
Differential geometry and topology – diary of topics covered

5/3/2014. Tensor algebra: vector space, dual vector space, p-tensors (example: dot product is a 2-tensor),
tensor product, tensor algebra, bases and dimensions. Exterior algebra: alternating p-tensors, wedge product ∧
and its properties, exterior algebra, bases and dimensions. Examples: determinants, pxp minors. Cross product.

7/3/2014. Volume forms, effect of linear map A : V → W , pull-back maps on tensors. Determinant theorem:
dimV = k. Given a linear map A : V → V , then for all ω ∈ Λk(V ∗), A∗(ω) = (detA)ω. Exterior algebra on Rk:
tangent bundle on Rk, cotangent bundle on Rk, tensor bundles, alternating tensor bundles. Differential forms,
wedge product on forms. Exterior derivative d, properties of d, low-dimensional examples and relationship to
gradient, curl divergence. Push-forward and pull-back maps.

12/3/2014. Examples: parametrized curves in R2 or R3, pull-back of 1-form to the curve; parametrized surfaces
in R3, pull-back of a 2-form to the surface. Proposition: pull-back commutes with d. Differential forms on
manifolds, independence of differential forms on coordinate system. Volume form on Rn, volume form on a
manifold. Orientable manifolds, orientability, Proposition: a n-dimensional manifold has an orientable atlas if
and only if it has a non-vanishing n-form. Change of variables formula for integrals; partitions of unity, definition
of integration on orientable manifolds.

14/3/2014. Independence of integral on atlas and partition of unity. Definition of manifolds-with-boundary,
induced orientation on boundary; low dimensional examples. Stokes’ theorem on Rn, Stokes’ theorem on half-
space Hn = Rn−1 × [0,∞), Stokes’ theorem for manifolds with boundary. Examples: fundamental theorem of
calculus, classical Stokes’ theorem in R3, divergence theorem, Green’s formula.

19/3/2014. Application of Stokes’ theorem: degree formula. Definition of local degree, local degree formula,
degree formula, homotopy invariance of degree, independence of degree on the choice of regular point. De Rham
theory: closed vs exact forms, the de Rham complex.

21/3/2014. Definition of de Rham cohomology groups. First example: H∗DR(R). dimH0
dR(M) = # components

of M , definition: simply connected, Prop: M simply connected =⇒ H1
dR(M) = 0.

26/3/2014. Homological algebra: cochain complex complex, differential, cohomology. (And dual: chain com-
plex, boundary operator, homology) Definition of chain maps. Chain maps induce well-defined maps on coho-
mology. Example: pull-back f∗ : Ωn(N) → Ωn(M) associated to a smooth map f : M → N . Definition of
null-homotopy for a chain map; null-homotopic maps induce the zero map on cohomology. Definition of homo-
topic chain maps, homotopic chain maps induce equal maps on cohomology. Thm: H∗DR(M × R) ∼= H∗DR(M).
Corollary: Poincaré Lemma, H∗DR(Rn) ∼= H∗DR(point).

28/3/2014. Corollary: Homotopic manifolds have the same de Rham cohomology. Exact sequences. Thm: A
short exact sequence of chain maps induces a long exact sequence on cohomology. Diagram chasing: construction
of the connecting homomorphism, proof of well-definedness on cohomology, proof of exactness of the long exact
sequence.

2/4/2014. Application: Mayer-Vietoris long exact sequence. Proof of the Mayer-Vietoris short exact sequence
for de Rham cohomology. Example calculations: S2, S1.

4/4/2014. Good covers, Prop: Every manifold has a good cover. Finite good covers and the Mayer-Vietoris
argument. Thm: A manifold with a finite good cover has finite dimensional de Rham cohomology. Tensor
product of vector spaces, statement of the Kunneth formula, examples.

9/4/2014. The Five Lemma, proof of the Kunneth formula using the Mayer-Vietoris argument. Statement of
Poincarè duality for compact oriented manifolds. Practice exercises.

11/4/2014. Midterm.

16/4/2014. Compactly supported cohomology: definition, first example H∗c (R). Prop: dimH0
c (M) = #

compact components, Thm: Hk+1
c (M × R) ∼= Hk

c (M). Corollary (Poincarè lemma for compact cohomology):
H∗c (Rk) ∼= H∗−kc (point). Finite dimensionality of compactly supported cohomology for manifolds with a finite
good cover.

23/4/2014. Mayer-Vietoris short exact sequence and induced long exact sequence for compact cohomology.
Proof by Mayer-Vietoris argument of Poincarè duality for oriented manifolds with a finite good cover. Example
computations: genus g surface, genus g surface with punctures.
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30/4/2014. Some Hodge theory. Linear algebra: symmetric bilinear pairing 〈, 〉 on V , extension of 〈, 〉 to
alternating tensors Λp(V ), non-degenerate bilinear pairings determine an isomorphism between a vector space
and its dual. Normalized volume form, definition of the Hodge star operator w.r.t. a non-degenerate symmetric
bilinear form and a normalized volume form. Explicit computations: R3 w.r.t. standard inner product, R4 w.r.t.
inner product with signs (+,+,+,−). Example: the cross product. Prop: ∗ ◦ ∗ = (−1)p(k−p)s〈,〉 where s〈,〉 is
the sign of the bilinear form.

7/5/2014. Class suspended (assemblea studentesca)

9/5/2014. On manifolds: Riemannian metrics, pseudo-Riemannian metrics, normalized volume forms, Hodge
star on differential forms. Example: Maxwell’s equations. Definition of the codifferential δ, Prop: δ ◦ δ = 0,
Laplace-Beltrami operators 4, explicit examples. L2 inner product on Ωk(M) for M compact and oriented,
adjointness of d and δ, Lemma: 4 is symmetric and non-negative. Definition of harmonic forms, Prop: har-
monic forms = ker δ ∩ ker d, uniqueness of harmonic representative of a cohomology class, existence of harmonic
representative (harder – not fully proved in class, just sketched), Hodge Theorem.

14/5/2014. Alternative proof of Poincarè duality for oriented compact manifolds using Hodge theory. Back to
de Rham theory: The Poincarè dual of a compact oriented submanifold, Thom forms, Thom form for a point,
Thom form for the equator of a cylinder.

16/5/2014. Vector bundles, conormal bundle of a submanifold, tubular neighborhoods, transversely intersectly
submanifolds and the wedge product of Thom forms, intersection numbers and self-intersection numbers, signs
of intersection, low dimensional examples. Thm: Euler characteristic of M = self-intersection number of the
diagonal 4 in M ×M .

23/5/2014. Vector fields and the local index of a zero, examples in R2. Exponentiating vector fields, relating
the index of a vector field to intersection numbers, proof of the Poincarè-Hopf index theorem.

28/5/2014. Discussion of practice exercises. The Gauss-Bonnet theorem proved using the Poincarè-Hopf index
theorem and the Degree formula.

30/5/2014. Simplicial homology, low-dimensional examples and computations of given 4-complexes (torus,
circle, sphere, Klein bottle, RP 2), manipulating quotient groups (for coefficients in Z). Definition of singular
homology, example: singular homology of a point.

4/6/2014. Homotopy invariance of singular homology. Reduced singular homology, relative homology. Mayer-
Vietoris long exact sequence, Excision theorem (barycentric subdivision just sketched). Singular homology of
Sn. Application: Brouwer fixed point theorem. Equivalence of simplicial and singular homology.

6/6/2014. Cohomology: definition of cochain complex, coboundary operator, ring structure: cup product, cap
product, Poincarè duality (just sketched). Different coefficients: Zp for p prime, R. Statement of De Rham’s
theorem.

11/6/2014. Definition and construction of the fundamental group, Prop: π1(S1) ∼= Z, Borsuk-Ulam theorem,
Kunneth formula. Discussion of exercises.

WARNING: This is not a complete transcript of the notes in class! And watch out for typos. This is intended
only as a supplement to the notes in class and the references. If the material is well-covered in a reference, it
is only sketched here. I give details here only when I haven’t followed the references, notably the sections on
Hodge theory, Thom forms, and the Poincarè-Hopf index theorem.
Reference for integration on manifolds and Gauss-Bonnet: Differential topology by Guillemin and Sternberg.
Reference for de Rham theory: Differential forms in algebraic topology by Bott and Tu, early chapters.
Reference for simplicial and singular homology, cohomology, fundamental group: Algebraic Topology by Allen
Hatcher.



1. Integration on manifolds

1.1. Exterior Algebra. Vector space V = span
{

∂
∂x1

, ∂
∂x2

, . . . , ∂
∂xk

}
, dual space V ∗ = span {dx1, . . . , dxk},

where dxi

(
∂
∂xj

)
= δi,j . Vector space of p-tensors T p(V ∗), T 0(V ∗) := R, T 1(V ∗) = V ∗.

Examples: dot product, determinant
Tensor product ⊗ : T p(V ∗) × T q(V ∗) → T p+q(V ∗), (S, T ) 7→ S ⊗ T . Tensor product distributive, associative,
not commutative.

Aside: T =
⊕

p≥0 T p(V ∗). (T ,+,⊗) is called the tensor algebra: a graded algebra over R, additive

unit 0, multiplicative identity 1 ∈ T 0(V ∗), S ⊗ 1 = S = 1⊗ S, and it is infinite-dimensional.

Theorem. T p(V ∗) = span
{
dxi1 ⊗ . . .⊗ dxip

∣∣1 ≤ i1, . . . , ip ≤ k}, so dim T p(V ∗) = kp

Exercise 1. Show that the p-tensors dxi1 ⊗ . . .⊗ dxip for 1 ≤ i1, . . . , ip ≤ k are linearly independent.

Vector space of alternating p-tensors Λp(V ∗), with Λ0(V ∗) = R,Λ1(V ∗) = V ∗. Alternating p-tensors are also
called p-forms. If T is a p-form, p is called the degree of T .
Definition of linear map Alt : T p(V ∗)→ Λp(V ∗).

Remark. The factor 1/p! makes it satisfy Alt|Λp(V ∗)≡ Id, so Alt is a projection i.e. Alt ◦Alt = Alt. Be aware
that some authors use another convention that omits the factor 1/p!. Then Alt restricted to Λp(V ∗) is equivalent
to scalar multiplication by p! so Alt is not a projection, as Alt ◦Alt 6= Alt. But one advantage of not dividing
by p! is if you want to work over a field of characteristic greater than 0.

Definition of wedge product ∧ : Λp(V ∗)× Λq(V ∗), (S, T ) 7→ S ∧ T := Alt(S ⊗ T ).

Lemma. Properties of ∧.

(1) ∧ is distributive.
(2) (S ∧ T ) ∧ U = Alt(S ⊗ T ⊗ U) = S ∧ (T ∧ U), so ∧ is associative.
(3) For S ∈ Λp(V ∗), T ∈ Λq(V ∗), S ∧ T = (−1)pqT ∧ S. In different contexts this is called different things:

in the context of algebras, one says that ∧ is anti-commutative, or skew-commutative, or graded anti-
commutative, but in the context of superalgebras one says that ∧ is graded commutative or supercom-
mutative. (Yes, confusing!)

(4) T ∧ T = 0 if T is a form of odd degree

Theorem. Λp(V ∗) = span{dxi1 ∧ . . . ∧ dxip |1 ≤ i1 < i2 < . . . < ip ≤ k}, so dim Λp(V ∗) =
(
k
p

)
= k!

p!(k−p)!

Aside: Put Λ =
⊕

p≥0 Λp(V ∗). (Λ,+,∧) called the exterior algebra: a graded algebra over R, additive unit

0, multiplicative identity 1 ∈ Λ0(V ∗), S ∧ 1 = S = 1 ∧ S. Called the exterior algebra, or sometimes called the
Grassmann algebra. But it’s not infinite dimensional, because Λp(V ∗) = 0 for all p > k (see exercises below). As

a vector space, Λ has dimension
k∑
p=0

(
k
p

)
= 2k.

Exercise 2. Show that the p-forms dxi1 ∧ . . . ∧ dxip for 1 ≤ i1 < i2 < . . . < ip ≤ k are linearly independent.

Exercise 3. Show that if v1, . . . , vp are linearly dependent in V , then T (v1, . . . , vp) = 0 for any T ∈ Λp(V ∗).

Exercise 4. Show that all p-forms with p > k are zero. (Use previous exercise.)

Remark. Some authors, e.g. Spivak, define Alt as we have but use another convention for defining the wedge

product, S∧T := (p+q)!
p!q! Alt(S⊗T ). The normalization factor of (p+q)!

p!q! implies that dx1∧. . .∧dxk( ∂
∂x1

, . . . , ∂
∂xk

) =

1, which can be convenient (for example, it means that dx1∧ . . .∧dxk is equal to the usual matrix determinant).

Relationship between basis elements dxi1 ∧ . . . ∧ dxip and determinants of p× p matrix minors.

Let v1 = (v11, v12, . . . , v1n), . . . ,vp = (vp1, vp2, . . . , vpn). Show that

dxi1 ∧ dxi2 ∧ . . . ∧ dxip(v1, . . . ,vp) =
1

p!
det


v1i1 v1i2 . . . v1ip

v2i1 v2i2 . . . v2ip

. . .
vpi1 vpi2 . . . vpip





i.e. it’s a multiple of the p× p minor determined by the p columns i1, i2, . . . , ip.

The p! only comes in because of how we chose to define the wedge product, because in our definition

dxi1 ∧ dxi2 ∧ . . . ∧ dxip = Alt(dxi1 ⊗ . . .⊗ dxip)

=
1

p!

∑
π∈Sp

(−1)πdxiπ(1)
⊗ . . .⊗ dxiπ(p)

If we had defined the wedge product S ∧T as (p+q)!
p!q! Alt(S⊗T ) we would have ended up without the extra factor

of 1/p!.

Example 1. The cross product a×b in R3 c.f. the wedge product of a1dx1 +a2dx2 +a3dx3 with b1dx1 + b2dx2 +
b3dx3.

1.2. Volume forms. A k-form that is non-zero is called a volume form. All volume forms are scalar multiples
of each other. They’re all scalar multiples, for example, of dx1 ∧ dx2 ∧ . . . ∧ dxk.

A choice of volume form A determines a non-degenerate bilinear map 〈, 〉A : Λp(V ∗) × Λk−p(V ∗) → R: for a
p-form T , and (k − p)-form S, 〈T, S〉A := α where α is uniquely determined by the condition T ∧ S = αA. This

bilinear map identifies Λp ∼=
(
Λk−p

)∗
.

Non-degenerate means that for all T ∈ Λp, T 6= 0, there exists an S ∈ Λk−p such that 〈T, S〉A 6= 0. Example:
Let T be any p form, and suppose that its coordinate Ti1i2...ip is non-zero. Then if {j1, . . . , jk−p} = {1, . . . , k} \
{i1, . . . , ip}, then putting S = dxj1 ∧ . . . ∧ dxjk−p we have 〈T, S〉A 6= 0.

Theorem (Determinant theorem). dimV = k. Given a linear map A : V → V , the dual map (i.e. transpose)
A∗ : V ∗ → V ∗ induces a pull-back map A∗ : Λp(V ∗) → Λp(V ∗) for all p. Let ω ∈ Λk(V ∗). Then A∗(ω) =
(detA)ω.

1.3. Differential forms on Rk. Coordinates (x1, . . . , xk) on Rk.

1.3.1. Tangent bundle. Tangent bundle TRk ∼= Rk × Rk is a manifold with coordinates
(x,v) = (x1, . . . , xk, v1, . . . , vk), where v1

∂
∂x1

+ v2
∂
∂x2

+ . . . vk
∂
∂xk
∈ TxRk.

A point of the tangent bundle corresponds to a point x in Rk, and a tangent vector to Rk at that point.

1.3.2. Cotangent bundle. Cotangent bundle T ∗Rk ∼= Rk × Rk is a manifold with coordinates
(x,v) = (x1, . . . , xk, p1, . . . , pk), where p1dx1 + p2dx2 + . . . pkdxk ∈ T ∗xRk.

1.3.3. Alternating p-tensor bundle. The alternating p-tensor bundle Λp(T ∗Rk) ∼= Rk × R(kp) is a manifold with
coordinates
(x,a) for a = ({ai1,...,ip}1≤i1<i2<...<ip≤k), where

∑
1≤i1<...<ip≤n ai1,...,ipdxi1 ∧ . . . ∧ dxip ∈ Λp(T ∗xRk).

Definition 1. A differential p-form is a smooth map φ : Rk → Λp(T ∗Rk) of the form φ(x) = (x,a(x)). In
fancier language, it’s a smooth section of the alternating p-tensor bundle Λp(T ∗Rk)→ Rk.

The vector space of differential p-forms on Rk is written as Ωp(Rk). Every p-form on Rk can be uniquely written
as a sum φ =

∑
1≤i1<...<ip≤k ai1,...,ip(x)dxi1 ∧ . . . ∧ dxip , for a collection of smooth functions ai1,...,ip : Rk → R.

