
Chapter 6

Hybrid Systems

This text models signals and systems as functions. To develop understanding, we study the structure
of the domain and range of these functions, as well as the structure of the mapping from the domain
to the range. Despite the uniformity of this approach, we have begun to evolve two distinct families
of models. Chapters 3 and 4 structure this mapping using state machines. Chapter 5 generalizes
these state machines so that the number of possible states is infinite, and specializes them so that
the systems are linear and time-invariant (LTI). LTI systems prove to yield to powerful analytical
techniques, which are only hinted at in chapter 5. Chapters 7 through 11 will further develop these
analytical techniques by structuring the system mapping using frequency-domain concepts.

The analytical methods available for LTI systems prove so compelling that we wish to apply them
even to systems that are not LTI. In fact, no real-world system is truly LTI. At a minimum, its
properties were certainly different during the initial stages of the big bang, so it cannot be time
invariant. More practically, systems change over time; they are turned on and off, they deteriorate,
etc. Moreover, systems that behave as linear systems typically do so only over some regime of
operation. For example, if the magnitude the inputs exceed some threshold, a real-world system
will overload, and will no longer behave linearly. A similar effect might result when the state
wanders beyond some modest range. This chapter shows how models that are only applicable some
of the time can be used effectively.

In chapters 3 and 4, signals are sequences of events. Their domain is (typically) Naturals0, and
their range is (typically) a finite and arbitrary set of symbols. The domain is not interpreted as
time, but rather as indexes of a sequence. In chapters 5 and 7 through 11, the domain of signals is
interpreted as time. For continuous-time signals, the domain is either Reals or Reals+, whereas for
discrete-time signals it is either Integers or Naturals0, but in either case, the domain is interpreted as
representing as advancing time. This interpretation of the domain as time is essential to the notion
of frequency that is used throughout the forthcoming chapters.

Chapter 5 and this one provide a bridge between state-machine models and such time-based mod-
els by developing state machine models for time-based systems. In this chapter, we build another
bridge between these two families of models by showing that they can often be usefully combined
and used simultaneously in the same model, rather than as alternative views of a system. The re-
sulting models are called hybrid systems. They are a powerful tool for understanding real-world

183

eal
Text Box
Structure and Interpretation of Signals and SystemsEdward Lee and Pravin VaraiyaISBN: 0-201-74551-8©2003 Pearson Education

184 CHAPTER 6. HYBRID SYSTEMS

systems.

To understand the value of hybrid systems, it is useful to reflect on the relative strengths and weak-
nesses of time-based models and state-machine models. Chapter 5 demonstrates that state-machine
models are more general by showing how they can be used to describe time-based models. Since
they are more general, why not just always use state-machine models? The methods of state-
machine models, such as composition by forming a product of the state spaces, simulation, and
bisimulation, do not yield the depth of understanding that we will get in the subsequent chapters
from looking at frequency response. Why not always use frequency response? Frequency response
is a rather specialized analytical tool. It applies only to LTI systems. Most real-world systems are
not LTI, so such powerful analytical tools must be applied with careful caveats about the regime of
operation over which they do apply.

Consider for example a home audio system. It takes data from a compact disc and converts it into
auditory stimulus. Is it LTI? Well, obviously not, since its system function changes rather drastically
when you turn it on and off. The acts of turning it on and off, however, seem to match well the state
transitions of a state machine. Can we come up with a model where there is a state machine with
two states, “on” and “off,” and associated with each state there is an LTI system that describes the
behavior of the system in the corresponding mode of operation? Indeed we can. Such a model is
called a hybrid system.

In order to get state machine models to coexist with time-based models, we need to interpret state
transitions on the time line used for the time-based portion of the system, be it continuous time or
discrete time. In the audio system, for example, we need to associate a time with the acts of turning
it on or off. The models used in chapters 3 and 4 do not naturally do this, since the signals there
are sequences of events. That is, they are functions whose domain is Naturals0, where there is no
temporal association with an n ∈ Naturals0.

Recall from chapter 3 that the input and output alphabets of a state machine are required to include
a stuttering element, typically denoted absent. Whenever the state machine reacts, if its input is the
stuttering element, then it does not change state and its output will be the stuttering element. This
is key to hybrid system models because it allows us to embed the state machine into a time-based
model. At any time where there is no interesting input event, the machine stutters.

A hybrid system combines time-based signals with sequences of events. The time-based signals are
of the form x:T → R, where R is some range (such as Reals or Complex), and T is either Reals,
Reals+, Integers, or Naturals0, depending on whether the time domain is discrete or continuous
and whether the model includes a time origin. In chapters 3 and 4, the event signals had the form
u:Naturals0 → Symbols, where the set Symbols has a stuttering element. For a hybrid system,
however, these have to share a common time base with the time-based signals, so they have the
form u:T → Symbols. Thus, events occur in time. Typically, for most t ∈ T , u(t) = absent, the
stuttering element. The non-stuttering element is used only at those discrete values of time where
an event occurs.

6.1. MIXED MODELS 185

6.1 Mixed models

A state machine model becomes a time-based model if it reacts at all times in the time base T . This
means that state machines and time-based models can interact as peers, sending time-based signals
to one another.

Example 6.1: Moving averages are popular on Wall Street for detecting trends in stock
prices. But in using them, a key question arises: how long should the moving average
be? A short-term moving average might detect short-term trends, while a long-term
moving average might detect long term trends. A classical method combines the two
and compares them to generate buy and sell signals. If the short-term trend is more
sharply upward than the long term trend, a buy signal is generated. If the short term
trend is more sharply downward than the long term trend, a sell signal is generated.

A system implementing this moving average cross-over method is shown in figure
6.1. The input is the discrete-time signal price: Integers→ Reals representing the clos-
ing price of a stock each day. The LTI systems shortTerm and longTerm are both mov-
ing average systems, but shortTerm averages fewer successive inputs than longTerm.
The outputs of these systems are the discrete-time signals x and y. The finite state ma-
chine reacts on each sample from these signals. It begins in the state short over long.
The transition out of this state has the guard

{(x(n),y(n)) | x(n) > y(n)}.

When this transition is taken, a buy signal is generated. The sell signal is generated
similarly. The plots below show the buy and sell signals generated by a (synthetic)
sequence of stock prices.

This example illustrates a simple form of technical stock trading. In this extreme form,
it has the controversial feature that it ignores the fundamentals of the company whose
stock is being traded. It is using the stock price alone as the indicator of worth. In fact,
much more sophisticated signal processing methods are used by technical stock traders,
and they often do take as inputs other quantifiers of company worth, such as reported
revenues and profits.

6.2 Modal models

In the previous section, time-based systems are combined with state machines as peers. A richer
interaction is possible with a hierarchical combination. The general structure of a hierarchical hybrid
system model is shown in figure 6.2. In that figure, there is a two-state finite state machine. There
are some changes to the notation, however, from what was used in chapters 3 and 4.

First, notice that the inputs and outputs include both event signals and time-based signals. Sec-
ond, notice that each state of the state machine is associated with a time-based system, called the
refinement of the state. The refinement of a state gives the time-based behavior of HybridSystem

186 CHAPTER 6. HYBRID SYSTEMS

{(x(n), y(n)) | x(n) > y(n) } / buy

short
over
long

long
over
short

Trader

{(x(n), y(n)) | x(n) < y(n) } / sell

x

y

{buy, sell, absent}

shortTerm

longTerm

price

2
x10

x
y

price

0

5

10

15

20

25

30

35

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

day

cl
o

si
n

g
 p

ri
ce

2
x10

sell

absent

buy

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

day

Figure 6.1: An implementation of the classical moving average cross-over
method for trading stocks.

