
Architectures 



Know your data - many types of networks 

Fixed length representation 
Variable length representation  

 

Online video sequences, or samples of 

different sizes 

 

Images 

Specific architectures for different types of data 



Fully connected architecture - standard (D)NN 

(D)NN receives an input (a single 

vector), and transform it through a 

series of hidden layers.  

Each hidden layer = a set of neurons 

each neuron is fully connected to all neurons 

in the previous layer,  

neurons in a single layer function completely 

independently, no connections.  

the last (fully-connected) layer is called the 

“output layer”, representing the class 

scores. 



Sharing the weights - CNN, RNN 
 

GOAL: build a space or time invariant model 

 

IDEA: use the same set of weights over different 

parts of the data, by exploiting the known type of 

the inputs 

 

http://deeplearning.net/tutorial/lenet.html 

weight sharing 
 

share and train the weights jointly 

for those inputs that contain 

the same information 

Convolutional Neural Networks (CNN) - images 

Recurrent Neural Networks (RNN) - time series 

http://deeplearning.net/tutorial/lenet.html
http://deeplearning.net/tutorial/lenet.html


 

● CNN have neurons arranged in 3 dimensions: width, height, depth (Depth ≠ depth of the 

network) 

● A layer transforms an input 3D volume to an output 3D volume with some differentiable function 

that may or may not have parameters 

 

 

 

 

CNN: Convolutional Neural Networks or ConvNets 

NN 

CNN depth of the  

input layer: 3 (R,G,B) 

h 

w 



 

● A CNN layer may be of 5 different kinds, 2 of them are CNN specific (in blank) 

● Input Layer, Convolutional Layer, RELU Layer, Pooling Layer, and Fully-Connected Layer 

● We explain the layer on a simple architecture over the CIFAR-10 

 

 

 

CNN: different types of layers 



 

● WHERE: this is the very bottom of the 

network 

● WHAT DOES IT SERVE: To feed the 

network 

● HOW IT IS STRUCTURED:The input 

layer takes as input the CCD of the 

sensors. It has stacked in depth the 

R,G,B channels of the network 

○ In the CIFAR example,it results in a 

32x32x3 sized layer of integer 

numbers 

 

 

 

CNN: Input layer 

3 

32 

32 



 

● The reason why we are talking about Cnn 

● WHERE: the early layers of the CNN are CONV 

● WHAT DOES IT SERVE: to highlight low-level - poorly semantic - highly perceptually salient 

patterns in an economic way (in a parameter number sense) 

 

 

 

CNN: Convolutional layer (CONV) 

3 

32 

32  

● HOW IT IS STRUCTURED: A CONV 

layer’s parameters consist of a set of 

NEURONS = learnable filters 

○ Let’s see an example of neuron 

that perform convolution 

○ The red dash-dotted line is just 

one of the 25x3 = 75 dentrites 

that arrive to one neuron of the 

CONV layer 

○ Each dentrite has a weight 

○ Convolution is nothing else that: 
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● A CONV layer needs parameters: 
○ input volume size (W),  

○ the receptive field size of the Conv 

Layer neurons (F),  

○ the stride with which they are applied 

(S) 

○ the amount of zero padding used (P) 

on the border. 

● In this case 
○ W = (32x32x3) 

○ F = (5x5x3) 

○ S = not visible in the figure, could be 

1,2,(rare) 3 

○ P=0 

● How many neurons? In the case of 1D 

structure → (W−F+2P)/S+1 
 

● How many parameters to tune, so far (S=1)? 

 

 

 

CNN: Convolutional layer (CONV) 

3 

32 
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[(32-4)x(32-4)]x[(5x5x3) + 1] = 59584→ TOO MANY!!! 
F 

3 

5 
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● The great idea is that all the weights across one layer are shared 

● In practice, the output from a CONV slice is like it was processed by an image filter 

 

 

 

 

 

 

 

 

 

● The good is, that filter has been learned from data! 

● The trick is, back propagation  over the entire layer is computed, but at the end all the 

backpropagated errors are summed together and the weights of the filter are updated 

just once 
 

 

 

 

CNN: Convolutional layer (CONV) 

3 bias 

[(32-4)x(32-4)]x[(5x5x3) + 1] = 76→ OK!!! 
F 



patch.size < image.size  ⇒  

fewer parameters 

 

 

Translation invariance: it’s 

not important where the object 

is since the kernel of the filter 

is the same for each patch of 

the input image 



CNN: Convolutional layer (CONV) 
 

● Due to the parameters sharing, many filters can be instantiated (in the figure, 64 at L1) 

 

 

 

 

 

 

 

 

 

 

 



CNN 

Apply the 1st filter to the 

whole image and generate 

the first feature map... 

… then, compute the convolution 

also for the 2nd filter to generate 

another feature map... 

