Combinational Logic Technologies

Standard gates

0 gate packages

2 cell libraries

Regular logic

9 multiplexers

4 decoders

Two-level programmable logic
4 PALs

9 PLAs

9 ROMs
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Random logic

Transistors quickly integrated into logic gates (1960s)
Catalog of common gates (1970s)
1J Texas Instruments Logic Data Book — the yellow bible
0 all common packages listed and characterized (delays, power)
0 typical packages:

in 14-pin IC: 6-inverters, 4 NAND gates, 4 XOR gates
Today, very few parts are still in use

However, parts libraries exist for chip design
0 designers reuse already characterized logic gates on chips
J same reasons as before

0 difference is that the parts don’t exist in physical inventory —
created as needed
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Random logic

Too hard to figure out exactly what gates to use
2 map from logic to NAND/NOR networks

0 determine minimum number of packages
slight changes to logic function could decrease cost

Changes to difficult to realize

9 need to rewire parts

9 may need new parts

0 design with spares (few extra inverters and gates on every board)
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Reqgular logic

Need to make design faster
Need to make engineering changes easier to make

Simpler for designers to understand and map to functionality
0 harder to think in terms of specific gates
0 better to think in terms of a large multi-purpose block
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Making connections

Direct point-to-point connections between gates
0 wires we've seen so far

Route one of many inputs to a single output --- multiplexer
Route a single input to one of many outputs --- demultiplexer

A i Ll

multiplexer demultiplexer 4x4 switch
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Mux and demux

Switch implementation of multiplexers and demultiplexers
0 can be composed to make arbitrary size switching networks

0 used to implement multiple-source/multiple-destination
iInterconnections

IV - Combinational Logic T © Copyright 2004, Gaetano Borriello and Randy |



Mux and demux (cont'd)

Uses of multiplexers/demultiplexers in multi-point connections

AlO All BlO Bll
S5a —| MuUKX MUX [ Sb  multiple input sources
» \/ s
Sum
Ss DEh;IUX multiple output destinations
. 4
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Multiplexers/selectors

Multiplexers/selectors: general concept

0 2n data inputs, n control inputs (called "selects"), 1 output

1 used to connect 2" points to a single point

0 control signal pattern forms binary index of input connected to

output N , 1, Az
Z=A'l, +Al 0 11l 0 9 90
0 1 1, O 0 1 1|0
O 1 0 |1
/ O 1 1|60
1 0 010
functional form / 1 0 1 1
logical form 1 1 0 |1
. 1 1 1 |1
two alternative forms

for a 2:1 Mux truth table
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Multiplexers/selectors (cont'd)

2.1 mux: Z=Al,+ Al

4:1 mux: Z=AB'l,+ABI, + AB'l, + ABI,

8:1 mux: Z=AB'Cl,+AB'Cl, + ABC'l, + ABCI, +
AB'C'l, + AB'CI; + ABC'l, + ABCI,

2N 1
(=0 0 —
. — = |1 —
Ingeneral: Z=2"""(ml,) >
13—/ 8:1
_ _ 147" mux
< in minterm shorthand fofhrfor a 2™:1|Mux 5>
1— a1 |, 6~
0—{ 21 |, 12— mux 7"
|1—" mux |I3— TT
T T ABC
A A B
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Gate level implementation of muxes

= 2:1 mux

= 4:1 mux
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Cascading multiplexers

Large multiplexers can be made by cascading smaller ones

S 8:1
10 —"
11 > 4:1 mux
12 7] mux alternative
13 [ | 2:1 .7 implementation
. » mux
14— 0 > 8:1
> 4:1
15 - y 11 > mux Mmux
16 7| Mux
7 T :;%, 211 ,
- et 2 a1 .7
B A 14 _Lr—n " mux
15— mix "
control signals B and C simultaneously choose
one of 10, 11, 12, 13 and one of 14, 15, 16, |7 16 o0
17— mux
control signal A chooses which of the
upper or lower mux's output to gate to Z C A B
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Multiplexers as general-purpose logic

