Wireless Internet of Things

Davide Quaglia

based on slides

by Seapahn Megerian and Damiano Carra
What are IoT?

- Small, wireless, battery-powered nodes

Smart Dust

iMote2
Architecture

• CPU (also called micro-controller unit - MCU)
• Memory
 – Static and dynamic memory to store volatile data
 – Flash memory to store persistent data
• A/D converter and digital I/O
• Sensors (e.g., temperature, humidity, light, motion, etc.)
• Actuators
• Radio transmitter/receiver (transceiver)
• CPU, memory, A/D are usually in the same chip
• Antenna
• Battery or energy harvesting (collector)
• Packaging for harsh environment
Architecture (2)

• Sensors and radio may be either in separate chips or in a single System on Chip

• Actuators are always separated components
Example: iMote2

• Several chips on a board
 – Intel PXA271 Xscale processor
 – From 13 to 416MHz
 – Wireless MMX DSP Coprocessor
 – 32MB Flash
 – 32MB SDRAM
 – Texas Instruments CC2420 to provide IEEE 802.15.4 radio (2.4GHz radio band)
 – Application Specific I/O
 – I2S, AC97, Camera Chip Interface, JTAG
Example: iMote2
Example: Texas Instruments CC2530

- Single system on chip
 - CPU + memory + encryption co-processor + radio + timer + temperature sensor
- Together with an antenna and a power source it represents a complete WIoT node
Example: Texas Instruments CC2530

- Power source
- Radio transmitter and receiver
- 8 KB SRAM
- 32/64/128/256 KB FLASH
- AES encryption/decryption
- Analog-to-digital converter
- Timers
- Serial interface
- CPU
- SoC

SoC (System on a Chip) includes:
- Radio transmitter and receiver
- CPU
- Analog-to-digital converter
- Timers
- Serial interface
- 8 KB SRAM
- 32/64/128/256 KB FLASH
- AES encryption/decryption
Why small, wireless, battery-powered nodes?

- Traditional big, wired sensors
 - Expensive, inefficient, hard to deploy, power-consuming
 - Undesirable: For example, deployment of big traditional sensors can disturb the environment in habitat monitoring
 - Dangerous: Imagine manual deployment of big traditional sensors for disaster recovery
Why small, wireless, battery-powered nodes?
IoT Applications

- Inexpensive micro-sensors & on-board processing embedded in environments for fine-grained in-situ monitoring

- Ad-hoc deployment – No communication infrastructure should be built ahead of time

Structural Monitoring
Golden Gate Bridge

Fire monitoring

Habitat monitoring
IoT Applications: healthcare
IoT Applications: agriculture

Sensors
- Ethylene
- Soil Moisture
- Thermistor

Actuators
- Irrigation
- Lamps
IoT Applications: home automation
IoT Applications: management of power/gas/water infrastructure
IoT Applications: logistics
Applications

• Interface between Physical and Digital Worlds
 – Cyber-Physical Systems
• Industry: industrial monitoring, fault-detection…
• Civilian: traffic, medical…
• Scientific: eco-monitoring, seismic sensors, plume tracking…
Objective

• Large-scale, fine-grained, heterogeneous sensing
 – 100s to 1000s of nodes providing high resolution
 – Spaced a few feet to 10s of meters apart
 – In-situ sensing
 – Hetegerogeneous sensors
Properties

• Wireless
 – Easy to deploy: ad hoc deployment
 – Most power-consuming: transmitting 1 bit ≈ executing 1000 instructions

• Distributed, multi-hop
 – Closer to phenomena
 – Improved opportunity for LOS
 – Radio signal attenuation is proportional to $1/r^4$
 – Centralized approach do not scale
 – Spatial multiplexing

• Collaborative
 – Each sensor has a limited view in terms of location and sensor type
 – Sensors are battery powered
 – In-network processing to reduce power consumption and data redundancy
Basic Terminology and Concepts

• Phenomenon: Physical entity being monitored
• Sink or base station or gateway: a collection point to which the sensor data is sent
 – Relatively resource-rich node
 – Connection to the “normal” network and Internet
• Sensor network periodically samples phenomena in space and time
 – Data are sent to the sink periodically
 – The sink can send queries
Typical Scenario

Deploy

Wake/Diagnosis

Self-Organize

Disseminate
Other variations

• Sensors mobile or not?
• Phenomena discrete or continuous?
• Monitoring in real-time or for replay analysis?
• Ad hoc queries vs. long-running queries
Protocol Stack

