
A CUDD Tutorial

Ethan L. Schreiber
The University of California, Los Angeles

ethan@cs.ucla.edu

December 21, 2008

Contents

1 Introduction 2

2 Acquiring CUDD 2

3 Making CUDD 2
3.1 For All Platforms: . 2
3.2 For Linux: . 2
3.3 For Cygwin and OS X: . 2

4 Linking the CUDD libraries 3

5 Basic Architecture 3
5.1 Garbage Collection . 3
5.2 The Unique Table . 3
5.3 Complements . 3
5.4 Data Structures . 4

5.4.1 DdManager . 4
5.4.2 Useful DdManager functions: . 4
5.4.3 DdNode . 4

6 Sample Program - Half-Adder 6
6.1 Creating the BDD . 6

6.1.1 Description of createHalfAdderBDD(DdManager*) . 7
6.2 Reordering the BDD . 7

6.2.1 Manual Reordering . 7
6.2.2 Automatic Reordering . 8
6.2.3 Other useful reordering functions . 8

6.3 Restricting the BDD . 9
6.4 Printing the BDD . 10

7 Further Resources 10

1

1 Introduction

CUDD is the Colorado University Decision Diagram Package. It is a c/c++ library for creating binary decision
diagrams (BDD) as well as zero-suppressed BDDs (ZDD) and algebraic decision diagrams (ADD.) This document
will only discuss the BDD functionality of CUDD. We will highlight and discuss

2 Acquiring CUDD

You can download CUDD by FTP with anonymous login from vlsi.colorado.edu. The latest version of CUDD is
located in pub. As of the date of this publication, the current version is cudd-2.4.1.tar.gz .

3 Making CUDD

CUDD Is easiest to compile under linux but is also doable under Cygwin and OS X. The Makefile is well docu-
mented.

3.1 For All Platforms:

You need to modify the following line in the Makefile:

XCFLAGS = -mcpu=pentiumpro -malign-double -DHAVE_IEEE_754 -DBSD

The -mcpu flag is deprecated and unnecessary for compilation. You should simply remove it so that line becomes:

XCFLAGS = -malign-double -DHAVE_IEEE_754 -DBSD

3.2 For Linux:

If you are using a 32 bit OS, you should now be ready to compile. If you are using a 64 bit install, you should use
the following line for XCFLAGS instead of the above:

XCFLAGS = -ansi -DBSD -DHAVE_IEEE_754 -DSIZEOF_VOID_P=8 -DSIZEOF_LONG=8

Now, simply type make and enter and the command line and you are set.

3.3 For Cygwin and OS X:

The function void util print cpu stats(FILE *fp) inside the file $CUDD ROOT/util/cpu stats.c also causes trouble.
The fix is to disable this function. (If someone has a better solution, please email me about it.) To disable the
function, you need to change two lines. First, find the code snippet towards the top of the file that reads as follows:

#if defined(_IBMR2)
#define etext _etext
#define edata _edata
#define end _end
#endif

And replace the first line (#if defined(IBMR2))with:

#if 0

Next, replace the first line of void util print cpu stats(FILE *fp) as follows. Replace:

#ifdef BSD

With

#if 0

You are now ready to compile. Now, simply type make and enter and the command line and you are set.

2

4 Linking the CUDD libraries

When your build compiles successfully, an include directory will be created in $CUDD ROOT with symbolic links
to all the external header files. Note that the following header file (as well as some others) should now exist as we
will use it later:

$CUDD_ROOT/include/cuddObj.hh

There also should be 6 new c archive files created:

$CUDD_ROOT/cudd/libcudd.a
$CUDD_ROOT/util/libutil.a
$CUDD_ROOT/epd/libepd.a
$CUDD_ROOT/mtr/libmtr.a
$CUDD_ROOT/st/libst.a
$CUDD_ROOT/obj/libobj.a

Given this information, the following is a simple Makefile that will compile a c++ program utilizing CUDD:

Listing 1: Sample Cudd Makefile

CC = g++
CUDD INCLUDE=cudd/cudd/ l ibcudd . a cudd/ u t i l / l i b u t i l . a cudd/epd/ l ibepd . a\

cudd/mtr/ l ibmtr . a cudd/ s t / l i b s t . a cudd/ obj / l i b o b j . a

cudd te s t : cudd example . cpp
$ (CC) $ (CUDD INCLUDE) cudd example . cpp −o cudd example

