COMPUTATIONAL ALGEBRA 17/09/14

1. Let C be the linear code over \mathbb{F}_2 with parity check matrix H

Γ	1	1	0	1	0	0]
	0	1	1	0	1	$\begin{bmatrix} 0\\ 0 \end{bmatrix}$
	1	0	1	0	0	1

- (a) Find the length, the dimension, and the minimum distance of C.
- (b) Find all the elements of C.
- (c) Find a generator matrix G of C.
- (d) Encode the vector $(101) \in \mathbb{F}_2^3$ using the matrix H and the matrix G
- (e) Find the vectors in \mathbb{F}_2^3 corresponding to (110011).
- 2. (a) Find a primitive element of \mathbb{F}_{11} .
 - (b) Construct a Reed-Solomon code C of dimensions [10, 5] over \mathbb{F}_{11} .
 - (c) Determine the minimal distance of C.
 - (d) Find a parity check matrix for C.
- 3. (a) Show that the polynomial $f(x) = x^3 + x + 1 \in \mathbb{F}_2$ is irreducible over \mathbb{F}_2
 - (b) Construct the field \mathbb{F}_8 using the polynomial f(x);
 - (c) Let α be a root of f(x). Construct a table with each vector in \mathbb{F}^3 associated to the powers of α and to 0.
 - (d) Which powers of α are primitive elements of \mathbb{F}_8 ?
- 4. Determine the splitting field of
 - (a) $x^5 + x^4 + 1$ over \mathbb{F}_2
 - (b) $x^3 + x^2$ over \mathbb{F}_3 . Does it split in \mathbb{F}_{27} ?
- 5. Let C be a cyclic code of length n over \mathbb{F}_q .
 - (a) Give the definition of the generator polynomial of C
 - (b) Show that if g(x) is the generator polynomial of C and $k = n \deg g(x)$, then $\{g(x), xg(x), \dots, x^{k-1}g(x)\}$ is a basis for C.
- 6. (a) Let K the smallest field of characteristic 2 containing a primitive 15-th root of unity. Determine the number of elements of K and find a primitive element of K.
 - (b) Let α be a primitive element of \mathbb{F}_{2^n} . Determine the degree of the minimal polynomial f_{α} over \mathbb{F}_2 . Which is its splitting field?