
Architectures

Know your data - many types of networks

Fixed length representation
Variable length representation

Online video sequences, or samples of

different sizes

Images

Specific architectures for different types of data

Fully connected architecture - standard (D)NN

(D)NN receives an input (a single

vector), and transform it through a

series of hidden layers.

Each hidden layer = a set of neurons

each neuron is fully connected to all neurons

in the previous layer,

neurons in a single layer function completely

independently, no connections.

the last (fully-connected) layer is called the

“output layer”, representing the class

scores.

Sharing the weights - CNN, RNN

GOAL: build a space or time invariant model

IDEA: use the same set of weights over different

parts of the data, by exploiting the known type of

the inputs

http://deeplearning.net/tutorial/lenet.html

weight sharing

share and train the weights jointly

for those inputs that contain

the same information

Convolutional Neural Networks (CNN) - images

Recurrent Neural Networks (RNN) - time series

http://deeplearning.net/tutorial/lenet.html
http://deeplearning.net/tutorial/lenet.html

● CNN have neurons arranged in 3 dimensions: width, height, depth (Depth ≠ depth of the

network)

● A layer transforms an input 3D volume to an output 3D volume with some differentiable function

that may or may not have parameters

CNN: Convolutional Neural Networks or ConvNets

NN

CNN depth of the

input layer: 3 (R,G,B)

h

w

● A CNN layer may be of 5 different kinds, 2 of them are CNN specific (in blank)

● Input Layer, Convolutional Layer, RELU Layer, Pooling Layer, and Fully-Connected Layer

● We explain the layer on a simple architecture over the CIFAR-10

CNN: different types of layers

● WHERE: this is the very bottom of the

network

● WHAT DOES IT SERVE: To feed the

network

● HOW IT IS STRUCTURED:The input

layer takes as input the CCD of the

sensors. It has stacked in depth the

R,G,B channels of the network

○ In the CIFAR example,it results in a

32x32x3 sized layer of integer

numbers

CNN: Input layer

3

32

32

● The reason why we are talking about Cnn

● WHERE: the early layers of the CNN are CONV

● WHAT DOES IT SERVE: to highlight low-level - poorly semantic - highly perceptually salient

patterns in an economic way (in a parameter number sense)

CNN: Convolutional layer (CONV)

3

32

32

● HOW IT IS STRUCTURED: A CONV

layer’s parameters consist of a set of

NEURONS = learnable filters

○ Let’s see an example of neuron

that perform convolution

○ The red dash-dotted line is just

one of the 25x3 = 75 dentrites

that arrive to one neuron of the

CONV layer

○ Each dentrite has a weight

○ Convolution is nothing else that:

wji

Zi =

RGBi aj

75

● A CONV layer needs parameters:
○ input volume size (W),

○ the receptive field size of the Conv

Layer neurons (F),

○ the stride with which they are applied

(S)

○ the amount of zero padding used (P)

on the border.

● In this case
○ W = (32x32x3)

○ F = (5x5x3)

○ S = not visible in the figure, could be

1,2,(rare) 3

○ P=0

● How many neurons? In the case of 1D

structure → (W−F+2P)/S+1

● How many parameters to tune, so far (S=1)?

CNN: Convolutional layer (CONV)

3

32

32

wji

bias

aj

[(32-4)x(32-4)]x[(5x5x3) + 1] = 59584→ TOO MANY!!!
F

3

5

5

● The great idea is that all the weights across one layer are shared

● In practice, the output from a CONV slice is like it was processed by an image filter

● The good is, that filter has been learned from data!

● The trick is, back propagation over the entire layer is computed, but at the end all the

backpropagated errors are summed together and the weights of the filter are updated

just once

CNN: Convolutional layer (CONV)

3 bias

[(32-4)x(32-4)]x[(5x5x3) + 1] = 76→ OK!!!
F

patch.size < image.size ⇒

fewer parameters

Translation invariance: it’s

not important where the object

is since the kernel of the filter

is the same for each patch of

the input image

CNN: Convolutional layer (CONV)

● Due to the parameters sharing, many filters can be instantiated (in the figure, 64 at L1)

CNN

Apply the 1st filter to the

whole image and generate

the first feature map...

… then, compute the convolution

also for the 2nd filter to generate

another feature map...

… and so the 3rd filter!

In a specific layer, we want to apply K = 3 filters...