… and so the 3rd filter! 

 

In a specific layer, we want to apply K = 3 filters... 



CNN: stride 

stride 

stride: pixel interval used to move the conv. filter 

 

 

 

subsampling 

 

stride > 1 

stride = 1 stride = 2 



CNN: padding 

K 

K 

valid padding same padding 

maintains data original 

data size but 

needs zero-padding 

reduces data according 

to the filter shape 



CNN: convolutional (depth) pyramid 

(W1xH1) x 

K1 

(WxH) x D 

 

D = input depth, number of feature maps or channels; W = width; H = height; Ki = number of filters of the i-th level of size (WixHi) 

(W2xH2) x 

K2 

[...] 

fully connected layers 

(regular DNN classifier) 

patch.size = filter.size 

... 

k0 k1 k2 k3 k4 k5  ...  K1 

concatenated feature maps 



CNN --verbose 
 

Algorithm idea: 

 

● set the size of the K filters (Fw,Fh) to train for 

each convolutional layer, the stride value and 

the padding type 

 

● the K-th convolution generates a feature map 

of size (Fw,Fh,1) 

 

● concatenate the K-th feature maps in a 

(Fw,Fh,K) matrix 

 

● train a regular fully connected (DNN + 

classifier) on the last stack of feature maps 

 

 

 

patch.size = filter.size 

... 

k0 k1 k2 k3 k4 k5  ...  K1 

... 

k0 k1 ... ki ... ...  ...  K 

... ... ... 

patch 

K 



 

● WHERE: It is common to periodically insert a 

Pooling layer in-between successive Conv layers 

● WHAT DOES IT SERVE: it reduces  

○ the spatial size of the representation 

○ the amount of parameters and computation, 

controlling the overfitting. 

● HOW IT IS STRUCTURED:  

○ it operates independently on every depth slice 

of the input and resizes it spatially, using the 

MAX (AVERAGE/L2NORM) operation 

○ The depth dimension remains unchanged 

○ It is efficient as for the backpropagation 

updates (the max operation in the forward 

says where to push down the gradient in the 

backward pass) 

○ its usefulness is not universally accepted  

 

 

pooling function: 

max, avg, ... 

CNN: Pooling layer 



 

● Accepts a volume of size W1×H1×D1 

● Requires two hyperparameters: 

○ the spatial extent F 

○ the stride S 

● Produces a volume of size W2×H2×D2, where: 

○ W2=(W1−F)/S+1 

○ H2=(H1−F)/S+1 

○ D2=D1 

● Introduces zero parameters, since it computes a 

fixed function of the input 

● Note that it is not common to use zero-padding for 

Pooling layers 

● In general we have a pooling layer with F=3,S=2 

(also called overlapping pooling), and more 

commonly F=2,S=2. Pooling sizes with larger 

receptive fields are too destructive. 

 

CNN: Pooling layer 



 

● The most common form of a ConvNet architecture stacks  

○ a few CONV-RELU layers,  

○ follows them with POOL layers, and  

○ repeats this pattern until the image has been merged spatially to a small size  

○ At some point, it is common to transition to fully-connected layers  

○ The last fully-connected layer holds the output, such as the class scores 

CNN: Common architectures 

INPUT -> [[CONV -> RELU]*N -> POOL?]*M -> [FC -> RELU]*K -> FC 
 

● where the * indicates repetition, and the POOL? indicates an optional pooling layer 

● Moreover, N >= 0 (and usually N <= 3), M >= 0, K >= 0 (and usually K < 3). 



 

● LeNet. The first successful applications of Convolutional Networks were developed by Yann 

LeCun in 1990’s. Used to read zip codes, digits, etc. 

● AlexNet. Developed by Alex Krizhevsky, et al. was submitted to the ImageNet ILSVRC 

challenge in 2012 and significantly outperformed the second runner-up (top 5 error of 16% 

compared to runner-up with 26% error). The Network had a very similar architecture to LeNet, 

but was deeper, bigger, and featured Convolutional Layers stacked on top of each other 

(previously it was common to only have a single CONV layer always immediately followed by a 

POOL layer). 

● ZF Net. The ILSVRC 2013 winner was a Convolutional Network from Matthew Zeiler and Rob 

Fergus. It became known as the ZFNet (short for Zeiler & Fergus Net). It was an improvement 

on AlexNet by tweaking the architecture hyperparameters, in particular by expanding the size 

of the middle convolutional layers and making the stride and filter size on the first layer 

smaller. 

 

CNN: State of the art architectures 



 

● GoogLeNet. The ILSVRC 2014 winner was a Convolutional Network from Szegedy et al. from 

Google. Its main contribution was the development of an Inception Module that dramatically 

reduced the number of parameters in the network (4M, compared to AlexNet with 60M). 