5 Basic Architecture

5.1 Garbage Collection

CUDD has a built in garbage collection system. When we build BDDs, we tend to do so in a bottom up manner.
In this process, we build many small BDDs that are subsumed as we traverse up the tree. When one of these
small BDDs is subsumed, its memory can be reclaimed. In order to facilitate the garbage collector, we need to
”reference” and ”dereference” each node in our BDD. To reference a node, we use the function Cudd Ref(DdNode*)
and to dereference a node (and all of its descendants), we use Cudd RecursiveDeref(DdNode*). We will discuss
this further later on in this document.

5.2 The Unique Table

While it is not necessary to work directly with the unique table, it is important to know that it exists, especially if
it becomes necessary to inspect the CUDD source. This table is used to guarantee that a specific node is unique,
that is to say that if two nodes contain the same children and represent the same variable, there should be merged
into one node.

5.3 Complements

Each DdNode (see 5.4.3 for details) in our BDD either has two children or is a leaf with a constant value. The two
children of a DdMode are referred to as the ”then” child and the ”else” child which are followed when we assign
the value of this DdNode to true or false respectively. If we continue this process of following ”then” or ”else”
children until we reach a leaf, the value of our assignment is the constant value of the leaf we reach. However,

3

there is one caveat with CUDD. ”else” children can be complemented. If the else child is complemented, then
when we reach a leaf node, we would take the complement of the value of the leaf. i.e., if the value of the leaf is
1 and we have traversed through and odd number of complement arcs, the value of our assignment is 0. In 5.4.3,
we will discuss how to deal with complement arcs.

5.4 Data Structures

The two most important data structures within CUDD are the DdManager and the DdNode. We will now briefly
discuss each.

5.4.1 DdManager

The DdManager is the central struct of CUDD. Creating this struct is the first thing you do when writing a CUDD
program and it needs to be passed to almost every CUDD api function. It is never necessary to manipulate or
inspect this struct directly, instead we will use the CUDD api. In order to initialize the DdManager, we use the
following function:

Listing 2: The function to initialize the DdManager:

DdManager ∗ Cudd Init (
unsigned int numVars , // i n i t i a l number o f BDD va r i a b l e s (i . e . , s u b t a b l e s)
unsigned int numVarsZ , // i n i t i a l number o f ZDD va r i a b l e s (i . e . , s u b t a b l e s)
unsigned int numSlots , // i n i t i a l s i z e o f the unique t a b l e s
unsigned int cacheSize , // i n i t i a l s i z e o f the cache
unsigned long maxMemory // t a r g e t maximum memory occupat ion . (0 means un l imi t ed)

) ;

Listing 3: For our purposes, we can call Cudd Init like this:

Cudd Init (0 , 0 ,CUDD UNIQUE SLOTS, CUDD CACHE SLOTS, 0) ;

5.4.2 Useful DdManager functions:

• int Cudd ReadSize(DdManager * dd): Returns the number of variables stored in the manager.

• int Cudd ReadNodeCount(DdManager * dd): Returns the number of nodes stored in the manager.
(i.e., many nodes can represent the same variable)

5.4.3 DdNode

The DdNode is the core building block of BDDs. It is defined as follows:

Listing 4: The decision diagram node:

struct DdNode {
DdHalfWord index ; // Index o f the v a r i a b l e reprented by t h i s node
DdHalfWord r e f ; // re f e r ence count
DdNode ∗next ; // next po in t e r f o r unique t a b l e
union {
CUDD VALUE TYPE value ; // f o r cons tant nodes
DdChildren k ids ; // f o r i n t e r n a l nodes
} type ;

} ;

4

The index is a unique index for the variable represented by this node. The nodes are numbered in order of
creation starting with 0. These indices are permanent: note this means that if we reorder the BDD using an
ordering heuristic (which will be discussed later), the nodes will change order but the indices will stay the same.
To get the position in the order of a variable, we can use Cudd ReadPerm (DdManager *dd, int i); and to get the
variable index of the variable at a position, we can use Cudd ReadInvPerm (DdManager *dd, int i);

ref stores a reference count for this variable. Every time Cudd Ref is called on this DdNode, the reference
count is incremented by 1. Every time Cudd Recursive Deref is called on this node or an ancestor, this count is
decremented by 1. When the reference count is 0, CUDD knows this node can be garbage collected.

