Representation Theory - Exercises 1

[Submit your solutions at the exercise class on March 20, 2019]

In Exercises 1 and 2 we will consider representations of the following quivers:

$$Q_1: \qquad \bullet \xrightarrow{\alpha} \bullet \xrightarrow{\beta} \bullet \qquad \qquad Q_2: \qquad \bullet \xrightarrow{\delta} \bullet$$

Exercise 1.

1. Identify whether each of the following morphisms of representations is a monomorphism, an epimorphism or an isomorphism. We will fix an arbitrary field k and $0 \neq \lambda \in k$.

Note: A morphism of representations $(h_i: V_i \to V'_i)_{i \in Q_0}$ is a monomorphism/ epimorphism/ isomorphism if and only if h_i is a monomorphism/ epimorphism/ isomorphism for each $i \in Q_0$.

(a) The morphism $u = (u_1, u_2, u_3)$ between representations of Q_1 defined as follows:

$$0 \xrightarrow{f_{\alpha}=0} \mathbb{R} \xrightarrow{f_{\beta}=2} \mathbb{R}$$

$$\downarrow u_{1} \qquad \qquad \downarrow u_{2} \qquad \qquad \downarrow u_{3}$$

$$\mathbb{R} \xrightarrow{g_{\alpha}=\begin{pmatrix} 1\\0\\0 \end{pmatrix}} \mathbb{R}^{3} \xrightarrow{g_{\beta}=\begin{pmatrix} 1&0&0\\0&0&4 \end{pmatrix}} \mathbb{R}^{2}$$

where $u_1 = 0$, $u_2 = \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}$ and $u_3 = \begin{pmatrix} 0 \\ 2 \end{pmatrix}$.

(b) The morphism $v = (v_1, v_2)$ between representations of Q_2 defined as follows:

$$\begin{array}{c} k^{3} \xrightarrow{f_{\delta} = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}} \\ \downarrow \\ v_{1} \\ \downarrow \\ k^{2} \xrightarrow{g_{\delta} = (1 & 0)}{g_{\gamma} = (0 & 1)} \\ k \end{array} \begin{array}{c} k^{4} \\ \downarrow \\ v_{2} \\ \downarrow \\ g_{\delta} = (1 & 0) \\ k \end{array}$$

where $v_1 = \begin{pmatrix} 1 & \lambda & 0 \\ 0 & 1 & \lambda \end{pmatrix}$ and $v_2 = (0 & 1 & \lambda & 0)$.

(c) The morphism $w = (w_1, w_2)$ between representations of Q_2 defined as follows:

$$k \xrightarrow[g_{\gamma}=1]{f_{\gamma}=\lambda} k$$

$$w_{1} \downarrow \xrightarrow[g_{\delta}=\lambda^{-1}]{g_{\gamma}=1} k$$

$$w_{2} \downarrow w_{2}$$

$$k \xrightarrow[g_{\gamma}=1]{g_{\gamma}=1} k$$

where $w_1 = 1$ and $w_2 = \lambda^{-1}$.

(3 points)

2. Let $f \in \text{Hom}_R(M, N)$ be a homomorphism of left *R*-modules. Show that *f* is a monomorphism if and only if fg = 0 implies g = 0 for any $g \in \text{Hom}_R(L, M)$ for any module *L*. Show *f* is an epimorphism if and only if gf = 0 implies g = 0 for any $g \in \text{Hom}_R(N, L)$ for any module *L*.

(4 points)

Exercise 2.

1. Let $_{R}L$, $_{R}M$, $_{R}N$ be left R-modules and let $f \in \operatorname{Hom}_{R}(L, M)$ and $g \in \operatorname{Hom}_{R}(M, L)$ be such that $gf = \operatorname{id}_{L}$. Show $M = \operatorname{Im} f \oplus \ker g$.

(3 points)

2. Let Q be a finite quiver without oriented cycles and let $V = (V_i)_{i \in Q_0}$ and $V' = (V'_i)_{i \in Q_0}$ be representations of Q over a field k. We say that V is a subrepresentation of V' if V_i is a k-subspace of V'_i for all $i \in Q_0$ and the canonical embeddings $(\iota_i \colon V_i \to V'_i)_{i \in Q_0}$ give rise to a morphism of representations.

Consider the following representation of Q_1 :

$$V: \qquad \mathbb{R} \xrightarrow{g_{\alpha} = \begin{pmatrix} 1\\ 0\\ 0 \end{pmatrix}} \mathbb{R}^3 \xrightarrow{g_{\beta} = \begin{pmatrix} 1 & 0 & 0\\ 0 & 0 & 4 \end{pmatrix}} \mathbb{R}^2$$

Which of the following collections of subspaces (shown with their canonical embeddings) is not a subrepresentation of V? Why?

(a)

(b)

$$\mathbb{R} \xrightarrow{f_{\alpha}=1} \mathbb{R} \xrightarrow{f_{\beta}=0} 0$$

$$\downarrow 1 \qquad \qquad \downarrow \begin{pmatrix} 0 \\ 0 \end{pmatrix} \qquad \qquad \downarrow \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\mathbb{R} \xrightarrow{g_{\alpha}} \mathbb{R}^{3} \xrightarrow{g_{\beta}} \mathbb{R}^{2}$$

(c)

$$\mathbb{R} \xrightarrow{f_{\alpha} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}} \mathbb{R}^{2} \xrightarrow{f_{\beta} = (1 \ 0)} \mathbb{R}$$
$$\downarrow 1 \qquad \qquad \downarrow \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \qquad \downarrow \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \qquad \downarrow \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
$$\mathbb{R} \xrightarrow{g_{\alpha}} \mathbb{R}^{3} \xrightarrow{g_{\beta}} \mathbb{R}^{2}$$

Using Exercise 2.1, show that V is the direct sum of the two subrepresentations.

Note: Under the correspondence given in Remark 2.8, a direct sum of representations corresponds to a direct sum of modules.

(5 points)

Exercise *. Note: this is an optional extra exercise - it will not be marked.

1. Let $_RM$ be a R-module and $_RR$ the regular module. Consider the abelian group $\operatorname{Hom}_R(R, M)$ and the map $\varphi : \operatorname{Hom}_R(R, M) \to M$, $f \mapsto f(1)$. Verify that $\operatorname{Hom}_R(R, M)$ is a left R-module and φ is an isomorphism of R-modules.

(Bonus exercise)

2. Let $_{R}L_{,R}N \leq _{R}M$. Show that M is the direct sum of L and N if and only if L + N = M and $L \cap N = 0$. Generalise this statement for more than two summands?

(Bonus exercise)