Additionally, this paper uses Average Pooling instead of Fully Connected layers at the top of 

the ConvNet, eliminating a large amount of parameters that do not seem to matter much. 

There are also several followup versions to the GoogLeNet, most recently Inception-v4. 

● VGGNet. Runner-up in ILSVRC 2014, its main contribution was in showing that the depth of 

the network is a critical component for good performance. Their final best network contains 16 

CONV/FC layers and, appealingly, features an extremely homogeneous architecture that only 

performs 3x3 convolutions and 2x2 pooling from the beginning to the end. Downside, is more 

expensive to evaluate and uses a lot more memory and parameters (140M). Most of these 

parameters are in the first fully connected layer 

● ResNet. Residual Network developed by Kaiming He et al. was the winner of ILSVRC 2015. It 

features special skip connections and a heavy use of batch normalization. The architecture is 

also missing fully connected layers at the end of the network.  

CNN: State of the art architectures 



Visualizing CNNs  
(what’s going on under the hood) 



 

● Several approaches for understanding and visualizing Convolutional Networks have been 

developed in the literature 

● They answer the common criticism that the learned features in a Neural Network are not 

interpretable 

● Techniques: 

Visualizing the activations and first-layer weights 

Retrieving images that maximally activate a neuron 

Embedding the codes with t-SNE 

Occluding parts of the image 

Others at http://cs231n.github.io/understanding-cnn/ 

Visualization techniques 



 

+ 
●  Interpretable, if at the first layers 

 

Visualizing the activations and first-layer weights 

-  

● no meaning in the deep 

layers 

● Low activations or dead 

neurons? 

 



 

+ 
● More interpretable, if at the first 

layers 

● Noisy patterns can be an indicator 

of a network that hasn’t been 

trained for long enough, or possibly 

a very low regularization strength 

that may have led to overfitting. 

-  

● few meaning in the deep layers 

 

 

Visualizing the activations and first-layer weights 



Retrieving images that maximally activate a neuron 
 

+ 
● Gives meaning 

● Serves for object detection 

 

-  

● Not well suited for RELU 

layers (no meaning 

associated to them) 

 



Embedding the codes with t-SNE 
 

+ 
●  Gives an idea of the CNN space 

 

-  

● Highly dependent on the type 

of embedding 

 

 



Occluding parts of the image 
 

+ 
●  Useful for evaluating an entire 

network 

-  

● It is a discriminative, not generative 

way to understand things 

 

 



Transfer Learning  
 



 

● Very few people train from scratch (with random initialization) a CNN (no data, time - weeks!) 

● Instead, it is common to (let others) pretrain a ConvNet on a very large dataset (e.g. ImageNet, 

which contains 1.2 million images with 1000 categories), and then: 

1. ConvNet as fixed feature extractor:  

a. Take a ConvNet pretrained on ImageNet,  

b. remove the last fully-connected layer (this layer’s outputs are the 1000 class scores for a 

different task like ImageNet) 

c. treat the rest of the ConvNet as a fixed feature extractor for the new dataset. 

■ In an AlexNet, this would compute a 4096-D vector (Relud IT!!!) for every image 

that contains the activations of the hidden layer immediately before the classifier. 

The transfer learning and its strategies - CNN codes 

Train an 

SVM… “no 

matters” the 

problem! 



 

1. Fine tuning:  

a. Start with an initialization already computed by backpropagation  

b. Do backpropagation on the layers you want 

■ Usually, only the last layers are trained, the earlier are more generic and are 

preferred to be left unchanged 

c. In particular, four scenarios are available 
■ New dataset is small and similar to original dataset(NO FINE TUNING). Since the data is small, it is not a 

good idea to fine-tune the ConvNet due to overfitting concerns. Since the data is similar to the original 

data, we expect higher-level features in the ConvNet to be relevant to this dataset as well. Hence, the 

best idea might be to train a linear classifier on the CNN codes. 

■ New dataset is large and similar to the original dataset. Since we have more data, we can have more 

confidence that we won’t overfit if we were to try to fine-tune through the full network. 

 

Transfer learning - Fine tuning 



 
■ New dataset is small but very different from the original dataset. Since the data is small, it is likely best to 

only train a linear classifier. Since the dataset is very different, it might not be best to train the classifier 

from the top of the network, which contains more dataset-specific features. Instead, it might work better to 

train the SVM classifier from activations somewhere earlier in the network. 

■ New dataset is large and very different from the original dataset. Since the dataset is very large, we may 

expect that we can afford to train a ConvNet from scratch. However, in practice it is very often still 

beneficial to initialize with weights from a pretrained model. In this case, we would have enough data and 

confidence to fine-tune through the entire network. 

 

More on http://cs231n.github.io/transfer-learning/ 

 

 

Transfer learning - Fine tuning (2) 