All Cudd nodes representing the same variable are linked together for the unique table. next contains a pointer
to the next DdNode that represents the same variable as this DdNode.

Each DdNode contains either a value if it is a leaf node or pointers to two child DdNode structs. These values
are stored in the type field. The following macros will help you work with this field.

• Cudd IsConstant(DdNode* node) - Returns 1 if node is constant (meaning a leaf), and 0 otherwise.

• Cudd T(DdNode* node) - Returns a pointer to the ”then” child of a DdNode. This value is never
complemented.

• Cudd E(DdNode* node) - Returns a pointer to the ”else” child of a DdNode. Remember that the value
returned could be complemented. To find out if it is, we use:

• Cudd IsComplement(DdNode* node) - Returns 1 if node is complemented, 0 otherwise. If a node is
complemented, we can use:

• Cudd Regular(DdNode* node) - Returns the regular version of a complemented node.

• Cudd V(DdNode* node) - If a node is constant, this returns the value of the node.

5

6 Sample Program - Half-Adder

6.1 Creating the BDD

1x x2

and1 and2

sum carry

This is a half adder circuit that we will compile into
an OBDD. It has the following truth table:

x1 x2 sum carry
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

Listing 5: C++ code to generate the Half-Adder circuit above as an OBDD in Cudd.
1 DdNode∗∗ createHalfAdderBDD (DdManager ∗manager)
2 {
3 DdNode ∗x0 = Cudd bddIthVar (manager , 0) ;
4 DdNode ∗x1 = Cudd bddIthVar (manager , 1) ;
5
6 DdNode ∗and1 = Cudd bddAnd(manager , x0 , Cudd Not (x1)) ;
7 Cudd Ref (and1) ;
8
9 DdNode ∗and2 = Cudd bddAnd(manager , Cudd Not (x0) , x1) ;

10 Cudd Ref (and2) ;
11
12 DdNode ∗sum = Cudd bddOr (manager , and1 , and2) ;
13 Cudd Ref (sum) ;
14
15 Cudd RecursiveDeref (manager , and1) ;
16 Cudd RecursiveDeref (manager , and2) ;
17
18 DdNode ∗ carry = Cudd bddAnd(manager , x0 , x1) ;
19 Cudd Ref (car ry) ;
20
21 // There are two BDD roo t s so we re turn both o f them .
22 DdNode ∗∗ outputs = new DdNode ∗ [2] ;
23 outputs [0] = sum ;
24 outputs [1] = carry ;
25
26 return outputs ;
27 }

6

6.1.1 Description of createHalfAdderBDD(DdManager*)

Listing 5 contains source code to create a BDD of a half adder circuit. This circuit takes two bits as inputs and
returns the sum and carry of these two inputs. The construction of the BDD is done from the bottom up. We
start by creating two Cudd variables, one for each input. We then combine these variables with or/and operations
until we have our BDD. Lets go through this in some detail:

• Cudd bddIthVar(manager,i) - Lines 3 and 4: To declare our input variables, we use Cudd bddIthVar.
This function will create a variable with index i if it does not exist or return a pointer to the existing variable
if it does. Note that we do not have to call Cudd Ref on DdNode* which are returned from Cudd bddIthVar.

• Cudd bddAnd(manager,node1,node2) (also Cudd bddOr) - Lines 6,9,18: We use these functions
to combine DdNode pointers using conjoin and disjoin operations. If we have one BDD representing formula
x and another representing formular y, these functions will return a new BDD representing x ∧ y or x ∨ y
respectively.

• Cudd Ref(manager,node) - Lines 7,10,13,19: Note that we must increase the reference count of all
DdNode structs returned by Cudd bddAnd and Cudd bddOr.

• Cudd RecursiveDeref(manager,node) - Lines 15,16: Note that we had to decrease the reference count
of and1 as well as and2 after they were subsumed by the new BDD pointed to by sum.