6.2. MODAL MODELS 187

guard/output
action

guard/output
action

state
name

state
name

...{events

...{time-based
signals

... }events

... } time-based
signals

time-based system time-based system

action

HybridSystem

Figure 6.2: Notation for hybrid systems.

while the machine is in that state. Thus, the states of the state machine define modes of operation
of the system, where the behavior in a given mode is given by the refinement. A hybrid system
is sometimes called a modal model for this reason. The refinement has access to all the inputs of
HybridSystem, and produces the time-based output signals of HybridSystem while the machine is in
its mode.

Note that the term “state” for such a hybrid system can become confusing. The state machine has
states, but so do the refinement systems (unless they are memoryless). When there is any possibility
of confusion we explicitly refer to the states of the machine as modes, and we refer to the states
of the refinement as refinement states. The (complete) state of the hybrid system is a pair (m,s)
where m is the mode and s is the state of the time-based refinement system associated with mode m.

Another difference from the notation used in chapters 3 and 4 is that state transitions in the machine
have, in addition to the usual guard and output notations, an action. The action will typically set the
initial refinement state of the time-based system in the destination mode.

The guards are, as usual, sets. However, we need for the guards to be rich enough that a transition
can be triggered by a particular value of a refinement state or by a value of a time-based input.
Thus, the elements of the guards are tuples containing values of input events, time-based signals,
and the refinement states. In the state machines in chapters 3 and 4, the elements of the guards only
contained values of input events. For hybrid systems, we add time-based signals and refinement
states.

Example 6.2: Overload of an electronic system might be modeled by a state transi-
tion that is triggered by the magnitude of the current refinement state exceeding some
threshold.

On the other hand, when the system is in some mode, the refinement state is only affected by the

188 CHAPTER 6. HYBRID SYSTEMS

{(u(n), x(n), s(n), y(n)) | u(n) = on}

flat boost

s(n+1) = As(n) + bx(n)
y(n) = x(n)

LoudnessCompensation

x

y

{on, off, absent}

{(u(n), x(n), s(n), y(n)) | u(n) = off}

s(n+1) = As(n) + bx(n)
y(n) = cTs(n) + dx(n)

Figure 6.3: This system implements loundness compensation, described in
example 6.3

time-based inputs. It is not affected by the event inputs. This keeps the time-based models simple,
so that they don’t have to deal with stuttering inputs.

Correspondingly, the time-based outputs are generated by the refinement, and hence need not be
mentioned after the slash on the transitions.

The state machine may react at any time in the time base T . The mode in which it is before
this reaction is called the current mode. It will take a discrete state transition and switch to the
destination mode if the input values and the refinement state at that time match a guard. If it does
not take a discrete state transition, then the state machine stutters. In either case, the refinement of
the current mode also reacts to the time-based inputs, changes its state and produces outputs.

Example 6.3: Many high-end audio systems offer “digital signal processing.” Such a
system typically has an embedded computer (a digital signal processor or DSP, see box
on page 318). This computer is used to process the audio signal in various ways, for
example to add reverberation or to perform frequency selective filtering. A particularly
simple function that might be performed is loudness compensation, something offered
by all but the cheapest audio systems.

At low volumes, the human ear is less sensitive to low frequencies (base notes) than
to high frequencies. Loudness compensation boosts the low frequencies. This is done
simply by implementing a filter, which is a linear time-invariant system that can be
described by a state-space model, as in the previous chapter. Thus, there are two modes,
one where the low frequencies are boosted (using the filter), and one where they are not.

6.3. TIMED AUTOMATA 189

A simple realization of loudness compensation offers a switch on a control panel to
turn on and off the compensation. Figure 6.3 shows a hybrid system that reacts to input
events from this switch to select from among two modes. The upper input is simply an
event indicating the position of the control switch when it is thrown. The lower input x
is a discrete-time signal, probably sampled at 44,100 samples/second, the CD rate. The
LoudnessCompensation hybrid system has two modes. In the flat mode, the output y is
simply set equal to the input x. That is, if Tf lat ⊂ Integers is the time indexes during
which the machine is in the flat mode, then

∀ n ∈ Tf lat , y(n) = x(n).

This (obviously) does not boost low frequencies, since the output is equal to the input.

When the on event occurs, the machine transitions to the boost mode, where the filter
is applied to the input x. This is done using the state update and output equations

∀ n ∈ Tboost , s(n+1) = As(n)+bx(n)
y(n) = cT s(n)+dx(n),

where A,b,c,d are chosen to boost the low frequencies (how to do that is explained in
chapter 9).

Note that in the flat mode, even though the output equation does not depend on the state,
the state update equation is still applied. This ensures that when switching between
states, no glitches are heard in the audio signal. The state of the boost refinement is
maintained even when the mode is flat.

This loudness compensator is not very sophisticated. A more sophisticated version
would have a set of compensation filters and would select among them depending on
the volume level. This is explored in exercise 1.

We consider a sequence of special cases of hybrid systems. Although the next few examples are all
continuous-time models, it is easy to construct similar discrete-time models.

6.3 Timed automata

Timed automata are the simplest continuous-time hybrid systems. They are modal models where
the time-based refinements have very simple dynamics; all they do is measure the passage of time.
Such refinements are called clocks. The resulting models are finite state machines (automata) with
time. Note that although all the examples in this section use continuous time, discrete-time versions
are very similar.

A clock is modeled by a first-order differential equation,

∀ t ∈ Tm, ṡ(t) = a,

where s:Reals→ Reals is a function, s(t) is the value of the clock at time t, and Tm ⊂ T is the subset
of time during which the hybrid system is in mode m. The rate of the clock, a, is a constant while
the system is in this mode.

190 CHAPTER 6. HYBRID SYSTEMS

{s(t) | s(t) = 1} / tick
s(t) := 0

mode 1 mode 2

s(t) = 1

tickGenerator

{s(t) | s(t) = 2} / tick
s(t) := 0

.
s(t) = 1
.

v(t) ∈{tick, absent}

s(t) ∈ Reals

s(0) := 0

Figure 6.4: This hybrid system generates tick at time intervals alternating
between 1 and 2 seconds. It is a timed automaton.

Example 6.4: Suppose we want to produce a sequence of output events called tick
with the time between two consecutive ticks alternating between 1 and 2 seconds. That
is, we want to produce a tick at times 1,3,4,6,7,9, · · ·.
A hybrid system tickGenerator that does this is illustrated in figure 6.4. There are two
modes labeled mode 1 and mode 2. The refinement state in each mode is the value of a
clock at time t, denoted by s ∈ Reals. So at any time t the state of tickGenerator is the
pair (mode(t),s(t)). The output is the event signal v and the time-based signal s. There
is no input.

In both modes, s evolves according to the differential equation ṡ(t) = 1, where ṡ(t)
is the derivative of s with respect to time evaluated at some time t. Thus, s simply
measures the passage of time, with its value rising 1 second for every second of elapsed
time.

The behavior of the system is shown in figure 6.5. At time 0, as indicated by the bold
arrow in figure 6.4, the system initially enters mode 1. The bold arrow has an action,
“s(0) := 0,” which sets s(0) to 0. The notation “:=” is used instead of “=” to emphasize
that this is an assignment, not an assertion (see section A.1.1).

