
VIII - Working with Sequential Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 1

Finite state machine optimization

 State minimization
 fewer states require fewer state bits
 fewer bits require fewer logic equations

 Encodings: state, inputs, outputs
 state encoding with fewer bits has fewer equations to implement

 however, each may be more complex
 state encoding with more bits (e.g., one-hot) has simpler

equations
 complexity directly related to complexity of state diagram

 input/output encoding may or may not be under designer control

VIII - Working with Sequential Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 2

Algorithmic approach to state
minimization
 Goal – identify and combine states that have equivalent behavior
 Equivalent states:

 same output
 for all input combinations, states transition to same or equivalent states

 Algorithm sketch
 1. place all states in one set
 2. initially partition set based on output behavior
 3. successively partition resulting subsets based on next state transitions
 4. repeat (3) until no further partitioning is required

 states left in the same set are equivalent
 polynomial time procedure

VIII - Working with Sequential Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 3

Input Next State Output
Sequence Present StateX=0 X=1 X=0 X=1

Reset S0 S1 S2 0 0
0 S1 S3 S4 0 0
1 S2 S5 S6 0 0
00 S3 S0 S0 0 0
01 S4 S0 S0 1 0
10 S5 S0 S0 0 0
11 S6 S0 S0 1 0

State minimization example

 Sequence detector for 010 or 110

S0

S3

S2S1

S5 S6S4

1/00/0

1/0

1/0
0/1

0/01/00/0

1/0
0/0

1/0
0/1

1/0
0/0

VIII - Working with Sequential Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 4

(S0 S1 S2 S3 S4 S5 S6)

(S0 S1 S2 S3 S5) (S4 S6)

(S0 S3 S5) (S1 S2) (S4 S6)

(S0) (S3 S5) (S1 S2) (S4 S6)

Input Next State Output
Sequence Present StateX=0 X=1 X=0 X=1

Reset S0 S1 S2 0 0
0 S1 S3 S4 0 0
1 S2 S5 S6 0 0
00 S3 S0 S0 0 0
01 S4 S0 S0 1 0
10 S5 S0 S0 0 0
11 S6 S0 S0 1 0

S1 is equivalent to S2

S3 is equivalent to S5

S4 is equivalent to S6

Method of successive partitions

VIII - Working with Sequential Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 5

Input Next State Output
Sequence Present State X=0 X=1 X=0 X=1

Reset S0 S1' S1' 0 0
0 + 1 S1' S3' S4' 0 0
X0 S3' S0 S0 0 0
X1 S4' S0 S0 1 0

Minimized FSM

 State minimized sequence detector for 010 or 110

S0

S1’

S3’ S4’

X/0

1/0

1/00/1

0/0

X/0

VIII - Working with Sequential Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 6

symbolic state
transition table

present next state output
 state 00 01 10 11
 S0 S0 S1 S2 S3 1
 S1 S0 S3 S1 S4 0
 S2 S1 S3 S2 S4 1
 S3 S1 S0 S4 S5 0
 S4 S0 S1 S2 S5 1
 S5 S1 S4 S0 S5 0

inputs here

More complex state minimization

 Multiple input example

10
01

11

00

00

01

1110

10

01

1100

10
00

11

00

1110

01

10

11
01

00

S0
[1]

S2
[1]

S4
[1]

S1
[0]

S3
[0]

S5
[0]

01

VIII - Working with Sequential Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 7

S0-S1
S1-S3
S2-S2
S3-S4

S0-S0
S1-S1
S2-S2
S3-S5

S0-S1
S3-S0
S1-S4
S4-S5

S0-S1
S3-S4
S1-S0
S4-S5

S1-S0
S3-S1
S2-S2
S4-S5

S4-S0
S5-S5

S1-S1
S0-S4

minimized state table
(S0==S4) (S3==S5)

present next state output
 state 00 01 10 11
 S0' S0' S1 S2 S3' 1
 S1 S0' S3' S1 S3' 0
 S2 S1 S3' S2 S0' 1
 S3' S1 S0' S0' S3' 0

Minimized FSM

 Implication chart method
 cross out incompatible states based on outputs
 then cross out more cells if indexed chart entries are already crossed out

S1

S2

S3

S4

S5

S0 S1 S2 S3 S4

VIII - Working with Sequential Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 8

Minimizing incompletely specified
FSMs
 Equivalence of states is transitive when machine is fully specified
 But its not transitive when don't cares are present

e.g., state output
S0 – 0 S1 is compatible with both S0 and S2
S1 1 – but S0 and S2 are incompatible
S2 – 1

 No polynomial time algorithm exists for determining best grouping of
states into equivalent sets that will yield the smallest number of final
states

VIII - Working with Sequential Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 9

X Q1 Q0 Q1
+ Q0

+

0 0 0 0 0
0 0 1 0 0
0 1 1 0 0
1 0 0 0 1
1 0 1 1 1
1 1 1 1 1
– 1 0 0 0

Q1
+ = X (Q1 xor Q0)

Q0
+ = X Q1’ Q0’

Minimizing states may not yield best
circuit
 Example: edge detector - outputs 1 when last two input changes

from 0 to 1

00
[0]

11
[0]

01
[1]X’

X’

X’

X

X

X

VIII - Working with Sequential Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 10

Another implementation of edge
detector
 "Ad hoc" solution - not minimal but cheap and fast

00
[0]

10
[0]

01
[1]

X’ X

X’

X

X

X11
[0]

X’

X’

VIII - Working with Sequential Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 11

State assignment

 Choose bit vectors to assign to each “symbolic” state
 with n state bits for m states there are 2n! / (2n – m)!

