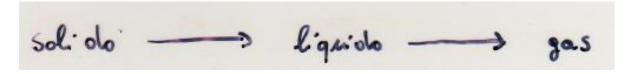

PROCESSI SPONTANEI

Tendono a verificarsi senza l'intervento di una azione esterna.

La spontaneità di un processo non è legata alla velocità con cui avviene tale processo.

Es.


La trasformazione di diamante in grafite è un processo spontaneo ma molto lento

SPONTANEITA' E' UN CONCETTO TERMODINAMICO E NON CINETICO

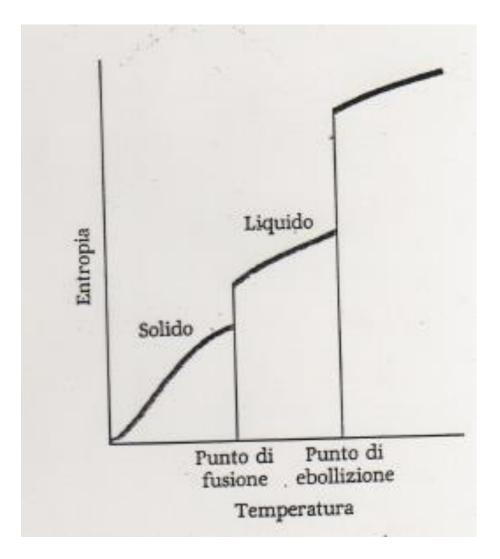
ENTROPIA

L'entropia è una misura del grado di disordine di un sistema. (Una definizione molto poco precisa ma utile per i nostri scopi) Entropia è una funzione di stato ed ha tutte le caratteristiche di tale funzione si indica con la lettera **S**

Cosa succede all'entropia durante i passaggi:

L'entropia aumenta (di solito)

VARIAZIONI di ENTROPIA del SISTEMA


Valutare le variazioni di entropia del sistema (ΔS) nelle seguenti equazioni:

PU3 (L) + U2 (g)
$$\longrightarrow$$
 PU5 (s)
H20 (L) \longrightarrow H20 (g)
6 $CO_2(g)$ + 6 H20 (l) \longrightarrow C6 H4206 (s) + 602 (3)
C6 H4206 (s) + 602 (g) \longrightarrow 6 $CO_2(g)$ + 6 H20 (l)

Vedremo che la funzione entropia è collegata alla previsione della spontaneità di un processo ma:

Per valutare la spontaneità di un processo bisogna considerare il ΔS universo non solo quello del sistema!!!

ENTROPIA di una SOSTANZA PURA

Per definizione l'entropia di un solido cristallino perfetto allo 0 assoluto è pari a zero.

S per definizione non sarà mai negativa

L'entropia cresce con la temperatura a causa della crescita del moto termico (crescita disordine)

Per ogni sostanza si definisce la **S**° (**entropia molare standard**), cioè il valore di S per 1 mole di quella sostanza pura in condizioni standard

ENTROPIA MOLARE STANDARD

Sostanza 8°, j	AK · mol)	Sostanza S*	J/K-mal)	Sostanza S°, JA	K-mol)
Gas		Liepoteli		Grafite, C	5,7
Ammoniaca, NII ₃	192,5	Henzene, Calla	173,3	Piombo, Pb	64,5
Biossido di carbonio CO ₂		Etanolo, GH ₂ CH ₂ OH	160,7	Carbonato di magnesio, MgCO ₃	65,7
Elio, He	126,2	Acqua, H ₂ O	69,9	Ossido di magnesio, MgO	26,9
Idrogeno, H ₂	130,7	Solidi		Cloruro di sodio, NaCl	72,1
Neon, Ne	146,3	Carbonato di calcio	92,9	Saccarosio, C13H22O11	360,2
Azoto, N ₂	191,6	CaCO ₃	1000	Stagno	Medic
Ossigeno, Oz	205,1	1,000		Sn (bianco)	51,6 44,1
		Control of the Contro	100000000000000000000000000000000000000	n	
Ossigeno, O2	205,1	Ossido di calcio, CaO Rame, Cu Diamante, C	39,8 33,2 2,4		

Il diamante possiede una struttura molto più rigida ed ordinata di quella del saccarosio

VARIAZIONI di ENTROPIA nelle REAZIONI CHIMICHE

Supponiamo di fare avvenire una reazione a P=1atm e a 25°C (condizioni comuni). Quanto vale il ΔS° passando da reagenti a prodotti??

Calcolare ΔS° per la reazione (25°C):

$$\Delta S^{\circ} = (212 + 6 \cdot 205.1) - (6.213.7 + 6.63.3) =$$

$$= 1443 - 1702 = -253 \quad 5/K$$

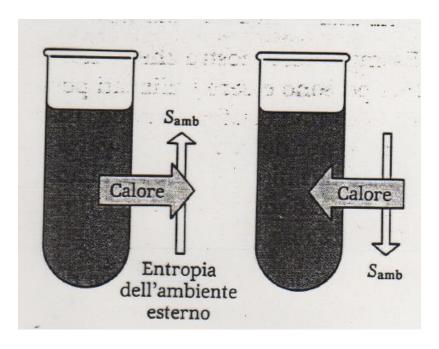
Tabella 16.2 Entropia molare standard dell'acqua a varie temperature So, J/(K·mol) Temperatura, °C Fase 43,2 Solido 65,2 Liquido 69,6 20 75,3 50 86,8 100 196,9 100 Vapore 204,1 200

Calcolare ΔS° per il processo a 0°C:

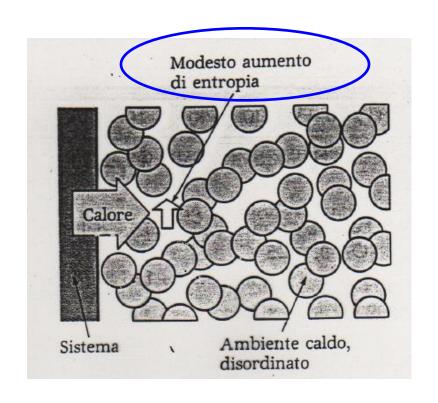
Aumento (ovvio) di ordine passando da liquido a solido.