In this example, there is no input, so a guard is a subset of the possible values (Reals)
of the refinement states. The guard on the transition from mode 1 to mode 2 is

{s(t) | s(t) = 1},

which is satisfied one time unit after beginning. For all t ∈ [0,1], s(t) = t. At time
t = 1, this guard is satisfied, the transition is taken, and the output event v(1) = tick is
produced. For all t ∈ [0,1), v(t) has value absent.

6.3. TIMED AUTOMATA 191

mode(t)

t...
(a)

(b)

(c)

s(t)

t...

v(t)

t...absent
tick

0 1 3 4

Figure 6.5: (a) The modes of the hybrid system of figure 6.4, (b) the refine-
ment state s, and (c) the discrete event output v.

This transition also has an action, “s(t) := 0,” which resets s to zero. This gives the
initial condition for the refinement system of the destination mode. In our definition, at
time t = 1, s(t) = 1, even though the action seems to contradict this. This is emphasized
in figure 6.5 by showing with a bold dot the value of s at each discontinuity. The action
s(t) := 0 is merely providing the initial conditions for the refinement of the destination
mode. But the destination mode is not active until t > 1, so the action is setting s(1+)
to 0, where 1+ denotes a time infinitesimally larger than 1.

For t ∈ (1,3], the system remains in mode 2, evolving according to the differential
equation

ṡ(t) = 1,

s(1) = 0.

So for 1 < t ≤ 3,

s(t) = s(1)+
Z t

1
1dt = t−1.

At time t = 3, the guard on the arc from mode 2 to mode 1 is satisfied, so the transition
is taken. The output event tick is again produced, and s is reset to 0 again.

Notice in figure 6.5 that the output v is absent for all but a few discrete values of t ∈ Reals. This
signal is called a discrete event signal for this reason. Of course, this signal can also be reinterpreted
as a sequence of tick events with an arbitrary number of stuttering events in between. That signal
could therefore be supplied as input to an ordinary state machine, enabling compositions of ordinary
state machines with hybrid systems.

192 CHAPTER 6. HYBRID SYSTEMS

nickel / absent
s(t) := 5

expired safe

s(t) = 0

parkingMeter

timeout / expired

.
s(t) = −1
.

v(t) ∈{expired,

absent}

s(0) := 0

u(t) ∈{coin5,

coin25, absent}

quarter / absent
s(t) := 25

nickel / absent
s(t) := min(s(t) + 5, 60)

quarter / absent
s(t) := min(s(t) + 25, 60)

timeout = {(u(t), s(t)) | u(t) = absent and s(t) = 0}

nickel = {(u(t), s(t)) | u(t) = coin5}

quarter = {(u(t), s(t)) | u(t) = coin25}

Figure 6.6: A hybrid system representation of a 60-minute parking meter.

Also notice in figure 6.5 that the hybrid system evolves in alternating phases: there is a time-
passage phase in which the system stays in the same mode and its refinement state changes with
the passage of time; this is followed by an instantaneous discrete-event phase in which a mode
transition occurs, an output event is produced, and the refinement state in the destination mode is
initialized. In the figure, the time-passage phases are (0,1],(1,3],(3,4], · · · and the discrete-event
phases occur at 1,3,4, · · ·.
Transitions between modes have actions associated with them. Sometimes, it is useful to have
transitions from one mode back to itself, just so that the action can be realized. This is illustrated in
the next example.

Example 6.5: Figure 6.6 shows a hybrid system representation of the 60-minute park-
ing meter considered in chapter 3. In the version in figure 3.6, the states of a state
machine are used to measure the passage of time by counting ticks provided by the en-
vironment. In the hybrid version of figure 6.6, the passage of time is explicitly modeled
by first-order differential equations.

There are two modes, expired and safe, and the refinement state at time t is s(t)∈ Reals.
At time t = 0, the initial mode is expired, and s(0) = 0. In the expired mode, s remains
at 0. The input events coin5 and coin25 cause one of two transitions from expired to

6.3. TIMED AUTOMATA 193

safe to be taken. These transitions have guards that are named nickel and quarter and
are defined by

nickel = {(u(t),s(t)) | u(t) = coin5}
quarter = {(u(t),s(t)) | u(t) = coin25}.

Using names for these guards in the figure makes it more readable. It would be cluttered
if the guards were directly noted on the transitions.

The transitions from expired to safe produce absent. The actions on the transitions
change the value of s to 5 and 25, depending on whether coin5 or coin25 is received.

In the safe mode, the refinement state decreases according to the differential equation
of the clock,

∀ t ∈ Tsa f e, ṡ(t) =−1.

There are three possible outgoing transitions from this mode. If the input event coin5
or coin25 occurs, then one of two self-loop transitions is taken, no output is produced,
and the associated action increments s by setting as s(t) := min(s(t)+5,60) or s(t) :=
min(s(t)+25,60). But if the guard timeout is satisfied, where

timeout = {(u(t),s(t)) | u(t) = absent and s(t) = 0}

then there is a transition to expired and the output event expired is produced. Note that
this guard requires that u(t) = absent, so that if the parking meter expires at the very
moment that a coin arrives, then the coin is properly registered.

In this system, the refinement state evolves differently in the two modes; in expired, s
remains at 0 (since ṡ(t) = 0), but in safe, s obeys the differential equation ṡ(t) =−1.

In the previous example, the transitions from safe back to safe were used for their actions, which
react to input events by setting the values of refinement states. This gives a clean way to model
discontinuities in continuous-time signals, because the state trajectory is a continuous-time signal.
A more extreme example is given next, where there is only one mode.

Example 6.6: We could also implement the parking meter as a cascade composition
using a timed automaton, TickGenerator, with only one mode, timer, and which pro-
duces a tick event every minute. This event serves as an input to the parking meter finite
state machine of figure 3.6. The cascade composition is shown in figure 6.7. The park-
ing meter machine also accepts an additional (product-form) input event from {coin5,
coin25}, and produces the output event safe or expired. The difference between figure
3.6 and 6.7 is that in the former tick was an input event from the environment, whereas
in the latter we explicitly construct a component, namely TickGenerator, which pro-
duces a tick every minute.

Timed automata are commonly used in modeling communication protocols, the logic used to
achieve communication over a network. The following example models the transport layer of a
sender of data on the internet.

194 CHAPTER 6. HYBRID SYSTEMS

timer

s(t) = 1

TickGenerator

.

v(t) ∈{safe,

expired, absent}

s(0) := 0

{s(t) | s(t) = 1} / tick
s(t) := 0 v(t) ∈{tick,

absent}

parking
meter
state

machine

u(t) ∈{coin5, coin25, absent}

Figure 6.7: The 60-minute parking meter as a cascade composition of
tickGenerator and an ordinary finite state machine.

Example 6.7: Consider how an application such as an e-mail program sends a file
over a communication network like the internet. There are two host computers called
the Sender and Receiver. The file that Sender wants to send to Receiver is first divided
into a sequence of finite bit strings called packets. For the purposes of this example,
we do not care what is contained by the packets, so we consider packet to be an event.
We are interested in the fact that it needs to be transmitted, not in its contents.

The problem we address in this example is that the network is unreliable. Packets
that are launched into it may never emerge. If the network is congested, packets get
dropped. We will design a protocol whereby the sender of a packet waits a certain
amount of time for an acknowledgement. If it does not receive the acknowledgement in
that time, then it retransmits the packet. This is an ideal application for timed automata.