6.2 Reordering the BDD

The order we traverse variables down each path of a BDD of course can have a tremendous effect on the number
of nodes needed to construct it. CUDD provides a rich set of tools for reordering BDDs. The ordering of variables
is controlled by a heuristic function. CUDD provides a number of heuristic functions which are described in the
CUDD documentation. [2]

Reordering can either be invoked manually or automatically.

6.2.1 Manual Reordering

To invoke ordering manually, you must call the following function:

Listing 6: Function to force reordering of the BDD.

int Cudd ReduceHeap (
DdManager ∗ manager , // DD manager
Cudd ReorderingType method , // method used f o r reorder ing
int mins ize // bound below which no reorder ing occurs

) ;

We pass the manager pointer as always. The second parameter allows us to specify which reordering heuristic
to use. The following is the list of constant ints representing the heuristics provided by CUDD.

CUDD REORDER NONE CUDD REORDER SAME
CUDD REORDER RANDOM PIVOT CUDD REORDER EXACT
CUDD REORDER RANDOM CUDD REORDER SIFT
CUDD REORDER WINDOW2 CUDD REORDER SIFT CONVERGE
CUDD REORDER WINDOW2 CONV CUDD REORDER SYMM SIFT CONV
CUDD REORDER WINDOW3 CUDD REORDER GROUP SIFT
CUDD REORDER WINDOW3 CONV CUDD REORDER GENETIC
CUDD REORDER WINDOW4 CUDD REORDER ANNEALING
CUDD REORDER WINDOW4 CONV CUDD REORDER GROUP SIFT CONV
CUDD REORDER SYMM SIFT

7

The final parameter is the minimum number of nodes that must be in the BDD in order to reorder. This
prevents the cost of reordering small enough BDDs.

6.2.2 Automatic Reordering

Alternatively, ordering can be triggered automatically when the number of nodes in the BDD passes a certain
threshold. The following is the functions used for dynamic reordering (it is tuned off by default):

Listing 7: Function to turn on automatic reordering of variables.

Cudd AutodynEnable (
DdManager ∗ manager , // DD manager
Cudd ReorderingType method , // method used f o r reorder ing

)

The parameters passed are the same as for Cudd ReduceHeap.

Listing 8: Function to turn on automatic reordering of variables.

Cudd AutodynEnable (
DdManager ∗ unique , // DD manager
Cudd ReorderingType method , // method used f o r reorder ing

)

6.2.3 Other useful reordering functions

Listing 9: A function to order variables according to a specified order as opposed to a heuristic.

int Cudd ShuffleHeap (
DdManager ∗ manager , // DD manager
int ∗ permutation // requ i r ed v a r i a b l e permutat ion

)

The permutation is an array of positions in the order. The value of the ith slot in the array represents the position
of the variable with index i.

Listing 10: A function to return the position in the order of the ith variable.

int Cudd ReadPerm(
DdManager ∗ manager , // DD manager
int i // The v a r i a b l e to g e t the p o s i t i o n o f

)

Listing 11: A function to return the variable index of the variable currently at position pos.

int Cudd ReadInvPerm(
DdManager ∗ manager , // DD manager
int pos // The po s i t i o n o f the v a r i a b l e index to ge t

)

8

6.3 Restricting the BDD

Listing 12: This function will restrict BDD to the BDD represented by restrictBy

DdNode ∗ Cudd bddRestrict (
DdManager ∗ manager , // DD manager
DdNode ∗ BDD, // The BDD to r e s t r i c t
DdNode ∗ r e s t r i c tBy) // The BDD to r e s t r i c t by .

The following is code to restrict a BDD to a set of assignments to its inputs. It takes a node to restrict and a
map of assignments to inputs. The key of the map is the index of the variable to assign and the value is whether
to assign it to true or to false. The function returns the original BDD restricted to the assignment.

