Esercizi: curve parametrizzate

Formula per la curvatura: $\kappa(t) = \frac{\sqrt{\|\sigma'\|^2 \|\sigma''\|^2 - |\langle \sigma'', \sigma' \rangle|^2}}{\|\sigma'\|^3}$.

Esercizio 1. Sia $\sigma_1: [0, 2\pi] \to \mathbb{R}^2$ la curva parametrizzata definita da $\sigma_1(t) = (\cos t, \sin t)$, e sia $\sigma_2: [0, 2\pi] \to \mathbb{R}^2$ la curva parametrizzata definita da $\sigma_2(t) = (\cos 2t, \sin 2t)$. Mostra che σ_1 e σ_2 hanno la stessa traccia, ma non sono equivalenti tra di loro.

Una soluzione: hanno la stessa traccia, $\sigma_1([0, 2\pi]) = \sigma_2([0, 2\pi]) = S^1$ (la circonferenza di raggio 1). Se fossero equivalenti, avrebbero la stessa lunghezza, ma

$$L(\sigma_1) = \int_0^{2\pi} \sqrt{(-\sin t)^2 + (\cos t)^2} dt = 2\pi$$

$$L(\sigma_2) = \int_0^{2\pi} \sqrt{(-2\sin 2t)^2 + (2\cos 2t)^2} dt = \int_0^{2\pi} 2dt = 4\pi.$$

Esercizio 2. Trova una curva parametrizzata $\sigma : \mathbb{R} \to \mathbb{R}^2$ di classe C^2 il cui sostegno sia il grafico della funzione valore assoluto. Dimostra che nessuna di tali curve può essere regolare.

Una soluzione: $f(t)=t^3,\ \sigma(t)=(t^3,|t^3|)=\left\{\begin{array}{ll} (t^3,-t^3),& t<0\\ (t^3,t^3),& t\geq 0\end{array}\right.$. Il sostegno è $\sigma(\mathbb{R})=\{(x,|x|)|x\in\mathbb{R}\}.$ Inoltre abbiamo

$$\sigma'(t) = \left\{ \begin{array}{ll} (3t^2, -3t^2), & t < 0 \\ (3t^2, t^2), & t \ge 0 \end{array} \right. \qquad \sigma''(t) = \left\{ \begin{array}{ll} (6t, -6t), & t < 0 \\ (6t, 6t), & t \ge 0 \end{array} \right.$$

che sono entrambe continue a t=0, quindi σ è di classe C^2 .

Non esiste una parametrizzazione regolare: una qualsiasi curva parametrizzata $\sigma(t) = (\sigma_1(t), \sigma_2(t))$ con quel sostegno deve soddisfare $\sigma_1(t) = -\sigma_2(t)$ se $\sigma_1(t) \leq 0$, e $\sigma_1(t) = \sigma_2(t)$ se $\sigma_1(t) \geq 0$. Quindi,

$$\sigma'(t) = (\sigma'_1(t), -\sigma'_1(t)) \text{ se } \sigma_1 \le 0,$$

$$(\sigma'_1(t), \sigma'_1(t)) \text{ se } \sigma_1 \ge 0.$$

Sia t_0 un punto di \mathbb{R} tale che $\sigma(t_0) = (0,0)$. In un'intorno $I_{\epsilon} = (t_0 - \epsilon, t_0 + \epsilon)$ sufficientemente piccolo di t_0 , ci sono 3 possibilità per $\sigma_1(t)$:

- σ_1 è non-negativa su I_{ϵ} : in questo caso σ_1 assume un minimo locale a t_0 quindi $\sigma'_1(t_0) = 0$ e quindi $\sigma'(t_0) = (0,0)$;
- σ_1 è non-positiva su I_{ϵ} : in questo caso σ_1 assume un massimo locale a t_0 quindi $\sigma'_1(t_0) = 0$ e quindi $\sigma'(t_0) = (0,0)$;
- σ_1 cambia segno passando dalla sinistra di t_0 alla destra di t_0 ; in questo caso per la continuità di σ' , $(\sigma'_1, -\sigma'_1) = (\sigma'_1, \sigma'_1)$, quindi $-\sigma'_1 = \sigma'_1$, quindi $\sigma'_1 = 0$, percui $\sigma'(t_0) = (0, 0)$.

Quindi σ non può essere regolare a t_0 .