The upper diagram in figure 6.8 shows the structure of the communication system. Ev-
erything begins when the sender produces a packet event. The SenderProtocol system
reacts by producing a transmit event, which instructs its network interface card or
NIC to launch the packet into the internet. The NIC is the physical device (such as
the ethernet card in your desktop computer) that converts the packet into the appropri-
ate electrical signal that is transmitted through the network. The internet transfers this
signal to the NIC of the receiver. That NIC converts the signal back into the packet
and forwards it to the ReceiverProtocol component. The ReceiverProtocol in turn for-
wards the packet to the e-mail application in the Receiver and simultaneously sends an
acknowledgement packet, called ack, to its NIC.

6.3. TIMED AUTOMATA 195

Application

Sender

SenderProtocol

{packet, absent}
{ack, absent}

NIC Internet NIC ReceiverProtocol

Application

Receiver

{packet, absent}

{ack, absent}

{transmit, retransmit, absent} {packet, absent}

{ack, absent}

packetArrives / (transmit, absent)

s(t) := timeoutTime

idle timing

s(t) = 0

SenderProtocol

ackArrives / (absent, ack)

s(t) := 0

.
s(t) = −1
.

v1(t) ∈{transmit,

retransmit, absent}

s(0) := 0

v2(t) ∈{ack, absent}

timeout / (retransmit, absent)

s(t) := timeoutTime

u1(t) ∈{packet, absent}

u2(t) ∈{ack, absent}

timeout = {(u1(t), u2(t), s(t)) | s(t) = 0 and u1(t) ≠ ack}

packetArrives = {(u1(t), u2(t), s(t)) | u1(t) = packet}

ackArrives = {(u1(t), u2(t), s(t)) | u2(t) = ack}

Figure 6.8: The top diagram describes the structure of a communication
system. The lower diagram is the timed automaton that implements the
sender protocol.

196 CHAPTER 6. HYBRID SYSTEMS

The receiver’s NIC sends the ack packet back through the network to the Sender. The
sender’s NIC receives this packet and forwards an ack to the SenderProtocol. The
SenderProtocol notifies the application that the packet was indeed delivered. The ap-
plication can now send the next packet, and the cycle is repeated until the entire file is
delivered.

In reality, the network may drop the packet so that it is not delivered to the receiver, who
therefore will not send the corresponding ack. The SenderProtocol system is designed
to take care of this contingency. It is a timed automaton with two modes, idle and
timing, and one refinement state s corresponding to a clock. Initially it is in the idle
mode and s(0) = 0. In the idle mode, ṡ(t) = 0, so the refinement state remains at zero.
When SenderProtocol receives a packet it makes a transition to the timing mode, sends
the output event transmit to its NIC, and resets s to a timeout value timeoutTime.

In the timing mode, there are two possibile transitions. In the normal case, the input
event ack is received before the guard {s(t) == 0} is satisfied. The transition to mode
idle is taken, the output event ack is sent to the application, and the clock value s(t)
is reset to 0. The system waits for another packet from the application. In the second
case, the guard {s(t) == 0} is satisfied (before event ack), and the self-loop transition
is taken. In this case, the output event retransmit is sent to the NIC, and s(t) is reset to
timeoutTime.

Notice a feature of this design that may not be expected. If a packet arrives while the
machine is in mode timing, the packet is ignored. What happens if a packet happens to
arrive simultaneously with an ack while the machine is mode timing?

Exercise 10 asks you to construct the corresponding receiver protocol, which is simpler.

In summary, the SenderProtocol machine repeatedly retransmits a packet every timeoutTime
seconds until it receives an ack. This reveals a flaw in the protocol. If the network is for
some reason unable ever to successfully transmit a packet to the receiver, the machine
will continue retransmission for ever. A better protocol would retransmit a packet a
certain number of times, say five times, and if it is unsuccessful, it would return to idle
and send a message connectionFailed to the application. The hybrid system of figure
6.9 incorporates this feature by adding another clock whose value is r(t).

6.4 More interesting dynamics

In timed automata, all that happens in the time-based refinement systems is that time passes. Hybrid
systems, however, are much more interesting when the behavior of the refinements is more complex.

Example 6.8: Consider the physical system depicted in figure 6.11. Two sticky round
masses are attached to springs. The springs are compressed or extended and then re-
leased. The masses oscillate on a frictionless table. If they collide, they stick together
and oscillate together. After some time, the stickiness decays, and masses pull apart
again.

6.4. MORE INTERESTING DYNAMICS 197

packetArrives / (transmit, absent)

s(t) := timeoutTime

r(t) := 5 × timeoutTime

idle timing

s(t) = 0

r(t) = 0

BetterSenderProtocol

ackArrives / (absent, ack)

s(t) := 0

r(0) := 0

.
s(t) = −1

r(t) = −1

.

s(0) := 0

r(0) := 0

timeout / (retransmit, absent)

s(t) := timeoutTime

.

.

failure / (absent, fail)

s(t) := 0

timeout = {(u1(t), u2(t), s(t), r(t)) | s(t) = 0 and r(t) ≠ 0 and u1(t) ≠ ack}

packetArrives = {(u1(t), u2(t), s(t), r(t)) | u1(t) = packet}

ackArrives = {(u1(t), u2(t), s(t), r(t)) | u2(t) = ack}

v1(t) ∈{transmit,

retransmit, absent}

v2(t) ∈{ack,
fail, absent}

u1(t) ∈{packet, absent}

u2(t) ∈{ack, absent}

failure = {(u1(t), u2(t), s(t), r(t)) | r(t) = 0 and u1(t) ≠ ack}

Figure 6.9: An improved sender protocol with two clocks, one of which de-
tects a failed connection.

198 CHAPTER 6. HYBRID SYSTEMS

Probing further: Internet protocols

Communication between two computers, Sender and Receiver, each connected to
the internet, is coordinated by a set of protocols. Each protocol can be modeled by
a pair of hybrid systems, one in the Sender and the other in the Receiver. These
protocols are arranged in a protocol stack, as shown in figure 6.10. Each layer in
the stack performs a certain function, and interacts with the corresponding layer in
the other computer. The physical layer converts a bit stream into an electrical signal
and vice versa and transfers the signal over one link of the network.

The network itself consists of many physical links connected by routers. The
routers themselves act as computers, but are missing the higher levels of the pro-
tocol stack. The physical layer transports bits over wires, optical fibers, or radio
links. The medium access layer manages contention for the physical communica-
tion resource, preventing collisions among multiple users of the link. The network
layer routes packets appropriately through the network. The transport layer en-
sures that the end-to-end transfer of packets is reliable, even if the network layer
service is unreliable. The application layer converts whatever information is to
be sent (such as an image or e-mail) into packets and then reassembles the packets
into the appropriate information.

This layered approach provides an abstraction mechanism. Each layer conceptu-
ally interacts with the corresponding layer at a remote machine, as suggested by
the dotted lines in figure 6.10. Each layer provides a “service” to the layer above it,
using the service offered by the layer underneath. For example, the medium access
layer offers as a service the transfer of a packet over a single link. The network
layer uses this service to transfer a packet over a sequence of links between the
end hosts. This abstraction mechanism permits the design of a single layer, say
the transport layer, assuming the service of the network layer, without regard to the
layers below the network layer. The hybrid system in example 6.7, for instance,
models only the transport layer.

The transport layer in an end-to-end protocol, so it is implemented only at the end
points in the connection, as shown in figure 6.10. The routers in the network only
need to implement the lower layers.

As mentioned, each protocol layer is modeled as a pair of hybrid systems. Typi-
cally, these are timed automata, since coordination between end hosts is achieved
via several clocks as in example 6.7. When a guard associated with a clock is sat-
isfied, this signals some contingency in the communication, just as the timeout of
the clock in figure 6.8 signals that a packet may be lost.