A 2™:1 multiplexer can implement any function of n variables
2 with the variables used as control inputs and
9 the data inputstiedto O or 1
2 In essence, a lookup table

1 0
Example: 0 —{1
2 F(A,B,C) =m0+ m2 + m6 + m7 (1):3
= A'B'C'+ ABC' + ABC' + ABC — 4 8 o F
=" ABC() + A'B'CE)S: o s it
+ A'BC'(1) + A'BC(0) 1 —8
+ AB'C'(0) + AB'C(0) 17 's2 s1 s0
+ ABC'(1) + ABC(1) R
A B C

Z=ABCl,+ABCIl, + ABC'l, + A'BCI, +
ABC'l,+ AB'CIl. + ABC'l, + ABCI,
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Multiplexers as general-purpose logic
(cont’'d)

A 211 multiplexer can implement any function of n variables

0 with n-1 variables used as control inputs and
0 the data inputs tied to the last variable or its complement

Example:
9 FAB,C)=m0+m2+m6+m7
= AB'C'+ ABC'+ ABC' + ABC
= AB'(C) + AB(C") + AB'(0) + AB(1)

1 —o
S A B cC|F
1 15 0 0 [0 [T o oI
5 |3 o o |1 |o0 < -
o 14 gimux — F 0 1 [0 |1 . &L aimux |
o = o 1 |1 |o 01
1 e 1 0|0 [0, S1 SO
L 14 1 o |1 o ]
S2 S1 SO 1140 11y A B
1 1 |1 |1
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Multiplexers as general-purpose logic
(cont’'d)

- - b Ll F four possible
Generalization S | 5 ——— configurations
n-1 mux control 1 ‘ 0 0 1 of truth table
variables rows can be
_ l l l l expressed as
single mux d o | |* 1| afunction of |
variable A B C D |G n n
_ 0 0 0[O0 [[I],
Example. 0 0 0 1 1
o o 1 |0 [lo
G(A’B’C’D)_ o o0 1 1 1 1 0
canberealized ©° 1 o0 [0 [0 0 —1
; O 1 o0 |1 ||o 0 —2
by an 8:1 MUX o T T [0 [ L 13
O 1 1 [ 1 J[2]" D’ 4 81 MUX [~
1 0 o0 [0 [[1]_ _15
1 0o o |1 [lofP D _ |6
choose A,B,C as 10 1 70 [0 DT 7
control variables L 0 L L L S2 S1 SO
1 1 0 |0 |[T]p | | |
1 1 o0 |1 |lo]
1 1 110 [[1]p A B C
1 1 1 |1 |lo
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Activity

Realize F = B'CD’ + ABC’ with a 4:1 multiplexer and a
minimum of other gates:
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Demultiplexers/decoders

Decoders/demultiplexers: general concept
0 single data input, n control inputs, 2" outputs

0 control inputs (called “selects” (S)) represent binary index of
output to which the input is connected

0 data input usually called “enable” (G)

1:2 Decoder: 3:8 Decoder:
O0=G- S O0=Ge S2’'« S1’ eSO’
Ol=G- S Ol=Ge+ S22« S1’« SO0
02 =G+ S2’« S]1 SO’
2:4 Decoder: O3 =G+ S2'« S1 SO
O0=Ge+ S1'« SO’ O4=Ge S2 « S1’' S0’
Ol=Ge+ S1'¢ SO O5=G+ S2 « S1'+ S0
02=Ge+ S1 SO’ 06 =G+ S2 « S1 SO’
O3=G+ S1 SO O7 =G+ S2 « S1 «S0O
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Gate level implementation of
demultiplexers

1:2 decodersactive-high active-low
enable - enable

G . 1 )00 \G —jrl::_ 00
S — S —
-1 o1 s 4 Yo

2:4 decoders , L
© 00 \G J oo
tive-high — tive-| —
" enable o " enable —{ o1
o2 J o2
o3 —J )03
S1 S0 S1 S0
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Demultiplexers as general-purpose

logic

A n:2" decoder can implement any function of n variables
0 with the variables used as control inputs