Example: differential 0-forms ↔ smooth functions a : Rk → R.
Wedge product on forms: ∧ : Ωp(Rk)×Ωq(Rk)→ Ωp+q(Rk) is defined pointwise, i.e. at each point x take the

wedge product of the alternating tensors at x:

(x,a(x)) ∧ (x, ã(x)) := (x,a(x) ∧ ã(x)).

On monomials:(
ai1,...,ip(x)dxi1 ∧ . . . ∧ dxip

)
∧
(
ãj1,...,jq (x)dxj1 ∧ . . . dxjq

)
= ai1,...,ip(x)ãj1,...,jq (x)dxi1∧. . .∧dxip∧dxj1∧. . . dxjq .

Definition 2. The exterior derivative d : Ωp(Rk)→ Ωp+1(Rk) is defined on monomials by

ai1,...,ip(x)dxi1 ∧ . . . ∧ dxip 7→
∑

j=1,...,k

∂ai1,...,ip(x)

∂xj
dxj ∧ dxi1 ∧ . . . ∧ dxip

(Note: RHS is effectively a sum over j ∈ {1, . . . , k} \ {i1, . . . , ip}).



Theorem. Properties of d:

(1) d(ω ∧ σ) = dω ∧ σ + (−1)degωω ∧ dσ i.e. d is an anti-derivation.
(2) d2 = 0

Examples in R3, relationship to gradient, curl, divergence.

1.4. Push-forward, pull-back. Smooth map φ : Rk → Rl, φ(x) = (φ1(x), φ2(x), . . . , φl(x)).

• The push-forward map φ∗ : TRk → TRl takes tangent vectors at x to tangent vectors at φ(x), v 7→
Dφ(x)v where Dφ(x) is the Jacobian matrix at x.

• The pull-back map φ∗ : Ωp(Rk)→ Ωp(Rk) takes p-forms on Rk to p-forms on Rl. On 0-forms, φ∗f := f ◦φ
for any f : Rl → R. On p-forms,

φ∗
(
f(y)dyi1 ∧ . . . ∧ dyip

)
= (f ◦ φ)(x)dφi1 ∧ . . . ∧ dφip .

Example 2. γ : R → R3, γ(t) = (γ1(t), γ2(t), γ3(t)), parametrized curve. Let ω = f1(x, y, z)dx + f2(x, y, z)dy +
f3(x, y, z)dz ∈ Ω1(R3). Then γ∗ω = f1(γ)γ′1(t)dt+ f2(γ)γ′2(t)dt+ f3(γ)γ′3(t)dt = F(γ(t)) · γ′(t)dt

Example 3. Parametrized surface S : R2 → R3, and pull-back of 2-form f1dy ∧ dz+ f2dx∧ dz+ f3dx∧ dy in R3.

Proposition. Pull-back commutes with exterior derivative, i.e. dφ∗ = φ∗d as maps from Ωp(Rl)→ Ωp+1(Rk).

Independence of differential forms on the coordinate system; definition of differential forms on manifolds. All
manifolds considered are Hausdorff and have a countable basis.

1.5. Integration on manifolds. Integrating forms with compact support on Rk.

Definition 3. Let ω = fdx1 ∧ . . . ∧ dxk where f : Rk → R has compact support. Define∫
Rk
ω :=

∫
R
. . .

(∫
R

(∫
R
f(x1, . . . , xn)dx1

)
dx2

)
. . . dxn.

Change of variables formula for integrals; choice of an orientation on Rk.
Orientable manifolds, orientability.

Proposition. A manifold of dimension k has an oriented atlas ⇐⇒ it has a non-vanishing k-form.

Change of variables formula for integrals; partitions of unity; definition of integration on manifolds.

Proposition. Let M be a smooth oriented manifold of dimension k, and ω ∈ Ωk(M). Then the integral
∫
M
ω

is independent of the choice of atlas of M and the choice of partition of unity subordinate to the atlas.

A diffeomorphism preserves the integral only up to sign; only the orientation-preserving diffeomorphisms
preserve the integral. Therefore integration is only defined on orientable manifolds. Any oriented manifold has
exactly two orientations, so the value of the integral depends on the orientation chosen.

1.6. Integration on manifolds-with-boundary. Definition of manifold with boundary; note operation ∂◦∂ =
∅.

Lemma. The boundary of an oriented k-dimensional manifold-with-boundary is an oriented k − 1 dimensional
manifold with empty boundary.

Definition: the induced orientation for ∂M , which depends on the outer normal to M .

Example 4. Induced orientation for boundary of an annular region in R2.

Theorem (Stokes’ theorem on Rk).

Theorem (Stoke’s theorem on half-space Rk−1 × [0,∞)).



Theorem (Stokes’ Theorem for manifolds with boundary). Let Ω be a k-dimensional manifold with boundary
∂Ω, and ω a compactly supported (k − 1)-form on Ω. Then∫

Ω

dω =

∫
∂Ω

ω

C.f. 3-dimensional Stokes’ theorem and Divergence theorem, 2-dimensional Green’s formula, 1-dimensional
fundamental theorem of calculus.

Exercise 5. Show that the vector field
(
−y

x2+y2 ,
x

x2+y2

)
has curl zero, but it is not the gradient of any function.

1.7. The degree formula.

Theorem (Degree formula). Let f : Xk → Y k be a smooth map. Then for any ω ∈ Ωk(Y k),∫
X

f∗ω = (deg f)

∫
Y

ω

for some deg f ∈ Z called the degree of f .

Proved via the following ingredients:

Proposition. Local degree formula for a regular value of f .

Theorem. Homotopic maps f0 : X → Y and f1 : X → Y give rise to equal integrals
∫
X
f∗0ω =

∫
X
f∗1 (ω).

Proof is by Stokes’ theorem.

Theorem. If X = ∂W and f : X → Y extends to a smooth map F : W → Y , then
∫
X
f∗ω = 0 for any

ω ∈ Ωk(Y ).

Proof is by Stokes’ theorem again.

Lemma (Isotopy lemma). If Y is a connected manifold, y, z ∈ Y , then there exists a diffeo h : Y → Y s.t.
h(y) = z, h is isotopic to the identity, and h is compactly supported.

Remark. In the proof the degree seems to depend on the choice of neighborhood of a regular point. The final
formula shows that that deg f is independent of this choice.

2. De Rham theory

Closed forms vs. exact forms.

Exercise 6. Prove that a 1-form ω on S1 is the differential of a function ⇐⇒
∫
S1 ω = 0.

Exercise 7. Suppose that ω1 and ω2 are cohomologous p-forms on X, and Z is a compact oriented p-dimensional
submanifold. Prove that

∫
Z
ω1 =

∫
Z
ω2. Conclude that integration over Z defines a map of the cohomology group

Hp(X) into R, i.e.
∫
Z

: Hp(X)→ R.

Definition of the de Rham complex, and of the de Rham cohomology groups Hn
dR.

Example 5. H∗DR(R).

Remark: de Rham cohomology is defined for all smooth manifolds, oriented or otherwise.

Proposition. dimH0
dR(M) = #components of M .

Definition 4. M is simply connected if M is connected, and every smooth f : S1 → M is homotopic to a
constant map f : S1 → {x}, for some x ∈M .

If f : S1 →M is homotopic to a constant map via a map F : S1× [0, 1]→M , where F |t=1= f and F |t=0= x,

we can identify F with a smooth map f̃ : D →M by f̃(reiθ) = Fr(θ); and vice-versa we can identify an extension

f̃ : D →M with a homotopy F . In other words, an equivalent definition of simply connected is

Definition 5. M is simply connected if M is connected, and for every smooth f : S1 → M , there exists a

smooth extension f̃ : D →M such that f̃ |∂D= f .

Proposition. M simply connected =⇒ H1
dR(M) = 0.



2.1. Homological algebra.

• Definition of a (co)chain complex, differential, (co)homology of the complex. Example: de Rham coho-
mology H∗dR(M).

• Definition of a chain map, chain map induces well-defined function on cohomology. Example: given map
f : M → N between manifolds, get chain map f∗ : Ω∗(N)→ Ω∗(M), therefore get maps on cohomology
f∗ : Hn(N)→ Hn(M) for all n.

• Definition of a null-homotopy for a chain map, null-homotopic chain maps induce the zero map on
cohomology. Definition of a chain-homotopy between chain maps; chain homotopic chain maps induce
the same map on cohomology.

Theorem. Hn
dR(M) ∼= Hn

dR(M × R) for all n.

Proof. The projection π : M × R → M given by (x, t) 7→ x, and the zero-section σ : M → M × R
given by x 7→ (x, 0) induce chain maps π∗ and σ∗. One shows that they induce inverse maps on
cohomology by showing that π∗ ◦ σ∗ and σ∗ ◦ π∗ are chain homotopic to the identity map. One has
σ∗ ◦ π∗ = (π ◦ σ)∗ = (IdM )∗ = Id so σ∗ ◦ π∗ is the identity map already. To show that π∗ ◦ σ∗ is chain
homotopic to the identity one constructions a homotopy operator Kn : Ωn(M × R)→ Ωn−1(M) that is
the composition of projection onto the subspace of n forms on M × R that have a dt in them, followed
by integration with respect to t. Compute π∗ ◦ σ∗ − Id = ±dKn ±Kn+1, therefore π∗ ◦ σ∗ induces the
identity map on cohomology. �

Corollary (Poincaré lemma). Hn
dR(Rk) ∼= Hn

dR({pt}) =

{
R, n = 0
0, n 6= 0

Corollary. Homotopic manifolds have the same de Rham cohomology (homotopy axiom of de Rham
cohomology).

• Definition of an exact sequence, definition of a short exact sequence of cochain complexes.

Theorem. A short exact sequence 0→ B∗
f→ C∗

g→ D∗ → 0 of cochain complexes induces a long exact
sequence

. . .
g−→ Hn−1(D)

∂∗−→ Hn(B)
f−→ Hn(C)

g−→ Hn(D)
∂∗−→ Hn+1(B)

f−→ . . .

on cohomology.

Proof of the long exact sequence.

Step 1: Construction of the boundary connecting map ∂∗ : Hn(D)→ Hn+1(B).

Let [ω] ∈ Hn(D), where ω ∈ ker dD. Exactness of the s.e.s. =⇒ g is surjective, so let ω ∈ Cn be
such that g(ω) = ω. Now consider dω ∈ Cn+1. Then

g(d(ω)) = d(g(ω)) (since g is a chain map so g ◦ dC = dD ◦ g)

= dω (because by construction g(ω) = ω)

= 0 (because ω ∈ ker dD).

This means that dω is in ker g, and by exactness of the short exact sequence ker g = imf , therefore there exists
some x ∈ Bn+1 such that f(x) = dω.

We need to show that x ∈ ker dB so that it determines a cohomology class in Hn+1(B): we have
f(dBx) = dCf(x) = dCdCω = 0 since dC ◦ dC = 0, and then f(dB(x)) = 0 =⇒ dB(x) ∈ ker f =⇒

ker f=0
dB(x) = 0.

So we define a map ∂∗ : Hn(D) → Hn+1(B) by [ω] 7→ [x]. We need to show that the map is well-
defined, i.e., if [ω1] = [ω2], then [x1] = [x2] for any x1, x2 obtained from ω1 and ω2 as described above.

If [ω1] = [ω2] then we have ω1−ω2 = dσ for some σ ∈ Dn−1. Given ω1 and ω2 such that g(ω1) = ω1, g(ω2) = ω2,
we have g(ω1 − ω2) = ω1 − ω2 = dσ. Now by the surjectivity of g : Bn−1 → Cn−1 we can also find a σ ∈ Bn−1



such that g(σ) = σ ∈ Cn−1, and so we have that

g(ω1 − ω2 − dCσ) = g(ω1 − ω2)− g(dCσ)

= dDσ − dDg(σ)

= dDσ − dDσ
= 0,

so ω1 − ω2 − dDσ ∈ ker g = imf (by exactness). So there esists ξ ∈ Bn such that f(ξ) = ω1 − ω2 − dσ, and
therefore

dCf(ξ) = dC(ω1 − ω2 − dCσ)

= dC(ω1)− dC(ω2).

Since f is injective there are unique x1, x2 such that f(xi) = dCωi. Then finally we have

f(dB(ξ)) = dC(f(ξ)) because f is a chain map

= dCω1)− dC(ω2)

= f(x1)− f(x2)

= f(x1 − x2) by linearity of f .

So moving the right hand side to the left and using linearity of f , we get

f(dB(ξ)− (x1 − x2)) = 0

and now, using the fact that ker f = 0, we can say dB(ξ)− (x1 − x2) = 0, i.e. [x1] = [x2] in Hn+1(B).
Step 2: Exactness of the long exact sequence

. . . −→ Hn−1(D)
∂∗−→ Hn(B)

f−→ Hn(C)
g−→ Hn(D)

∂∗−→ Hn+1(B) −→ . . .

• Exactness at Hn(B): we need to show ker f = im∂∗.

(⊆) Let [ω] ∈ ker f . So f([ω]) = [f(ω)] = 0. This means that f(ω) = dα for some α ∈ Cn−1.
Now consider g(α) ∈ Dn−1. We have dD(g(α)) = g(dα) = g(f(ω)) = 0 since f(ω) ∈ ker g by exactness.
Therefore, g(α) ∈ ker dD, so [g(α)] ∈ Hn−1(D) and so by our definition of ∂∗, we have ∂∗[g(α)] = [ω],
so [ω] ∈ im∂∗.

(⊇) Let [ω] ∈ im∂∗. Remember this means that there’s some α ∈ Cn−1 such that ∂∗[g(α)] = [ω], and
such that dα = f(ω). But this being the case, we have f([ω]) = [f(ω)] = [dα] = 0 in cohomology, so
[ω] ∈ ker f .

• Exactness at Hn(C): we need to show ker g = imf .

(⊆) Let [ω] ∈ ker g, where ω ∈ ker dC . Then g[ω] = [g(ω)] = 0, so g(ω) = dα for some α ∈ Dn−1. By
the surjectivity of g : Cn−1 → Dn−1 let α ∈ Cn−1 be such that g(α) = α. Then we have

g(dα− ω) = g(d(α))− g(ω)

= d(g(α))− g(ω)

= dα− g(ω)

= dα− dα
= 0

and therefore dα − ω ∈ ker g = imf so there exists some x ∈ Bn such that f(x) = dα − ω. Moreover
f(dB(x)) = dC(f(x)) = dC(dCα− ω) = dC(dCα)− dCω = 0, so dCx ∈ ker f . Since ker f = 0 this means
dCx = 0, so x ∈ ker dC and therefore [x] is a cohomology class in Hn(C). So passing to cohomology we
get that f([x]) = [f(x)] = [dα− ω] = [−ω] = −[ω]. Therefore f([−x]) = [ω] so [ω] ∈ imf .

(⊇) Let [α] ∈ imf , i.e. [α] = [f(ω)] for some ω ∈ Bn ∩ ker dB . Then g([α]) = g([f(ω)]) = [g(f(ω))] = [0]
as imf = ker g. Therefore [α] ∈ ker g.

• Exactness at Hn(D): we need to show ker ∂∗ = img.

(⊆) Let [ω] ∈ ker ∂∗, i.e. ∂∗[ω] = 0 where ω ∈ ker dD. Remember that the construction sets



∂∗[ω] = [x] where x ∈ Bn ∩ ker dB satisfies f(x) = dω and ω is some element of Cn such that g(ω) = ω.
So if ∂∗[ω] = 0 it means that [x] = 0 so x = dBα for some α ∈ Bn. We have

dCω = f(x) by construction

= f(dB(α))

= dC(f(α))

and therefore dC(ω−f(α)) ∈ ker dC so determines a cohomology class in Hn(C), and now it follows that

g([ω − f(α)]) = [g(ω)− g(f(α))︸ ︷︷ ︸
=0

]

= [g(ω)]

= [ω]

and therefore [ω] ∈ img.

(⊇) Let [ω] ∈ img, so there exists some ω ∈ ker dC such that g[ω] = [g(ω)] = [ω]. The defini-
tion of ∂∗[ω] is [x] where x ∈ Bn+1 satisfies f(x) = dCω. However by supposition we have dCω = 0
and therefore f(x) = 0, so by the injectivity of f we have x = 0, so [x] = 0, and therefore ∂∗[ω] = 0 so
[ω] ∈ ker ∂∗.

�

Example 6. Mayer-Vietoris exact sequence. We have natural inclusion maps U ∩ V iU
↪→ U,U ∩ V iV

↪→ V,U
jU
↪→

U ∪ V, V
jV
↪→ U ∪ V , and their associated pull-back maps (which reverse the direction of the arrows!) give a

sequence of maps

Ωn(U ∪ V )
(j∗U ,j

∗
V )−→ Ωn(U)⊕ Ωn(V )

i∗V −i
∗
U−→ Ωn(U ∩ V )

Practically, the maps j∗U , j
∗
V , i
∗
V , i
∗
U correspond to “restriction of n-form to an open subset”. For instance, for

ω ∈ Ωn(U ∪ V ) an n-form on U ∪ V , the n-form j∗U (ω) on U really means the n-form ω|U .