6.4. MORE INTERESTING DYNAMICS 199

Application

Transport

Network

MediumAccess

Physical

Network

MediumAccess

Physical

Network

MediumAccess

Physical

Application

Transport

Network

MediumAccess

Physical...

Internet

link link

Sender Receiver

Figure 6.10: Network protocols are organized in a stack. Each protocol in-
teracts with the corresponding layer in a remote computer. The dotted lines
indicate conceptual interactions, whereas the solid lines indicate physical
interactions.

200 CHAPTER 6. HYBRID SYSTEMS

y1(t)

y2(t)

y1(t)

y2(t)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 5 10 15 20 25 30 35 40 45 50

Displacement of Masses

time

Figure 6.11: Sticky masses system considered in example 6.8.

6.4. MORE INTERESTING DYNAMICS 201

A plot of the displacement of the two masses as a function of time is shown in the figure.
Both springs begin compressed, so the masses begin moving towards one another. They
almost immediately collide, and then oscillate together for a brief period until they pull
apart. In this plot, they collide two more times, and almost collide a third time.

The physics of this problem is quite simple if we assume idealized springs. Let y1(t)
denote the right edge of the left mass at time t, and y2(t) denote the left edge of the right
mass at time t, as shown in figure 6.11. Let p1 and p2 denote the neutral positions of
the two masses, i.e. when the springs are neither extended nor compressed, so the force
is zero. For an ideal spring, the force at time t on the mass is proportional to p1− y1(t)
(for the left mass) and p2− y2(t) (for the right mass). The force is positive to the right
and negative to the left.

Let the spring constants be k1 and k2, respectively. Then the force on the left spring
is k1(p1− y1(t)), and the force on the left spring is k2(p2− y2(t)). Let the masses be
m1 and m2 respectively. Now we can use Newton’s law, which relates force, mass, and
acceleration,

f = ma.

The acceleration is the second derivative of the position with respect to time, which
we write ÿ1(t) and ÿ2(t) respectively. Thus, as long as the masses are separate, their
dynamics are given by

ÿ1(t) = k1(p1− y1(t))/m1 (6.1)

ÿ2(t) = k2(p2− y2(t))/m2. (6.2)

When the masses collide, however, the situation changes. With the masses stuck to-
gether, they behave as a single object with mass m1 +m2. This single object is pulled in
opposite directions by two springs. While the masses are stuck together, y1(t) = y2(t).
Let

y(t) = y1(t) = y2(t).

The dynamics are then given by

ÿ(t) =
k1 p1 + k2 p2− (k1 + k2)y(t)

m1 +m2
. (6.3)

It is easy to see now how to construct a hybrid systems model for this physical system.
The model is shown in figure 6.12. It has two modes, apart and together. The refine-
ment of the apart mode is given by (6.1) and (6.2), while the refinement of the together
mode is given by (6.3).

We still have work to do, however, to label the transitions. The initial transition is shown
in figure 6.12 entering the apart mode. Thus, we are assuming the masses begin apart.
Moreover, this transition is labeled with an action that sets the initial refinement state.
Intuitively, the initial state of the masses is their positions and their initial velocities. In
fact, we can define the refinement state to be

s(t) =

y1(t)
ẏ1(t)
y2(t)
ẏ2(t)

 .

202 CHAPTER 6. HYBRID SYSTEMS

stick /

y(t) := y1(t)

y(t) := (y1(t)m1 + y2(t)m2)/(m1+ m2)

apart together

y1(t) = k1(p1 − y1(t))/m1

stickyMasses

unstick /

y1(t) := y(t)

y2(t) := y(t)

y1(t) := y(t)

y2(t) := y(t)

..

y1(t) ∈ Reals

y2(t) ∈ Reals

y1(0) := initialPosition1

y2(0) := initialPosition2

y1(0) := 0

y2(0) := 0

y2(t) = k2(p2 − y2(t))/m2
..

y(t) =
..

 k1 p1 + k2 p2 − (k1+ k2)y(t)

m1+ m2

.

.

.

.

.

.

.

. .

y1(t) = y(t); y2(t) = y(t)

unstick = {(y(t), y(t)) | (k1 − k2)y(t) + k2 p2− k1p1 > stickiness}
.

stick = {(y1(t), y1(t), y2(t), y2(t)) | y1(t) = = y2(t)}
. .

Figure 6.12: Hybrid system model for the sticky masses system considered
in example 6.8.

6.4. MORE INTERESTING DYNAMICS 203

It is then a simple matter to rewrite (6.1) and (6.2) in the form

ṡ(t) = g(s(t)) (6.4)

for a suitably chosen function g (see exercise 12).

In figure 6.12, the initial state has the masses at some specified displacement, and the
velocities at zero.

The transition from apart to together has the guard

stick = {(y1(t), ẏ1(t),y2(t), ẏ2(t)) | y1(t) == y2(t)}.
Thus, when the refinement state of apart satisfies this guard, the transition will be
taken. No event output is produced, as indicated by the blank after the slash. However,
an action is taken to set the initial refinement state of together. The refinement state
of together could be the same s(t) as above, with the additional constraint that y1(t) =
y2(t) and ẏ1(t) = ẏ2(t), because the masses are stuck together. Or more simply, we
could define the state z(t) of together to be the position y(t) and velocity ẏ(t), where
y(t) = y1(t) = y2(t),

z(t) =
[

y(t)
ẏ(t)

]
.

The transition from apart to together sets y(t) equal to y1(t) (it could equally well have
chosen y2(t), since these are equal). It sets the velocity to conserve momentum. The
momentum of the left mass is ẏ1(t)m1, the momentum of the right mass is ẏ2(t)m2, and
the momentum of the combined masses is ẏ(t)(m1 +m2). To make these equal, it sets

ẏ(t) =
ẏ1(t)m1 + ẏ2(t)m2

m1 +m2
.

The transition from together to apart has the more complicated guard

unstick = {(y(t), ẏ(t)) | (k1− k2)y(t)+ k2 p2− k1 p1 > stickiness}.
This guard is satisfied when the right-pulling force on the right mass exceeds the right-
pulling force on the left mass by more than the stickiness. The right-pulling force on
the right mass is simply

f2(t) = k2(p2− y(t))

and the right-pulling force on the left mass is

f1(t) = k1(p1− y(t)).

Thus,
f2(t)− f1(t) = (k1− k2)y(t)+ k2 p2− k1 p1.

When this exceeds the stickiness, then the masses pull apart.

An interesting elaboration on this example, considered in problem 13, modifies the
together mode so that the stickiness is initialized to a starting value, but then decays
according to the differential equation

ṡ(t) =−as(t)

204 CHAPTER 6. HYBRID SYSTEMS

where s(t) is the stickiness at time t, and a is some positive constant. In fact, it is the
dynamics of such an elaboration that is plotted in figure 6.11.

As in example 6.7, it is sometimes useful to have hybrid system models with only one state. The
actions on one or more state transitions define the discrete event behavior that combines with the
time-based behavior.

Example 6.9: Consider a bouncing ball. At time t = 0, the ball is dropped from
a height y(0) = initialHeight meters. It falls freely. At some later time t1 it hits the
ground with a velocity ẏ(t1) < 0 m/sec. A bump event is produced when the ball hits the
ground. The collision is inelastic, and the ball bounces back up with velocity −aẏ(t1),
where a is constant in (0,1). The ball will then rise to a certain height and fall back to
the ground repeatedly.