Esercizio 3. Sia $\sigma:[a,b]\to\mathbb{R}^2$ la parametrizzazione $\sigma(t)=(t,f(t))$ del grafico di una funzione $f:[a,b]\to\mathbb{R}$ di classe C^1 . Dimostra che la lunghezza di σ è $\int_a^b \sqrt{1+|f'(t)|^2}dt$.

Esercizio 4. Determina una parametrizzazione rispetto alla lunghezza d'arco per la parabola $\sigma: \mathbb{R} \to \mathbb{R}^2$ data da $\sigma(t) = (t, at^2)$ con a > 0 fissato.

Possiamo scegliere qualsiasi $c \in \mathbb{R}$ da cui misurare la lunghezza d'arco; scegliamo 0.

$$s(t) = \int_0^t \sqrt{1 + 4a^2 \tau^2} d\tau.$$

Sostituzione:

$$\tau = \frac{\tan \theta}{2a} \implies d\tau = \frac{\sec^2 \theta}{2a} d\theta$$

$$\tau = 0 \implies \theta = 0$$

$$\tau \in (-\infty, \infty) \implies \theta \in (-\pi/2, \pi/2)$$

$$\sqrt{1 + \tan^2 \theta} = \sqrt{\frac{1}{\cos^2 \theta}} = \frac{1}{\cos \theta} = \sec \theta.$$

Quindi $\int \sqrt{1+4a^2\tau^2}d\tau = \int \sec^3\theta d\theta$. Questo integrale si calcola usando la tecnica di integrazione per parti (infatti non è l'integrale più semplice nel mondo),

$$\int \sec^3 \theta d\theta = \frac{1}{2} \sec \theta \tan \theta + \frac{1}{2} \ln|\sec \theta + \tan \theta| + C,$$

percui

$$\begin{split} s(t) &= \int_0^t \sqrt{1 + 4a^2\tau^2} d\tau &= \int_0^{\arctan(2at)} \sec^3\theta d\theta \\ &= \frac{1}{2} \sec\theta \tan\theta + \frac{1}{2} \ln|\sec\theta + \tan\theta||_0^{\arctan(2at)} \\ &= \frac{1}{2} \sqrt{1 + 4a^2t^2} 2at + \frac{1}{2} \ln|\sqrt{1 + 4a^2t^2} + 2at| \end{split}$$

A questo punto cediamo all'impossibilità di trovare una formula esplicita per l'inversa t(s) (forse avrei dovuto provare questo esercizio prima di metterlo nella lista di esercizi!) – comunque, sappiamo che l'inversa t(s) esiste, e una parametrizzazione rispetto alla lunghezza d'arco è $\sigma(t(s)) = (t(s), at(s)^2)$.

Esercizio 5. Sia $\sigma:[0,2\pi]\to\mathbb{R}^2$ la parametrizzazione $\sigma(t)=(a\cos t,b\sin t),\ a,b>0$. Mostra che il sostegno di σ è un'elisse passante per $(\pm a,0)$ e $(0,\pm b)$. Trova la curvatura della curva a (a,0) e (0,b). Mostra che se a>b, allora la curvatura a $(\pm a,0)$ è superiore alla curvatura a $(0,\pm b)$.

Soluzione: $\sigma'(t) = (-a\sin t, b\cos t), \ \sigma''(t) = (-a\cos t, -b\sin t). \ \sigma(0) = (a, 0), \ \sigma(\pi/2) = (0, b).$

Curvatura a (a, 0): $\sigma'(0) = (0, b), \sigma''(0) = (-a, 0),$

$$\kappa(0) = \frac{\sqrt{\|\sigma'(0)\|^2 \|\sigma''(0)\|^2 - \langle \sigma'(0), \sigma''(0) \rangle^2}}{\|\sigma'(0)\|^3}$$

$$= \frac{\sqrt{b^2 a^2}}{b^3}$$

$$= \frac{a}{b^2}$$

Curvatura a (0,b): $\sigma'(\pi/2) = (-a,0), \sigma''(0) = (0,-b),$

$$\kappa(0) = \frac{\sqrt{b^2 a^2}}{a^3}$$
$$= \frac{b}{a^2}.$$

Se a > b > 0, allora $a > b \iff a^3 > b^3 \iff a^3/(a^2b^2) > b^3/(a^2b^2) \iff a/b^2 > b/a^2$.