CNN: stride

stride

stride: pixel interval used to move the conv. filter

subsampling

stride > 1

stride = 1 stride = 2

CNN: padding

K

K

valid padding same padding

maintains data original

data size but

needs zero-padding

reduces data according

to the filter shape

CNN: convolutional (depth) pyramid

(W1xH1) x

K1

(WxH) x D

D = input depth, number of feature maps or channels; W = width; H = height; Ki = number of filters of the i-th level of size (WixHi)

(W2xH2) x

K2

[...]

fully connected layers

(regular DNN classifier)

patch.size = filter.size

...

k0 k1 k2 k3 k4 k5 ... K1

concatenated feature maps

CNN --verbose

Algorithm idea:

● set the size of the K filters (Fw,Fh) to train for

each convolutional layer, the stride value and

the padding type

● the K-th convolution generates a feature map

of size (Fw,Fh,1)

● concatenate the K-th feature maps in a

(Fw,Fh,K) matrix

● train a regular fully connected (DNN +

classifier) on the last stack of feature maps

patch.size = filter.size

...

k0 k1 k2 k3 k4 k5 ... K1

...

k0 k1 ... ki K

...

patch

K

● WHERE: It is common to periodically insert a

Pooling layer in-between successive Conv layers

● WHAT DOES IT SERVE: it reduces

○ the spatial size of the representation

○ the amount of parameters and computation,

controlling the overfitting.

● HOW IT IS STRUCTURED:

○ it operates independently on every depth slice

of the input and resizes it spatially, using the

MAX (AVERAGE/L2NORM) operation

○ The depth dimension remains unchanged

○ It is efficient as for the backpropagation

updates (the max operation in the forward

says where to push down the gradient in the

backward pass)

○ its usefulness is not universally accepted

pooling function:

max, avg, ...

CNN: Pooling layer

● Accepts a volume of size W1×H1×D1

● Requires two hyperparameters:

○ the spatial extent F

○ the stride S

● Produces a volume of size W2×H2×D2, where:

○ W2=(W1−F)/S+1

○ H2=(H1−F)/S+1

○ D2=D1

● Introduces zero parameters, since it computes a

fixed function of the input

● Note that it is not common to use zero-padding for

Pooling layers

● In general we have a pooling layer with F=3,S=2

(also called overlapping pooling), and more

commonly F=2,S=2. Pooling sizes with larger

receptive fields are too destructive.

CNN: Pooling layer

● The most common form of a ConvNet architecture stacks

○ a few CONV-RELU layers,

○ follows them with POOL layers, and

○ repeats this pattern until the image has been merged spatially to a small size

○ At some point, it is common to transition to fully-connected layers

○ The last fully-connected layer holds the output, such as the class scores

CNN: Common architectures

INPUT -> [[CONV -> RELU]*N -> POOL?]*M -> [FC -> RELU]*K -> FC

● where the * indicates repetition, and the POOL? indicates an optional pooling layer

● Moreover, N >= 0 (and usually N <= 3), M >= 0, K >= 0 (and usually K < 3).

● LeNet. The first successful applications of Convolutional Networks were developed by Yann

LeCun in 1990’s. Used to read zip codes, digits, etc.

● AlexNet. Developed by Alex Krizhevsky, et al. was submitted to the ImageNet ILSVRC

challenge in 2012 and significantly outperformed the second runner-up (top 5 error of 16%

compared to runner-up with 26% error). The Network had a very similar architecture to LeNet,

but was deeper, bigger, and featured Convolutional Layers stacked on top of each other

(previously it was common to only have a single CONV layer always immediately followed by a

POOL layer).

● ZF Net. The ILSVRC 2013 winner was a Convolutional Network from Matthew Zeiler and Rob

Fergus. It became known as the ZFNet (short for Zeiler & Fergus Net). It was an improvement

on AlexNet by tweaking the architecture hyperparameters, in particular by expanding the size

of the middle convolutional layers and making the stride and filter size on the first layer

smaller.

CNN: State of the art architectures

● GoogLeNet. The ILSVRC 2014 winner was a Convolutional Network from Szegedy et al. from

Google. Its main contribution was the development of an Inception Module that dramatically

reduced the number of parameters in the network (4M, compared to AlexNet with 60M).