The behavior of the bouncing ball can be described by the hybrid system of figure 6.13.
There is only one mode, called free. When it is not in contact with the ground, we know
that the ball follows the second-order differential equation,

ÿ(t) =−g, (6.5)

where g = 10 m/sec2 is the acceleration imposed by gravity. We can define the refine-
ment state of the free mode to be

s(t) =
[

y(t)
ẏ(t)

]

with the initial conditions y(0) = initialHeight and ẏ(0) = 0. It is then a simple matter
to rewrite (6.5) as a first-order differential equation,

ṡ(t) = f (s(t)) (6.6)

for a suitably chosen function f (see exercise 12).

At the time t1 when the ball first hits the ground, the guard

hit = {(y(t), ẏ(t)) | y(t) = 0}
is satisfied, and the self-loop transition is taken. The output bump is produced, and the
action ẏ(t) := −aẏ(t) assigns ẏ(t1+) = −aẏ(t1). Here, ẏ(t1+) is the velocity after the
bump, and ẏ(t1) is the velocity before the bump. Then (6.5) is followed again until the
guard becomes true again.

By integrating (6.5) we get, for all t ∈ (0, t1),

ẏ(t) = −gt,

y(t) = y(0)+
Z t

0
ẏ(τ)dτ = initialHeight− 1

2
gt2.

So t1 > 0 is determined by y(t1) = 0. It is the solution to the equation

initialHeight− 1
2

gt2 = 0.

6.5. SUPERVISORY CONTROL 205

free

y(t) = − g

BouncingBall

..

y(0) := initialHeight

y(0) := 0
hit / bump

y(t) := − a y(t)

y(t) ∈ Reals

.
{bump, absent}

. .

initialHeight

y(t)

t1 t2 time

y(t)

t1 t2 time

.

hit = {(y(t), y(t)) | y(t) = 0}
.

Figure 6.13: The motion of a bouncing ball may be described as a hybrid
system with only one mode. The system outputs a bump each time the ball
hits the ground, and also outputs the position of the ball. The position and
velocity are plotted versus time at the right.

Thus,
t1 =

√
2 initialHeight/g.

Figure 6.13 plots the refinement state versus time.

6.5 Supervisory control

We introduce supervisory control through a detailed example. A control system involves four com-
ponents. There is a system called the plant—the physical process that is to be controlled; the
environment in which the plant operates; the sensors that measure some variables of the plant and
the environment; and the controller that determines the mode transition structure and selects the
time-based inputs to the plant. The controller has two levels: the supervisory control that deter-
mines the mode transition structure, and the ‘low-level’ control that selects the time-based inputs
which control the behavior of the refinements. A complete design includes both levels of control as
in the following example.

Example 6.10: The plant is an automated guided vehicle or AGV that moves along
a closed track painted on a warehouse or factory floor. We will design a controller so

206 CHAPTER 6. HYBRID SYSTEMS

x(t)

y(t)

AGV

global

coordinate

frame

e(t)

track

f (t)

Figure 6.14: Illustration of the automated guided vehicle of example 6.10.
The vehicle is shown as a large arrow on the left and as a small arrow on the
right. On the right, the vehicle is following a curved painted track, and has
deviated from the track by a distance e(t). The coordinates of the vehicle at
time t with respect to the global coordinate frame are (x(t),y(t),φ(t)).

that the vehicle closely follows the track.

The vehicle has two degrees of freedom. At any time t, it can move forward along
its body axis with speed u(t) with the restriction that 0 ≤ u(t) ≤ 10 mph. It can also
rotate about its center of gravity with an angular speed ω(t) restricted to−π≤ω(t)≤ π
radians/second. We ignore the inertia of the vehicle.

Let (x(t),y(t)) ∈ Reals2 be the position and φ(t) ∈ [−π,π] the angle (in radians) of the
vehicle at time t relative to some fixed coordinate frame, as shown on the left in figure
6.14. In terms of this coordinate frame, the motion of the vehicle is given by a system
of three differential equations,

ẋ(t) = u(t)cosφ(t),
ẏ(t) = u(t)sinφ(t), (6.7)

φ̇(t) = ω(t).

The track and the vehicle are shown on the right of figure 6.14. Equations (6.7) describe
the plant. The environment is the closed painted track. It could be described by an
equation. We will describe it indirectly below by means of a sensor.

The two-level controller design is based on a simple idea. The vehicle always moves
at its maximum speed of 10 mph. If the vehicle strays too far to the left of the track,
the controller steers it towards the right; if it strays too far to the right of the track, the
controller steers it towards the left. If the vehicle is close to the track, the controller

6.5. SUPERVISORY CONTROL 207

maintains the vehicle in a straight direction. Thus the controller guides the vehicle in
four modes, left, right, straight, and stop. In stop mode an operator may bring the
vehicle to a halt.

The following differential equations govern the AGV’s motion in the refinement of the
four modes. They describe the low-level controller, i.e. the selection of the time-based
inputs in each mode.

straight

ẋ(t) = 10cosφ(t)
ẏ(t) = 10sinφ(t)
φ̇(t) = 0

left

ẋ(t) = 10cosφ(t)
ẏ(t) = 10sinφ(t)
φ̇(t) = π

right

ẋ(t) = 10cosφ(t)
ẏ(t) = 10sinφ(t)
φ̇(t) = −π

stop

ẋ(t) = 0

ẏ(t) = 0

φ̇(t) = 0

In the stop mode, the vehicle is stopped, x(t),y(t),φ(t) are constant. In the left mode,
φ(t) increases at the rate of π radians/second, so from figure 6.14 we see that the vehicle
moves to the left. In the right mode, it moves to the right. In the straight mode,
φ(t) is constant, and the vehicle moves straight ahead with a constant heading. The
refinements of the four modes are shown in the boxes of figure 6.15.

We design the supervisory control governing transitions between modes in such a way
that the vehicle closely follows the track, using a sensor that determines how far the
vehicle is to the left or right of the track. We can build such a sensor using photodiodes.
Let’s suppose the track is painted with a light-reflecting color, whereas the floor is
relatively dark. Underneath the AGV we place an array of photodiodes as shown in
figure 6.16. The array is perpendicular to the AGV body axis. As the AGV passes
over the track, the diode directly above the track generates more current than the other
diodes. By comparing the magnitudes of the currents through the different diodes, the
sensor gives the displacement e(t) of the center of the array (hence, the center of the

208 CHAPTER 6. HYBRID SYSTEMS

 stop left

Vehicle

right straight

x (t) = 10 cos φ(t)
y (t) = 10 sin φ(t)
φ (t) = - π
e (t) = f(x(t), y(t))

u(t) e {stop, start, absent}

x (t) = 10 cos φ (t)
y (t) = 10 sin φ (t)
φ = π
e (t) = f(x(t), y(t))

.

.

.

x (t) = 10 cos φ (t)
y (t) = 10 sin φ (t)
φ (t) = 0
e (t) = f(x(t), y(t))

.

.

.

x = x0
y = y0
φ = φ0

goRight/

goLeft/

x (t) = 0
y (t) = 0
φ (t) = 0
e (t) = f(x(t), y(t))

.

.

.

.
.
.

goStraight= {(u(t), x(t), y(t), φ (t)) | u(t) != stop, |e(t)| < ε1}

goRight/

goStraight/

goLeft = {(u(t), x(t), y(t), φ (t)) | u(t) != stop, - ε2 > − e(t)}

goStraight/

goLeft/

goStop/ goStop/

goStop/

goStart/

goStop = {(u(t), x(t), y(t), φ (t)) | u(t) = stop}
goStart = {(u(t), x(t), y(t), φ (t)) | u(t) = start}

goRight ={(u(t), x(

Figure 6.15: The automatic guided vehicle of example 6.10 has four modes:
stop, straight , left , right .

