
Optimal dynamic advertising model

We denote by G (t) the stock of goodwill of the product/service at
time t. Following the model of Nerlove and Arrow (1962), G (t)
summarizes the e�ects of present and past advertising on demand;
goodwill needs an advertising e�ort to increase, but is subject to
spontaneous decay. The goodwill value is the joint result of an
advertising process, which is decided by the manufacturer, and of a
known exogenous and deterministic interference.

The manufacturer's action is the advertising intensity u(t) ≥ 0 (the
activation level of an advertising medium) and we assume that the
goodwill level evolves over time according to the di�erential
equation

Ġ (t) = γu(t)− ξ − δG (t), (1)

where
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- δ > 0 the goodwill-depreciation rate;
- γu > 0 represents the e�ect of activating the advertising medium
at level u ∈ [0; umax];
- ξ > 0 is the constant exogenous interference.

We assume that we know the goodwill level

G (0) = α > 0 (2)

at the initial time. Since the term γu(t)− ξ can be negative (as
well as positive), this may lead to negative values of G (t). These
negative values are admissible, but the corresponding demand is 0.
Following Luca Grosset and Bruno Viscolani (2009), we assume
that the product-demand rate is a piecewise linear function of its
goodwill½ i.e.,

D(G ) = βmax(G , 0) =: β.[G ]+, where the constant β > 0.
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The manufacturer's discounted pro�t over the in�nite horizon
[0,+∞) is

Π(u) :=

∫ +∞

0

e−ρt [πD(G (t))− κ

2
u2(t)]dt, (3)

where ρ > 0 is the discount parameter, πD(G (t)) is the

manufacturer's marginal pro�t and
κ

2
u2(t) denotes the advertising

costs at the time t.

The considered optimal control problem is to maximize the criterion
(3) under the dynamics (1) and the initial condition (2). Further
we follow the approach of Luca Grosset and Bruno Viscolani (2009)
for describing some properties of the solution of this optimal
control problem.
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Remark.

The set of the reachable goodwill values is compact, because the
motion equation is (1) and the set [0, umax] is compact. From here,
it follows that the optimal control problem (to maximize the
criterion (3) under the dynamics (1) and the initial condition (2))
has a solution (cf., also, an existence theorem of Seierstad and
Sydsaeter from 1987).

Notations.

Given a function u : [0, τ)→ [0, umax] or a function
u : [0,∞)→ [0, umax], we denote by uτ : [0, τ)→ [0, umax] the

function de�ned as

{
u(t), t ∈ [0, τ),

0, t ∈ [τ,+∞).
We denote by G (t, u)

the value at time t of the solution of (1) corresponding to the
control function u with the initial condition (2).
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Lemma 1. (Luca Grosset and Bruno Viscolani (2009))

If u is an admissible control such that for some τ > 0 and θ > 0 G (t, u) > 0, for each t ∈ [0, τ),
G (t, u) < 0, for each t ∈ [τ, τ + θ),

G (τ, u) = G (τ + θ, u) = 0,

then u cannot be optimal for the problem (3), (1) and (2).

Proof.

Let us assume that u is optimal control for the problem (3), (1)
and (2). Then Π(u) = A + B + C , where

A =

∫ τ

0

e−ρt [πβG (t, u)− κ

2
u2(t)]dt,
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Proof of Lemma 1 (continuation).

B = −κ
2

∫ τ+θ

τ
e−ρtu2(t)dt,

C =

∫ ∞
τ+θ

e−ρtπβ[G (t, u)]+ − κ

2
u2(t)]dt.

If we assume that B = 0, then we obtain that u(t) = 0 for almost
every t ∈ [τ, τ + θ). Since G (τ, u) = 0, the Cauchy formula implies
that

G (τ + θ, u) = G (τ, u)e−δ(τ+θ) − ξ
∫ τ+θ

τ
e−δ(τ+θ−s)ds < 0,

and this contradicts the assumptions of Lemma 1. Hence B < 0.



Optimal dynamic advertising model

Proof of Lemma 1 (continuation).

Let us assume that C < −B . Then Π(uτ ) = A > A + B + C =
Π(u), and this contradicts the optimality of u. Also, C <∞
because the control function is bounded and the solution of (1) is

G (t, u) = e−δtG0 −
ξ

δ
(1− e−δt) + γ

∫ t

0

e−δ(t−s)u(s)ds ≤

≤ G0 + 0 +
γ

δ
umax

(
1− e−δt

)
≤ G0 +

γ

δ
umax,

and hence G (·, u) is bounded. Let us de�ne the control

u∗(t) =

{
u(t), if t ∈ [0, τ),

u(t + θ), if t ∈ [τ,∞).
The corresponding state

variable G (t, u∗) =

{
G (t, u), if t ∈ [0, τ),

G (t + θ, u), if t ∈ [τ,∞).
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Proof of Lemma 1 (continuation).