Additionally, this paper uses Average Pooling instead of Fully Connected layers at the top of

the ConvNet, eliminating a large amount of parameters that do not seem to matter much.

There are also several followup versions to the GoogLeNet, most recently Inception-v4.

● VGGNet. Runner-up in ILSVRC 2014, its main contribution was in showing that the depth of

the network is a critical component for good performance. Their final best network contains 16

CONV/FC layers and, appealingly, features an extremely homogeneous architecture that only

performs 3x3 convolutions and 2x2 pooling from the beginning to the end. Downside, is more

expensive to evaluate and uses a lot more memory and parameters (140M). Most of these

parameters are in the first fully connected layer

● ResNet. Residual Network developed by Kaiming He et al. was the winner of ILSVRC 2015. It

features special skip connections and a heavy use of batch normalization. The architecture is

also missing fully connected layers at the end of the network.

CNN: State of the art architectures

Visualizing CNNs
(what’s going on under the hood)

● Several approaches for understanding and visualizing Convolutional Networks have been

developed in the literature

● They answer the common criticism that the learned features in a Neural Network are not

interpretable

● Techniques:

Visualizing the activations and first-layer weights

Retrieving images that maximally activate a neuron

Embedding the codes with t-SNE

Occluding parts of the image

Others at http://cs231n.github.io/understanding-cnn/

Visualization techniques

+
● Interpretable, if at the first layers

Visualizing the activations and first-layer weights

-

● no meaning in the deep

layers

● Low activations or dead

neurons?

+
● More interpretable, if at the first

layers

● Noisy patterns can be an indicator

of a network that hasn’t been

trained for long enough, or possibly

a very low regularization strength

that may have led to overfitting.

-

● few meaning in the deep layers

Visualizing the activations and first-layer weights

Retrieving images that maximally activate a neuron

+
● Gives meaning

● Serves for object detection

-

● Not well suited for RELU

layers (no meaning

associated to them)

Embedding the codes with t-SNE

+
● Gives an idea of the CNN space

-

● Highly dependent on the type

of embedding

Occluding parts of the image

+
● Useful for evaluating an entire

network

-

● It is a discriminative, not generative

way to understand things

Transfer Learning

● Very few people train from scratch (with random initialization) a CNN (no data, time - weeks!)

● Instead, it is common to (let others) pretrain a ConvNet on a very large dataset (e.g. ImageNet,

which contains 1.2 million images with 1000 categories), and then:

1. ConvNet as fixed feature extractor:

a. Take a ConvNet pretrained on ImageNet,

b. remove the last fully-connected layer (this layer’s outputs are the 1000 class scores for a

different task like ImageNet)

c. treat the rest of the ConvNet as a fixed feature extractor for the new dataset.

■ In an AlexNet, this would compute a 4096-D vector (Relud IT!!!) for every image

that contains the activations of the hidden layer immediately before the classifier.

The transfer learning and its strategies - CNN codes

Train an

SVM… “no

matters” the

problem!

1. Fine tuning:

a. Start with an initialization already computed by backpropagation

b. Do backpropagation on the layers you want

■ Usually, only the last layers are trained, the earlier are more generic and are

preferred to be left unchanged

c. In particular, four scenarios are available
■ New dataset is small and similar to original dataset(NO FINE TUNING). Since the data is small, it is not a

good idea to fine-tune the ConvNet due to overfitting concerns. Since the data is similar to the original

data, we expect higher-level features in the ConvNet to be relevant to this dataset as well. Hence, the

best idea might be to train a linear classifier on the CNN codes.

■ New dataset is large and similar to the original dataset. Since we have more data, we can have more

confidence that we won’t overfit if we were to try to fine-tune through the full network.

Transfer learning - Fine tuning

■ New dataset is small but very different from the original dataset. Since the data is small, it is likely best to

only train a linear classifier. Since the dataset is very different, it might not be best to train the classifier

from the top of the network, which contains more dataset-specific features. Instead, it might work better to

train the SVM classifier from activations somewhere earlier in the network.

■ New dataset is large and very different from the original dataset. Since the dataset is very large, we may

expect that we can afford to train a ConvNet from scratch. However, in practice it is very often still

beneficial to initialize with weights from a pretrained model. In this case, we would have enough data and

confidence to fine-tune through the entire network.

More on http://cs231n.github.io/transfer-learning/

Transfer learning - Fine tuning (2)

