Computational analysis of biological structures and networks

Manuele Bicego

Master's degree in Medical Bioinformatics

Computer Science Dept.
University of Verona

The course

Timetable:

Monday 8.30 - 11.30 (Lecture Hall G)

Monday 15.30 - 18.30 (Lab Alfa)

Lecturer

Manuele Bicego

Office Ca' Vignal 2, Floor 1, Room 48b

Telephone 045 8027072

Email manuele.bicego@univr.it

Office During the semester: Wednesday 8.30-10.30

Hours In alternative: send an e-mail

Requirements

 Notions from the course "Riconoscimento e Recupero dell'informazione per Bioinformatica" (BS degree in Bioinformatics)

 Basic notions of Algorithms, Probability, Statistics, Algebra

- Programming skills (for lab part)
 - Programming language used: Matlab

Overview

- Title: "Computational analysis of biological structures and networks"
- Many possible viewpoints: here we adopt the Pattern Recognition perspective

- The course is about Pattern Recognition tools and techniques to model biological complex objects
 - Objects with a complex structure (strings, 3D structures, sets, graphs, networks...)

Contents

The course is divided in two parts:

PART 1: **Theory**

PR tools and techniques to model structured data

PART 2: Laboratory

Implementation of algorithms studied during the theory part (*matlab*)

Program (Theory)

- Chapter 1. Introduction
 - Basic Pattern Recognition concepts (recap from Bs. Course)
 - Introduction to structured data (data with complex structure)

- Chapter 2. Representation of structured data
 - The Bag of words representation
 - The dissimilarity-based representation
 - Advanced dimensionality reduction techniques

Program (Theory)

- Chapter 3. Models for structured data
 - Generative models (Bayes Networks)
 - Learning and inference
- Chapter 4. Advanced concepts
 - Kernels for structured data
 - Advanced learning paradigms for structured data (Multiple instance learning, semi supervised learning, transfer learning)

Material

Slides, notes, suggested readings...

Course slides will be posted on line before classes

All info can be found a the course homepage

Reference books

- R. Duda, P. Hart, D. Stork Pattern Classification. Wiley, 2001 (2nd edition).
- S. Theodoridis, K. Koutroumbas: Pattern Recognition, Second edition, Academic press, 2003
- C.M. Bishop, Pattern Recognition and Machine Learning,
 Springer, 2006.
- B. Frey: Graphical Models for Machine Learning and Digital Communication, MIT Press, 1998
- E. Pekalska, B. Duin, *The Dissimilarity Representation for Pattern Recognition*, World Scientific Press, 2005

Some specific readings will be suggested for every chapter

Assessment methods

Two parts:

 First part: few questions on course topics (written exam, during exam sessions)

 Second part: talk within a thematic workshop (as in a conference)

Assessment methods

Talk within a thematic workshop: details

- The topic of the thematic workshop will be decided in advance (before middle of November)
- Each student has to choose a scientific paper to be presented in 10 minutes
- One thematic workshop will be held at the end of the course (registration needed by early December)
- Other sessions in June and September