Proposition. The Mayer-Vietoris sequence

0 −→ Ωn(U ∪ V )
(j∗U ,j

∗
V )−→ Ωn(U)⊕ Ωn(V )

i∗U−i
∗
V−→ Ωn(U ∩ V ) −→ 0

is a short exact sequence.

Proof. Need to prove:

• : (j∗U , j
∗
V ) is injective: if ω ∈ Ωn(U ∪V ) gets mapped to 0 then ω|U= 0 and ω|V = 0 =⇒ ω = ω|U∪V = 0.

• ker(i∗U − i∗V ) = im(j∗U , j
∗
V ): let (σ, τ) ∈ Ωn(U)⊕ Ωn(V ), then

(i∗U − i∗V )(σ, τ) = 0 ⇐⇒ σ|U∩V−τ |U∩V

which is equivalent to σ and τ being restrictions of a single form ω on U ∪V , and so (σ, τ) = (j∗U , j
∗
V )(ω).

• i∗V − i∗U is surjective. Let σ ∈ Ωn(U ∩ V ). Take a partition of unity ρU + ρV = 1 such that the support
of ρU is in U , and the support of ρV is in V . Then, ρUσ is an n-form on V and ρV σ is an n-form on U ,
and (i∗U − i∗V )(ρV σ,−ρUσ) = ρV σ + ρUσ = σ.

�

Corollary. There is a long exact sequence of cohomology groups

. . . −→ Hn
dR(U ∪ V ) −→ Hn

dR(U)⊕Hn
dR(V ) −→ Hn

dR(U ∩ V ) −→ Hn+1
dR (U ∪ V ) −→ . . .

This l.e.s. is called the Mayer-Vietoris long exact sequence.

Example 7. Computing the cohomology of S1; cover S1 with two open sets U ∪V whose intersection is a pair of
disjoint intervals, U ∩ V = I1 t I2. In particular we have R ∼= U ∼= V ∼= I1 ∼= I2. Note that we also know that
dimH0

dR(M) = number of connected components of M .

Example 8. cohomology of S2: cover S2 with a pair of open disks U ∪ V whose intersection is diffeomorphic to
a cylinder S1 × R.



2.2. Finite good covers and finite dimensionality of de Rham cohomology.

Definition 6. An open cover {(Uα, φα), α ∈ A} is called a good cover if all non-empty intersections
n⋂
i=1

Uαi are

diffeomorphic to Rk.

Example 9. Good cover for S1, good cover for S2.

Theorem. Every manifold has a good cover.

Proof. (Have they seen before how a Riemannian metric can be put on any smooth manifold?) Put a Riemannian
metric on the manifold, and then use geodesically convex neighborhoods of each point as the open sets in the cover.
A geodesically convex neighborhood is automatically diffeomorphic to Rk. And the intersection of geodesically
convex neighborhoods is again a geodesically convex open set, so they make a good cover. �

Theorem. A manifold M with a finite good cover has finite dimensional de Rham cohomology.

Proof. Fix a dimension k ≥ 0. We will prove that all k-dimensional manifolds with a finite good cover have
finite dimensional de Rham cohomology by induction on the cardinality n of the cover.

Base step: If n = 1 then M ∼= Rk. We know from the Poincaré Lemma that H0
dR(Rk) = R and H0

dR(Rk) = 0 for
n 6= 0. So M has finite dimensional de Rham cohomology.

Inductive hypothesis: suppose that every manifold with a good cover by n open sets has finite dimen-
sional de Rham cohomology.

Inductive step: Suppose that M is a manifold with a good cover by n + 1 open sets U1, . . . , Un, Un+1.

Then we may write M = Un+1 ∪M where M =
n⋃
i=1

Ui. Thus M is a manifold of dimension k with a finite

good cover by n open sets, so by inductive hypothesis M has finite dimensional de Rham cohomology. And

Un+1
∼= Rk also has finite dimensional de Rham cohomology. Also, Un+1 ∩M =

n⋃
i=1

(Un+1 ∩ Ui) so it also has a

good cover of cardinality n, so by inductive hypothesis Un+1 ∩M has finite dimensional de Rham cohomology.

Now by the Mayer-Vietoris long exact sequence, we can write

−→ Hn−1
dR (M ∩ Un+1)

α−→ Hn
dR(M)

β−→ Hn
dR(M)⊕Hn

dR(Un+1)
γ−→

By exactness we have that Hn
dR(M)/ im α ∼= im β = ker γ, so that dimHn

dR(M) = dim ker γ + dim im α < ∞.
Therefore M also has finite dimensional de Rham cohomology.

�

2.3. Integer invariants.

Definition 7. Betti numbers: Bi(M) := dimHi
dR(M).

Definition 8. Euler characteristic: χ(M) :=
∑k
i=0(−1)iBi(M)

Example 10. • χ(S2) = 1− 0 + 1 = 2
• χ(T 2) = 1− 2 + 1 = 0
• χ(R× S1) = χ(S1) = χ(Möbius strip) = 0.

2.4. The five lemma.

Lemma. Let

A

α

��

f1 // B

β

��

f2 // C

γ

��

f3 // D

δ
��

f4 // E

ε

��
A′

g1 // B′
g2 // C ′

g3 // D′
g4 // E′

be a commutative diagram of abelian groups and homomorphisms, in which the rows are exact. If the four outer
maps α, β, δ and ε are isomorphisms, then so is γ.



Proof. We need to show that γ is injective and surjective.

Let c ∈ ker γ, so γ(c) = 0. Then 0 = g3 ◦ γ(c) = δ ◦ f3(c), so f3(c) ∈ ker δ, but by hypothesis δ is an
isomorphism, so ker δ = 0; therefore f3(c) = 0, so c ∈ ker f3. By the exactness of the rows, this means
c ∈ im f2, so there exists a b ∈ B such that f2(b) = c. And 0 = γ(c) = γ ◦ f2(b) = g2 ◦ β(b) therefore
β(b) ∈ ker g2 = im g1 so β(b) = g1(a′) for some a′ ∈ A′. Since α is an isomorphism, put a = α−1(a′) ∈ A. Then
β ◦ f1(a) = g1 ◦ α(a) = g1(a′) = β(b), therefore since β is an isomorphism, b = f1(a). But this means that
c = f2(b) = f2 ◦ f1(a) = 0 since by exactness f2 ◦ f1 = 0. Hence, ker γ = 0 so γ is injective.

Let c′ ∈ C ′. Let d′ = g3(c′). Then d′ ∈ ker g4. Using the fact that δ is an isomorphism,
let d = δ−1(d′). Then 0 = g4 ◦ δ(d) = ε ◦ f4(d) implies f4(d) ∈ ker ε = 0, so f4(d) = 0 so
d ∈ ker f4. By exactness then this means there exists a c ∈ C such that d = f3(c). Now,
g3 ◦ γ(c) = δ ◦ f3(c) = δ(d) = d′ = g3(c′) =⇒ g3(γ(c) − c′) = 0 =⇒ γ(c) − c′ ∈ ker g3. Thus by
exactness there exists a b′ ∈ B′ such that g2(b′) = γ(c)−c′, and putting b = β−1(b′) we have g2 ◦β(b) = γ(c)−c′.
Now by commutativity we have g2 ◦ β(b) = γ ◦ f2(b), so altogether we have γ ◦ f2(b) = γ(c) − c′, and therefore
c′ = γ(c− f2(b)). Thus c′ ∈ im γ, so γ is surjective. �

Remark. For finite dimensional vector spaces over R it’s enough to prove injectivity of γ, as surjectivity follows
from knowing that dimC = dimC ′.

2.5. Künneth formula.

Definition 9. Tensor product of vector spaces.

Theorem (Kunneth formula). If M and N have finite good covers, then H∗dR(M ×N) = H∗dR(M)⊗H∗dR(N).

Proof. We have the maps πM : M ×N →M and πN : M ×N → N , which induce a map

ϕ : H∗dR(M)⊗H∗dR(N) → H∗(M ×N)

([ω], [τ ]) 7→ [π∗M (ω) ∧ π∗N (τ)]

The statement of the Kunneth formula is that this map ϕ is an isomorphism. The proof is by induction on the
finite cardinality n of a good cover for M .

Base step: If n = 1, then M = Rk and the isomorphism follows from the Poincaré lemma.

Inductive hypothesis: Suppose it holds whenever M has a good cover with cardinality n.

Inductive step: Suppose that M has a good cover of cardinality n+ 1. Then we can write M = Un+1 ∪M where

M =
n⋃
i=1

Ui, and M ∩ Un+1 also has a finite good cover of cardinality n. The Mayer-Vietoris sequence is the

long exact sequence

−→ Hp(Un+1)⊕Hp(M)→ Hp(M ∩ Un+1) −→ Hp+1(M) −→ Hp+1(Un+1)⊕Hp+1(M)→ Hp+1(M)→ Hp+1(M ∩ Un+1)

The exactness is preserved if we tensor everything by Hm−p(N) and take the sum over all integers p, then we
get the long exact sequence

[H∗(M)⊗H∗(N)]
m+1 // . . .

[H∗(M)⊗H∗(N)]
m //

[
H∗(M)⊗H∗(N)

]m ⊕ [H∗(Un+1)⊗H∗(N)]
m //

[
H∗(M ∩ Un+1)⊗H∗(N)

]m
mm[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[

. . . //
[
H∗(M ∩ Un+1)⊗H∗(N)

]m−1

mm[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[

We also have the Mayer-Vietoris sequence

. . . −→ Hm(M ×N) −→ Hm(M ×N)⊕Hm(Un+1 ×N) −→ Hm((M ∩ Un+1)×N) −→ Hm+1(M ×N) −→ . . .



Now we include the maps between the corresponding terms of the Mayer-Vietoris sequence in each of these two
long exact sequences defined as in the map ϕ above,

. . . // [H∗(M)⊗H∗(N)]
m //

ϕM

��

[
H∗(M)⊗H∗(N)

]m ⊕ [H∗(UN+1)⊗H∗(N)]
m //

ϕM⊕ϕUn+1

��

. . .

. . . // Hm(M ×N) // Hm(M ×N)⊕Hm(Un+1 ×N) // . . .

Claim: the diagram commutes. Once we show that the diagram commutes, it follows from the inductive
hypothesis that the vertical arrows are all isomorphisms except for the vertical arrows ϕM , but then it follows
by the 5 lemma that this map too is an isomorphism.

So let us check that the diagram commutes. There are three squares to check. Two squares are very
straightforward (the square pictured above and the square to its right).

Exercise 8. Check that the square pictured above and the square to its right are commutative.

Let us check the commutativity of the third square, which involves the connecting maps ∂∗ in the Mayer-
Vietoris long exact sequence:

[H∗(M ∩ U)⊗H∗(N)]m

��

∂∗⊗Id // [H∗(M)⊗H∗(N)]
m+1

��
Hm((M ∩ U)×N)

∂∗ // Hm+1(M ×N)

where the vertical arrows correspond to the maps
∑
α

[ωα]⊗ [τα] 7→
∑
α

[ωα] ∧ [τα].

By linearity it’s enough to show that the square commutes for individual elements of the form [ω] ⊗ [τ ]
with [ω] ∈ Hp(M ∩ U) and [τ ] ∈ Hq(N) with p+ q = m.

Then we have, following the top horizontal arrow,

∂∗ ⊗ Id([ω]⊗ [τ ]) = [x]× [τ ]

where x ∈ Ωm+1(M) is a closed form such that (x|M , x|U ) = (dα, dβ) for some (α, β) ∈ Ωp(M) ⊕ Ωp(U) such
that ω = α|M∩U−β|M∩U .

So then, the image of [ω]⊗ [τ ] in the bottom right square is [x] ∧ [τ ].

For the other side of the square, we need to compute ∂∗([ω] ∧ [τ ]) = ∂∗[ω ∧ τ ]. By definition of the
connecting map, ∂∗[ω ∧ τ ] = [y] where y ∈ Ωm+1(M × N) is any form for which (y|M×N , y|U×N ) = (dγ, dε)

for some (γ, ε) ∈ Hm(M ×N) ⊕Hm(U ×N) such that (γ − ε)|(M∩U)×N= ω ∧ τ. So it is enough to check that

y = x ∧ τ satisfies these conditions. We have

(x ∧ τ)|M×N = x|M∧τ |N
= (dα) ∧ τ
= d(α ∧ τ︸ ︷︷ ︸)

γ

where the last equality is because d(α ∧ τ) = dα ∧ τ + α ∧ dτ︸︷︷︸
=0

= dα ∧ τ . Similarly

(x ∧ τ)|M×N = x|U∧τ |N
= (dβ) ∧ τ
= d(β ∧ τ︸ ︷︷ ︸)

ε

and finally,

(γ − ε)|(M∩U)×N = (α ∧ τ − β ∧ τ)|(M∩U)×N
= (α− β)|(M∩U)∧τ
= ω ∧ τ,



as desired.
�

2.6. Poincaré duality. Let M be an oriented and compact manifold of dimension k. In particular ∂M = ∅.
Then we can integrate k-forms on M . And integration is well-defined up to exact forms, for if ω1 − ω2 = dσ,
then by Stokes’ theorem ∫

M

ω1 −
∫
M

ω2 =

∫
M

dσ =

∫
∂M

σ = 0.

Now we can also take a p form and a k−p form and wedge them to get a k-form, and can integrate that. Suppose
that ω1 is a closed p-form and ω2 is a closed k − p form. Then

(ω1 + dσ1) ∧ (ω2 + dσ2) = ω1 ∧ ω2 + dσ1 ∧ ω2
=d(σ1∧ω2)

+ ω1 ∧ dσ2
=±d(ω1∧σ2)

+ dσ1 ∧ dσ2
=d(σ1∧dσ2)

= ω1 ∧ ω2 + d(σ1 ∧ ω2 ± ω1 ∧ σ2 + σ1 ∧ dσ2)

where we have used the Leibniz rule for d. Putting everything together, we get that integration produces a
well-defined bilinear map ∫

M

: Hp
dR(M)×Hk−p

dR (M) −→ R,

([ω1], [ω2]) 7→
∫
M

ω1 ∧ ω2.

Theorem (Poincaré duality). Suppose that M is an oriented, compact k dimensional manifold. Then the bilinear

pairing above is non-degenerate. Consequently, Hp
dR(M) ∼= Hk−p

dR (M) for all p = 0, . . . , k.

This theorem is actually a special case of Poincaré duality; there is also a version of Poincaré duality for
oriented M with a finite good cover (i.e. M is not necessarily compact). Suppose that M is only an oriented k
dimensional manifold, i.e. not necessarily compact. Then we can only integrate compactly supported k forms
on M . If we wedge any p form with a compactly supported k − p form, we get a compactly supported k form
that we can integrate. The more general statement of Poincaré duality is that there is an isomorphism between
Hp
dR(M) and Hk−p

c (M) which is the compactly supported cohomology of M .

Theorem. Suppose that M is an oriented k dimensional manifold, with a finite good cover. Then the bilinear
pairing ∫

M

: Hp
dR(M)×Hk−p

c (M) −→ R,

([ω1], [ω2]) 7→
∫
M

ω1 ∧ ω2

is non-degenerate, and Hp
dR(M) ∼= Hk−p

c (M).

So before proving Poincaré duality we need to define and describe compactly supported cohomology.

2.7. Compactly supported cohomology H∗c (M). Let M be a k-dimensional manifold. The space of com-
pactly supported n-forms on M is the subspace of Ωnc (M) ⊂ Ωn(M)

Ωnc (M) = {ω ∈ ΩndR(M)
∣∣ ω has compact support in M}.

The associated cochain complex is then

0 −→ Ω0
c(M)

d−→ Ω1
c(M)

d−→ . . .
d−→ Ωk−1

c (M)
d−→ Ωkc (M)

d−→ 0

where d : Ωnc (M) → Ωn+1
c (M) is the usual exterior derivative on forms. Compactly supported cohomology is

then the cohomology of this chain complex, Hn
c (M) = ker d/ im d.

Example 11. H∗c (R): H0
c (R) = 0, H1

c (R) = R.

Proposition. dimH0
c (M) = # compact components of M . In particular, if M is connected and non-compact,

then H0
c (M) = 0.

Proof. By definition H0
c (M) = ker d = {f : M → R

∣∣f has compact support in M and df = 0}, i.e. the locally
constant functions with compact support. For each compact component of M there is a one-dimensional vector
space of constant functions with compact support, and for each non-compact component of M the only constant
function with compact support is {0}. �

There is a version of the Poincaré lemma for compactly supported cohomology – but note the shift in degree.