Listing 13: This function uses restrict to test the BDDs created in listing 5
void t e s t (DdManager∗ manager , DdNode ∗∗node)
{

DdNode ∗x0 = Cudd bddIthVar (manager , 0) ;
DdNode ∗x1 = Cudd bddIthVar (manager , 1) ;

const int SIZE=4;
DdNode∗ r e s t r i c tBy [SIZE] ;
DdNode∗ testSum [SIZE] ;
DdNode∗ t e s tCarry [SIZE] ;

// Re s t r i c t by the f o l l ow i n g ass ignments
r e s t r i c tBy [0] = Cudd bddAnd(manager , Cudd Not (x0) , Cudd Not (x1)) ; // x1=0 and x2=0
r e s t r i c tBy [1] = Cudd bddAnd(manager , Cudd Not (x0) , x1) ; // x1=0 and x2=1
r e s t r i c tBy [2] = Cudd bddAnd(manager , x0 , Cudd Not (x1)) ; // x1=1 and x2=0
r e s t r i c tBy [3] = Cudd bddAnd(manager , x0 , x1) ; // x1=1 and x2=1

for (int i =0; i<SIZE ; i++) {

Cudd Ref (r e s t r i c tBy [i]) ; // Reference r e s t r i c tBy

// Now r e s t r i c t by the new func t i on s
testSum [i] = Cudd bddRestrict (manager , node [0] , r e s t r i c tBy [i]) ;
t e s tCarry [i] = Cudd bddRestrict (manager , node [1] , r e s t r i c tBy [i]) ;

Cudd RecursiveDeref (manager , r e s t r i c tBy [i]) ; // c l ean up r e s t r i c tBy
}

c e r r << ” (x1=0, x2=0): sum = ” << 1−Cudd IsComplement (testSum [0])
<< ” Carry = ” << 1−Cudd IsComplement (te s tCarry [0]) << endl
<< ” (x1=0, x2=1): sum = ” << 1−Cudd IsComplement (testSum [1])
<< ” Carry = ” << 1−Cudd IsComplement (te s tCarry [1]) << endl
<< ” (x1=1, x2=0): sum = ” << 1−Cudd IsComplement (testSum [2])
<< ” Carry = ” << 1−Cudd IsComplement (te s tCarry [2]) << endl
<< ” (x1=1, x2=1): sum = ” << 1−Cudd IsComplement (testSum [3])
<< ” Carry = ” << 1−Cudd IsComplement (te s tCarry [3]) << endl ;

for (int i =0; i<SIZE ; i++) {
Cudd RecursiveDeref (manager , testSum [i]) ;
Cudd RecursiveDeref (manager , t e s tCarry [i]) ;

}
}

9

6.4 Printing the BDD

Cudd provides a nice function for dumping a BDD to graphviz format. The following listing prints the circuit to
a dot file.

Listing 14: This function writes the BDDs created in listing 5 to a dot file
/∗∗
∗ This t a k e s an array o f 2 output nodes and p r i n t s them to a dot f i l e
∗/

void toDot (DdManager ∗manager , DdNode ∗∗ outputs)
{

char ∗∗ inputNames = new char ∗ [2] ; // Labe l the two input nodes
inputNames [0] = new char [3] ;
inputNames [1] = new char [3] ;
inputNames [0] = ”x1” ;
inputNames [1] = ”x2” ;

char ∗∗outputNames = new char ∗ [2] ; // Labe l the two output nodes
outputNames [0] = new char [4] ;
outputNames [1] = new char [6] ;
s t r cpy (outputNames [0] , ”sum”) ;
s t r cpy (outputNames [1] , ” car ry ”) ;

FILE ∗ f = fopen (” . / ha l f adde r . dot” , ”w”) ;

// manager : The cudd manager
// 2 : The number o f ou tpu t s
// ou tpu t s : An array o f ou tpu t s (DdNode∗)
// inames : Maps input nodes to t h e i r names
// onames : Maps output nodes to t h e i r names
// f : The f i l e to wr i t e to

Cudd DumpDot(manager , 2 , outputs , inputNames , outputNames , f) ;
}

7 Further Resources

Both websites in the references section are highly recommended. Furthermore, the half-adder program used in
this tutorial as well as a Makefile to build it are available on the web at:

http://www.cs.ucla.edu/~ethan/code/half_adder_cudd.tar.gz

References

[1] Jacqueline E. Rice. Local cudd tutorial, November 2004. http://www.cs.uleth.ca/ rice/cudd.html.

[2] Fabio Somenzi. Cudd: Cu decision diagram package: Release 2.4.1, May 2005.
http://vlsi.colorado.edu/ fabio/CUDD/.

10

