}(1)$ risulta positivamente divergente.

Quesito 40: Sia $\alpha > 0$. Allora l'integrale improprio

$$\int_{1}^{+\infty} \left(1 - \cos\frac{1}{x}\right)^{\alpha} dx$$

risulta convergente se e solo se:

A:
$$\alpha \leq \frac{1}{2}$$
. B: $\alpha > 1$. C: $\alpha \leq 1$. D: $\alpha > \frac{1}{2}$.

Appello 3, Analisi Matematica, cod. 10041

Verona, 3 Luglio 2007.

BBBCCCACCBAAACDCCABDABDCBCDDCBCCBDCDADBD