[log n <= m <= 2n]

 2n codes possible for 1st state, 2n–1 for 2nd, 2n–2 for 3rd, …
 huge number even for small values of n and m

 intractable for state machines of any size
 heuristics are necessary for practical solutions

 optimize some metric for the combinational logic
 size (amount of logic and number of FFs)
 speed (depth of logic and fanout)
 dependencies (decomposition)

VIII - Working with Sequential Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 12

State assignment strategies

 Possible strategies
 sequential – just number states as they appear in the state table
 random – pick random codes
 one-hot – use as many state bits as there are states (bit=1 –> state)
 output – use outputs to help encode states
 heuristic – rules of thumb that seem to work in most cases

 No guarantee of optimality – another intractable problem

VIII - Working with Sequential Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 13

One-hot state assignment

 Simple
 easy to encode
 easy to debug

 Small logic functions
 each state function requires only predecessor state bits as input

 Good for programmable devices
 lots of flip-flops readily available
 simple functions with small support (signals its dependent upon)

 Impractical for large machines
 too many states require too many flip-flops
 decompose FSMs into smaller pieces that can be one-hot encoded

 Many slight variations to one-hot
 one-hot + all-0

VIII - Working with Sequential Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 14

I Q Q+ O
i a c j
i b c k

I Q Q+ O
i a b j
k a c l

I Q Q+ O
i a b j
i c d j

c = i * a + i * b

b = i * a
c = k * a

j = i * a + i * c
b = i * a
d = i * c

i / j i / k

a b

c

a

b c

i / j k / l

b d

i / j
a c

i / j

Heuristics for state assignment

 Adjacent codes to states that share a common next state
 group 1's in next state map

 Adjacent codes to states that share a common ancestor state
 group 1's in next state map

 Adjacent codes to states that have a common output behavior
 group 1's in output map

VIII - Working with Sequential Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 15

General approach to heuristic state
assignment

 All current methods are variants of this
 1) determine which states “attract” each other (weighted pairs)
 2) generate constraints on codes (which should be in same cube)
 3) place codes on Boolean cube so as to maximize constraints satisfied

(weighted sum)
 Different weights make sense depending on whether we are optimizing

for two-level or multi-level forms
 Can't consider all possible embeddings of state clusters in Boolean

cube
 heuristics for ordering embedding
 to prune search for best embedding
 expand cube (more state bits) to satisfy more constraints

VIII - Working with Sequential Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 16

Output-based encoding

 Reuse outputs as state bits - use outputs to help distinguish states
 why create new functions for state bits when output can serve as well
 fits in nicely with synchronous Mealy implementations

HG = ST’ H1’ H0’ F1 F0’ + ST H1 H0’ F1’ F0
HY = ST H1’ H0’ F1 F0’ + ST’ H1’ H0 F1 F0’
FG = ST H1’ H0 F1 F0’ + ST’ H1 H0’ F1’ F0’
HY = ST H1 H0’ F1’ F0’ + ST’ H1 H0’ F1’ F0

Output patterns are unique to states, we do not
need ANY state bits – implement 5 functions
(one for each output) instead of 7 (outputs plus
2 state bits)

Inputs Present State Next State Outputs
C TL TS ST H F
0 – – HG HG 0 00 10
– 0 – HG HG 0 00 10
1 1 – HG HY 1 00 10
– – 0 HY HY 0 01 10
– – 1 HY FG 1 01 10
1 0 – FG FG 0 10 00
0 – – FG FY 1 10 00
– 1 – FG FY 1 10 00
– – 0 FY FY 0 10 01
– – 1 FY HG 1 10 01

VIII - Working with Sequential Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 17

Current state assignment
approaches
 For tight encodings using close to the minimum number of state bits

 best of 10 random seems to be adequate (averages as well as heuristics)
 heuristic approaches are not even close to optimality
 used in custom chip design

 One-hot encoding
 easy for small state machines
 generates small equations with easy to estimate complexity
 common in FPGAs and other programmable logic

 Output-based encoding
 ad hoc - no tools
 most common approach taken by human designers
 yields very small circuits for most FSMs

VIII - Working with Sequential Logic© Copyright 2004, Gaetano Borriello and Randy H. Katz 18

Sequential logic optimization
summary
 State minimization

 straightforward in fully-specified machines
 computationally intractable, in general (with don’t cares)

 State assignment
 many heuristics
 best-of-10-random just as good or better for most machines
 output encoding can be attractive (especially for PAL implementations)