6.5. SUPERVISORY CONTROL 209

photodiode
track

ee
1

e
2

Figure 6.16: An array of photodiodes under the AGV is used to estimate
the displacement e of the AGV relative to the track. The photodiode directly
above the track generates more current.

AGV) from the track. We adopt the convention that e(t) < 0 means that the AGV is to
the right of the track and e(t) > 0 means it is to the left. We model the sensor output as
a function f of the AGV’s position,

∀t, e(t) = f (x(t),y(t)).

The function f of course depends on the environment—the track. We now specify the
supervisory controller precisely. We select two thresholds, 0 < ε1 < ε2, as shown in
figure 6.16. If the magnitude of the displacement is small, |e(t)|< ε1, we consider that
the AGV is close enough to the track, and the AGV can move straight ahead, in straight
mode. If 0 < ε2 < e(t) (e(t) is large and positive), the AGV has strayed too far to the
left and must be steered to the right, by switching to right mode. If 0 >−ε2 > e(t) (e(t)
is large and negative), the AGV has strayed too far to the right and must be steered to
the left, by switching to left mode. This control logic is captured in the mode transitions
of figure 6.15. The input events are {stop,start,absent}. By selecting events stop and
start an operator can stop or start the AGV. There is no time-based input. There is no
external output. The initial mode is stop, and the initial values of its refinement are
(x0,y0,φ0).

We analyze how the AGV will move. Figure 6.17 sketches one possible trajectory.
Initially the vehicle is within distance ε1 of the track, so it moves straight. At some
later time, the vehicle goes too far to the left, the guard

goRight = {(u(t),x(t),y(t),φ(t)) | u(t) 6= stop,ε2 < e(t)}
is satisfied, and there is a mode switch to right. After some time, the vehicle is close
enough to the track, the guard

goStraight = {(u(t),x(t),y(t),φ(t)) | u(t) 6= stop, |e(t)|< ε1}
is satisfied, and there is a mode switch to straight. Some time later, the vehicle is too
far to the right, the guard

goLeft = {(u(t),x(t),φ(t)) | u(t) 6= stop | − ε2 > e(t)}

210 CHAPTER 6. HYBRID SYSTEMS

center of track

straight

right

straight

left

e1

e2

Initial position

of vehicle

Figure 6.17: A trajectory of the AGV, annotated with modes.

is satisfied, there is a mode switch to left, and so on.

The example illustrates the four components of a control system. The plant is described by the dif-
ferential equations (6.7) that govern the evolution of the refinement state at time t, (x(t),y(t),φ(t)),
in terms of the time-based input, (u(t),ω(t)). The second component is the environment—the
closed track. The third component is the sensor, whose output at time t, e(t) = f (x(t),y(t)), gives
the position of the AGV relative to the track. The fourth component is the two-level controller.
The supervisory controller comprises the four modes and the guards that determine when to switch
between modes. The low-level controller specifies how the time-based inputs, u and ω, are selected
in each mode.

6.6 Formal model

We develop a formal model of a hybrid system similar to the ‘sets and functions’ model of section
3.1. A hybrid system HybridSystem is a 5-tuple,

HybridSystem = (States, Inputs,Outputs,TransitionStructure, initalState),

where, States, Inputs, Outputs are sets, and initalState∈ States is the initial state. TransitionStructure
consists of several items that determine how the hybrid system evolves in time t ∈ T . T may be
Reals+ or Naturals0. Here we assume T = Reals+.

States = Modes×RefinementStates is the state space. Modes is the finite set of modes. RefinementStates
is the state space of the refinements. If the current state at time t is (m(t),s(t)) we say that the system
is in mode m(t) and its refinement is in state s(t).

6.6. FORMAL MODEL 211

Inputs = InputEvents×TimeBasedInputs is the set of input symbols. InputEvents is the finite al-
phabet of discrete input symbols, including a stuttering symbol, while TimeBasedInputs is the set
of input values to which the refinement reacts. An input signal consists of a pair of functions (u,x)
where u:Reals+ → InputEvents and x:Reals+ → TimeBasedInputs. For all except a discrete set of
times t, u(t) is the stuttering symbol, absent.

Outputs = OutputEvents×TimeBasedOutputs is the set of output symbols. OutputEvents is the finite
alphabet of discrete output symbols, including a stuttering output, absent, and TimeBasedOutputs
is the set of continuous output values. An output signal consists of a pair of functions (v,y) where
v:Reals+ → OutputEvents and y:Reals+ → TimeBasedOutputs. For all except a discrete set of
times, v(t) = absent.

The transition structure determines how a mode transition occurs and how the refinement state
changes over time. Suppose the inputs signal is (u,x). Suppose at time t the mode is m and the
refinement state is s. For each destination mode d there is a guard

Gm,d = Um,d ×Xm,d ×Sm,d

⊂ InputEvents×TimeBasedInputs×RefinementStates.

There is also an output event, say vm,d , and an action Am,d :RefinmentStates→ RefinmentStates that
assigns a (possibly new) value to each refinement state, (possibly) depending on the current value
of the refinement state. If there is a match (u(t),x(t),s(t)) ∈ Gm,d , then there is a discrete transition
at t; the mode after the transition is d, the output event v(t) = vm,d is produced, and the refinement
state in mode d at time t+ immediately after the transition is set to s(t+) = Am,d(s(t).

If no guard is satisfied at time t, then the refinement state s(t) and the time-based output y(t) are
determined by the time-based input signal x according to the equations governing the refinement
dynamics. Here we will need to be concrete. In all of the examples above, we have taken

RefinementStates = RealsN ,

TimeBasedInputs = RealsM, and

TimeBasedOutputs = RealsK .

In this concrete setting, the refinement dynamics are given as

∀t ∈ Tm, ṡ(t) = fm(s(t),x(t)), (6.8)

y(t) = gm(s(t),x(t), (6.9)

where Tm ⊂ T is the set of times t when the system is in mode m, and the functions

fm : RealsN ×RealsM: → RealsN ,

gm : RealsN ×RealsM: → RealsK

characterize the behavior of the refinement system in mode m. The function

s : Reals+ → RefinementStates

is the trajectory of the refinment states.

212 CHAPTER 6. HYBRID SYSTEMS

We can now see how the hybrid system evolves over time. At time t = 0, the system starts in the
initial state, say (m(0),s(0)). It evolves in alternating phases of time passage, (t0 = 0, t1],(t1, t2], · · ·,
and discrete transitions at t1, t2, · · ·. During the first interval (t0, t1], no guard is satisfied and the
system remains in mode m(0); the refinement state s(t) and time-based output y(t) are determined
by (6.8), (6.9); and the discrete event output v(t) = absent.

At time t1, the guard Gm(0),m(1) for some destination mode m(1) is matched by (u(t1),x(t1),s(t1)).
There is a mode transition to m(1), the output event v(t1) is produced, and the continuous state is
set to s(t1+) = Am(0)m(1)(s(t1)). The discrete transition phase is now over, and the system begins
the time passage phase in the new mode m(1) and the continuous state s(t1+).

6.7 Summary

Hybrid systems provide a bridge between time-based models and state-machine models. The com-
bination of the two families of models provides a rich framework for describing real-world systems.
There are two key ideas. First, discrete events are embedded in a time base. Second, a hierarchical
description is particularly useful, where the system undergoes discrete transitions between differ-
ent modes of operation. Associated with each mode of operation is a time-based system called the
refinement of the mode. Mode transitions are taken when guards that specify the combination of
inputs and refinement states are satisfied. The action associated with a transition, in turn, sets the
refinement state in the destination mode.