Theorem. Hn+1
c (M × R) ∼= Hn

c (M)

Proof. Follow same lines of proof as the analogous theorem for de Rham cohomology. Define

α : Ωn+1
c (M × R) → Ωnc (M)∑

|I|=n

fI(x, t)dt ∧ dxI +
∑

|J|=n+1

gJ(x, t)dxJ 7→
∑
|I|=n

(

∫
R
fI(x, t)dt)dxJ

Now we define a map in the opposite direction. Let s : R → R be any smooth bump function with compact
support such that

∫
R
s(t)dt = 1. Then we set

β : Ωnc (M) → Ωn+1
c (M × R)∑

|J|=n

hJ(x)dxJ 7→
∑
|J|=n

hJ(x)s(t)dt ∧ dxJ

Note that α ◦ β = Id, so α ◦ β : Hn(M)→ Hn(M) is the identity map. It remains to show that β ◦ α is chain
homotopic to the identity. One defines a chain homotopy map

Kn : Ωnc (M × R) −→ Ωn−1
c (M × R)∑

|I|=n

fI(x, t)dt ∧ dxI +
∑

|J|=n+1

gJ(x, t)dxJ 7→
∑
|I|=n

[∫ t

−∞
fI(x, τ)− s(τ)

(∫
R
fI(x, τ̃)dτ̃

)
dτ

]
dxI

Exercise 9. Verify that

(1)
∫ t
−∞ fI(x, τ)− s(τ)

(∫
R fI(x, τ̃)dτ̃

)
dτ really is a compactly supported function in the variables x, t.

(2) β ◦ α− Id = ±dKn ±Kn+1d.

From 2. it follows that β ◦α is equal to the identity map on cohomology, and hence β and α are isomorphisms
on cohomology.

�

Corollary (Poincaré Lemma for compactly supported cohomology). H∗+kc (Rk) ∼= H∗c (pt). Hk
c (Rk) ∼= R,

Hn
c (Rk) = 0 for n 6= k.

Note that this means that compactly supported cohomology is not invariant under homotopy.

2.8. Mayer-Vietoris for compactly supported cohomology. Let ω be a differential form with compact
support inside an open set U . Then for any other open set V containing U , we can identify ω with a compactly
supported differential form on V just by extending ω by zero to all of V . Thus we have an inclusion map

Ωpc(U)↪→Ωp(V ).

Applying this to the Mayer-Vietoris sequence of open sets, we get a sequence

Ωnc (U ∩ V )
(iU ,iV )
↪→ Ωnc (U)⊕ Ωnc (V )

jV −jU
↪→ Ωnc (U ∪ V )

Proposition (Mayer-Vietoris s.e.s. for compactly supported cohomology). The Mayer-Vietoris sequence

0 −→ Ωnc (U ∩ V )
(iU ,iV )
↪→ Ωnc (U)⊕ Ωnc (V )

jV −jU
↪→ Ωnc (U ∪ V ) −→ 0

is exact.

Proof. • (iU , iV ) is injective: if iU (ω) = 0 and iV (ω) = 0 then ω ≡ 0 on U ∩ V .
• im(iU , iV ) = ker(jV − jU ): We have (jV − jU )(σ, τ) = 0 iff the support of both σ and τ is in U ∩ V and
σ = τ , i.e. (iU , iV )(σ) = (σ, τ).

• (jV − jU ) is surjective: Let ω ∈ Ωnc (U ∪ V ), and take a partition of unity ρU + ρV = 1 where ρU is
supported on U and ρV is supported on V . Then ρUω is a compactly supported n-form with support
contained in U , and ρV ω is a compactly supported n-form with support contained in V . Then we have
ω = ρUω + ρV ω = (jV − jU )(−ρUω, ρV ω).

�

Corollary. There is a Mayer-Vietoris l.e.s. for compactly supported cohomology,

. . . −→ Hn−1
c (U ∪ V ) −→ Hn

c (U ∩ V ) −→ Hn
c (U)⊕Hn

c (V ) −→ Hn
c (U ∪ V ) −→ Hn+1(U ∩ V ) −→ . . .



2.9. Proof of Poincaré duality.

Proof. The idea is to do induction on the cardinality of a finite good cover for M .

Exercise 10. Verify the base case, M = Rk.

For the inductive step, we start out with the two Mayer-Vietoris sequences

. . . −→ Hp
dR(M) −→ Hp

dR(M)⊕Hp
dR(U) −→ Hp

dR(M ∩ U) −→ Hp+1
dR (M) −→ . . .

and

. . . −→ Hp−1
c (M) −→ Hp

c (M ∩ U) −→ Hp
c (M)⊕Hp

c (U) −→ Hp
c (M) −→ Hp+1

c (U ∩ V ) −→ . . .

Taking duals of the second sequence flips the direction of all the arrows and gives a l.e.s.

. . . −→ Hp
c (M)∗ −→ Hp

c (M)∗ ⊕Hp
c (U)∗ −→ Hp

c (M ∩ U)∗ −→ Hp−1
c (M)∗ −→ . . .

Now form the double complex

. . . Hp
dR(M) //

ϕM

��

Hp
dR(M)⊕Hp

dR(U) //

ϕM⊕ϕU
��

Hp
dR(M ∩ U) //

ϕM∩U

��

Hp+1
dR (M) . . .

ϕM

��
. . . Hk−p

c (M)∗ // Hk−p
c (M)∗ ⊕Hk−p

c (U)∗ // Hk−p
c (M ∩ U)∗ // Hk−p−1

c (M)∗ . . .

where the vertical maps are those given by ω 7→
∫
M
ω ∧ ·. If we know that the diagram commutes, then the

inductive hypothesis and the 5 lemma show that the maps ϕM are isomorphisms, completing the induction. So
we just need to check that each of the squares in the diagram above commutes. (All squares correspond to one
of the three above, for different values of p.)

Let’s check the commutativity of the last square,

Hp
dR(M ∩ U)

∂∗ //

ϕM∩U

��

Hp+1
dR (M)

ϕM

��
Hk−p
c (M ∩ U)∗

∂̂ // Hk−p−1
c (M)∗

by working the maps out out explicitly.

Let [ω] ∈ Hp
dR(M ∩ Un+1) for some closed form ω ∈ Ωp(M ∩ Un+1). In the definition of the connect-

ing map ∂∗ in the long exact sequence, ∂∗[ω] = [x] where x is a closed form such that x|M= dα, x|U= dβ

for α ∈ Ωp(M) and β ∈ Ωp(U) such that (α−β)|M∩U= ω. Hence, ϕM∂
∗[ω] ([η]) :=

∫
M
x∧η for [η] ∈ Hk−p−1

c (M).

On the other hand, ∂̂φM∩U [ω] (η) := φM∩Uω (∂∗η), where ∂∗ : Hk−p−1
c (M) → Hk−p

c (M ∩ U) is the con-
necting map in the Mayer-Vietoris l.e.s. for compactly supported cohomology.

The definition of the connecting map is ∂∗[η] = [y] where y ∈ Ωk−pc (M ∩ U) is a closed form such that
(y, y) ∈ Ωk−pc (M) ⊕ Ωk−pc (U) satisfies (y, y) = (dγ, dε) for some (γ, ε) ∈ Ωk−p−1

c (M) ⊕ Ωk−p−1
c (U) such that

γ − ε = η.



Let us now put things together. ∫
M∩U

ω ∧ ∂∗η =

∫
M∩U

ω ∧ y

=

∫
M∩U

(α− β) ∧ y

=

∫
M∩U

α ∧ y −
∫
M∩U

β ∧ y

=

∫
M

α ∧ y −
∫
U

β ∧ y

=

∫
M

α ∧ dγ −
∫
U

β ∧ dε

=

∫
M

x|M∧γ −
∫
U

x|U∧ε

=

∫
M

x ∧ γ −
∫
M

x ∧ ε

=

∫
M

x ∧ (γ − ε)

=

∫
M

x ∧ η

as desired.

Exercise 11. Check that the first two squares in the diagram above commute.

�

2.10. Some Hodge theory.

2.10.1. Linear algebra. Let V be a finite dimensional vector space of dimension k. Suppose that we have a
symmetric, bilinear, non-degenerate pairing 〈, 〉 : V × V → R.

(A symmetric bilinear pairing is equivalently defined in terms of a k × k symmetric matrix A such that
the bilinear pairing is given by 〈v, w〉 = vTAw. Remember that all symmetric matrices are diagonalizable,
i.e. conjugate to a diagonal matrix with eigenvalues all down the diagonal. So non-degenerate means that the
eigenvalues of A are all non-zero. If the eigenvalues are all positive, the matrix is called positive definite and the
pairing is called an inner product.)

A non-degenerate bilinear pairing 〈, 〉 on V determines an explicit isomorphism V
∼=−→ V ∗ given by v 7→ 〈v, ·〉.

(Because the non-degeneracy condition says that the kernel of this map is 0.)

The bilinear pairing 〈, 〉 on V extends to a symmetric bilinear pairing on the alternating tensor products, Λp(V )
by defining it on basic elements by

〈v1 ∧ v2 ∧ . . . ∧ vp, w1 ∧ w2 ∧ . . . ∧ wp〉 = det (〈vi, wj〉)
and extending the definition to sums of such terms by linearity.

In terms of an orthogonal basis of eigenvectors e1, . . . , ek of A, one can write every alternating p-tensor
as a linear combination of ei1 ∧ ei2 ∧ . . . ∧ eip for 1 ≤ i1 < i2 < . . . < ip ≤ k. Since 〈ei, ej〉 = λiδij where λi is
the eigenvalue associated to the eigenvector ei, one has that

〈ei1 ∧ ei2 ∧ . . . ∧ eip , ej1 ∧ ej2 ∧ . . . ∧ ejp〉 = det (〈eik , ejl〉) =

 0 if ik 6= jkfor some k
p∏
k=1

λik if ik = jk∀k.

All of which implies that the ei1 ∧ ei2 ∧ . . . ∧ eip are an orthogonal basis of eigenvectors for the bilinear form
〈, 〉 on Λp(V ), and as the eigenvalues are products of the eigenvalues of A, they are also non-zero, therefore the
bilinear pairing 〈, 〉 on Λp(V ) is non-degenerate. So the bilinear pairing gives us an explicit isomorphism

Φ〈,〉 : Λp(V ) −→ (Λp(V ))
∗

τ 7→ 〈·, τ〉



Now let Ω̃ ∈ Λk(V ) be any volume form, which we use to fix an orientation of Λk(V ). There is a unique volume

form Ω ∈ Λk(V ) having the same orientation as Ω̃, and normalized with respect to the bilinear pairing on Λk(V ),
meaning that 〈Ω,Ω〉 = ±1. So, since the wedge product of alternating p-tensors gives a non-degenerate pairing

Λp(V )× Λk−p(V ) −→ Λk(V )

(ω, τ) 7→ ω ∧ τ

we can define a non-degenerate bilinear pairing

bΩ : Λp(V )× Λk−p(V ) −→ R
(ω, τ) 7→ bΩ(ω, τ)

by the condition that b(ω, τ)Ω = ω ∧ τ . This gives us an explicit isomorphism

ΨΩ : Λk−p(V ) −→ (Λp(V ))∗

τ 7→ bΩ(·, τ)

Hence,

∗ : Λp(V ) −→ Λk−p(V )

τ 7→ Ψ−1
Ω ◦ Φ〈,〉(τ)

is an explicit isomorphism, determined by the bilinear pairing 〈, 〉 and the volume form Ω, which is called the
Hodge star operator.

Definition 10. The Hodge star operator ∗ : Λp(V )→ Λk−p(V ), with respect to a non-degenerate bilinear pairing
〈, 〉 on V and a normalized volume form Ω ∈ Λk(V ), is the linear isomorphism uniquely determined by the
condition that

ω ∧ (∗τ) = 〈ω, τ〉Ω.

Remark. We insist on Ω being normalized in order for the resulting map ∗ to satisfy ∗◦∗ = ±1, i.e. the identity up
to sign. If we don’t insist on Ω being normalized, then we can still define an isomorphism ∗ : Λp(V )→ Λk−p(V )
by the condition ω ∧ (∗τ) = 〈ω, τ〉Ω, but the difference will be that this isomorphism will not satisfy ∗∗ = ±1.
For instance if we take the inner product on R2 defined by the matrix 2 Id, then Ω = e1 ∧ e2 is not normalized,

as 〈Ω,Ω〉 = det

(
〈e1, e1〉 〈e1, e2〉
〈e2, e1〉 〈e2, e2〉

)
= det

(
2 0
0 2

)
= 4. So in this case, for example, ∗e1 = 2e2, and

∗e2 = −2e1, so ∗ ∗ e1 = −4e1.

Example 12. Let 〈, 〉 : R3 → R be the standard dot product of vectors, with the standard orthonormal basis
e1, e2, e3, and let e1 ∧ e2 ∧ e3 be the standard orientation. Then

1 ∗ (1) = e1 ∧ e2 ∧ e3 =⇒ ∗(1) = e1 ∧ e2 ∧ e3

ej ∧ (∗e1) = δj1e1 ∧ e2 ∧ e3 =⇒ ∗e1 = e2 ∧ e3,

ej ∧ (∗e2) = δj2e1 ∧ e2 ∧ e3 =⇒ ∗e2 = −e1 ∧ e3,

ej ∧ (∗e3) = δj3e1 ∧ e2 ∧ e3 =⇒ ∗e3 = e1 ∧ e2

ei ∧ ek ∧ ∗(e1 ∧ e2) = δi1δk2e1 ∧ e2 ∧ e3 =⇒ ∗(e1 ∧ e2) = e3

ei ∧ ek ∧ ∗(e1 ∧ e3) = δi1δk3e1 ∧ e2 ∧ e3 =⇒ ∗(e1 ∧ e3) = −e2

ei ∧ ek ∧ ∗(e2 ∧ e3) = δi2δk3e1 ∧ e2 ∧ e3 =⇒ ∗(e2 ∧ e3) = e1

ei ∧ ej ∧ ek ∧ ∗(e1 ∧ e2 ∧ e3) = δi1δj2δk3e1 ∧ e2 ∧ e3 =⇒ ∗(e1 ∧ e2 ∧ e3) = 1.

The cross product is best described in terms of the wedge product and the Hodge star operator: namely, if
v, u ∈ R3, then ∗(v × u) = v ∧ u.

Example 13. Let A =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 be the symmetric matrix determining a bilinear pairing on the vector

space R4, and let e1 ∧ e2 ∧ e3 ∧ e4 be the standard orientation on R4. Hodge star operator on 0-tensors: i.e.
∗ : R→ Λ4(R4). The Hodge condition is that 1∧ (∗1) = 〈1, 1〉e1∧e2∧e3∧e4. Now by definition 1∧ω = 1 ·ω = ω



and 〈1, 1〉 = 1 · 1 = 1. So we see that ∗1 = e1 ∧ e2 ∧ e3 ∧ e4.
Hodge star operator on alternating 2-tensors, i.e. ∗ : Λ2(R4)→ Λ2(R4).

(ej ∧ ek) ∧ ∗(e1 ∧ e2) = 〈ej ∧ ek, e1 ∧ e2〉e1 ∧ e2 ∧ e3 ∧ e4 = δj1δk2λ1λ2e1 ∧ e2 ∧ e3 ∧ e4 = δj1δk2e1 ∧ e2 ∧ e3 ∧ e4

=⇒ ∗(e1 ∧ e2) = e3 ∧ e4

(ej ∧ ek) ∧ ∗(e1 ∧ e3) = 〈ej ∧ ek, e1 ∧ e3〉e1 ∧ e2 ∧ e3 ∧ e4 = δj1δk3λ1λ3e1 ∧ e2 ∧ e3 ∧ e4 = δj1δk3e1 ∧ e2 ∧ e3 ∧ e4

=⇒ ∗(e1 ∧ e3) = −e2 ∧ e4

(ej ∧ ek) ∧ ∗(e1 ∧ e4) = 〈ej ∧ ek, e1 ∧ e4〉e1 ∧ e2 ∧ e3 ∧ e4 = δj1δk4λ1λ4e1 ∧ e2 ∧ e3 ∧ e4 = −δj1δk3e1 ∧ e2 ∧ e3 ∧ e4

=⇒ ∗(e1 ∧ e4) = −e2 ∧ e3

(ej ∧ ek) ∧ ∗(e2 ∧ e3) = 〈ej ∧ ek, e2 ∧ e3〉e1 ∧ e2 ∧ e3 ∧ e4 = δj2δk3λ2λ3e1 ∧ e2 ∧ e3 ∧ e4 = δj2δk3e1 ∧ e2 ∧ e3 ∧ e4

=⇒ ∗(e2 ∧ e3) = e1 ∧ e4

(ej ∧ ek) ∧ ∗(e2 ∧ e4) = 〈ej ∧ ek, e2 ∧ e4〉e1 ∧ e2 ∧ e3 ∧ e4 = δj2δk4λ2λ4e1 ∧ e2 ∧ e3 ∧ e4 = −δj2δk4e1 ∧ e2 ∧ e3 ∧ e4

=⇒ ∗(e2 ∧ e4) = e1 ∧ e3

(ej ∧ ek) ∧ ∗(e3 ∧ e4) = 〈ej ∧ ek, e3 ∧ e4〉e1 ∧ e2 ∧ e3 ∧ e4 = δj3δk4λ3λ4e1 ∧ e2 ∧ e3 ∧ e4 = −δj3δk4e1 ∧ e2 ∧ e3 ∧ e4

=⇒ ∗(e3 ∧ e4) = −e1 ∧ e2.