+ security management plane
Service architecture

- Collaborative Event Processing
- Querying, Triggering
- Data-centric Routing
- Aggregation and Compression
- Data-centric Storage
- Collaborative Signal Processing
- Localization
- Time Synchronization
- Medium Access
- Calibration
- Operating Systems
- Processor Platforms
- Radios
- Sensors
Protocol Stack: Physical Layer

- Frequency selection
- Carrier frequency generation
- Signal detection
- Modulation

- Not the focus of this class
 - We will focus on the link layer and above
Protocol Stack: Physical Layer

• Issues
 – Hardware cost
 • How do we get down to $1/node?
 – Example
 • IEEE 802.15.4
 – 2.4GHz radio band (= WiFi & Bluetooth) or 868/915 MHz radio band
 – 250 kb/s
 – CSMA/CA (= WiFi)
Protocol Stack: Data Link Layer

- PDU detection
- Point-to-point transmission
- Creation of the network infrastructure
- Addressing
- Medium access control
- Multiplexing of data streams
- Ack and retransmission
- Error detection
Data Link Layer: Medium Access Control

• Basic strategy:
 – Only one RF interface per node (RX vs. TX)
 – Turn off RF interface as much as possible between receiving and transmitting intervals

• Techniques: Application-layer transmission scheduling, TDMA, SMAC, ZMAC, BMAC, …
Protocol Stack: Network Layer

• Main goals:
 – addressing
 – Routing
 – Multi-hop forwarding

• Design principles:
 – Power efficiency
 – Data-centric
 – Data aggregation when desired and possible
 – Attribute-based addressing vs. IP-like addresses
Multi-hop transmission

• Needed to avoid high power transmission thus saving power
• No fixed rules
 – Sensors/actuators can be also routers
Minimum Energy Routing

- Maximum power available route
- Minimum energy route
- Minimum hop (MH) route
- Simple tree to avoid computational complexity
Example: Directed Diffusion

• One of the first data-centric routing protocols
• Route based on attributes and interests
• How it works:
 – Sink floods interest on some attributes
 – Sensors send data toward the sink
 – Sink add/reinforces node/attribute association
• In general flooding is too energy demanding
Protocol Stack: Transport Layer

• Application multiplexing
• Application discovery
• End-to-end security
 – Like SSL: authentication, encryption, data integrity
 – Feasible? What about data aggregation?
Protocol Stack: Application Layer

• Actual WIoT applications
• Sensor database
 – TinyDB
 – Cougar
• Virtual machines
• Middleware
Other Important Issues

• Operating system
 – TinyOS: Event-driven
 – FreeRTOS
 – MANTIS OS, LiteOS, etc: Multithreaded

• Localization, Timing Synchronization, and Calibration

• Aggregation/Data Fusion

• Security
 – Privacy
 – Authentication
 – Data integrity
 – Availability: denial-of-service attacks
Time and Space Problems

- Timing synchronization
- Node Localization
- Sensor Coverage
Time Synchronization

• Time sync is critical at many layers in sensor nets
 – Object detection, data aggregation, localization, medium access control
Sources of time synchronization errors

• Send/receive time
 – OS processing
 – Interrupt latency
 – Context switches
 – Transfer from host to network interface

• Medium access time
 – Depending on the MAC protocol
 • E.g. in CSMA/CA, sender must wait for free channel

• Propagation time
 – Function of the number of hops

• Clock drift
Conventional Approaches

- GPS at every node (around 10ns accuracy)
 - Doesn’t work indoor
 - Cost, size, and energy issues
- Network Time Protocol
 - Primary time servers are synchronized through atomic clock
 - Pre-defined server hierarchy
 - Nodes synchronize with one server of a pre-specified set
 - Can support coarse-grain time synchronization
 - Inefficient when fine-grain sync is required
 - Sensor net applications, e.g., localization, TDMA
 - Discovery of time servers
 - Potentially long and varying paths to time-servers
 - Delay and jitter due to MAC and store-and-forward relaying
Localization

• Why each node should find its location?
 – Data meaningless without context (e.g. RF tag for asset tracking)
 – Support to commissioning (=configuration)
 – Geographical forwarding/addressing (less important)

• Why not just GPS at every node?
 – Large size and expensive
 – High power consumption (it is a receiver)
 – Works only outdoors with line of sight to satellites
 – Overkill: often only relative position is needed
What is Location?