The behavior of a hybrid system is understood using the tools of state machine analysis for mode
transitions the tools of time-based analysis for the refinement systems. The design of hybrid systems
similarly proceeds on two levels: state machines are designed to achieve the appropriate logic of
mode transitions, and refinement systems are designed to secure the desired time-based behavior in
each mode.

Exercises

In some of the following exercises you are asked to design state machines that carry out a given
task. The design is simple and elegant if the state space is properly chosen. Although the state space
is not unique, there often is a natural choice. As usual, each problem is annotated with the letter E,
T, C which stands for exercise, requires some thought, requires some conceptualization. Problems
labeled E are usually mechanical, those labeled T require a plan of attack, those labeled C usually
have more than one defensible answer.

1. C Consider the loudness compensation of example 6.3. Suppose that instead of a switch on
the front panel, the system automatically selects from among four compensation filters with
state-space models [A,b,c1,d1], [A,b,c2,d2], [A,b,c3,d3], and [A,b,c4,d4]. The A matrix and
b vector are the same for all four. Which filter is used depends on a discrete-time v input,
where at index n, v(n) represents the current volume level. When the volume is high, above

6.7. SUMMARY 213

some threshold, filter 4 should be used. When it is low, filter 1 should be used. Design a
hybrid system that does this.

2. E Construct a timed automaton similar to that of figure 6.4 which produces tick at times
1,2,3,5,6,7,8,10,11, · · ·. That is, ticks are produced with intervals between them of 1 second
(three times) and 2 seconds (once).

3. E The objective of this problem is to understand a timed automaton, and then to modify it as
specified.

(a) For the timed automaton shown below, describe the output y. Avoid imprecise or sloppy
notation.

b / s(t)
r(t) := 0

two one

a / s(t)
r(t) := 0

y(t) ∈Integers

∪ {absent}

s(0) := 0
r(0) := 0

b = {(r(t), s(t)) | r(t) = 2}

a = {(r(t), s(t)) | r(t) = 1}

s(t) = 1

r(t) = 1

.

.

s(t) = 1

r(t) = 1

.

.

(b) Assume there is a new input u:Reals→ Inputs with alphabet

Inputs = {reset,absent},

and that when the input has value reset, the hybrid system starts over, behaving as if it
were starting at time 0 again. Modify the hybrid system from part (a) so that it behaves
like the system in (a).

4. E You have an analog source that produces a pure tone. You can switch the source on or off by
the input event on or off . Construct a system that upon receiving an input event ring produces
an 80 ms-long sound consisting of three 20 ms-long bursts of the pure tone separated by two
10 ms intervals of silence. What does your system do if it receives two ring events that are 50
ms apart?

5. C Automobiles today have the features listed below. Implement each feature as a timed
automaton.

214 CHAPTER 6. HYBRID SYSTEMS

(a) The dome light is turned on as soon as any door is opened. It stays on for 30 seconds
after all doors are shut. What sensors are needed?

(b) Once the engine is started, a beeper is sounded and a red light warning is indicated
if there are passengers that have not buckled their seat belt. The beeper stops sounding
after 30 seconds, or as soon the seat belts are buckled, whichever is sooner. The warning
light is on all the time the seat belt is unbuckled. Hint: Assume the sensors provide a
warn event when the ignition is turned on and there is a seat with passenger not buckled
in, or if the ignition is already on and a passenger sits in a seat without buckling the
seatbelt. Assume further that the sensors provide a noWarn event when a passenger
departs from a seat, or when the buckle is buckled, or when the ignition is turned off.

6. E A programmable thermostat allows you to select 4 times, 0≤ T1 ≤ ·· · ≤ T4 < 24 (for a 24-
hour cycle) and the corresponding temperatures a1, · · · ,a4. Construct a timed automaton that
sends the event ai to the heating systems controller. The controller maintains the temperature
close to the value ai until it receives the next event. How many timers and modes do you
need?

7. E Construct a parking meter similar to that in figure 6.6 that allows a maximum of 30 min-
utes (rather than 60 minutes) and accepts coin5 and coin25 as inputs. Then draw the state
trajectories (both the mode and the clock state) and the output signal when coin5 occurs at
time 0, coin25 occurs at time 3, and then there is no input event for the next 35 minutes.

8. T Consider the timed automaton of figure 6.6. Suppose we view the box as a discrete-event
system with input alphabet {coin5,coin25,absent} and output alphabet {expired,absent}.
Does the box behave as a finite state machine?

9. C Figure 6.18 depicts the intersection of two one-way streets, called Main and Secondary. A
light on each street controls its traffic. Each light goes through a cycle consisting of a red (R),
green (G), and yellow (Y) phases. It is a safety requirement that when one light is in its green
or yellow phase, the other is in its red phase. The yellow phase is always 20 seconds long.

The traffic lights operate as follows, in one of two modes. In the normal mode, there is a 5
minute-long cycle with the main light having 4 minutes of green and 20 seconds of yellow–
the secondary light is red for these 4 minutes and 20 seconds—and 40 seconds of red—during
which the secondary light is green for 20 seconds followed by 20 seconds of yellow.

The second, or interrupt mode works as follows. Its purpose is to quickly give a right of
way to the secondary road. A sensor in the secondary road detects if a vehicle has crossed
it. When this happens, the main light aborts its green phase and immediately switches to its
20 second yellow phase. If the vehicle is detected while the main light is yellow or red, the
system continues in its normal mode.

Design a hybrid system that controls the lights. Let this hybrid system have discrete outputs
that are pairs GG,GY,GR, etc. where the first letter denotes the color of the main light second
letter denotes the color of the secondary light.

10. T Design a ReceiverProtocol hybrid system that works together with the SenderProtocol of
example 6.7.

6.7. SUMMARY 215

Main

S
ec

o
n

d
ar

y

light

detector

R

R G

G Y

Y

Figure 6.18: Traffic lights control the intersection of a main street and a
secondary street. A detector senses when a vehicle crosses it. The red
phase of one light must coincide with the green and yellow phases of the
other light.

11. E For the bouncing ball of example 6.9 let tn be the time when the ball hits the ground for
the n-th time, and let v(n) = ẏ(tn) be the velocity at that time.

(a) Find a relation between v(n+1) and v(n) and then calculate v(n) in terms of v(1).

(b) Obtain tn in terms of v(n).

(c) Calculate the maximum height reached by the ball after successive bumps.

12. E Translate refinement systems that are described as second-order differential equations into
first-order differential equations. Specifically:

(a) For the sticky masses system in example 6.8, find the function g such that (6.1) and (6.2)
are represented as (6.4). Is this function linear?

(b) For the bouncing ball system in example 6.9, find the function f such that (6.5) is rep-
resented as (6.6). Is this function linear?

13. T Elaborate the hybrid system model of figure 6.12 so that in the together mode, the stickiness
decays according to the differential equation

ṡ(t) =−as(t)

where s(t) is the stickiness at time t, and a is some positive constant. On the transition into
this mode, the stickiness should be initialized to some starting stickiness b.

14. T Show that the trajectory of the AGV of figure 6.15 while it is in left or right mode is a
circle. What is the radius of this circle, and how long does it take to complete a circle?

216 CHAPTER 6. HYBRID SYSTEMS

15. E Express the hybrid system of figure 6.15 in terms of the formal model of section 6.6. That
is, identify the sets Inputs, Outputs, and the TransitionStructure.