Thus u∗ is an admissible control such that

Π(u)− Π(u∗) = −κ
2

∫ τ+θ

τ
e−ρtu2(t)dt

+

∫ ∞
τ+θ

e−ρt [πβ[G (t, u)]+ − κ

2
u2(t)]dt

−
∫ ∞
τ

e−ρt [πβ[G (t + θ, u)]+ − κ

2
u2(t + θ)]

= B + C (1− eρθ) < 0

(because B < 0, C ≥ −B > 0 and 1− eρθ < 0), and hence, the
control u is not optimal.
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Remark.

This Lemma has an interesting interpretation from a practical point
of view. If the goodwill (and therefore the demand) reaches the
value zero at time τ > 0, then it will be negative (the demand will
remain 0) for all t > τ .

Notation.

If w : [0,+∞)→ [0, umax is an admissible control, the we denote

by (τ,w) (instead of
(
τ,w|[0,τ ]

)
) the time-control pair, restricting

w to the interval [0, τ ].
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Lemma 2. (Luca Grosset and Bruno Viscolani (2009))

The time-control pair (τ, u) is an optimal solution of the variable
�nal-time problem of maximizing

Ψ(T , v) =

∫ τ

0

e−ρt [πβG (t, u)− κ

2
v2(t)]dt (4)

subject to
Ġ (t, v) = −δG (t, v) + γv(t)− ξ, (5)

G (0, v) = α > 0, G (t, v) ≥ 0 (6)

if and only if the control uτ , obtained from u by extending u to the
interval [0,∞) with a 0 value, is an optimal solution for the optimal
control problem (to maximize the criterion (3) under the dynamics
(1) and the initial condition (2)) and G (τ, uτ ) = 0.
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Proof of Lemma 2.

⇒ Let the time-control pair u be an optimal solution for the
variable �nal-time problem (4)-(6). First of all, if G (τ, u) > 0, then
for su�ciently small ε > 0 we have that G (τ + ε, uτ ) > 0. But this
implies that Ψ(τ, u) < Ψ(τ + ε, uτ ) and this contradicts the
optimality of u. Therefore we must have G (τ, u) = 0. We have
proved that G (τ, uτ ) = G (τ, u) = 0. We notice that the control uτ
is an admissible solution for problem (1)-(3) and that

Ψ(τ, u) =

∫ τ

0

e−ρt [πβG (t, u)− κ

2
u2(t)]dt = Π(uτ ). (7)
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Proof of Lemma 2 (continuation).

Let us assume that uτ is not optimal for problem (1)-(3), and let w
be an optimal control of problem (1)-(3), which exists because of
Remark 1, then we have that Π(uτ ) < Π(w), and therefore

Ψ(τ, u) = Π(uτ ) < Π(w). (8)

Now, either of the following cases may occur:
(a) there exists a time θ > 0 such that G (θ,w) = 0;
(b) G (t,w) > 0 for all t ∈ [0,∞).

Case (a)

Case (a) implies that (τ, u) is not optimal for problem (4)-(6)
because, from the inequality (8) and Lemma 1, we obtain that
Ψ(τ, u) < Π(w) = Ψ(θ,w), which is a contradiction.
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Proof of Lemma 2 (continuation): Case (b)

We have that

lim
T→∞

= lim
T→∞

∫ T

0

e−ρt [πβG (t, u)− κ

2
u2(t)]dt = Π(w). From here

and the inequality (8), we obtain that there exists some T > 0 such
that Ψ(τ, u) < Ψ(T ,w) which contradicts the optimality of u for
the problem (4)-(6).

⇐ Let u be an optimal solution for problem (1)-(3) with
G (τ, u) = 0 and let us assume that (τ, u) is not optimal for the
variable �nal time problem (4)-(6). Therefore, there exists a control
w and a time θ ∈ (0,∞] such that

Ψ(τ, u) < Ψ(θ,w).
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Proof of Lemma 2 (continuation).

Also, we have that

Ψ(θ,w) =

∫ τ

0

e−ρt [πβG (t,w)− κ

2
w2(t)]dt ≤

∫ τ

0

e−ρt [πβG (t,w)−κ
2
w2(t)]dt+

∫ ∞
τ

e−ρtπβ[G (t,w)]+dt = Π(uτ ).