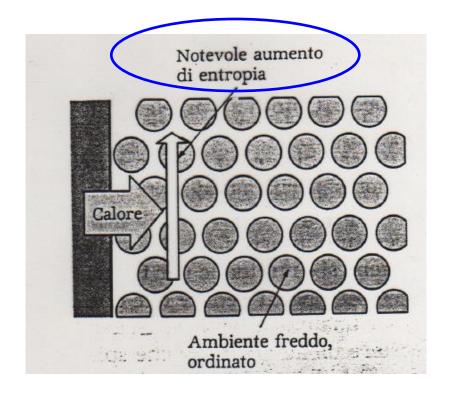
SECONDO PRINCIPIO della TERMODINAMICA

Definizione a noi utile:


Si consideri un sistema isolato (universo), non all'equilibrio. Si misuri il ΔS (univ.)= ΔS (sistema) + ΔS (ambiente) per un particolare processo. Tale processo avverrà spontaneamente se ΔS (univ.)>0.

Se Δ S (sistema) è facilmente calcolabile, come si calcola Δ S (ambiente)??


Qualitativamente —


Un processo esotermico porta ad un aumento dell'entropia dell'ambiente.

Un processo endotermico porta ad una diminuzione dell'entropia dell'ambiente.

ΔS(ambiente) vs TEMPERATURA

Una stessa quantità di calore che fluisce dal sistema verso l'ambiente causa un aumento dell'entropia inversamente proporzionale alla temperatura dell'ambiente.

Si può dimostrare che:

II ΔH è riferito al sistema, perciò processi endotermici causano $\Delta S(amb.) < 0$

Per processi esotermici come risulta il ΔS(amb.) ??

Prevedere il **ΔS(univ.)**, quindi se la reazione è spontanea o no, per:

$$N_2$$
 (3) + 3 H_2 (3) - 2 NH_3 (3)
a 238 K $\Delta H^0 = -32.2$ KJ
 $\Delta S_{col} = -193$ $3/K$
 $\Delta S_{univ} = -193$ + 303 = 140 J/K

Processo spontaneo!!!

SISTEMI all'EQUILIBRIO

Un esempio per tutti:

$$AS_{0}: At = -22.0 \quad 3/K \qquad \Delta H^{\circ} = -6.00 \cdot 10^{3} \, 3$$

$$\Delta S_{0}: At = -6000 \, 3 \qquad = +22.0 \quad 3/K$$

$$\Delta S_{0}: AS_{0}: AS_{0}:$$

Generalizzabile per tutti i sistemi in **equilibrio dinamico**:

$$\Delta S(univ.) = 0$$

Per fare avvenire la solidificazione dell'acqua **spontaneamente** bisogna **abbassare la temperatura dell'ambiente.**

$$\Delta S = -10C$$

$$\Delta S = -10C$$

$$\Delta S = -22.0 \quad 5/K$$

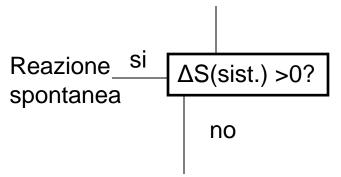
$$\Delta S = -6000 \quad 5 = +22.1 \quad 5/K$$

$$\Delta S = -22K \quad + \Delta S = -22.0 \quad 522.4 \quad -24.5/K$$

Trasformazione spontanea liquido → solido

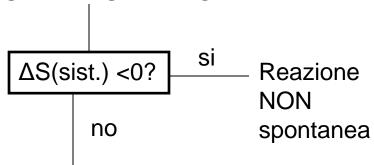
Se T ambiente viene posta a +1°C cosa succederà??

ΔS <0, il processo di solidificazione non è spontaneo. Quello di liquefazione sì!!!


$$aA + bB \equiv cC + dD$$

Se analizzando il processo da sinistra verso destra $\Delta S > 0$, il processo è spontaneo.

Se analizzando il processo da sinistra verso destra $\Delta S < 0$, il processo è non è spontaneo, ma spontaneo è quello da destra verso sinistra.


Se analizzando il processo da sinistra verso destra $\Delta S = 0$, il processo è all'equilibrio. Nessuno dei due processi possibili è spontaneo (oppure entrambi i processi hanno un ugual grado di spontaneità).

REAZIONI ESOTERMICHE

Perché sia spontanea il ΔS(amb.) >0 deve compensare il valore negativo di ΔS(sist.). Un abbassamento della T può portare alla spontaneità del processo

REAZIONI ENDOTERMICHE

Spontanea se ΔS(sist.) in valore assoluto è maggiore di ΔS(amb.). Un aumento della T può portare alla spontaneità del processo

Esempi:

$$Ce co_3 (s) -) (eo(s) + co_2 (s)$$

$$\Delta H^0 >0 \qquad \Delta S = - \frac{\Delta H^0}{T} (0)$$

Però ΔS(sist.) >>0, il processo ha buone possibilità di essere spontaneo. A T= 25°C il processo non è spontaneo ma a 800°C sì!!!

Per la reazione:

$$H_2(3)$$
 + $F_2(3)$ -) 2 MF (3)
 $\Delta H^0 = -564.4$ K3 e $\Delta S^0 = + 14.4$ 3 (K)

Il processo è spontaneo o no???