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2D Wavelets
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Topics

Basic issues

• Separable spaces and bases

• Separable wavelet bases (2D DWT)

• Fast 2D DWT

• Lifting steps scheme

• JPEG2000

Wavelets in vision

• Human Visual System

Advanced concepts

• Overcomplete bases
– Discrete wavelet frames (DWF)

• Algorithme à trous
– Discrete dyadic wavelet frames (DDWF)

• Overview on edge sensitive wavelets
– Contourlets
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Separable Wavelet bases

• In general, to any wavelet orthonormal basis {ψj,n}(j,n)∈Z
2 of L2(R), one can 

associate a separable wavelet orthonormal basis of L2(R2):

• The functions                   and                     mix information at two different scales 
along x1 and x2, which is something that we could want to avoid

• Separable multiresolutions lead to another construction of separable wavelet 
bases with wavelets that are products of functions dilated at the same scale.
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Separable multiresolutions

• The notion of resolution is formalized with orthogonal projections in spaces of 
various sizes. 

• The approximation of an image f(x1,x2) at the resolution 2-j is defined as the 
orthogonal projection of f on a space V2

j that is included in L2(R2)

• The space V2
j is the set of all approximations at the resolution 2-j . 

– When the resolution decreases, the size of V2
j decreases as well.

• The formal definition of a multiresolution approximation {V2
j}j∈Z of L2(R2) is a 

straightforward extension of Definition 7.1 that specifies multiresolutions of L2(R).
– The same causality, completeness, and scaling properties must be satisfied.



Gloria Menegaz 5

Separable spaces and bases

• Tensor product
– Used to extend spaces of 1D signals to spaces of multi-dimensional signals
– A tensor product                   between vectors of two Hilbert spaces H1 and H2 satisfies 

the following properties

– This tensor product yields a new Hilbert space                  including all the 
vectors of the form                 where                 and   as well as a linear 
combination of such vectors

– An inner product for H is derived as 
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Separable bases

• Theorem A.3 Let                         . If                 and           are Riesz bases of H1

and H2, respectively, then                            is a Riesz basis for H. If the two bases 
are orthonormal then the tensor product basis is also orthonormal. 

→ To any wavelet orthonormal basis one can associate a separable wavelet 
orthonormal basis of L2(R2)

However, wavelets               and                  mix the information at two different 
scales along x and y, which often we want to avoid.
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Separable Wavelet bases

• Separable multiresolutions lead to another construction of separable wavelet 
bases whose elements are products of functions dilated at the same scale.

• We consider the particular case of separable multiresolutions

• A separable 2D multiresolution is composed of the tensor product spaces

• V2
j is the space of finite energy functions f(x,y) that are linear expansions of 

separable functions

• If                is a multiresolution approximation of L2(R), then                 is a 
multiresolution approximation of L2(R2).  
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Separable bases

It is possible to prove (Theorem A.3) that

is an orthonormal basis of V2
j.

A 2D wavelet basis is constructed with separable products of a scaling function and a 
wavelet
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Examples
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Separable wavelet bases

• A separable wavelet orthonormal basis of L2(R2) is constructed with separable 
products of a scaling function and a wavelet .

• The scaling function is associated to a one-dimensional multiresolution
approximation {Vj}j∈Z. 

• Let {V2
j}j∈Z be the separable two-dimensional multiresolution defined by 

• Let W2
j be the detail space equal to the orthogonal complement of the lower-

resolution approximation space V2
j in V2

j
-1:

• To construct a wavelet orthonormal basis of L2(R2),Theorem 7.25 builds a wavelet 
basis of each detail space W2

j .
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Separable wavelet bases
Theorem 7.25

Let ϕ be a scaling function and ψ be the corresponding wavelet generating an orthonormal basis of 
L2(R). We define three wavelets

and denote for 1<=k<=3

The wavelet family

is an orthonormal basis of W2
j and

is an orthonormal basis of L2(R2)

On the same line, one can define biorthogonal 2D bases.
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Separable wavelet bases

• The three wavelets extract image details at different scales and in different 
directions. 

• Over positive frequencies,                                 have an energy mainly 
concentrated, respectively,on [0,π ] and [π,2 π].

• The separable wavelet expressions imply that
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Bi-dimensional wavelets
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Example: Shannon wavelets
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Biorthogonal separable wavelets
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Fast 2D Wavelet Transform
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Fast 2D DWT
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Finite images and complexity

• When aL is a finite image of N=N1xN2 pixels, we face boundary problems when 
computing the convolutions

– A suitable processing at boundaries must be chosen

• For square images with N1N2, the resulting images aj and dk, j have N1N2/22j 

samples. Thus, the images of the wavelet representation include a total of N 
samples. 

– If h and g have size K, one can verify that 2K2-2( j-1) multiplications and additions are 
needed to compute the four convolutions 

– Thus, the wavelet representation is calculated with fewer than 8/3 KN operations.
– The reconstruction of aL by factoring the reconstruction equation requires the same 

number of operations.
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Matlab notations
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Matlab notations
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Example
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Example

h

g

↓2

↓2

~

~

h

g

↓2

↓2

~

~

h

g

↓2

↓2

~

~

H

h

g

↓2

↓2

~

~

h

g

↓2

↓2

~

~

h

g

↓2

↓2

~

~



Gloria Menegaz 25

Subband structure for images

cD1(h)

cD1(v) cD1(d)

cD2(v) cD2(d)

cD2(h)cA2
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