9 the enable inputs tied to 1 and

0 the appropriate minterms summed to form the function

lll’l >

3:8 DEC

N

|

~WNPEFEO

_> AIBICI
:: A'B'C
A'BC'
_> .
A
|, AB'C
., AB'C
|, ABC'

ABC

> —Wn

w — WV

018 o wuw

demultiplexer generates appropriate
minterm based on control signals
(it "decodes" control signals)
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Demultiplexers as general-purpose
logic (cont’d)

F1=ABCD + A'B'CD + ABCD
F2 = ABC'D'+ ABC
F3=(A'"+B'+C'+ D)

—A'B'C'D’
—A'B'C'D
—A'B'CD'
—A'B'CD
— A'BC'D'
— ABCD T
A'BCD'

— A'BCD
_AB'C'D' —"————i:::>—F2
. AB'CD
10 |__AB'CD'
11| AB'CD _|
12 | ABC'D'
13 | ABCD —
14 |—ABCD' L t>&_p3
[T ]I5 ABCD |

ABCD
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Cascading decoders

5:32 decoder

O — AIBICIDIE —>
9 1x2:4 decoder 11— ‘f —
. . 2 [ 2 [
4x3:8 decoders > 3:8 DEG — > 3:8 DEG -
— —>
4 (—» 4 |—
51— 5
‘ 251 251%™

o ] /

F —{2:4 DEC1[_,
s1s0 S

qQ|— 0
A B 1 [ 1
7 2 [
»3:8 DEG [ > 3:8 DEG —
2 |— - |—>
5 |— 5—
251 %" 2s1 ol

7 ABCDE ]

C D E C D E
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Programmable logic arrays

Pre-fabricated building block of many AND/OR gates

0 actually NOR or NAND
0 "personalized" by making/breaking connections among the gates
0 programmable array block diagram for sum of products form

inputs

AND product oR
arra

array terms d
outputs

v v v
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Enabling concept

Shared product terms among outputs

FO=A +B'C
examp|e: F1=AC + AB
F2=B'C' + AB
F3=B'C + A
. . input side:
personality matrix 1 = uncomplemented in term
0 = complemented in term
product | inputs outputs — = does not participate
term A B C |FO F1 F2 F3
AB 1 1 _ 0 1 1 0 output side:
B'C -0 1 1o o o 1 1 = term connected to output
AC 1 - o0 lo 1 o0 o 0 = no connection to output
B'C' -0 0 (1 0 1 O
A 1 - - 11 0o o 1 reuse of terms
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Before programming

All possible connections are available before "programming"

9 in reality, all AND and OR gates are NANDs

L

-/

L

e

R

s

Y

e

R

|

—

IV - Combinational Logic T © Copyright 2004, Gaetano Borriello and Randy |




After programming

Unwanted connections are "blown"
0 fuse (normally connected, break unwanted ones)

0 anti-fuse (normally disconnected, make wanted connections)
A B C

iyl

VIV I

o (o] (o]

VWA
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Alternate representation for high fan-in
structures

Short-hand notation so we don't have to draw all the wires

0 x signifies a connection is present and perpendicular signal is an
input to gate

notation for implementing

A A N oD €D

aeeeee%_)—x K—f—K— AI‘ I? CII[I)

aeeeee%:)—x K’ ylﬂ/\v{\/{ :)_)L AB
S I X CD
D, C'D

[

C
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Programmable logic array example