Moreover, by Lemma 1, we have that Ψ(τ, u) = Π(τ, uτ ) (because,
after τ the state variable is always negative, and hence the optimal
control must also be equal to 0 after τ . Thus we have obtained that

Π(u) = Ψ(τ, u) < Ψ(θ,w) ≤ Π(wτ ),

and so u cannot be optimal for problem (1)-(3).
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A di�erential game

We consider a di�erential game with two players (each player is a
�rm or her product or brand). Let Gj be the brand's goodwill of the
product/service of the j-th player at time t, t ∈ [0,+∞). We
assume that the demand rate for a brand is proportional to its
goodwill stock, i.e. Dj(Gj) = βmax(0,Gj), j = 1, 2, where β > 0 is
a parameter measuring goodwill's e�ciency. Denote by uj(t) ≥ 0
the advertising e�ort of player j ∈ {1, 2} at time t ∈ [0,+∞).
For each index j ∈ {1, 2} the j-th player maximize the following
criterion

Jj(u1, u2) :=

∫ ∞
0

e−ρt{πjβ[Gj(t)]+ − κ

2
u2j (t)}dt (9)

subject to

Ġj(t) = γjuj(t)− ξiui (t)− δGj(t), Gj(0) = αj > 0. (10)
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A di�erential game

Here i ∈ {1, 2} \ {j}, γj > 0 is the advertising e�ort e�ciency (or a
scaling parameter transforming advertising money into goodwill), ξi
is the interference factor of competitor i-th's advertising e�orts on
own j-th's goodwill evolution, δ is a decay parameter and Jj(u1, u2)
is discounted pro�t of the j-th player corresponding to the
advertising e�orts u1 and u2) of the both players.

Lemma 3 (Bruno Viscolani, Georges Zaccour (2009)).

We set
u∗j =

β

δ + ρ

γjπj
κj

, j = 1, 2.

Let (ūj(t),Gj(t, ūj , u
∗
k)), t ∈ [0,+∞) be a bounded optimal

solution of j-th �rm's problem, where k = {1, 2} \ {j}. If the
goodwill path Gj(t, ūj , u

∗
k) > 0 is strictly positive for all

t ∈ [0,+∞), then the optimal advertising e�ort is
ūj(t) = u∗j for each t ∈ [0,+∞).
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Let us consider the following in�nite horizon problem:

I (x0, u) =

∫ ∞
0

e−rtL(x(t), u(t)) dt → max (11)

subject to

ẋ(t) = f (x(t), u(t), t) and x(0) = x0. (12)

The state x(t) belongs to an open subset X of Rn, and the control
u(t) is a bounded measurable function taking its values from a
compact subset U of Rm. The functions f : X × U × R+ → Rn

and L : X × U × R+ → R are continuous and continuously
di�erentiable with respect to the state variable. The corresponding
di�erentials are denoted by fx and Lx .



Optimal dynamic advertising model

A trajectory-control pair (x(t), u(t)), 0 ≤ t <∞, is admissible if
x(·) is a solution of (12) with control u(·) on [0,∞) and if the
integral (11) converges. Let (x(t), u(t)), 0 ≤ t <∞, be an
admissible trajectory-control pair.
A trajectory-control pair (x∗(t), u∗(t)), 0 ≤ t <∞, is optimal if it
is admissible and optimal in the set of admissible trajectory-control
pairs, i.e. for any admissible trajectory-control pair
(x(t), u(t)), 0 ≤ t <∞, the value of the integral (11) is not
greater than its value corresponding to (x(·), u(·)).
Let us de�ne the following Hamiltonian Ĥc : X × U × Rn → R :

Ĥc (x , u, p, t) := L(x , u) +
n∑

j=1

pj fj(x , u, t)

and the maximized Hamiltonian

Ĥ∗c(x , p, t) = max
u∈U

Ĥc(x , u, p, t).
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Theorem 1 (Atle Seierstadt, Knut Sydsaeter (1977)) .

Let the following assumptions hold true: Let (x∗(t), u∗(t)),
0 ≤ t <∞, be an admissible trajectory-control pair and µ(t),
0 ≤ t <∞, be an absolutely continuous function such that the
following assumptions hold true:

A1. The function Ĥ∗c(x ,m, t) is well de�ned for each
(x , p) ∈ X × Rn and concave with respect to x for each �xed
point (p) ∈ Rn;

A2. For almost all t ∈ [0,+∞)

d

dt
µi (t) = rµi (t)− ∂Ĥc

∂xi
(x∗(t), u∗(t), µ(t), t).

A3. For almost all t ∈ [0,+∞)

Ĥc (x∗(t), u∗(t), µ(t), t) = Ĥc∗ (x∗(t), µ(t), t)

and the maximum is achieved at the unique point u∗(t).
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Theorem 1 (continuation).

If the components of the state variable x(t) and the co-state
variable µ(t), t ∈ [0,∞), take nonnegative values, and

lim
T→∞

e−rT
n∑

j=1

µj(T ) · x∗j (T ) = 0,

then the trajectory-control pair (x∗(t), u∗(t)), 0 ≤ t <∞, is
optimal.
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Proof of Lemma 3.