Hodge star operator ∗ : Λ4(R4)→ Λ0(R4) = R.
By the Hodge star condition we need to satisfy, for Ω = e1 ∧ e2 ∧ e3 ∧ e4,

Ω ∧ ∗Ω = 〈Ω,Ω〉Ω.

Given that

〈Ω,Ω〉 = 〈e1 ∧ e2 ∧ e3 ∧ e4, e1 ∧ e2 ∧ e3 ∧ e4〉

= det


〈e1, e1〉 〈e1, e2〉 〈e1, e3〉 〈e1, e4〉
〈e2, e1〉 〈e2, e2〉 〈e2, e3〉 〈e2, e4〉
〈e3, e1〉 〈e3, e2〉 〈e3, e3〉 〈e3, e4〉
〈e4, e1〉 〈e4, e2〉 〈e4, e3〉 〈e4, e4〉



=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1


= −1

and therefore ∗Ω = −1.

Proposition. The Hodge star operators

∗ : Λp(V )→ Λk−p(V ), ∗ : Λk−p(V )→ Λp(V )

satisfy ∗∗ = (−1)p(k−p)s〈,〉 where s〈,〉 is the sign of the bilinear pairing, given by

s〈,〉 = (−1)#negative eigenvalues of the bilinear pairing

so in particular, if the bilinear pairing is positive definite, we have ∗ ◦ ∗ = (−1)n(k−n).

2.11. Hodge star on differential forms. All of the above can be repeated pointwise for differential forms
on a manifold M , given a symmetric non-degenerate bilinear pairing 〈, 〉p : TpM × TpM → R of the tangent
spaces at each point p ∈ M , and a normalized volume form Ω ∈ Ωk(M). A bilinear pairing on the tangent
space TpM at each point p of M that varies smoothly in p is called a 2-tensor on M . In a local chart U of M ,
with local coordinates x1, . . . , xk on M , a 2-tensor can be thought of as a function A : U → Mk×k(R) where
A(x1, . . . , xk) = A(p), where 〈vp, wp〉p = vTp A(p)w(p). Or in tensor notation, a 2-tensor can be expressed as a
sum

∑
i,j

fi,j(x1, . . . , xk)dxi ⊗ dxj for functions fi,j : U → R.

So a symmetric, non-degenerate bilinear pairing at each point is a symmetric non-degenerate 2-tensor. If it is
positive definite at each point it is called a Riemannian metric. Otherwise it’s called a pseudo-Riemannian metric.
In a local chart U with local coordinates x1, . . . , xk on M , a symmetric non-degenerate 2-tensor corresponds to
a function A : U → Mk×k(R) where A(x1, . . . , xk) is a symmetric matrix with non-zero eigenvalues for every
x1, . . . , xk ∈ U .



Given a non-degenerate symmetric 2-tensor g on M , and a normalized volume form Ω ∈ Ωk(M), then the
Hodge star operator is the isomorphism ∗ : Ωn(M) → Ωk−n(M) defined point-wise in M , i.e. for ω ∈ Ωn(M),
its Hodge star ∗ω ∈ Ωk−n(M) is determined point-wise in M by

(∗ω)p := ∗(ωp)

where the Hodge star ∗ on the right hand side is the Hodge star operator ∗ : Λn((Tp(M))∗)→ Λk−n((Tp(M))∗)
defined at the point p with respect to Ω(p) ∈ Λk((TpM)∗) and the symmetric non-degenerate bilinear pairing
gp : TpM → TpM → R.

Example 14. An important example in physics is Maxwell’s equations. In this case one considers 4 dimensional
manifolds with local coordinates x, y, z, t. The non-degenerate bilinear form is the Lorentzian metric, dx ⊗

dx + dy ⊗ dy + dz ⊗ dz − dt ⊗ dt, or in matrix notation A(x, y, z, t) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

, which is a pseudo-

Riemmannian metric. The volume form is dx∧dy∧dz∧dt. In a vacuum, the electromagnetic field is represented
by a 2-form

ω = Exdx ∧ dt+ Eydy ∧ dt+ Ezdz ∧ dt+Hxdy ∧ dz −Hydx ∧ dz +Hzdx ∧ dy

and its Hodge star ∗ω is also a 2-form, given explicitly (by the calculations of Exercise 13) by

∗ω = −Exdy ∧ dz + Eydx ∧ dz − Ezdy ∧ dx+Hxdx ∧ dt+Hydy ∧ dt+Hzdz ∧ dt

and Maxwell’s equations say that dω = 0, d ∗ω = 0. See Introduction to Bott & Tu (p.8) (although this is w.r.t.
the Lorentzian metric having signature (+,−,−,−) so the Hodge star has the opposite sign), or Section 20 of
Introduction to Guillemin & Sternberg (p. 136).

2.12. Laplace-Beltrami operators. Let us now consider a manifold with a Riemannian metric on it (so the
bilinear form at each point is positive definite) as well as a volume form. Combining the exterior derivative d
with the Hodge star operator, we define a codifferential

δ : Ωn+1(M) −→ Ωn(M)

ω 7→ (−1)kn+1 ∗ d ∗ (ω)

Proposition. δ ◦ δ = 0

Proof. δ ◦ δ = ± ∗ d ∗ ∗d∗ = ± ∗ d2∗ = 0 since ∗∗ = ±1 and d2 = 0. �

Definition 11. The Hodge Laplacian or Laplace-Beltrami operator is the differential operator

4 = (d+ δ)2 = dδ + δd : Ωn(M)→ Ωn(M)

Example 15. Consider R3 with the standard metric dx⊗ dx+ dy⊗ dy+ dz ⊗ dz, and the standard volume form
dx ∧ dy ∧ dz. By the calculations of Example 12, the Hodge star operators are

∗ : Ω0(R3) −→ Ω3(R3)

f(x, y, z) 7→ f(x, y, z)dx ∧ dy ∧ dz
∗ : Ω1(R3) −→ Ω2(R3)

f dx+ g dy + h dz 7→ f dy ∧ dz − g dx ∧ dz + h dx ∧ dy
∗ : Ω2(R3) −→ Ω1(R3)

f dx ∧ dy + g dx ∧ dz + h dy ∧ dz 7→ f dz − g dy + h dx

∗ : Ω3(R3) −→ Ω0(R3)

f(x, y, z)dx ∧ dy ∧ dz 7→ f(x, y, z)



So the codifferential δ is given by

δ : Ω0(R3) → Ω−1(R3)

f 7→ 0

δ : Ω1(R3) → Ω0(R3)

fdx+ gdy + hdz 7→ (−1)0·3+1 ∗ d(fdy ∧ dz − gdx ∧ dz + hdx ∧ dy)

= − ∗ (fx + gy + hz)dx ∧ dy ∧ dz = −(fx + gy + hz)

δ : Ω2(R3) → Ω1(R3)

fdx ∧ dy − gdx ∧ dz + hdy ∧ dz 7→ (−1)1·3+1 ∗ d(fdz + gdy + hdx)

= ∗[(fx − hz)dx ∧ dz + (fy − gz)dy ∧ dz + (gx − hy)dx ∧ dy]

= (hz − fx)dy + (fy − gz)dx+ (gx − hy)dz

δ : Ω3(R3) → Ω2(R3)

fdx ∧ dy ∧ dz 7→ ∗d(f) = (−1)2·3+1 ∗ (fxdx+ fydy + fzdz) = −(fxdy ∧ dz − fydx ∧ dz + fzdx ∧ dy.)

Let’s compute some Laplace-Beltrami operators:

4 : Ω0(R3) → Ω0(R3)

f(x, y, z) 7→ δd(f) + dδ(f) = δdf = −(∂xxf + ∂yyf + ∂zzf),

c.f. the usual Laplacian 4 = ∂xx + ∂yy + ∂zz on functions. The Laplace-Beltrami operator on 1-forms:

4 : Ω1(R3) → Ω1(R3)

fdx+ gdy + hdz 7→ δ[(gx − fy)dx ∧ dy − (fz − hx)dx ∧ dz + (hy − gz)dy ∧ dz] + d(fx + gy + hz)

= [gyx − fyy − (fzz − hzx)]dx+ [hzy − gzz − (gxx − fxy)]dy + [fxz − hxx − (hyy − gyz)]dz
−[fxx + gxy + hxz]dx− [fyx + gyy + hyz]dy − [fzx + gzy + hzz]dz

= [−fxx − fyy − fzz]dx+ [−gxx − gyy − gzz]dy + [−hxx − hyy − hzz]dz

Exercise 12. Let H ⊂ R2 be the upper half plane, i.e. {(x, y) ∈ R2|y > 0}, equipped with the metric g(x, y) =
(dx ⊗ dx + dy ⊗ dy)/y2 and the normalized volume form Ω(x, y) = y2dx ∧ dy. Find explicit expressions for the
Hodge star operators ∗, the codifferential operators δ, and the Laplace-Beltrami operators 4.

2.13. Poincaré duality and Hodge duality. Let us suppose that M is an orientable and compact k-
dimensional manifold, with no boundary. Then we can integrate k-forms on it. We suppose that M is equipped
with a Riemannian metric 〈, 〉, and a compatible volume form Ω. Then we can define the L2 inner product on
each vector space ΩpdR(M) via

(ω, τ) :=

∫
M

〈ω, τ〉Ω.

Note that, by definition of the Hodge star operator, this means (ω, τ) =
∫
M
ω ∧ (∗τ).

Lemma. With respect to the above inner product, d and δ are adjoint operators, i.e. (dω, τ) = (ω, δτ).

Proof. Let ω ∈ Ωp(M), τ ∈ Ωp+1(M). Now ω ∧ ∗τ is a k − 1 form, so

d(ω ∧ ∗τ) = dω ∧ ∗τ + (−1)pω ∧ d(∗τ)

= dω ∧ ∗τ + (−1)p(−1)p(k−p)ω ∧ ∗ ∗ d(∗τ)

= dω ∧ ∗τ + (−1)p(−1)p(k−p)(−1)pk+1(ω ∧ ∗δτ)

= dω ∧ ∗τ − ω ∧ ∗δτ

is a k-form. By Stokes’ theorem (since ∂M = ∅),

0 =

∫
M

dω ∧ ∗τ −
∫
M

ω ∧ ∗δτ def
=⇒ 0 = (dω, τ)− (ω, δτ).

�

Lemma. The Laplace-Beltrami operator 4 : ΩpdR(M)→ ΩpdR(M) is symmetric with respect to the inner product,
i.e. (ω,4τ) = (4ω, τ), and non-negative, i.e. (4ω, ω) ≥ 0 for every ω ∈ Ωp(M).



Proof. Symmetry and non-negativity follow immediately from the adjointness of d and δ:

(ω,4τ) = (ω, δdτ) + (ω, dδτ) = (dδω, τ) + (δdω, τ) = (4ω, τ)

(4ω, ω) = (ω, δdω) + (ω, dδω) = (dω, dω) + (δω, δω) ≥ 0.

�

Definition 12. A differential form ω ∈ Ωp(M) is called harmonic if 4ω = 0.

Exercise 13. Show that the Hodge star operator sends harmonic forms to harmonic forms.
Hint: show that if dω = 0, then δ ∗ ω = 0, and if δω = 0, then d ∗ ω = 0.

(δ ∗ ω, δ ∗ ω) = (δ ∗ ω,± ∗ d ∗ ∗ω) = (δ ∗ ω,± ∗ dω)

(d ∗ ω, d ∗ ω) = (d ∗ ω,± ∗ δ ∗ ∗ω) = (d ∗ ω,± ∗ δω).

Lemma. A differential form ω ∈ Ωp(M) is harmonic if and only if dω = 0 and δω = 0.

Proof. ( =⇒ :) If 4ω = 0 then 0 = (4ω, ω) = (dω, dω) + (δω, δω) =⇒ dω = 0 and δω = 0.

(⇐=:) If dω = 0 and δω = 0 then 4ω = δdω + dδω = 0. �

If ω ∈ Ωp(M) is harmonic, then it is closed (dω = 0) and therefore it determines a cohomology class [ω] ∈
Hp(M).

Lemma. Suppose that ω, τ ∈ Ωp(M) are two harmonic p-forms such that [ω] = [τ ]. Then ω = τ . In other
words, there is at most one harmonic form in a given cohomology class.

Proof. By assumption, ω − τ = dσ for some σ ∈ Ωp−1(M). So since δω = 0 and δτ = 0, we get that δdσ = 0.
But then we have

(ω − τ, ω − τ) = (dσ, dσ) = (σ, δdσ) = (σ, 0) = 0

and therefore, ω − τ = 0. �

Theorem. Every cohomology class [ω] ∈ Hp(M) contains a harmonic representative.

Proof. This is an existence theorem, which is harder to prove. It is proved rigorously with tools from analysis.
The idea is as follows: let [ω0] be a cohomology class in Hp(M). Then any other representative of the same
cohomology class is of the form

ω = ω0 + dα

where α ∈ Ωp−1(M). Consider the functional

Φ : Ωp−1(M) → [0,∞)

α 7→ (ω0 + dα, ω0 + dα) =

∫
M

〈ω0 + dα, ω0 + dα〉Ω

that takes the L2 norm of a given representative of the cohomology class. Suppose that this functional attains
a minimum, say at ω0 + dα0. Then it means that for all β ∈ Ωp−1(M),

0 =
d

dt

∣∣
t=0

(ω0 + dα0 + tdβ, ω0 + dα0 + tdβ)

= 2(dβ, ω0 + dα0)

= 2(β, δ(ω0 + dα0))

and therefore δ(ω0 + dα0) = 0. Since it is already the case that d(ω0 + dα0) = 0, we see that ω0 + dα0 is a
harmonic form. So we need an argument as to why the functional should attain a minimum.

As the functional is bounded below, it certainly has an infimum, so we can find a sequence of forms in
Ωp−1(M) for which the functional converges to the infimum. However this convergence is with respect to the
L2 norm on Ωp−1(M). An L2-limit is not necessarily smooth, and the analysis part of the proof (which is the
hard part) is required to show that the minimum is achieved by a smooth differential form. �

The previous two results are known as the Hodge Theorem, or Hodge-Weyl Theorem:

Theorem (Hodge Theorem). Let M be a compact, oriented manifold. Then every cohomology class can be
represented by a unique harmonic form.

The Hodge theorem also gives another proof of Poincaré duality for compact orientable manifolds:



Theorem (Poincaré duality). Let M be a compact orientable manifold of dimension k. Then the bilinear map∫
M

: Hp
dR(M)×Hk−p

dR (M) −→ R

([ω], [τ ]) 7→
∫
M

ω ∧ τ

is non-degenerate, and therefore Hp
dR(M) ∼= Hk−p

dR (M).

Proof. Let ω be a representative of the cohomology class [ω]. To show that the bilinear pairing is non-degenerate

we need to show that if [ω] 6= 0, then there exists a [τ ] ∈ Hk−p
dR (M) such that

∫
M
ω ∧ τ 6= 0. Every manifold

admits a Riemannian metric, let us fix some Riemannian metric on M . And let Ω be a volume form on M .
Then we can do Hodge theory. By the Hodge theorem, we can take ω to be the unique harmonic representative
of the cohomology class [ω]. Since we are assuming that the cohomology class is non-zero, ω 6= 0. Now let us
take η = ∗ω. Then, by an exercise above, η is also harmonic, therefore η is closed and determines a cohomology
class. Moreover, we have ∫

M

ω ∧ τ =

∫
M

ω ∧ ∗ω = (ω, ω) 6= 0.

�

3. The Poincaré dual of a compact, oriented submanifold

For simplicity we’ll suppose throughout this section that M is a compact oriented and connected k-dimensional
manifold. Remember from the previous section that the bilinear pairing of Poincarè duality implies an isomor-

phism between the dual space Hp
dR(M)∗ and the vector space Hk−p

dR (M). In other words, for every linear

functional f : Hp
dR(M)→ R, there is a unique cohomology class ηf ∈ Hk−p

dR (M) such that f(ω) =
∫
M
ω ∧ ηf for

all ω ∈ Hk
dR(M).

One source of linear functionals comes from integration over submanifolds of M . Let S ⊂ M be an oriented
p-dimensional submanifold of M . The inclusion map i : S ↪→M induces a pull-back map on p-forms and hence
on the p-th cohomology, i∗ : Hp(M) → Hp(S). So integration of the pull-back of p cohomology classes over S
therefore defines a linear functional

fS : Hp
dR(M) −→ R

ω 7→
∫
S

i∗ω

Therefore, there is a unique cohomology class ηS ∈ Hk−p
dR (M) such that∫

S

i∗ω =

∫
M

ω ∧ ηS

for all ω ∈ Hp
dR(M). This cohomology class is called the Poincaré dual of S, and a closed differential form τ

representing ω is often called a Thom form for S.