Multiple functions of A, B, C full decoder as for memory address

O F1=ABC A B C / bits stored in memory

4 F2=A+B+C v\z—\z—i

0 F3=A'B'C D +———AB'C

1 F4=A+B+C PO T F—F—ABC

7 F5=AxorBxorC P T T—F——F—F—ABC'

9 F6 = A xnor B xnor C FF ) ¥ A'BC
K — ) X x—x— AB'C'

AB C|F1IF2F3F4F5F6 —

000001100 T T T 0 AB'C

0010101 11 L T i} A} ABC

010010111 /

011010100 SEOFTF %—TT T ABC

100010111

10101 0100

110010100

111110011 F1 F2 F3 F4 E2
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PALs and PLAs

Programmable logic array (PLA)
2 what we've seen so far

9 unconstrained fully-general AND and OR arrays
Programmable array logic (PAL) VAVAWAN
0 constrained topology of the OR array
2 innovation by Monolithic Memories

0 faster and smaller OR plane

O
—FEE—
—EEFEEE—
—EEFEEE—

a given column of the OR array T T

has access to only a subset of RNk —

the possible product terms
KK IEEE—
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PALs and PLAs: desigh example

BCD to Gray code converter

minimized functions:

W =A + BD + BC

X = BC'

Y=B+C

Z = A'B'C'D + BCD + AD' + B'CD'

| RPOOKRMFOOKKEOOIN
|l PORPORORORFRO|I”
I|—I|—'|—'|—'|—‘OOOOO§
| OO0OO0OOKrHEFOOOO|X
| OOFRRPRRFREFPRFRLREFOOIK
|l ORPPRPOOOORKFKH ON

PRPPRPPRPOOOOOO0OO0OOoO>
RPOOORRRFRFRPRRFRPROOOOIWm
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PALs and PLAs: desigh example
(cont’'d

Code converter: programmed PLA minimized functions:
A B CD

S’

I\IA\I/{\IA_ W =A + BD + BC
—}A{ Dk A X=BC
— Y=B+C
L BD Z =A'B'C'D + BCD + AD' + B'CD'
D BC
et ) BC not a particularly good
N\ S candidate for PAL/PLA
S— 1 B implementation since no terms
¢ ) C are shared among outputs
< _\
- A'B'C'D
XX )
L —= BCD
—\ AD' however, much more compact
_/ 1y Bep and regular implementation
R] v v V when compared with discrete
AND and OR gates

w X Y Z
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PALs and PLAs: desigh example
(cont’'d)

A B CD
Code converter. programmed PAL ?ﬁvﬁ .
I 0 BD
i | BC
T | 0
3 BC'
AR =
) :< 0
4 product terms ’ }96}:/\ 0
per each OR gate T B i — 0
__/ B
’ N
|/ C
xSk D 0
=
__/ )
) e
D A'B'C'D
N\ BCD
— AD'
), s

<
<A

=
N
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PALs and PLAs: desigh example
(cont’'d)

Code converter: NAND gate implementation

9 loss or reqgularity, harder to understand
0 harder to make changes

E:_>— = }

i%?w J
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PALs and PLAs: another design

example

A B CD
| | | |
Maqgnitude comparator MM MM —
g p J— %%# 4 AIBICIDI
A B C D |EQ NE LT GT _—D
0O 0 0 0|1 0 0 O T L ¥ A'BC'D
0 0 0 1 0 1 0 —k—k k% —% ABCD
0O 0 1 00 1 1 o0 A N .
o 0 1 1 1]/0 1 1 o0 =2 AB'CD
o 1 0 0 |0 1 0 1 = 0 ) 0 T—AC'
0O 1 0 1 (1 0o 0 O ey ) N .
0 1 1 010 1 1 0 — A
o 1 1 1|0 1 1 o0 T | T B'D
1 0 0 0|0 1 0 1 KT¥ T 8D
1 0 O 1|0 1 0 1 B TS 0 Y O i}
1 0 1 01 0 0 O —< A'BD
1 0 1 11]/0 1 1 o0 T L B'CD
1 1 0 0|0 1 o0 1 AN I _\, ABC
1 1 0 1 |0 1 0 1 L e T L
1 1 0 '0 1 0 1 B BC'D'
nimizedlfunqtiongz: 1 1 0 0 0
= A'B'C'D’' + A’'BC’'D + ABCD + AB'CD’ NE = AC’ + A'C + B'D + BD!
— ’ ’ ’ ’ — ’ ’ ’ | | |
A'C + A'B'D + B'CD GT = AC’' + ABC + BC'D O NE LT GT
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Activity