We de�ne the Hamiltonian as follows:

H(Gj , uj , µ) = πjβGj −
κj
2
u2j + µ(γjuj − ξiui (t)− δGj))

Then, clearly, the condition A1 holds true. Let u∗(t) maximize the
function H(G ∗j (t), u∗j (t), µ(t)). Then the gradient

∂

∂G
H(G ∗j (t), u∗j (t), µ(t)) = 0 implies that u∗(t) =

µ(t)γj
κj

. Since

the Hamiltonian is a concave function with respect to uj , then

u∗ =
µ(t)γj
κj

maximize the Hamiltonian, i.e. the condition A3 is

ful�lled.
The adjoint equation is ṁu(t) = −πjβ + (ρ+ δ)µ(t). If we set

µ(t) :=
πjβ

ρ+ δ
, then this µ is a solution of the adjoint equation.
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But then u∗(t) =
β

ρ+ δ

πjγj
κj

and the condition A2 holds true.

Clearly, G and µ take non negative values. Moreover,

0 = lim
T→∞

e−ρT (µ(T )Gj(T )) =

e−ρT
πjβ

ρ+ δ

(
e−δTαj +

γju
∗
j

δ
(1− e−δT )− ξi

∫ T

0

e−δ(T−t)ui (t)dt

)
because ui is a bounded function. Applying Theorem 1, we
complete the proof of Lemma 3.
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Lemma 4 (Bruno Viscolani, Georges Zaccour (2009)).

We set
u∗j =

β

δ + ρ

γjπj
κj

, j = 1, 2.

Let (ūj(t),Gj(t, ūj , u
∗
k)), t ∈ [0,+∞) be a bounded optimal

solution of j-th �rm's problem, where k = {1, 2} \ {j}. If the
goodwill path Gj(t, ūj , u

∗
k) > 0 for all t ∈ [0, τ) and

Gj(τ, ūj , u
∗
k) = 0, then the optimal advertising e�ort is

uτj = u∗j

[
1− e−(δ+ρ)(t−τ)

]+
with

β

δ + ρ

γjπj
κj

,

where τ is a solution of the following exit time equation:

ξie
δT

∫ T

0

e−δ(T−s)ui (s)ds = (13)

γju
∗
j

δ

(
eδτ − 1

)
−
γju
∗
j

(
eδτ − e−(δ+ρ)τ

)
2δ + ρ

+ αj .
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Proof of Lemma 4.

In view of Lemma 2, any optimal control uj for the original problem
under the present assumptions is related to that of the
variable-�nal-time problem (4)-(6). From Lemma 1, we obtain that
Gj(t, uj) ≤ 0 for t ≥ τ , and hence uτj (t) = 0 for all t > τ . Let us
consider optimal-control problem (4)-(6) without the state
condition Gj(t, u

τ ) ≥ 0. We call this the relaxed variable-�nal-time
problem. The corresponding Hamiltonian is

H(Gj , uj , λ, t) = e−ρt [πβGj −
κj
2
u2j ] + λ(γjuj − ξξui (t)− δGj)

which is a strictly concave function with respect to uj and its �rst
partial derivative with respect to uj is

∂

∂x
H(Gj , uj , λ, t) = −κjuje−ρt + γjλ.
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Hence there exists a single maximum point

uτj (t) =
eρtγj
κj

[λ(t)]+.

The adjoint equation is:

λ̇(t) = −πjβe−ρt + δλ(t) with transversality condition λ(T ) = 0.

The solution of this equation is

λ(t) =
πjβ

δ + ρ

(
1− e(δ+ρ)(t−T )

)
e−ρt .
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Hence the possible optimal control is

uτj (t) =
πjβγj

κj(ρ+ δ)

(
1− e(δ+ρ)(t−T )

)
.

Since, 0 = H(Gj(T ), uj(T ), λ(T ),T ) =

e−ρT [πjβGj(T )−
κj
2
u2j (T )] + λ(T )(γjuj(T )− ξiui (T )− δGj(T ))

i.e. 0 = Gj(T ) (because λ(T ) = 0 and uτj (T ) = 0).

Since Gj(0) = αj , we obtain that 0 = Gj(T ) is just the exist
equation for τ .
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De�nition.

Assume that the i-th player chooses the control u∗i and the j-th
player chooses the control u∗j . It is said that the j-th player is a
strong player if his best response to u∗i is u∗j . It is said that the j-th
player is a weak player if his best response is the exit control uτj .

Therem 2 (Bruno Viscolani, Georges Zaccour (2009)).

I If both players are strong, then (u∗
1
, u∗

2
) is the unique open-loop

Nash equilibrium.
I If the i-th players is strong and the j-th players is weak, then
(u∗i , u

τ
j ) is the unique open-loop Nash equilibrium.

Open problems

F What is the open-loop Nash equilibrium if both players are weak?
F How to characterize strong and weak players?
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