What does a Thom form look like, practically? We look at some examples.

Example 16. Let S be a point p ∈ M , i.e. a 0 dimensional submanifold. Then an orientation on S is a choice
of sign, + or −, and integration of the pull-back of a zero form on M is evaluation of the 0-form (i.e. function
f : M → R) at p with the appropriate sign from the orientation. Since a 0-cohomology class is represented by a
closed 0-form on M , i.e. a function f : M → R that’s constant on each component of M , we see that∫

S

i∗f = f(p) = f(p) · 1 =

∫
M

f ∧ V

where V is any k-form on M such that
∫
M
V = 1. (Since Hk(M) is one-dimensional, all cohomology classes are

represented by multiples of V , so they’re distinguished from each other precisely by the value of their integral
over M .)

Example 17. Let M be the 2 dimensional cylinder S1 × R, with cylindrical coordinates (θ, y). Let S be the
circle given by the zero-section, i.e. S = {(θ, 0)|θ ∈ S1}. Let us find a Thom form for S. Given a 1-form

ω = f(θ, y)dθ+ g(θ, y)dy ∈ Ω1(M), ω is closed if and only if dω = 0, in other words 0 = (∂g∂θ −
∂f
∂y )dθ ∧ dy, hence



if and only if ∂g
∂θ = ∂f

∂y . Let us consider a 1-form of the type τ = t(y)dy for some compactly supported function

t : R→ R. Then, we have ∫
M

ω ∧ τ =

∫
M

(f(θ, y)dθ + g(θ, y)dy) ∧ (t(y)dy)

=

∫
M

f(θ, y)t(y)dθ ∧ dy

=

∫
R

(∫
S1

f(θ, y)dθ

)
︸ ︷︷ ︸

:=F (y)

t(y)dy

Since dF
dy = d

dy

(∫
S1 f(θ, y)dθ

)
=
∫
S1

∂f
∂y (θ, y)dθ =

∫
S1

∂g
∂θ (θ, y)dθ = g(2π, y)−g(0, y) = 0, this shows that F (y) = c

for some constant c, so in particular F (y) = F (0) for all y, and that therefore∫
M

ω ∧ τ = c

∫
R
t(y)dy =

(∫
S1

f(θ, 0)dθ

)∫
R
t(y)dy =

(∫
S

i∗ω

)(∫
R
t(y)dy

)
,

so provided t(y) is any compactly supported function such that
∫
R t(y)dy = 1, the 1-form τ = t(y)dy is a Thom

form for S.

3.1. Tubular neighborhood theorem. First a definition of vector bundles:

Definition 13. Let M be a smooth manifold, and let r be a positive integer. A vector bundle of rank k over M
is a triple (E,M, π) where E is a smooth manifold, and π : E →M is a smooth map with the following structure:

(1) ∀ x ∈M , π−1(x) is a vector space of dimension r (i.e. a vector space isomorphic to Rr),
(2) there is an open cover

⋃
α
Uα of M such that for every α, there is a diffeomorphism Φα : π−1(Uα) →

Uα × Rr such that for every x ∈ Uα, the restriction Φα : π−1(x)→ {x} × Rk is a linear isomorphism of
vector spaces.

Example 18. The tangent bundle TM of a smooth manifold M of dimension k is a vector bundle of rank k over
M . The cotangent bundle T ∗M is another vector bundle of rank k over M .

The pairs (Uα,Φα) are called local trivializations, the preimage π−1(x) ⊂ E, often written Ex, is called the
fiber of E over x. Any vector bundle has a submanifold M0 ⊂ E called the zero-section, which is diffeomorphic to
M ; in each fiber Ex there is a well-defined zero 0x ∈ Ex (and this zero does not depend on the local trivialization
Φα at x since linear isomorphisms always send zero to zero). In other words there is an injective map s : M → E
which sends x to the element 0x ∈ Ex, whose image M0 = s(M) is the zero-section of E, and s : M → M0 is a
diffeomorphism with inverse π|M0 : M0 →M .

Let M be an oriented manifold of dimension k, and let S ⊂M be an oriented and compact submanifold of M ,
of dimension p. The restriction of the tangent bundle TM to S is a vector bundle over S, and a subbundle of
this vector bundle is the tangent bundle to S, TS. That is, at each point s ∈ S, we have Rp ∼= TsS ⊂ TsM ∼= Rk.

For any inclusion of finite dimensional vector spaces V ⊂ W their quotient is the vector space V/W whose
elements are the equivalence classes of the equivalence relation a ∼ b ⇐⇒ a− b ∈ W . If you want to be fancy
and use the language of exact sequences you can say that it is the vector space determined by the condition that
the sequence

0→W
i→ V

p→ V/W → 0

is exact, where i is the inclusion map. If we fix an inner product 〈, 〉 on V then V splits into W ⊕W⊥ and there
is a natural isomorphism of vector spaces W⊥ ∼= V/W .

Given a p-dimensional submanifold S of a k-dimensional manifold M , there is an inclusion of vector
bundles TS ⊂ TM , i.e. at each point s ∈ S there is an inclusion of vector bundles TsS ⊂ TsM where TsS ∼= Rp
and TsM ∼= Rk. The normal bundle to S is the vector bundle N → S whose fiber at each point s ∈ S is the
quotient vector space Ns = TsM/TsS. If M is equipped with a Riemannian metric then the normal bundle NS
is identified with the orthogonal complement (TS)⊥.

Definition 14. Let S ⊂ M be a submanifold of M . A tubular neighborhood of S in M is an open subset U
containing S such that there is a diffeomorphism Ψ : N → U whose restriction to the zero section is the identity
map on S.

Theorem (Tubular neighborhood theorem). Any compact submanifold S of M has a tubular neighborhood.



Proof outline. In fact the compactness assumption on S isn’t necessary, but it’s all we need for our purposes.
First put a Riemannian metric on M (any smooth manifold has a Riemannian metric). The metric then identifies
the normal bundle to S with the vector bundle (TS)⊥ on S, and exponential maps that give a diffeomorphism
between a neighborhood of each point in M and a neighborhood of the origin in the tangent space to each point
in M . So one can construct a diffeomorphism between the normal bundle and the neighborhood U using the
exponential map in the directions that are normal (i.e. orthogonal) to S. �

Lemma. Let τ be a Thom form for S considered as the zero-section of the normal bundle N
π→ S. Let U be a

tubular neighborhood of S for Φ : U
∼=→ N . Then the pull-back Φ∗τ is compactly supported in U , and if we extend

it by zero to all of M , it is a Thom form for S in M .

Proof. Let ω be a p form on M . Let ρ : M → [0, 1] be a function with compact support in U such that ρ = 1 on
the support of Φ∗τ . Then ρω is a p-form on U , and (Φ∗)−1(ρω) is a p-form on N , and the restriction of ω to S
in M is equal to the restriction of (Φ∗)−1(ρω) to S in N , so∫

S

ω =

∫
S

(Φ∗)−1(ρω) =

∫
N

(Φ∗)−1(ρω) ∧ τ =

∫
U

ρω ∧ Φ∗(τ) =

∫
U

ω ∧ Φ∗(τ)

showing that Φ∗(τ) is a Thom form for S in U . Then, since ρω ∧ Φ∗τ = ω ∧ Φ∗τ , we have∫
S

ω =

∫
S

ρω =

∫
U

ρω ∧ Φ∗τ =

∫
U

ω ∧ Φ∗τ =

∫
M

ω ∧ Φ∗τ

and therefore Φ∗τ is a Thom form for S in M . �

Since this is true for any tubular neighborhood of S, this also shows that one can always find a Thom form
for S that is supported arbitrarily close to S.

3.2. Poincaré duals and intersection. Two submanifolds S and S̃ are said to intersect transversely if, at

each point p ∈ S ∩ S̃, one has TpM = TpS + TpS̃, i.e. the tangent spaces to S and S̃ span the whole tangent

space. Note that a necessary condition is that dimS + dim S̃ ≥ n.
Let’s recall the implicit function theorem.

Theorem. Let U ⊂ Rm, 0 ∈ U , and suppose that F : U → Rn is a smooth function such that F (0) = 0 and 0
is a regular value of F . Then F−1(0) is a smooth m− n dimensional submanifold of U .

Lemma. If a pair of submanifolds intersects transversely, then their intersection is also a smooth submanifold.

Proof. We just need to come up with local charts for S ∩ S̃ at each point. Let x ∈ S ∩ S̃ be a point in
the intersection, and let U be a neighborhood of x in M . Let x1, . . . , xk be local coordinates on U . Let

c1 = k− dimS be the codimension of S, and c2 = k− dim S̃ the codimension of S̃. Since they are submanifolds,
we can find local defining functions F1 : U → Rc1 and F2 : U → Rc2 for the two submanifolds, such that

F−1
1 (0) gives S ∩ U and F−1

2 (0) = S̃ ∩ U . We then have that ker(dF1)x = TxS and ker(dF2)x = TxS̃, and

both dF1 and dF2 are surjective at x. Transversality of the intersection implies that TxM = TxS + TxS̃.

Notice that this means that dF1 : TxS̃ → Rc1 must also be surjective, since we can find a complement to it
that is contained in the kernel of dF1. And similarly dF2 : TxS → Rc2 is surjective for the same reason. So

now set F : U → Rc1+c2 where F (v) =

[
F1(v)
F2(v))

]
∈ Rc1+c2 . Then dF =

[
dF1

dF2

]
. It is easy to see that

F−1(0) = F−1
1 (0) ∩ F−1

2 (0) = S ∩ S̃ ∩ U , so by the implicit function theorem we just need to check that 0
is a regular value of F , i.e. dF is surjective at all x ∈ F−1(0). For this use our earlier observations. Let

b =

[
a
b

]
∈ Rc1+c2 . Now let v ∈ TxS̃ be such that dF1(v) = a, and let w ∈ TxS be such that dF2(v) = b. Then

dF (v + w) =

[
dF1(v + w)
dF2(v + w)

]
=

[
dF1(v)
dF2(w)

]
=

[
a
b

]
.

�

Relationship between intersection and wedge product:

Proposition. Let S and S̃ be smooth submanifolds of M that intersect transversely, and S ∩ S̃ their
intersection, which is also a smooth submanifold of M . Then

ηS∩S̃ = ηS ∧ ηS̃ .



Proof. We have that TpM = TpS+TpS̃ at each p ∈ S ∩ S̃. Let NS → S be the normal bundle to S, and NS̃ → S̃

be the normal bundle to S̃. The normal bundle to S ∩ S̃ has as its fiber the quotient TpM/Tp(S ∩ S̃).

Exercise 14. Show that TpM/Tp(S ∩ S̃) ∼= TpM/TpS ⊕ TpM/TpS by defining a linear map from TpM →
TpM/TpS ⊕ TpM/TpS whose kernel is precisely Tp(S ∩ S̃).

In other words, the normal bundle to S ∩ S̃ is the direct sum of the normal bundles to S and S̃, i.e., NS∩S̃ =
NS ⊕NS̃ . The proof follows from the general case of oriented vector bundles, which we outline below. �

Definition 15. The vector bundle E −→ S is orientable if there is a system of local trivializations {(Uα, φα :
π−1(Uα) → Uα × Rr)}α∈A for which the linear isomorphisms on the fibers, φα ◦ φ−1

β : Rr → Rr, preserve

orientation, i.e. are elements of GLr(R) with positive determinant.

We can even suppose that the linear isomorphisms on the fibers are given by elements of SO(r,R) (e.g. by
doing Gram-Schmidt to the columns we get a map from GLr(R)→ SOr(R).)

Let us first describe what a Thom form is for the zero-section of an oriented vector bundle over a com-
pact oriented base.

Let E → M be an oriented vector bundle of rank r, where M is compact of dimension m. We have a

commuting triangle of maps M0
i // E

π

��
M

s

aaCCCCCCC

where π is the bundle projection, s is the map given by the

zero section and i is inclusion of the image of the zero section s(M) = M0 in the total space E. Moreover
s ◦ π : E → M0 is a deformation retract of E onto the zero section M0 (because the fibers are vector spaces,
which are contractible), so both π∗ and s∗ are isomorphisms, with π∗s∗ = IdH∗dR(E) and s∗π∗ = IdH∗dR(M).

Proposition. Let E → M be an oriented vector bundle of rank r, where M is compact of dimension m. A
compactly supported closed form τ ∈ Ωrc(E) represents the Poincaré dual of the zero-section M0 in E if and only
if τ restricted to each fiber Rr satisfies

∫
Rr τ = 1.

Proof. (⇐=:) Suppose τ is a compactly supported closed form satisfying
∫
Rr τ = 1. Now let ξ ∈ Hm

dR(E). Given
the isomorphism provided by π∗, we can suppose without loss of generality that ξ = [π∗(ω)] for some closed
ω ∈ Ωm(M). Let {Uα} be an open cover of M such that π−1(Uα) ∼= Uα × Rr, and let 1 =

∑
α ρα be a partition

of unity on M subordinate to the cover {Uα}. Then we have∫
E

π∗(ω) ∧ τ =

∫
E

π∗(
∑
α

ραω) ∧ τ

=
∑
α

∫
E

π∗(ραω) ∧ τ.

Now the m + k form π∗(ραω) ∧ τ is supported on π−1(Uα) ∼= Uα × Rr, so the integral can be computed on
Uα × Rr. Since π∗(ραω) is constant in the Rr coordinates, we can compute the integral as an iterated integral,
first integrating

∫
Rr τ with respect to the variables in the Rr direction to get a function in the Uα variables. But

by assumption this integral is 1, so altogether we get that∫
E

π∗(ραω) ∧ τ =

∫
Uα×Rr

π∗(ραω) ∧ τ

=

∫
Uα

(∫
Rr
τ

)
i∗π∗(ραω)

=

∫
Uα

i∗π∗(ραω)

=

∫
Uα

ραω.



Therefore ∫
E

ξ ∧ τ =

∫
E

π∗(ω) ∧ τ =
∑
α

∫
E

π∗(ραω) ∧ τ

=
∑
α

∫
Uα

ραω

=

∫
M

ω

=

∫
M0

i∗π∗ω =

∫
M0

i∗ξ.

( =⇒ :) Suppose τ ∈ Ωrc(E) is a closed form representing the Poincaré dual of the zero section M0 in E. For each
x ∈ M , let jx : Ex → E be the inclusion of the fiber. Define a smooth function T : M → R by T (x) =

∫
Ex
j∗xτ .

Claim: T is constant. Given the claim, we can compute what this constant must be. By Poincaré duality let
ξ ∈ Hm

dR(E) be the dual of [τ ] ∈ Hr
c (E), i.e.

∫
E
ξ ∧ τ = 1. As before we can suppose that ξ = [π∗ω] for some

closed ω ∈ Ωm(M), so we have 1 =
∫
E
π∗ω ∧ τ =

∫
M0

i∗π∗ω =
∫
M
ω. We can again take a partition of unity

{ρα} on M subject to an open cover with local trivializations, to write

1 =

∫
E

π∗ω ∧ τ =
∑
α

∫
π−1(Uα)

π∗(ραω) ∧ τ =
∑
α

c

∫
Uα

ραω = c

∫
M

ω,

where c =
∫
Ex
τ . Thus, from 1 =

∫
M
ω and 1 = c

∫
M
ω, we get c = 1. Let’s now check the claim that the fiberwise

integration function T : M → R is constant. We can do this locally, in a local trivialization π−1(Uα) ∼= Uα×Rr.
Let’s say that x = (x1, . . . , xm) are local coordinates on Uα and t = (t1, . . . , tr) are local coordinates on Rr.
Then we can write τ =

∑
|I|+|J|=r

gI,J(x, t)dxI ∧ dtJ for some functions gI,J that are compactly supported in the

t directions. In particular, we have that T (x) =
∫
Rr j
∗τ =

∫
Rr g∅,(t1,...,tr)(x, t)dt1 ∧ . . . dtr. On the other hand,

we know that dτ = 0, and so we have

0 = d

 ∑
|I|+|J|=r

gI,J(x, t)dxI ∧ dtJ


=

∑
|I|+|J|=r

(dgI,J(x, t)) ∧ dxI ∧ dtJ .

By linear independence it follows that the coefficient of dxk ∧ dt1 ∧ . . . ∧ dtr in the above expression has to be
zero, i.e.