Map the following functions to the PLA below:
2 W=AB+AC +BC’ A B C
o X=ABC+AB' + A'B

9 Y=ABC' +BC +B'C

JUUUUUU

i
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Activity (cont’'d)
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Read-only memories

Two dimensional array of 1s and Os word lines (only one
is active — decoder is
0 entry (row) is called a "word" just right for this)
9 width of row = word-size o111
9 index is called an "address" TTTT
0 address is input N 4 % é é %
0 selected word is output |
tecoder | Lc__': lui word[i] = 0011
J [”J__. I'i:‘ word[j] = 1010
internal organization

0
o| T |n-1 N
Address o
bit lines (normally pulled to 1 through

resistor — selectively connected to O
by word line controlled switches)
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ROMs and combinational logic

Combinational logic implementation (two-level canonical form)
using a ROM

FO=A'B'C + AB'C' + AB'C
F1=A'B'C + AABC' + ABC
F2=A'B'C' + AAB'C + AB'C
F3=A'BC + AB'C' +ABC'

A B C|FO F1 F2 F3
O0OO0O|O O 1 O ROM
00111 1 1 O 8 words x 4 bits/word
0100 1 O O
0110 0 0 1
RN
1011 0 O O ABC FO F1 F2 F3
1100 0 0 1 address outputs
11 t%u?h t%blg 0 block diagram
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ROM structure

Similar to a PLA structure but with a fully decoded AND array
0 completely flexible OR array (unlike PAL)

n address lines

inputs
: memory
decoder 2n word array
lines (Zn words
» by m bits)
outputs

v v v

m data lines
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ROM vs. PLA

ROM approach advantageous when

0 design time is short (no need to minimize output functions)
0 most input combinations are needed (e.g., code converters)
2 little sharing of product terms among output functions
ROM problems

0 size doubles for each additional input

0 can't exploit don't cares

PLA approach advantageous when

0 design tools are available for multi-output minimization

9 there are relatively few unigue minterm combinations

0 many minterms are shared among the output functions
PAL problems

4 constrained fan-ins on OR plane
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Reqgular logic structures for two-level
logic

ROM - full AND plane, general OR plane

4 cheap (high-volume component)

4 can implement any function of n inputs

0 medium speed

PAL — programmable AND plane, fixed OR plane
0 intermediate cost

0 can implement functions limited by number of terms

0 high speed (only one programmable plane that is much smaller than
ROM's decoder)

PLA — programmable AND and OR planes

0 most expensive (most complex in design, need more sophisticated tools)
9 can implement any function up to a product term limit

0 slow (two programmable planes)
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Reqgular logic structures for multi-
level logic

Difficult to devise a regular structure for arbitrary connections
between a large set of different types of gates

0 efficiency/speed concerns for such a structure

9 in 467 you'll learn about field programmable gate arrays (FPGAS)
that are just such programmable multi-level structures

programmable multiplexers for wiring
lookup tables for logic functions (programming fills in the table)
multi-purpose cells (utilization is the big issue)

Use multiple levels of PALsS/PLAsS/ROMs
0 output intermediate result
0 make it an input to be used in further logic

IV - Combinational Logic T © Copyright 2004, Gaetano Borriello and Randy | 40



Combinational logic technology
summary

Random logic

Single gates or in groups

conversion to NAND-NAND and NOR-NOR networks
transition from simple gates to more complex gate building blocks
reduced gate count, fan-ins, potentially faster

more levels, harder to design

Time response in combinational networks

1 gate delays and timing waveforms

0 hazards/glitches (what they are and why they happen)
Regular logic

0 multiplexers/decoders

4 ROMSs

0 PLAsS/PALs

0 advantages/disadvantages of each

o 0 0 0 O
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