• Absolute position on geoids
• Location relative to fixed anchor points
• Location relative to other IoT nodes
• Specific area inside a set of possible areas
• Most applications:
 – location relative to other people or objects, whether moving or stationary, or room number within a building
Techniques for Localization

• Measure proximity to anchor points
 – Near a base station in a room
 • Active badge for indoor localization
 – Infrared base stations in every room
 – Localizes to a room as room walls act as barriers
 • Most commercial RF ID Tag systems
 – Strategically tag readers are located at gates
 – Beacon grid for outdoor localization
 • Grid of outdoor beaconing nodes with know position
 • Position = solution of a geometric problem
 – Problem
 • Accuracy of location is a function of the density of beacons
Localization: direction based

• Measure direction of landmarks
 – Simple geometric relationships can be used to determine the location by finding the intersections of the lines-of-position
 – e.g. Radiolocation based on angle of arrival (AoA)
 • can be done using directional antennas or antenna arrays
 • need at least two measurements
Localization: Range-based

• Measure distance to anchor points
 – Measure **signal-strength** or **time-of-flight**
 – Estimate distance via received signal strength
 • Mathematical model that describes the path loss attenuation with distance
 • Use pre-measured signal strength contours around fixed beacon nodes
 – Distance via Time-of-arrival (ToA)
 • Distance measured by the propagation delay
 – Distance = time * c
 – N+1 anchor points give N+1 distance measurements to locate in N dimensions
Many other issues

- Localization in presence of transmission errors
- Beacon signal is too weak
- Localization frequency in case of mobile nodes
Sensor Network Coverage

• Given:
 – Ad hoc sensor field with some number of nodes with known location
 – Start and end positions of an agent

• How well can the field be observed?
Data Management Problems

- Observer interested in phenomena with certain tolerance
 - Accuracy, freshness, delay
- Sensors sample the phenomena
- Sensor Data Management
 - Determining spatio-temporal sampling schedule
 - Difficult to determine locally
 - Data aggregation and fusion
 - Interaction with routing
 - Network/Resource limitations
 - Congestion management
 - Load balancing
 - QoS/Real-time scheduling
Key Design Challenges

• Energy efficiency
 – Sensor nodes should run for several years without battery replacement
 – Energy efficient protocols are required
 – More efficient batteries
 • But, efficient battery development is always slower than processor/memory/network development
 – Energy harvesting
Key Design Challenges

• Responsiveness
 – Crucial in real-time applications
 – Periodic sleep & wake-up can reduce the responsiveness of sensors and the data rate
 • Important events could be missed
 • Transmission could be delayed
 – Network congestion can increase the access time in CSMA MAC and delay spent in queues
Key Design Challenges

- Robustness
 - Inexpensive sensors deployed in a harsh physical environment could be unreliable
 - Some sensor could be faulty or broken
 - Global performance should not be sensitive to individual sensor failures
 - Graceful performance degradation is desired when there are faulty sensors
Key Design Challenges

• Synergy
 – Moore’s law applies differently
 • Sensors may not become more powerful in terms of computation and communication capability
 • Cost reduction is the key to a large number of sensor deployment
 – A IoT as a whole needs to be much more capable than a simple sum of the capabilities of the sensors
 • Exploit contextual information to send meaningful information rather than raw data
 – Sharing of computation, communication, and storage resources
Key Design Challenges

• Scalability
 – 10000 or more nodes for fine-granularity sensing & large coverage area
 – Distributed, localized communication
 – Utilize hierarchical structure
 – Address fundamental problems first
 • Failure handling
 • In-situ reprogramming
 • Network throughput & capacity limits?
Key Design Challenges

• Heterogeneity
 – Heterogeneous sensing, computation, and communication capabilities
 • e.g., a small number of devices of higher computational capabilities & a large number of low capability nodes -> two-tier IoT architecture
 – Best architecture exist for all application? NO!!!
 • How to determine the right combination of heterogeneous devices for a given application?
Key Design Challenges

• Self-configuration
 – IoT are unattended distributed systems
 – Nodes have to configure their own network topology
 • Localize, synchronize & calibrate
 • Coordinate communications for themselves
 – The network should repair itself in case of node failures
Key Design Challenges

• Self-optimization & adaptation
 – IoT cannot be optimized a priori
 – Environment is unpredictable, and may change drastically
 – IoT protocols should be adaptive & should adapt themselves at run-time
Key Design Challenges

• Design methodologies
 – Tradeoff between two alternatives
 • (1) Fine-tuning to exploit application specific characteristics to improve performance
 • (2) More flexible, easy-to-generalize design approaches sacrificing some performance
 – Design methodologies for reuse, modularity & run-time adaptation are required
Key Design Challenges

• Security & Privacy
 – Security support to avoid actions and data replacement
 • e.g., remote control of plants
 – Support privacy to protect data
 • e.g., medical sensing, asset tracking