0 =
∂g∅,(t1,...,tr)(x, t)

∂xk
dxk ∧ dt1 ∧ . . . ∧ dtr +

r∑
j=1

∂g(xk),(t1,...,t̂j ,...,tr)(x, t)

∂tj
dtj ∧ dxk ∧ dt1 ∧ . . . ∧ d̂tj ∧ . . . ∧ dtr

=

∂g∅,(t1,...,tr)(x, t)

∂xk
+

r∑
j=1

(−1)j
∂g(xk),(t1,...,t̂j ,...,tr)(x, t)

∂tj


︸ ︷︷ ︸

=0

dxk ∧ dt1 ∧ . . . ∧ dtr

Now we can show that T (x) is constant in these local coordinates. We have, for each direction xk, the partial
derivative

∂T

∂xk
=

∂

∂xk

∫
Rr
g∅,(t1,...,tr)(x, t)dt1 . . . dtr

=

∫
Rr

∂g∅,(t1,...,tr)(x, t)

∂xk
dt1 . . . dtr

=

r∑
j=1

±1

∫
Rr

∂g(xk),(t1,...,t̂j ,...,tr)(x, t)

∂tj
dt1 . . . dtr

= 0



The last equality is just the fundamental theorem of calculus – all the functions g(xk),(t1,...,t̂j ,...,tr)(x, t) are com-

pactly supported in the ti directions. So for each j,
∫
R
∂g(xk),(t1,...,t̂j ,...,tr)

(x,t)

∂tj
dtj = g(xk),(t1,...,t̂j ,...,tr)(x, t)

∣∣+∞
−∞ =

0− 0 = 0, and it follows that the iterated integral
∫
Rr

∂g(xk),(t1,...,t̂j ,...,tr)
(x,t)

∂tj
dt1 . . . dtr is also zero. �

Lemma. Let X → S, Y → S be two vector bundles, where X,Y, S are all orientable manifolds and S is also

compact. Let X ⊕ Y π→ S be their direct sum, i.e. for each p ∈ S, π−1(p) = Xp ⊕ Yp. Let τ1 be a Thom form for
S in X, and τ2 a Thom form for S in Y . Then τ1 ∧ τ2 is a Thom form for S in X ⊕ Y .

Proof. Given the previous lemma it’s enough to check that τ1 ∧ τ2 is a compactly supported closed form and
that

∫
Rr1+r2

τ1 ∧ τ2 = 1. But the support of τ1 ∧ τ2 is the intersection of two compact sets, hence compact, and

d(τ1 ∧ τ2) = dτ1 ∧ τ2 ± τ1 ∧ dτ2 = 0 so it’s closed. Moreover,
∫
Rr1+r2

τ1 ∧ τ2 =
(∫

Rr1 τ1
) (∫

Rr2 τ2
)

= 1 · 1 = 1. �

3.3. Intersection numbers. In particular, if S and S̃ are compact and have complementary dimension in M

and intersect each other transversely, their intersection S∩ S̃ is a compact zero dimensional manifold, i.e. a finite

collection of points in M . If both S and S̃ are oriented, then we can define an orientation at each intersection

point (i.e. a plus or minus sign) by taking, at each x ∈ S∩S̃, a positively oriented basis β for TxS and a positively

oriented basis β̃ for S̃, and taking the sign of the ordered basis {β, β̃} of TxM . Therefore, for ω = 1 ∈ Ω0(M),
we have ∫

M

ηS ∧ ηS̃ =

∫
M

ηS∩S̃ =

∫
S∩S̃

1 =
∑

x∈S∩S̃

±1

where the sign is determined by the orientation of x ∈ S ∩ S̃. In particular, this quantity is an integer, and

moreover, since the quantity
∫
M
ηS ∧ ηS̃ is invariant under isotopies of S and S̃, so is the right hand side.

Definition 16. The intersection number I(S, S̃) of two compact, oriented submanifolds of M with complementary

dimension in M is defined as follows: take any isotopy φ of S̃ such that the intersection S ∩ S̃ is transversal,

and set I(S, S̃) =
∑

x∈S∩φ(S̃)

±1 with the sign determined by the oriented intersection.

This definition allows us to make sense of I(S, S̃) for any pair of compact oriented submanifolds of com-
plementary dimension in M , i.e. whether or not they intersect transversely. For example, we can define the
self-intersection number I(S, S) for a compact oriented submanifold of exactly half the dimension of M .

Example 19. Let S be the meridian on the torus (in red below). We compute I(S, S) (with respect to some
orientation on S) by doing a small perturbing isotopy φ(S) of S so that φ(S) intersects S transversely, and
counting oriented intersection numbers of S ∩ φ(S). We have drawn below two possible isotopies of S, in blue.
Verify that they give the same result, I(S, S) = 0.

.

Exercise 15. Show that I(S, S̃) = (−1)dimS dim S̃I(S̃, S̃).

3.4. Euler number and Euler characteristic. Given a compact, oriented manifold M , Let M ×M be the
product manifold. The product contains a submanifold 4 = {(x, x)|x ∈ M} called the diagonal, which is
canonically isomorphic to M . Let η4 ∈ Hk

dR(M ×M) be the Poincaré dual of 4 in M ×M .

Definition 17. The integer I(4,4) is called the Euler number of M .

Proposition (Euler number = Euler characteristic). I(4,4) = χ(M) =
∑
q

(−1)q dimHq
dR(M).

Proof. We have I(4,4) =
∫
M×M η4 ∧ η4 =

∫
4 η4, and we will directly compute this final integral. Let

π1 : M × M → M and π2 : M × M → M be the two projections from M × M to the first and second
factor respectively. Let us first work out what η4 ∈ Hk

dR(M × M) is, by combining what we know from

the Kunneth theorem, Hk
dR(M ×M) =

k⊕
a=0

Ha
dR(M) ⊗ Hk−a

dR (M), and what we know from Poincaré duality,



Hk−a(M) = (Ha(M))
∗
. Let {ωa,i} be a basis for the vector space Ha

dR(M), and let {τk−a,i} be a basis for the

vector space Hk−a
dR (M)) that is dual to the basis {ωa,i} i.e.

∫
M
ωa,i ∧ τk−a,j = δij . So by the Kunneth theorem

a basis for Hk
dR(M ×M) is {π∗1ωa,i ∧ π∗2τk−a,j}a,i,j , so η4 =

∑
a,i,j

ca,i,jπ
∗
1ωa,i ∧ π∗2τk−a,j for coefficients ca,i,j ∈ R.

To work out what the coefficients ca,i,j we essentially do a projection onto the factor π∗1ωa,i ∧ π∗2τk−a,j
by using the bilinear pairing with its dual, π∗1τk−a,i ∧ π∗2ωk−a,j .

On the one hand,

∫
4
π∗1τk−a,i ∧ π∗2ωa,j = (−1)a(k−a)

∫
M

ωa,j ∧ τk−a,i = (−1)a(k−a)δij

where the first equality is possible because the projections π1 : 4 → M and π2 : 4 → M are isomorphisms
fitting into a commutative diagram

4
π1

~~}}
}}
}}
}

π2

  A
AA

AA
AA

M
Id // M

and therefore,
∫
4 π
∗
1τk−a,i ∧ π∗2ωa,j =

∫
M

(π−1
2 )∗π∗1τk−a,i ∧ (π−1

2 )∗π∗2ωa,j =
∫
M
τk−a,i ∧ ωa,j .

On the other hand,

∫
4
π∗1τk−a,i ∧ π∗2ωa,j =

∫
M×M

π∗1τk−a,i ∧ π∗2ωa,j ∧ η4

=
∑
α,m,n

cα,m,n

∫
M×M

π∗1τk−a,i ∧ π∗2ωa,j ∧ π∗1ωα,m ∧ π∗2τk−α,n

=
∑
α,m,n

cα,m,n(−1)aα
∫
M×M

π∗1τa,i ∧ π∗1ωα,m ∧ π∗2ωk−a,j ∧ π∗2τk−α,n

=
∑
α,m,n

cα,m,n(−1)aα
∫
M×M

π∗1(τk−a,i ∧ ωα,m) ∧ π∗2(ωa,j ∧ τk−α,n)

Now for τk−a,i ∧ ωα,m 6= 0 we need k − a+ α ≤ k, and for ωa,j ∧ τk−α,n 6= 0 we need a+ k − α ≤ k, from which
we see that the only way for both to be non-zero is for α = a. So continuing from above, we get

=
∑
m,n

ca,m,n(−1)a
2

∫
M×M

π∗1(τk−a,i ∧ ωa,m) ∧ π∗2(ωa,j ∧ τk−a,n)

=
∑
m,n

ca,m,n(−1)a
2

(∫
M

τk−a,i ∧ ωa,m
)(∫

M

ωa,j ∧ τk−a,n
)

=
∑
m,n

ca,m,n(−1)a
2

(−1)a(k−a)δimδjn

= ca,i,j(−1)a
2

(−1)a(k−a).

so combining we have (−1)a(k−a)δij = ca,i,j(−1)a
2

(−1)a(k−a) =⇒ ca,i,j = (−1)a
2

δij = (−1)aδij since a2

mod 2 = a mod 2.



So now we can compute

I(4,4) =

∫
M×M

η4 ∧ η4

=

∫
4
η4

=

∫
4

∑
a,i

(−1)aπ∗1(ωa,i) ∧ π∗2(τk−a,i)

=
∑
a,i

(−1)a
∫
4
π∗1(ωa,i) ∧ π∗2(τk−a,i)

=
∑
a,i

(−1)a
∫
M

ωa,i ∧ τk−a,i

=
∑
a

(−1)a
∑
i

1

=
∑
a

(−1)a dimHa
dR(M)

= χ(M).

�

3.5. Vector fields and the Poincaré-Hopf index theorem.

Definition 18. A vector field on M is a section of the tangent bundle TM
π−→ M . In other words, it’s a map

Γ : M → TM such that π ◦ Γ is the identity map on M .

Or you can think of it as a smooth function Γ : M → TM of the form x 7→ (x, v(x)) for some v(x) ∈ TxM .

Let M be a compact oriented manifold, and Γ a vector field on M . We suppose that Γ has isolated ze-
ros, i.e. for all x ∈ M such that Γ(x) = (x, 0), there is a small neighborhood of x in which the only 0 of Γ is
x. Therefore, for a sufficiently small ball B containing x, Γ|∂B is not zero, so for each p ∈ ∂B we can define a
unit vector Γ(p)/‖Γ(p)‖ ∈ Sk−1. Since ∂B ∼= Sk−1, we get a map f : Sk−1 → Sk−1. This map f has a degree
(defined earlier in the course – pick a regular value in Sk−1, and count the points in f−1(a) with signs according
to whether f is orientation preserving or reversing at that point) .

Definition 19. The local index of the zero x is defined to be the integer ind(x) := deg f computed for a sufficiently
small ball B containing x.

Exercise 16. Why is this local index number well-defined?

Definition 20. Define the index of Γ by ind(Γ) :=
∑
x

ind(x) where the sum is over all zeros x of Γ.

Theorem (Poincaré-Hopf index theorem). Let M be compact and oriented, and let Γ : M → TM be a vector
field on M with isolated zeros. Then ind(Γ) = χ(M).

Proof. This is the outline of the ingredients in the proof:

(1) Show that Γ can be replaced with another vector field Γ̂ such that ind(Γ̂) = ind(Γ), and Γ̂ has isolated

zeros and dΓ̃x is invertible at each zero, and the index at each zero is either 1 or −1 depending on

whether dΓ̃x preserves orientation or changes orientation.

(2) Show that for such a Γ̂, if we fix a Riemannian metric on M and use it to exponentiate the vector field,

i.e. define an isomorphism ΦΓ̂ : M →M by ΦΓ̂(p) = expp(Γ̂(p)), then ΦΓ̂’s fixed points are precisely at

the zeros of Γ̂, and the intersection 4∩Gr ΦΓ̂ is transverse.
(3) Show that the sign of the intersection T(x,x)4⊕ T(x,x) Gr(ΦΓ̂) at the point (x, x) is precisely the index

of x in Γ̂.

Once we have these steps, we get the result, for ind Γ = ind Γ̂ = I(4,ΦΓ̂) = I(4,4) = χ(M), where
I(4,Gr(ΦΓ̂)) = I(4,4) by isotopy invariance, using the fact that 4 = Gr(Id) and ΦΓ̂ is isotopic to the identity
map on M by the isotopy Φt

Γ̂
(p) = expp(tΓ(p)).

�



Here is a proof of the individual ingredients.

Given a vector field Γ with isolated zeros, the idea is that we can make changes very locally, in a small
neighborhood of each zero, and not change the index. Let x be an isolated zero of Γ. First let us characterize
what it means for the index of Γ to be ±1.

Lemma. Let p be a zero of Γp. Then if dΓp is invertible at p, the index of Γ at p is +1 if dΓp preserves
orientation, and −1 if dΓp reverses orientation.

Proof. Working in a local chart about x, we can take Γ to be a vector field on a neighborhood of the origin in
Rk, with an isolated zero at the origin. By definition, the index is the degree of the map on a sufficiently small
ball

f : ∂Bk → Sk

given by f(z) = Γ(z)/‖Γ(z)‖. For small z we can write Γ(z) = Γ(0) + dΓ0z + r(z) = dΓ0z + r(z) where r(z)
is a small quadratic term, and ‖r(z)‖/‖z‖ → 0 as z → 0. In particular, given any ε > 0, for small enough z
we can guarantee that ‖Γ(z) − dΓ0z‖ = ‖r(z)‖ ≤ ε‖z‖, so that in particular, for any s ∈ [0, 1] we have that
‖dΓ0z + sr(z)‖ ≥ ‖dΓ0z‖ − ‖sr(z)‖ ≥ ‖dΓ0z‖ − ε‖z‖.

Suppose then that dΓ0 is invertible. Then there exists some δ > 0 such that ‖dΓ0z‖ ≥ δ‖z‖, so
‖dΓ0z‖ − ε‖z‖ ≥ δ‖z‖ − ε‖z‖ so as long as we choose ε smaller than δ, we get ‖dΓ0z + sr(z)‖ > 0 for
z 6= 0, z sufficiently small.

This means that we can define a homotopy fs(z) : ∂Bk → Sk by

fs(z) =
dΓ0(z) + sr(z)

‖dΓ0(z) + sr(z)‖
which is a homotopy between f0(z) = dΓ0z

‖dΓ0z‖ and f1(z) = f(z) as before. By homotopy invariance of the degree,

we see that the index of f at 0 is the same as the index of f0 at 0. Now dΓ0 is just an invertible matrix, so
dΓ0 ∈ GLk(R). The two components of GLk(R), which correspond to det > 0 and det < 0, are path connected.
So if the determinant of dΓ0 is positive, dΓ0 is homotopic to the identity I, and if det dΓ0 is negative, then it
is homotopic to the diagonal matrix E with diagonal entries (−1, 1, . . . , 1), which represents a single reflection
through the x1 axis. Therefore, taking a path Mt ∈ GLn(R) such that M0 = dΓ0 and M1 = I or E according to
which component of GLk(R), we have again by the homotopy invariance of the degree, that deg Mtz

‖Mtz‖ is constant

for all t ∈ [0, 1]. Consequently,

deg f0 = deg
dΓ0z

‖dΓ0z‖
= deg

z

‖z‖
= 1

if det dΓ0z > 0, and otherwise, if det dΓ0 < 0,

deg f0 = deg
dΓ0z

‖dΓ0z‖
= deg

Ez

‖Ez‖
= −1.

�

Now let’s show how Step 1 can be achieved. We will modify Γ in a neighborhood of x by taking a small
compactly supported bump function ρ : Bx → [0, 1], and some element a ∈ Bx, and putting

Γ̃(x) = Γ(x) + ρ(x)a.

Then Γ̃(x) = 0 ⇐⇒ Γ(x) = ρ(x)a. ‖Γ(x)‖ = ρ(x)‖a‖ ≤ ‖a‖, this means that the zeros of Γ̃(x) are contained in
the neighborhood of x where ‖Γ(x)‖ ≤ ‖a‖. If we choose ‖a‖ to be very small, we can choose the function ρ(x)
to be compactly supported in a neighborhood U of x in which Γ has no other zeros, and to satisfy ρ(x) = 1

on a tiny neighborhood V containing the zeros of Γ̃(x). Thus the zeros of Γ̃(x) correspond to the points where
Γ(x) = a. By definition, the degree of Γ at x is the number of these zeros counted with signs according to
whether Γ preserves or changes the orientation. Now by Sard’s theorem, the critical values of Γ have measure
zero, and therefore, in any neighborhood of x, we can find a regular value of Γ, so we choose a very small a such
that a is regular. This means that for every x such that Γ(x) = a, we have that dΓx is invertible. Therefore,

since at such an x we have dρ = 0, we have dΓ̃x = dΓx and so dΓ̃ is invertible, so each zero has degree 1 or
−1, according to whether dΓx is orientation preserving or orientation reversing. Therefore, the total index of

the zeros of Γ̃ in this neighborhood of x is identical to the index of x as a zero of Γ. Moreover, outside of this

neighborhood ρ(x) = 0 and the zeros of Γ are the same as the zeros of Γ̃. Hence ind Γ = ind Γ̃. Therefore, if we



do this local procedure at every zero of Γ where dΓ is not invertible, we can replace Γ with a vector field Γ̃ such

that dΓ̃ is invertible at every 0, and such that ind Γ = ind Γ̃.

