
Java and Android Concurrency

Introduction

fausto.spoto@univr.it

git@bitbucket.org:spoto/java-and-android-concurrency.git

git@bitbucket.org:spoto/java-and-android-concurrency-examples.git

Fausto Spoto Università di Verona, Italy - 1 / 21



Why Concurrency Matters

on monocore architectures, it allows one to keep the processor busy

hence its use in all operating systems
and its presence in programming languages: C, Java etc

on multicore architectures, it also allows one to use all computing
cores to solve a single problem

getting important nowadays

Fausto Spoto Università di Verona, Italy - 2 / 21



Why Concurrency Matters More and More

Modern frameworks are inherently multithreaded

Servlet containers run each request in a separate thread. You might be
writing concurrent programs without even creating a single thread in your
code!

Mobile devices must be responsive

code in the user interface thread must terminate quickly, or otherwise
the user experience gets degraded: long running tasks must be
delegated to non-user interface threads

while a task is running, the user might need to start another app,
make a call, surf the internet etc. The running task must continue in
the background

Fausto Spoto Università di Verona, Italy - 3 / 21



Why Concurrency is Difficult

protocols might be wrong

race conditions
deadlocks

protocols might be inefficient

livelocks
slower than monothreaded!

data can be shared

data can be modified

data can be cached on each single core

each core might have a different view of the memory

Programmers are not enough qualified to deal with concurrency

Fausto Spoto Università di Verona, Italy - 4 / 21



Concurrency in Java

from Java 1.0:
multithreading: a thread is a process with shared heap
extends java.lang.Thread and overrides run

relatively slow to start
synchronized blocks and methods
each object has a lock accessible through wait/notify/notifyAll
volatile variables are never kept into caches
a formal Java memory model

from Java 1.5:
improved memory model
java.lang.concurrent.* has many clever classes for concurrency:
concurrent hashmaps, latches, futures, callables
executors recycle threads to avoid their startup cost

from Java 1.7:
fork executors share tasks across threads for divide and conquer

from Java 1.8:
parallel collections with lambda expression tasks

Fausto Spoto Università di Verona, Italy - 5 / 21



Task Executor and Task Specification

Fausto Spoto Università di Verona, Italy - 6 / 21



Creation of a Thread

A thread can be created by subclassing the java.lang.Thread class:

public class MyThread extends Thread {

@Override

public void run() { ... do something here ... }

}

...

new MyThread().start();

A thread can also be created by specifying the task in the constructor of a
new java.lang.Thread:

public class MyRunnable implements Runnable {

@Override

public void run() { ... do something here ... }

}

...

new Thread(new MyRunnable()).start();

Fausto Spoto Università di Verona, Italy - 7 / 21



The Meaning of synchronized

The compiler translates

synchronized (expression) {

body

}

into

final temp = expression;

get the lock of temp

body

release the lock of temp

temp is constant hence lock and unlock are paired

Java’s intrinsic locks are reentrant

Fausto Spoto Università di Verona, Italy - 8 / 21



The Meaning of a synchronized Instance Method

The compiler translates

synchronized T foo(pars) { body }

into

T foo(pars) {

synchronized (this) { body }

}

that is into

T foo(pars) {

get the lock of this

body

release the lock of this

}

“this” is constant in Java hence lock and unlock are paired

Fausto Spoto Università di Verona, Italy - 9 / 21



The Meaning of a synchronized Static Method of Class C

The compiler translates

synchronized static T foo(pars) { body }

into

static T foo(pars) {

synchronized (C.class) { body }

}

that is into

T foo(pars) {

get the lock of C.class

body

release the lock of C.class

}

C.class is constant in Java hence lock and unlock are paired

Fausto Spoto Università di Verona, Italy - 10 / 21



The Meaning of wait/notify/notifyAll (Historical!)

expression.wait()

Waits until somebody will notify on the value of expression, temporarily
releasing any lock held by the current thread

expression.notify()

Wakes up a thread waiting on the value of expression, if any. If more
threads are waiting, one of them is non-deterministically chosen and awak-
ened

expression.notifyAll()

Wakes up all threads waiting on the value of expression, if any. The
awakened threads must recheck the condition they were waiting for

These calls must occur only when the thread has already synchronized on
the value of expression

Fausto Spoto Università di Verona, Italy - 11 / 21



Programmers Do it Wrong

“race conditions only occur in books”

RaceCondition.java (when racers collide)

“parallelism increases speed”

Two2One.java (when one is better than two)

“deadlocks do not exist in practice”

Philosophers.java (when philosophers hang)

Fausto Spoto Università di Verona, Italy - 12 / 21



The Visibility Problem

The meaning of volatile

Fausto Spoto Università di Verona, Italy - 13 / 21



The Java Memory Model

The happens-before relation holds in many other situations as well

Fausto Spoto Università di Verona, Italy - 14 / 21



The Thread-Safeness Problem

thread-safe libraries are being developed nowadays

their classes should be thread-safe

but what does thread-safeness mean exactly?

it can be used in a multithreaded way?
any multithreaded execution can be rephrased as a sequential
execution?

verifying thread-safeness is still impossible today

immutable classes are thread-safe!
use thread-safe classes from the Java standard library
for more complex cases, there are heuristics

Fausto Spoto Università di Verona, Italy - 15 / 21



The GUI Problem

GUI toolkits are normally monothreaded (Swing, Android, . . . )

operations on widgets must only be performed from the graphical
thread

long-running operations block the graphical thread

they must be offloaded to worker threads

when a worker thread terminates

it must be able to notify the user through the graphical thread
views might have disappeared in the meanwhile (Android)

Fausto Spoto Università di Verona, Italy - 16 / 21



The @GuardedBy/@Holding Annotations

@GuardedBy

States that a field or parameter is only accessed by holding a lock

introduced by Brian Goetz

used for the NASA PathFinder project

partially checked and inferred by some analysis tools

@Holding

States that a method is only called by holding a lock

partially checked and inferred by some analysis tools

Fausto Spoto Università di Verona, Italy - 17 / 21



Possibilities for @GuardedBy/@Holding

@GuardedBy/@Holding("this")

the lock on the receiver of a non-static field or method must be held

@GuardedBy("itself")

the lock on the same parameter or field must be held

@GuardedBy/@Holding(”field-name”)

the lock on the named field of the receiver of a non-static field or method
must be held

@GuardedBy/@Holding(”Class.field-name”)

the lock on the named static field of the named class must be held

Fausto Spoto Università di Verona, Italy - 18 / 21



Possibilities for @GuardedBy/@Holding

@GuardedBy/@Holding(”Class.class”)

the lock of the unique class object representing the class named Class must
be held

@GuardedBy/@Holding(”foo()”)

the lock on the return value of the named instance method called on the
receiver of a non-static field or method must be held. Method foo must
return a reference type

@GuardedBy/@Holding(”Class.foo()”)

the lock on the return value of the named static method of the named class
must be held. Method foo must return a reference type

Fausto Spoto Università di Verona, Italy - 19 / 21



Tools for Concurrent Software Development

the standard -Xprof Java profiler is a basic tool for simple profiling:
identifies blocking time and deadlocks

the YourKit Java profiler provides detailed information on block time
and monitor usage and identifies deadlocks

static checkers such as Julia and FindBugs

Fausto Spoto Università di Verona, Italy - 20 / 21



References

Fausto Spoto Università di Verona, Italy - 21 / 21


