Esercizi per il Corso di Algebra Lineare

Soluzioni per il Foglio 5

10 dicembre 2008

(Per il Foglio 6, vedere le pagine seguenti!)

13. (a) dim (U + W) si calcola come rango della matrice A le cui colonne sono u_1, u_2, w_1, w_2 :

$$A = \begin{pmatrix} 1 & 0 & 3 & 1 \\ 2 & 1 & 7 & 5 \\ -3 & 1 & -8 & 0 \\ -2 & 1 & -5 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 3 & 1 \\ 0 & 1 & 1 & 3 \\ 0 & 1 & 1 & 3 \\ 0 & 1 & 1 & 3 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 3 & 1 \\ 0 & 1 & 1 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix},$$

dunque $\operatorname{rk} A = 2$ e quindi $\dim (U + W) = 2$.

- (b) Poichè $\dim U = \dim W = 2$, per la formula di Grassmann si ha $\dim U \cap W = 2$.
- 14. La matrice dei coefficienti è:

$$A = \left(\begin{array}{ccc} 3 & 2 & 1 \\ 2 & 0 & 1 \\ 0 & 2 & -1 \end{array}\right),$$

vediamo che $\det A = 4 - 6 + 4 = 2 \neq 0$, quindi il sistema ammette un'unica soluzione, che determiniamo usando il metodo di Cramer:

$$x_1 = \frac{1}{2} \det \begin{pmatrix} 9 & 4 & 2 \\ 2 & 0 & 1 \\ 0 & 2 & -1 \end{pmatrix} = 1,$$

$$x_2 = \frac{1}{2} \det \begin{pmatrix} 3 & 2 & 0 \\ 9 & 4 & 2 \\ 0 & 2 & -1 \end{pmatrix} = 2,$$

$$x_3 = \frac{1}{2} \det \begin{pmatrix} 3 & 2 & 0 \\ 2 & 0 & 1 \\ 9 & 4 & 2 \end{pmatrix} = 2.$$

15. Calcoliamo ${\rm det}A=5\cdot 6=30\neq 0;$ costruiamo la matrice dei complementi algebrici

$$\left(\begin{array}{ccc} 6 & 3 & -9 \\ 0 & 15 & -5 \\ 0 & 0 & 10 \end{array}\right);$$

la matrice inversa A^{-1} si ottiene come la trasposta della matrice dei complementi algebrici, divisa per $\det A$:

$$A^{-1} = \frac{1}{30} \begin{pmatrix} 6 & 0 & 0 \\ 3 & 15 & 0 \\ -9 & -5 & 10 \end{pmatrix} = \begin{pmatrix} 1/5 & 0 & 0 \\ 1/10 & 1/2 & 0 \\ -3/10 & -1/6 & 1/3 \end{pmatrix}.$$

Esercizi per il Corso di Algebra Lineare

Foglio 6

10 dicembre 2008

16. (a) Si diagonalizzi la matrice

$$A = \left(\begin{array}{ccc} 1 & 1 & 1 \\ 0 & 2 & -1 \\ 0 & -3 & 0 \end{array}\right)$$

cioè si trovino una matrice invertibile $S \in \mathbb{R}^{3\times 3}$ e una matrice diagonale $D \in \mathbb{R}^{3\times 3}$ tali che $S^{-1}AS = D$.

- (b) Si usi la matrice D per calcolare $\det A$.
- 17. Si proceda come nell'Esercizio 16 per la matrice

$$A = \left(\begin{array}{rrr} 5 & -1 & 2 \\ -1 & 5 & 2 \\ 2 & 2 & 2 \end{array}\right)$$

18. Si consideri l'applicazione lineare

$$f: \mathbb{R}^3 \to \mathbb{R}^2, \left(\begin{array}{c} x \\ y \\ z \end{array}\right) \mapsto \left(\begin{array}{c} x+z \\ y-z \end{array}\right)$$

- (a) Si determini la matrice A associata a f rispetto alle basi canoniche di \mathbb{R}^3 e \mathbb{R}^2 .
- (b) Si determini la matrice A' associata a f rispetto alla base \mathcal{D} di \mathbb{R}^3 e alla base \mathcal{B} di \mathbb{R}^2 , dove

$$\mathcal{D} = \left\{ \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} \right\}, \mathcal{B} = \left\{ \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 3 \\ 4 \end{pmatrix} \right\}$$

(c) Si determini la matrice $A_{\mathcal{B} \to \mathcal{B}'}$ del cambio di base in \mathbb{R}^2 da \mathcal{B} alla base

$$\mathcal{B}' = \left\{ \left(\begin{array}{c} -1\\2 \end{array} \right), \left(\begin{array}{c} 2\\3 \end{array} \right) \right\}$$