Now let us exponentiate Γ̃, to get a function ΦΓ̃ : M → M given by x 7→ expx(Γ̃(x)). We want to relate the

intersection number of Gr ΦΓ̃ ∩4 with the index of Γ̃.

First we want to understand what a point of transverse intersection of 4 ∩ Gr f looks like. Remember
that the intersection 4∩Gr f consists of points such that (x, x) = (x, f(x)), i.e. f(x) = x, i.e. fixed points of f .

Lemma. Let f : M → M be a smooth function. Let x be an isolated fixed point, f(x) = x, and consider
(x, x) ∈ 4∩Gr(f). Then the intersection 4∩Gr(f) is transverse at (x, x) if and only if (df − I)x is invertible,
and the sign of the intersection at (x, x) is equal to the sign of the determinant of (df − I)x.

Proof. Suppose that x ∈ M is a fixed point of f . Let v1, . . . , vn be a positively oriented basis for TxM . A
positively oriented basis for 4 at (x, x) is therefore{[

v1

v1

]
,

[
v2

v2

]
, . . . ,

[
vn
vn

]}
and a positively oriented basis for Gr f at (x, x) is{[

v1

dfxv1

]
,

[
v2

dfxv2

]
, . . . ,

[
vn

dfxvn

]}
The intersection is transverse if and only if the collection

(1)

{[
v1

v1

]
,

[
v2

v2

]
, . . . ,

[
vn
vn

]
,

[
v1

dfxv1

]
,

[
v2

dfxv2

]
, . . . ,

[
vn

dfxvn

]}
forms a basis for T(x,x)M ×M , in other words if and only if

det

(
v1 v2 . . . vn v1 v2 . . . vn
v1 v2 . . . vn dfxv1 dfxv2 . . . dfxvn

)
6= 0.

The sign of the intersection is positive if and only if the basis (1) is positively oriented, in other words if and
only if

det

(
v1 v2 . . . vn v1 v2 . . . vn
v1 v2 . . . vn dfxv1 dfxv2 . . . dfxvn

)
> 0,

and the sign of the intersection is negative if and only if the basis (1) is negatively oriented, in other words if
and only if

det

(
v1 v2 . . . vn v1 v2 . . . vn
v1 v2 . . . vn dfxv1 dfxv2 . . . dfxvn

)
< 0.

Let’s write A = (v1v2 . . . vn), i.e. the n × n matrix whose columns are the oriented basis for TxM . Then the
matrix above is really just (

A A
A dfxA

)
=

(
I 0
I I

)(
A A
0 (dfxA−A)

)
so

det

(
A A
A dfxA

)
= det

(
I 0
I I

)
det

(
A A
0 (dfxA−A)

)
= det(I) det(I) det(A) det(dfxA−A)

= det(A) det((dfx − I)A)

= det(A)2 det(dfx − I).

Since detA 6= 0 we see that the invertibility and sign of the determinant are completely determined by the
invertibility and sign of the determinant of dfx − I. �

Using this we can now finish steps 2 and 3. Having defined the map ΦΓ̃ : M →M by ΦΓ̃(x) = expx(Γ̃(x)), the

fixed points of ΦΓ̃ are exactly the points at which Γ̃(x) = 0. The previous lemma tells us that the intersection
4∩Gr ΦΓ̃ is transverse if and only if dΦΓ̃ − I is invertible, with the sign of the intersection determined by the
sign of dΦΓ̃ − I.



The final step is to show that dΦΓ̃ = I + dΓ̃. Let σ : (−ε, ε) → M be such that σ(0) = x, σ′(0) = v.
Then, by definition of the differential, we have

(dΦΓ̃)x(v) =
d

dt
ΦΓ̃(σ(t)) =

d

dt
expσ(t)(Γ̃(σ(t))) = (d exp)(x,0)(v, dΓ̃xv).

The last equality is because expp(γ) is a function of two variables, p and γ. We can write the differential

d exp(x,0)(v, dΓ̃xv) = D1v +D2dΓ̃xv where D1 is the differential of exp with respect to p (i.e. fixing γ) and D2

is the differential of exp with respect to γ. In our case D1v = v because fixing γ = Γ̃(x) = 0, the exponential
map is the identity map. And in our case D2dΓxv = dΓxv, because the derivative d

dt |t=0expp(γ(t)) for fixed p

is γ′(0), by a defining property of the exponential map. Therefore (dΦΓ̃)x(v) = v + dΓ̃xv, showing that in fact

(dΦΓ̃)x = I + dΓ̃x. Now combining everything, we have all the steps 1, 2 and 3.

3.6. Gauss-Bonnet. As an application of the Poincaré-Hopf index theorem let us prove the Gauss-Bonnet
theorem. Let S ⊂ Rk−1 be a compact and oriented hypersurface. Being oriented, it has a normal vector field,
i.e. a section N : S → TRk|S , defined such that N(p) ∈ TpRk+1Sk−1 is the unique unit vector such that for a
positively oriented ordered basis ξ1, . . . , ξk for TpS, the (k + 1)-tuple {N(p), ξ1, . . . , ξk} is a positively oriented
ordered basis of TpRk.

The Gauss map for the surface is the map g : S → Sk given by g(p) = N(p).

The Gaussian curvature of the surface is the function κ = det dg : S → R, which is a measure of how
much the normal vector field is changing at a given point. (The more curved the surface the larger the changes
in the normal vector field.)

Theorem. Let S ⊂ Rk+1 be a compact, oriented hypersurface, where k is even. Then∫
S

κ dVolS =
1

2
χ(S)γk

where γk =
∫
Sk
dVolSk is the volume of the unit sphere of dimension k with respect to the standard volume form.

Proof. Let g : S → Sk be the Gauss map. Since S and Sk are both compact and oriented of the same dimension,
we have the Degree Formula: ∫

S

g∗(dVolSk) = (deg g)

∫
Sk
dVolSk .

and in fact, g∗(dVolSk) = det(dg)dVolS = κ dVolS , and γk =
∫
Sk
dVolSk so we just need to show that

deg g = 1
2χ(S).

We will prove this identity by constructing a vector field Γ such that ind Γ = 2 deg g. Then the Poincaré-Hopf
index theorem says ind Γ = χ(S).

Let a ∈ Sk be a regular value of g, and suppose that −a is also a regular value of g. (By Sard’s theo-
rem, the set Crit(g) ⊂ Sk has measure 0. A regular value a ∈ Sk is in the complement of Crit(g). If −a is also
regular it mean that −a is in the complement of Crit(g), or equivalently a is in the complement of −Crit(g).
So an a satisfying the condition is in the complement of Crit(g) ∪ (−Crit(g)). In any case it means that such
an a is in the complement of a set of measure zero, in other words the set a ∈ Sk for which both a and −a are
regular are dense in Sk.)

Now we define a vector field on S as follows: project the vector a onto TpS at all p ∈ S. In other
words, subtract the component of a in the normal direction:

Γ(p) = a− 〈a, g(p)〉g(p).

What are the zeros of Γ: Γ = 0 ⇐⇒ a − 〈a, g(p)〉g(p) = 0 ⇐⇒ 〈a, g(p)〉g(p) = a ⇐⇒ g(p) = ±a. Since by
hypothesis on a, these are regular values of g, this means that g is a local isomorphism about each zero, and in
particular the zeros are isolated. Furthermore

dΓp = −〈a, dgp〉gp − 〈a, gp〉dgp



and we claim that the first term on the right is zero. Let α(t) be a cuve for which α(0) = p, α′(0) = v. Then
〈g(α(t)), g(α(t))〉 = 1∀t so that, differentiating, we see that 0 = 2〈g(α(0)), dgα(0)v〉 and so 0 = 〈g(p), dgpv〉 =
〈a, dgpv〉. So the first term in dΓp is zero, and we have

dΓp = −〈a, gp〉dgp

Now since gp = ±a, and 〈a, a〉 = 1, we see dΓp = −dgp if g(p) = a, and dΓp = dgp if g(p) = −a. Since
by regularity we know that dgp is invertible for all p ∈ g−1(±a), we see from this that the differential dΓp is
invertible for all p ∈ g−1(±a), i.e. dΓp is invertible at all the zeros of Γp.

�

4. Singular homology, cohomology, fundamental group

Reference for this part: Allen Hatcher, Algebraic Topology. Available as a free pdf download from his webpage.
Chapter 2: Singular homology, Chapter 3: Singular cohomology, Chapter 1: Fundamental group.

4.1. Simplicial homology. Definition of n-simplex, definition of a 4-complex on a topological space X, def-

inition of simplicial chain groups C4k (X) using coefficients in Z, boundary operator ∂ : C4k (X) → C4k−1(X),

∂ ◦ ∂ = 0, simplicial homology H4k (X). Small dimensional computations: RP 2, T 2, S2, S1, Klein bottle.

4.2. Singular homology. Definition of singular n-simplex, definition of singular homology, definition of reduced
singular homology. Singular homology of a point. Homotopy invariance of singular homology. Examples: the
singular homology of Rn (or of any open ball) is equal to the homology of a point. The singular homology of the
punctured plane (or of any cylinder) is equal to the singular homology of the circle.

Definition 21. A is a deformation retract of X if A ⊂ X and there exists a continuous function r : X → A
such that

• r|A is the identity map on A,
• r is homotopic to the identity map on X.

If A is a deformation retract of X then Hk(A) ∼= Hk(X) for all k.

4.3. Relative homology. Relative chain complex for A ⊂ X, Ck(X,A) = Ck(X)/Ck(A) and relative homology
Hk(X,A), long exact sequence for relative homology.

4.4. Useful properties. Equivalence of singular homology and simplicial homology, Mayer-Vietoris long exact
sequence for singular homology,

. . .→ Hk(U ∩ V )→ Hk(U)⊕Hk(V )→ Hk(U ∪ V )→ Hk−1(U ∩ V )→ . . .

Theorem (Excision theorem). Given Z ⊂ A ⊂ X such that the closure of Z is contained in the interior of A,
we have Hk(X −Z,A−Z) ∼= Hk(X,Z). Equivalently, given A ⊂ X and B ⊂ X such that the interiors of A and
B cover all of X, then Hk(B,A ∩B) ∼= Hk(X,A).

Example: Let n ≥ 1. Hk(Sn) = Z if k = 0 or n, and is 0 otherwise.

Theorem (Brouwer’s fixed point theorem). For n ≥ 1 let Bn = {(x1, . . . , xn) ∈ Rn|
∑
x2
i ≤ 1} be the closed

unit ball in n dimensional space. Let f : Bn → Bn be a continuous function. Then f must have a fixed point.
i.e., ∃x ∈ Bn such that f(x) = x.

Proof. By contradiction: if there were no fixed point we could define a deformation retract r : Bn → ∂Bn by

putting r(x) = f(x)−x
‖f(x)−x‖ . If n ≥ 2 then we have ∂Bn ∼= Sn−1, so we should have Hk(Sn−1) ∼= Hk(Bn) for all

k, but we know that Hn−1(Sn−1) ∼= Z while Hn−1(Bn) = 0, so this is impossible. If n = 1 then ∂B1 is the
boundary of an interval which has two points, and therefore H0(∂B1) ∼= Z ⊕ Z, but H0(B1) ∼= Z, so again this
is impossible. �

4.5. Cohomology. Definition of cochain groups Ck(X), definition of coboundary operator δ : Ck(X) →
Ck+1(X), cohomology groups Hk(X), multiplication of cohomology groups, H∗(X) =

⊕
k≥0H

k(X) as a graded
ring.

4.6. Poincaré duality. M compact and orientable =⇒ Hk(M) ∼= Hn−k(M).



5. Fundamental group

X topological space, x0 ∈ X, a loop in X based at x0 is a continuous function γ : [0, 1] → X such that
γ(0) = γ(1) = x0. Let P (X) be the set of loops in X based at x0.

Definition 22. Define an equivalence relation on P (X) by γ1 ∼ γ2 if and only γ1 and γ2 are homotopic, i.e.
there exists a continuous function H : [0, 1]× [0, 1]→ X such that

H(0, t) = γ1(t) and H(1, t) = γ2(t) ∀t ∈ [0, 1],

H(s, 0) = x0 and H(s, 1) = x0 ∀s ∈ [0, 1].

Define a multiplication operation on P (X) by

γ1 ∗ γ2(t) = γ1(2t), t ∈ [0,
1

2
],

γ2(1− 2t), t ∈ [
1

2
, 1].

Properties of *: Let γ ∈ P (X). Write γ for the loop γ(t) = γ(1− t), i.e., γ parametrized in the reverse direction,
and write 1 for the constant loop based at x0, i.e. 1(t) = x0 ∀t.

(1) γ1 ∗ (γ2 ∗ γ3) ∼ (γ1 ∗ γ2) ∗ γ3

(2) γ ∗ γ ∼ 1
(3) γ ∗ 1 ∼ γ

The fundamental group is π1(X,x0) is the set of equivalence classes of P (X), with the group operation given
by [γ1] ◦ [γ2] = [γ1 ∗ γ2]. The properties (1) (2) (3) show that the axioms of a group are satisfied.

If X is path connected, π1(X,x0) ∼= π1(X,x1) for any other base point x1, so we just write π1(X).

The fundamental group is invariant under homotopies. Example: π1(Rn) ∼= 1 because Rn is homotopic
to a point.

Proposition. π1(S1) ∼= Z.

Proof. The proof consists of defining a map from Z to π1(S1) by means of the covering map π : R → S1 given
by t 7→ ei2πt. One has to show that the map is surjective and injective. This uses the fact that π is a local
diffeomorphism such that for every x ∈ S1, there exists an open neighborhood U of x for which π−1(U) is a
disjoint union of open sets each of which is isomorphic to U . In particular every continuous map γ : [0, 1]→ S1

has a unique lift γ̃ : [0, 1]→ R for a given initial condition γ̃(0) ∈ π−1(0) = Z. �

Proposition. π1(X × Y ) = π1(X)× π1(Y )

Example: π1(T 2) = π1(S1 × S1) = Z× Z.

Definition 23. A topological space X is called simply connected if it is path connected and π1(X) ∼= 1, i.e.
every loop is homotopic to a constant loop.

Example 20. (1) The punctured plane R2 \ {a} is not simply connected.
(2) The torus T 2 is not simply connected.
(3) For n ≥ 2 the sphere Sn IS simply connected.

Theorem (Borsuk-Ulam theorem). Let f : S2 → R2 be a continuous map. Then there exists a pair of antipodal
points x and −x on S2 such that f(x) = f(−x).

Example: S2 = earth, f(x) = (T (x), P (x)) where T (x) is temperature at x, P (x) is pressure at x. Then there
are always two points on opposite sides of the earth that have exactly the same temperature and pressure.

Example: Suppose that A1, A2, A3 are three closed subsets of S2 that cover S2, i.e. S2 = ∪Ai. Then,
one of the Ai must contain a pair of antipodal points. To show this we define two continuous functions
d1 : S2 → R and d2 : S2 → R by di(x) = dist(x,Ai) = min

y∈Ai
‖x − y‖, and define d : S2 → R2 by

d(x) = (d1(x), d2(x)). Then by the Borsuk-Ulam theorem we know that there exists an x ∈ S2 such that
d(x) = d(−x), in other words (d1(x), d2(x)) = (d1(−x), d2(−x)). So if di(x) = 0, then di(−x) = 0 which implies
x and −x are in Ai for i = 1 or 2. If d1(x) and d2(x) are not equal to zero, then d1(−x) and d2(−x) are also
not equal to zero implying that x,−x /∈ A1 and x,−x /∈ A2. Thus, x and −x must both belong to A3.



Proof of the Borsuk-Ulam theorem. By contradiction. If f(x) and f(−x) were never equal, then since f(x) −
f(−x) 6= 0 we could define a continuous map

g : S2 → S1

g(x) =
f(x)− f(−x)

‖f(x)− f(−x)‖
Let γ(t) = (cos 2πt, sin 2πt, 0) be the curve in S2 that winds once around the Equator, and let η(t) = g(γ(t)) be
the resulting curve in S1. Note that since S2 is simply connected, γ(t) is contractible, and therefore g(γ(t)) is
also contractible, so [η(t)] is the trivial element in π1(S1).

On the other hand, for t ∈ [0, 1
2 ] we have γ(t + 1

2 ) = −γ(t), and therefore g(γ(t + 1
2 )) = g(−γ(t)) = −g(γ(t)).

In other words, η(t + 1
2 ) = −η(t). If we consider the lift η̃(t) : [0, 1] → R such that η̃(0) = 0, we see that

η̃(t+ 1
2 ) = η̂(t) + q

2 for some odd integer q. Therefore,

η̂(
1

2
) = η̂(0) +

q

2

η̂(1) = η̂(
1

2
) +

q

2

and consequently η̂(1) − η̂(0) = q, where q is an odd integer. But then this means that in the isomorphism
π1(S1) ∼= Z the equivalence class of [η(t)] corresponds to q, which can’t be zero as it is odd. Hence [η(t)] can’t
be the trivial element of π1(S1) – contradiction. �


