

Overview

- Signals as functions (1D, 2D)
 - Tools
- 1D Fourier Transform
 - Summary of definition and properties in the different cases
 - CTFT, CTFS, DTFS, DTFT
 - DFT
- 2D Fourier Transforms
 - Generalities and intuition
 - Examples
 - A bit of theory
- Discrete Fourier Transform (DFT)
- Discrete Cosine Transform (DCT)

Signals as functions

- Continuous functions of real independent variables
 - 1D: f=f(x)
 - 2D: f = f(x, y) x, y
 - Real world signals (audio, ECG, images)
- Real valued functions of discrete variables
 - 1D: *f*=*f*[*k*]
 - 2D: f = f[i,j]
 - Sampled signals
- Discrete functions of discrete variables
 - 1D: $f^d = f^d[k]$
 - 2D: $f^d = f^d[i,j]$
 - Sampled and quantized signals

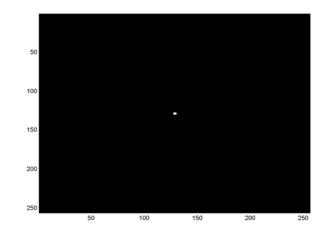
Images as functions

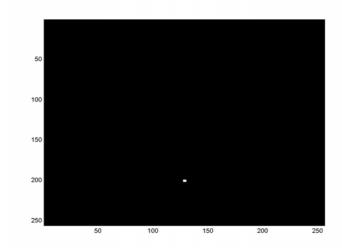
- Gray scale images: 2D functions
 - Domain of the functions: set of (x,y) values for which f(x,y) is defined : 2D lattice [i,j] defining the pixel locations
 - Set of values taken by the function : gray levels
- Digital images can be seen as functions defined over a discrete domain {i,j: 0<i<I, 0<j<J}
 - I,J: number of rows (columns) of the matrix corresponding to the image
 - f=f[i,j]: gray level in position [i,j]

Example 1: δ function

$$\delta[i,j] = \begin{cases} 1 & i=j=0\\ 0 & i,j\neq 0; i\neq j \end{cases}$$

$$\delta[i, j-J] = \begin{cases} 1 & i = 0; j = J \\ 0 & otherwise \end{cases}$$





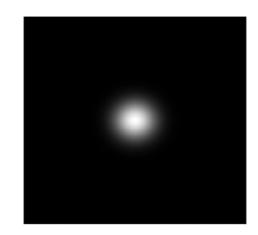
Example 2: Gaussian

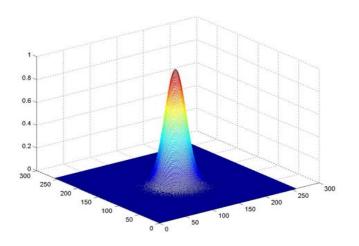
Continuous function

$$f(x, y) = \frac{1}{\sigma \sqrt{2\pi}} e^{\frac{x^2 + y^2}{2\sigma^2}}$$

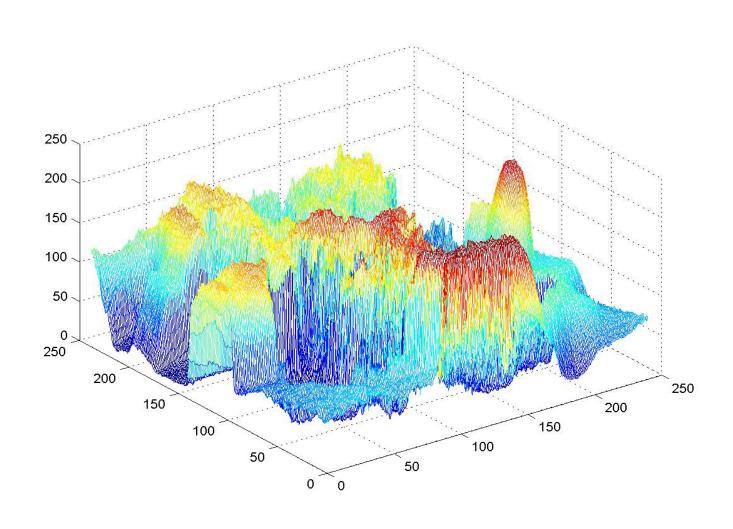
Discrete version

$$f[i,j] = \frac{1}{\sigma\sqrt{2\pi}}e^{\frac{i^2+j^2}{2\sigma^2}}$$



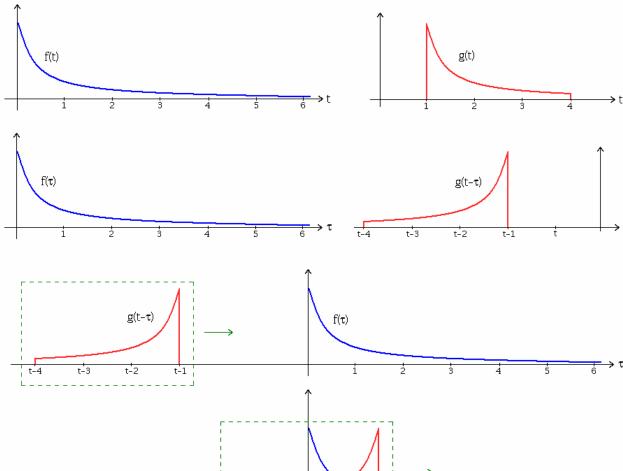


Example 3: Natural image



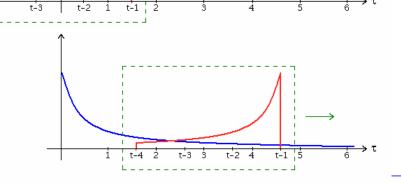
Example 3: Natural image

Convolution



$$c(t) = f(t) * g(t) = \int_{-\infty}^{+\infty} f(\tau)g(t-\tau)d\tau$$

$$c[n] = f[n] * g[n] = \sum_{k=-\infty}^{+\infty} f[k]g[k-n]$$

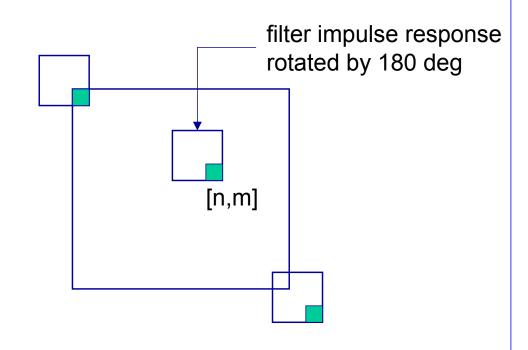


2D Convolution

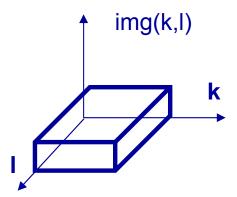
$$c(x,y) = f(x,y) \otimes g(x,y) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(\tau,\nu)g(x-\tau,y-\nu)d\tau d\nu$$

$$c[i,k] = \sum_{k=-\infty}^{+\infty} \sum_{k=-\infty}^{+\infty} f[n,m]g[i-n,k-m]$$

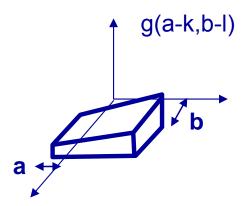
- Associativity
- Commutativity
- Distributivity

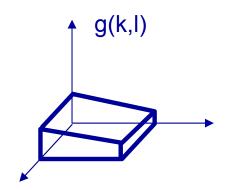


2D Convolution

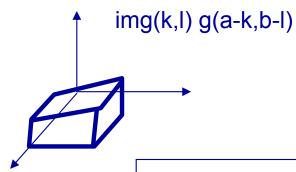


- 1. fold about origin
- 2. displace by 'a' and 'b'





3. compute integral of the box



Tricky part: borders

• (zero padding, mirror...)

Convolution

Filtering with filter h(x,y)

$$f_2(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_1(s,t)h(x-s,y-t)dsdt$$

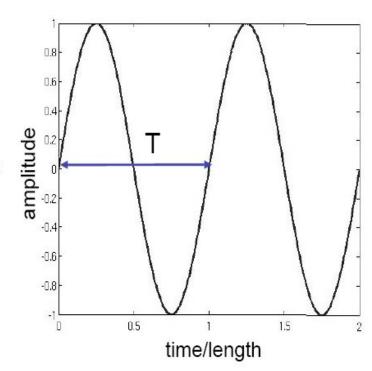
- Convolution with a 2D Dirac pulse $f_2(x, y) = f_1(x, y)$ sampling property of the delta function
- Convolution a Dirac pulse shifted by (x₀,y₀)
 f₂(x, y) = f₁(x x₀, y y₀)
- Fourier transform...
 F₂(u, v) = F₁(u, v) H(u, v)
- ... and vice versa $g(x,y) = f_1(x, y) f_2(x, y)$ then $G(u,v) = F_1(u, v) * F_2(u, v)$

Fourier Transform

- Different formulations for the different classes of signals
 - Summary table: Fourier transforms with various combinations of continuous/discrete time and frequency variables.
 - Notations:
 - CT: continuous time
 - DT: Discrete Time
 - FT: Fourier Transform (integral synthesis)
 - FS: Fourier Series (summation synthesis)
 - P: periodical signals
 - T: sampling period
 - ω_s : sampling frequency (ω_s =2 π /T)
 - For DTFT: T=1 $\rightarrow \omega_s$ =2 π

1D FT: basics

- Define frequency
 = 1/T
 cycles per unit time
 cycles per unit distance
 - Here f = 1



Fourier Transform: Concept

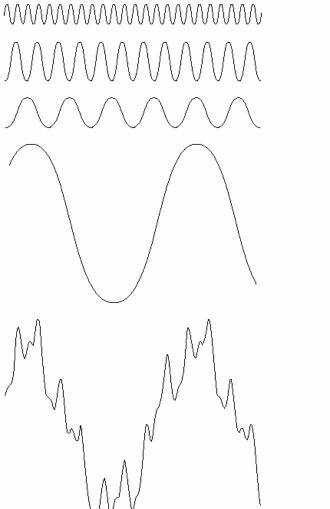


FIGURE 4.1 The function at the bottom is the sum of the four functions above it. Fourier's idea in 1807 that periodic functions could be represented as a weighted sum of sines and cosines was met with skepticism.

- A signal can be represented as a weighted sum of sinusoids.
- Fourier Transform is a change of basis, where the basis functions consist of sines and cosines (complex exponentials).

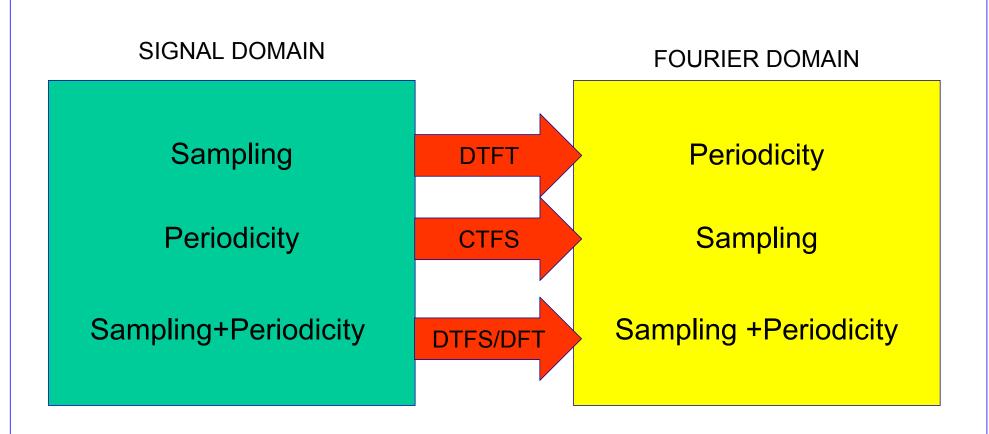
Fourier Transform

- Cosine/sine signals are easy to define and interpret.
- However, it turns out that the analysis and manipulation of sinusoidal signals is greatly simplified by dealing with related signals called complex exponential signals.
- A complex number has real and imaginary parts: z = x + j*y
- A complex exponential signal: r*exp(j*a) =r*cos(a) + j*r*sin(a)

Overview

Transform	Time	Frequency	Analysis/Synthesis	Duality
(Continuous Time) Fourier Transform (CTFT)	С	С	$F(\omega) = \int_{0}^{\infty} f(t)e^{-j\omega t}dt$ $f(t) = \frac{1}{2\pi} \int_{0}^{\infty} F(\omega)e^{j\omega t}d\omega$	Self- dual
(Continuous Time) Fourier Series (CTFS)	C P	D	$F[k] = \int_{-T/2}^{T/2} f(t)e^{-j2\pi kt/T}dt$ $f(t) = \sum_{k} F[k]e^{j2\pi kt/T}$	Dual with DTFT
Discrete Time Fourier Transform (DTFT)	D	C P	$F(e^{j\omega t}) = \sum_{\substack{n \\ \omega_s/2}} f[n]e^{-j2\pi\omega n/\omega_s}$ $f[n] = \frac{1}{\omega_s} \int_{-\omega_s/2}^{\omega_s/2} F(e^{j\omega t})e^{j2\pi\omega n/\omega_s} d\omega$	Dual with CTFS
Discrete Time Fourier Series (DTFS)	D P	D P	$F[k] = \frac{1}{N} \sum_{n=0}^{N-1} f[n] e^{-j2\pi kn/T}$ $f[n] = \sum_{n=0}^{N-1} F[k] e^{j2\pi kn/T}$	Self dual

Dualities



Discrete time signals

- Sequences of samples
- f[k]: sample values
- Assumes a unitary spacing among samples (T_s=1)
- Normalized frequency Ω
- Transform
 - DTFT for NON periodic sequences
 - CTFS for periodic sequences
 - DFT for *periodized* sequences
- All transforms are 2π periodic

- Sampled signals
- f(kT_s): sample values
- The sampling interval (or period) is T_s
- Non normalized frequency ω
- Transform
 - DTFT
 - CSTF
 - DFT
 - BUT accounting for the fact that the <u>sequence values have been</u> generated by <u>sampling a real</u> <u>signal → f_k=f(kT_s)</u>

• All transforms are periodic with period ω_s

CTFT

- Continuous Time Fourier Transform
- Continuous time a-periodic signal
- Both time (space) and frequency are continuous variables
 - NON normalized frequency ω is used
- Fourier integral can be regarded as a Fourier series with fundamental frequency approaching zero
- Fourier spectra are continuous
 - A signal is represented as a sum of sinusoids (or exponentials) of all frequencies over a continuous frequency interval

Fourier integral
$$F\left(\omega\right) = \int\limits_{t}^{t} f(t)e^{-j\omega t}dt \qquad \text{analysis}$$

$$f(t) = \frac{1}{2\pi}\int\limits_{\omega} F(\omega)e^{j\omega t}d\omega \qquad \text{synthesis}$$

CTFT: change of notations

Fourier Transform of a 1D continuous signal

$$F(\omega) = \int\limits_{-\infty}^{\infty} f(x) e^{-j\omega x} dx$$
 "Euler's formula" $e^{-j\omega x} = \cos(\omega x) - j\sin(\omega x)$

Inverse Fourier Transform

$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{j\omega x} d\omega$$

Change of notations:

$$\begin{array}{l}
\omega \to 2\pi u \\
\omega_x \to 2\pi u \\
\omega_y \to 2\pi v
\end{array}$$

Then CTFT becomes

Fourier Transform of a 1D continuous signal

$$F(u) = \int\limits_{-\infty}^{\infty} f(x) e^{-j2\pi ux} dx$$
 "Euler's formula" $e^{-j2\pi ux} = \cos\left(2\pi ux\right) - j\sin\left(2\pi ux\right)$

Inverse Fourier Transform

$$f(x) = \int_{-\infty}^{\infty} F(u)e^{j2\pi ux} du$$

CTFS

- Continuous Time Fourier Series
- Continuous time periodic signals
 - The signal is periodic with period T₀
 - The transform is "sampled" (it is a series)

our notations

$$D_{n} = \frac{1}{T_{0}} \int_{-T_{0}/2}^{T_{0}/2} f_{T_{0}}(t) e^{-jn\omega_{0}t} dt$$

$$f_{T_{0}}(t) = \sum_{n}^{T_{0}/2} D_{n} e^{jn\omega_{0}t}$$

$$\omega_{0} = \frac{2\pi}{T_{0}}$$

fundamental frequency

table notations

$$F[k] = \int_{-T/2}^{T/2} f(t)e^{-j2\pi kt/T}dt$$

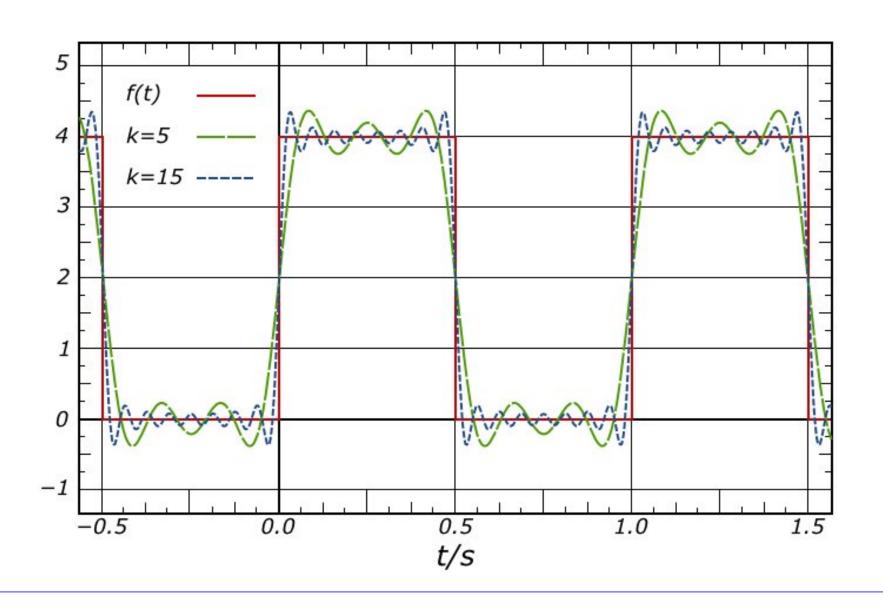
$$f(t) = \sum_{k} F[k] e^{j2\pi kt/T}$$

$$T_0 \leftrightarrow T$$
 $D_n \leftrightarrow F[k]$

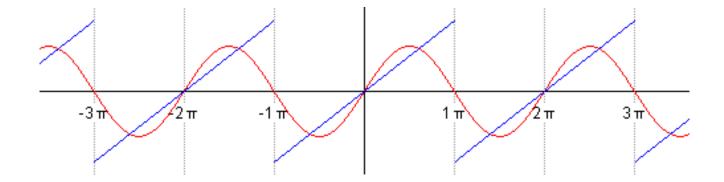
CTFS

- Representation of a continuous time signal as a sum of orthogonal components in a complete orthogonal signal space
 - The exponentials are the basis functions
- Fourier series are periodic with period equal to the fundamental in the set (2π/T₀)
- Properties
 - even symmetry → only cosinusoidal components
 - odd symmetry → only sinusoidal components

CTFS: example 1



CTFS: example 2



From sequences to discrete time signals

- Looking at the sequence as to a set of samples obtained by sampling a real signal with frequency ω_s we can still use the formulas for calculating the transforms as derived for the sequences by
 - Stratching the time axis (and thus squeezing the frequency axis if $T_s > 1$)

$$\Omega = \omega T_s$$

$$2\pi \to \omega_s = \frac{2\pi}{T_s}$$

– Enclosing the sampling interval T_s in the value of the sequence samples (DFT)

$$f_{k} = T_{s} f\left(kT_{s}\right)$$

- Discrete Time Fourier Transform
- Discrete time a-periodic signal
- The transform is periodic and continuous with period $\Omega_0 = 2\pi$

our notations

$$F(\Omega) = \sum_{k=-\infty}^{+\infty} f[k] e^{-j\Omega k}$$

$$f[k] = \frac{1}{2\pi} \int_{2\pi} F(\Omega) e^{j\Omega k} d\Omega$$

table notations

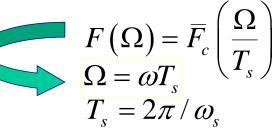
$$F(\Omega) = \sum_{k=-\infty}^{+\infty} f[k]e^{-j\Omega k}$$

$$F(e^{j\omega t}) = \sum_{m=-\infty}^{\infty} f[n]e^{-j2\pi\omega n/\omega_s}$$

$$f[k] = \frac{1}{2\pi} \int_{2\pi}^{\infty} F(\Omega)e^{j\Omega k} d\Omega$$

$$f[n] = \frac{1}{\omega_s} \int_{-\omega_s/2}^{\infty} F(e^{j\omega t})e^{j2\pi\omega n/\omega_s} d\omega$$

normalized frequency



non normalized frequency

Discrete Time Fourier Transform (DTFT)

- $F(\Omega)$ can be obtained from $F_c(\omega)$ by replacing ω with Ω/T_s . Thus $F(\Omega)$ is identical to $F_c(\omega)$ frequency scaled by a factor $1/T_s$
 - T_s is the sampling interval in time domain
- Notations

$$F\left(\Omega\right) = \overline{F}_c \left(\frac{\Omega}{T_s}\right)$$

$$\omega_s = \frac{2\pi}{T_s} \rightarrow T_s = \frac{2\pi}{\omega_s}$$
 periodicity of the spectrum

$$\omega = \frac{\Omega}{T_s} \to \Omega = \omega T_s$$
 normalized frequency (the spectrum is 2π -periodic)

$$F(\Omega) \to F(\omega T_s) = F(2\pi\omega/\omega_s)$$

$$F(\Omega) = \sum_{k=-\infty}^{+\infty} f[k]e^{-j\Omega k} \to F(\omega T_s) = F(\omega) = \sum_{k=-\infty}^{+\infty} f[k]e^{-j2k\pi\omega/\omega_s}$$

DTFT: unitary frequency

$$\Omega = 2\pi u \quad (\omega = 2\pi f)$$

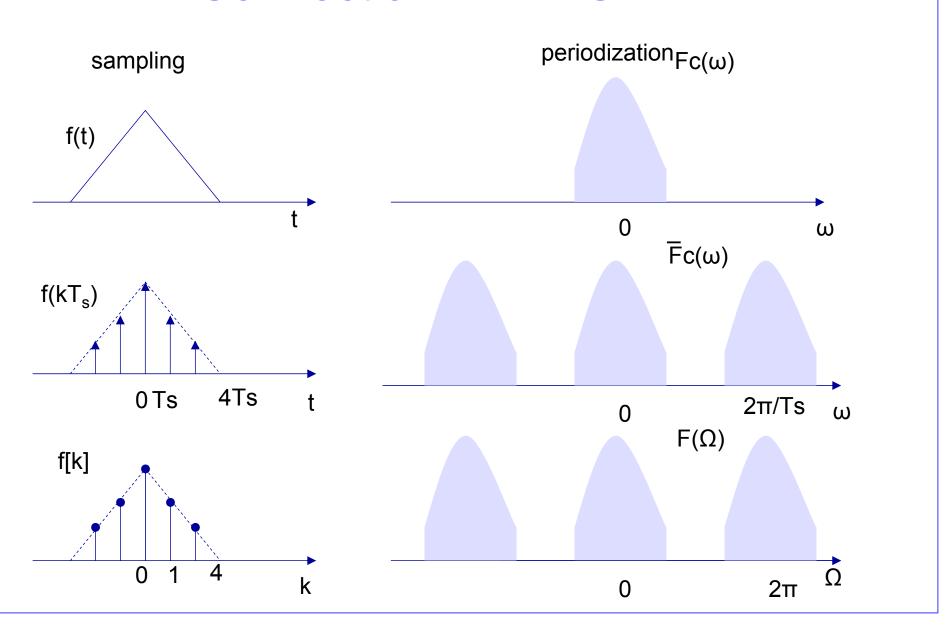
$$F(\Omega) = \sum_{k=-\infty}^{\infty} f[k]e^{-j\Omega k} \to F(u) = \sum_{k=-\infty}^{\infty} f[k]e^{-j2\pi ku}$$

$$f[k] = \frac{1}{2\pi} \int_{2\pi} F(\Omega) e^{j\Omega k} d\Omega \to f[k] = \int_{1} F(u) e^{j2\pi ku} du = \int_{-\frac{1}{2}}^{\frac{\pi}{2}} F(u) e^{j2\pi ku} du$$

$$\begin{cases} F(u) = \sum_{k=-\infty}^{\infty} f[k]e^{-j2\pi ku} \\ f[k] = \int_{-\frac{1}{2}}^{\frac{1}{2}} F(u)e^{j2\pi ku} du \end{cases}$$

NOTE: when T_s =1, Ω = ω and the spectrum is 2π -periodic. The unitary frequency u= 2π / Ω corresponds to the signal frequency f= 2π / ω . This could give a better intuition of the transform properties.

Connection DTFT-CTFT



Differences DTFT-CTFT

- The DTFT is periodic with period $\Omega_s = 2\pi$ (or $\omega_s = 2\pi/T_s$)
- The discrete-time exponential $e^{j\Omega k}$ has a unique waveform only for values of Ω in a continuous interval of 2π
- Numerical computations can be conveniently performed with the Discrete Fourier Transform (DFT)

DTFS

- Discrete Time Fourier Series
- Discrete time periodic sequences of period N_o
 - Fundamental frequency

$$\Omega_0 = 2\pi / N_0$$

our notations

$$D_{r} = \frac{1}{N_{0}} \sum_{k=0}^{N_{0}-1} f[k] e^{-jr\Omega_{0}k}$$

$$f[k] = \sum_{r=0}^{N_{0}-1} D_{r} e^{jr\Omega_{0}k}$$

table notations

$$F[k] = \frac{1}{N} \sum_{n=0}^{N-1} f[n] e^{-j2\pi kn/T}$$
$$f[k] = \sum_{n=0}^{N-1} F[k] e^{j2\pi kn/T}$$

Discrete Fourier Transform (DFT)

$$\begin{split} F_r &= \sum_{k=0}^{N_0 - 1} f_k e^{-jr\Omega_0 k} = \sum_{k=0}^{N_0 - 1} f_k e^{-j\frac{2\pi}{N_0}rk} \\ f_k &= \frac{1}{N_0} \sum_{k=0}^{N_0 - 1} F_r e^{jr\Omega_0 k} = \frac{1}{N_0} \sum_{k=0}^{N_0 - 1} F_r e^{jr\frac{2\pi}{N_0}k} \\ \Omega_0 &= \frac{2\pi}{N_0} \end{split}$$

- The DFT transforms N₀ samples of a discrete-time signal to the same number of discrete frequency samples
- The DFT and IDFT are a self-contained, one-to-one transform pair for a length-N₀ discrete-time signal (that is, the DFT is not merely an approximation to the DTFT as discussed next)
- However, the DFT is very often used as a practical approximation to the DTFT

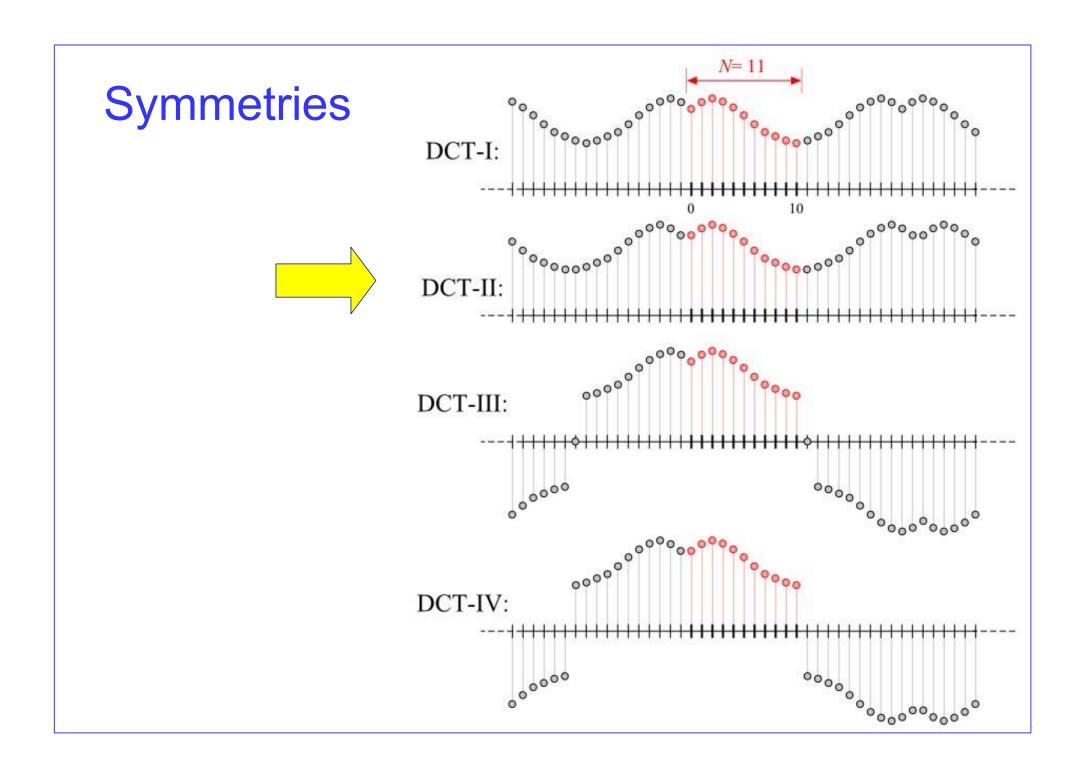
DFT 0 N_0 zero padding $\mathsf{F}(\Omega)$ 4π 2π $2\pi/N_0$

Discrete Cosine Transform (DCT)

- Operate on finite discrete sequences (as DFT)
- A discrete cosine transform (DCT) expresses a sequence of finitely many data points in terms of a sum of cosine functions oscillating at different frequencies
- DCT is a Fourier-related transform similar to the DFT but using only real numbers
- DCT is equivalent to DFT of roughly twice the length, operating on real data with even symmetry (since the Fourier transform of a real and even function is real and even), where in some variants the input and/or output data are shifted by half a sample
- There are eight standard DCT variants, of which four are common
- Strong connection with the Karunen-Loeven transform
 - VERY important for signal compression

DCT

- DCT implies different boundary conditions than the DFT or other related transforms
- A DCT, like a cosine transform, implies an even periodic extension of the original function
- Tricky part
 - First, one has to specify whether the function is even or odd at both the left and right boundaries of the domain
 - Second, one has to specify around what point the function is even or odd
 - In particular, consider a sequence *abcd* of four equally spaced data points, and say that we specify an even *left* boundary. There are two sensible possibilities: either the data is <u>even about the sample a</u>, in which case the even extension is *dcbabcd*, or the data is <u>even about the point *halfway* between a and the previous point, in which case the even extension is *dcbaabcd* (a is repeated).</u>



DCT

$$X_{k} = \sum_{n=0}^{N_{0}-1} x_{n} \cos \left[\frac{\pi}{N_{0}} \left(n + \frac{1}{2} \right) k \right] \qquad k = 0, \dots, N_{0} - 1$$

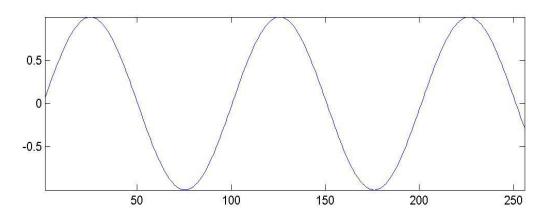
$$X_{n} = \frac{2}{N_{0}} \left\{ \frac{1}{2} X_{0} + \sum_{k=0}^{N_{0}-1} X_{k} \cos \left[\frac{\pi k}{N_{0}} \left(k + \frac{1}{2} \right) \right] \right\}$$

- Warning: the normalization factor in front of these transform definitions is merely a convention and differs between treatments.
 - Some authors multiply the transforms by $(2/N_0)^{1/2}$ so that the inverse does not require any additional multiplicative factor.
 - Combined with appropriate factors of $\sqrt{2}$ (see above), this can be used to make the transform matrix orthogonal.

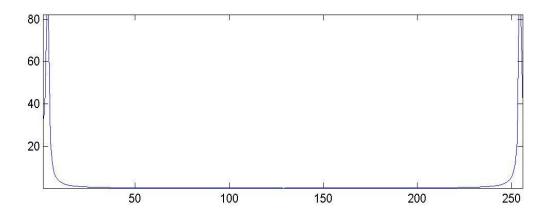
Sinusoids

Frequency domain characterization of signals $F(\omega) = \int f(t)e^{-j\omega t}dt$

$$F(\omega) = \int_{-\infty}^{+\infty} f(t)e^{-j\omega t}dt$$

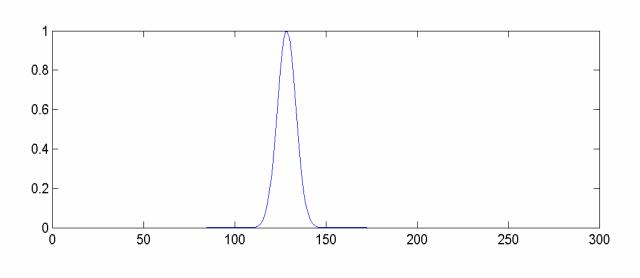


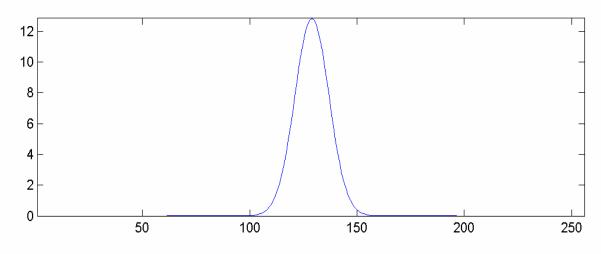
Signal domain



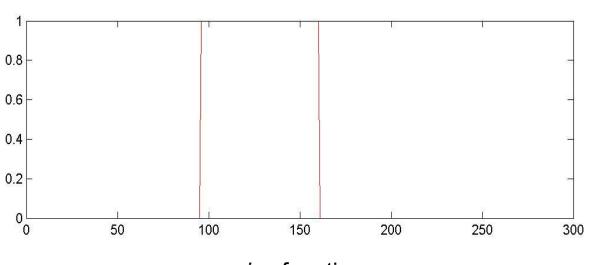
Frequency domain

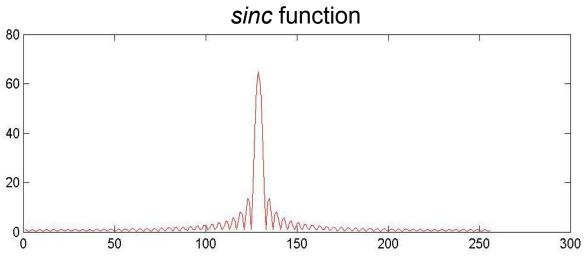
Gaussian





rect





Images vs Signals

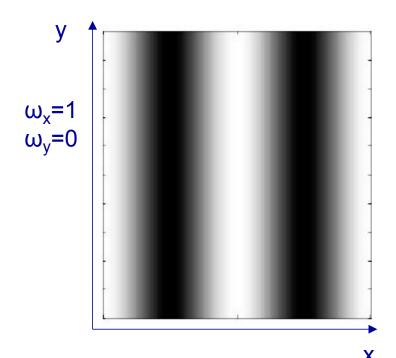
1D 2D

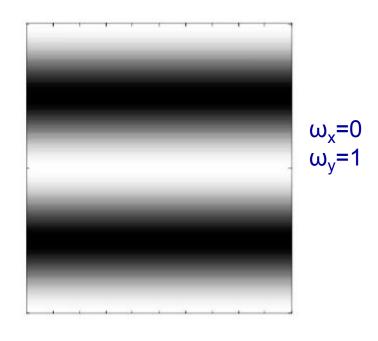
- Signals
- Frequency
 - Temporal
 - Spatial
- Time (space) frequency characterization of signals
- Reference space for
 - Filtering
 - Changing the sampling rate
 - Signal analysis
 - **–**

- Images
- Frequency
 - Spatial
- Space/frequency characterization of 2D signals
- Reference space for
 - Filtering
 - Up/Down sampling
 - Image analysis
 - Feature extraction
 - Compression
 - **–** ...

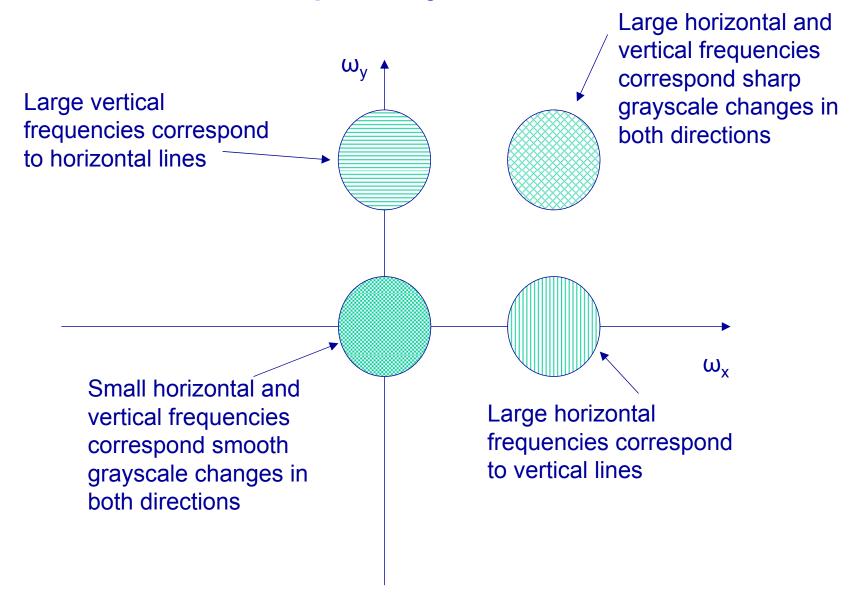
2D spatial frequencies

- 2D spatial frequencies characterize the image spatial changes in the horizontal (x) and vertical (y) directions
 - Smooth variations -> low frequencies
 - Sharp variations -> high frequencies

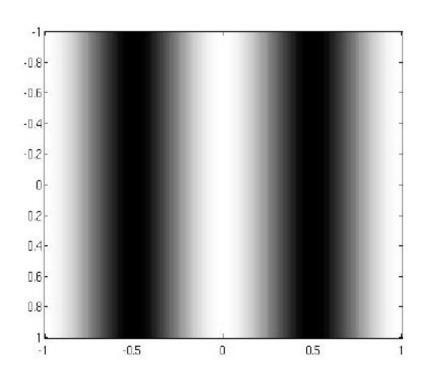


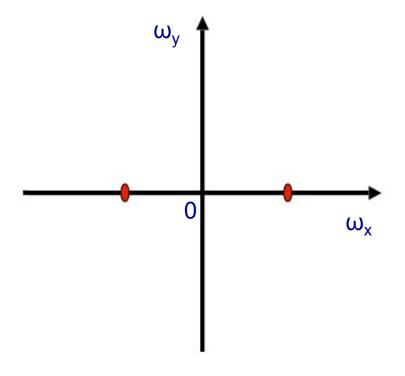


2D Frequency domain

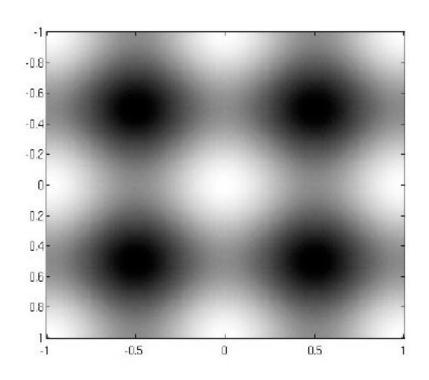


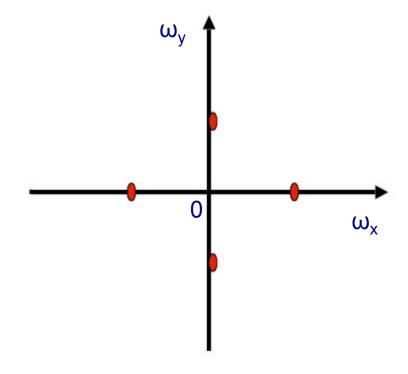
Vertical grating



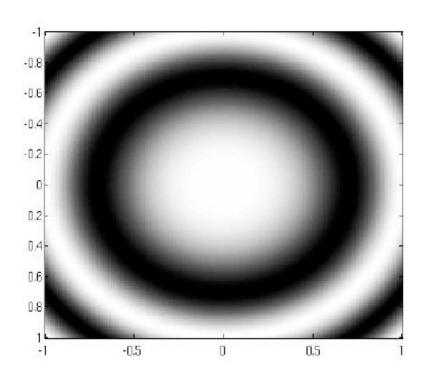


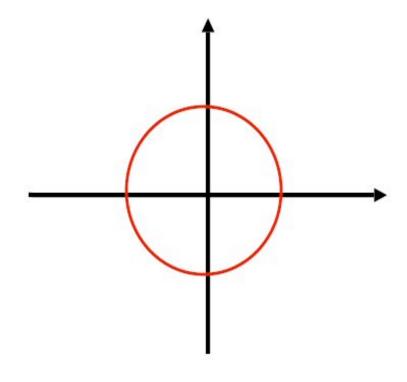
Double grating





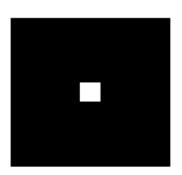
Smooth rings

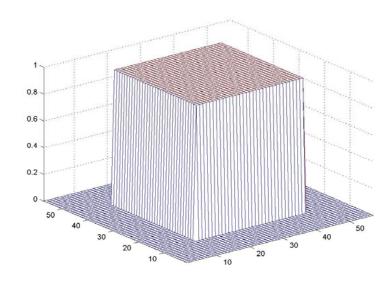


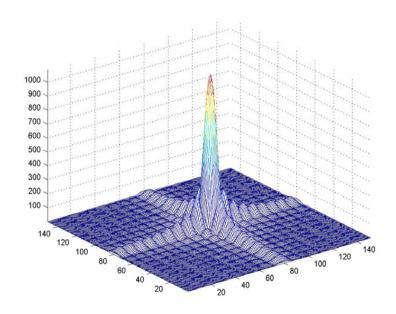


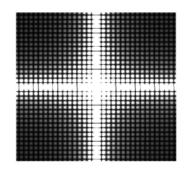
2D box

2D sinc

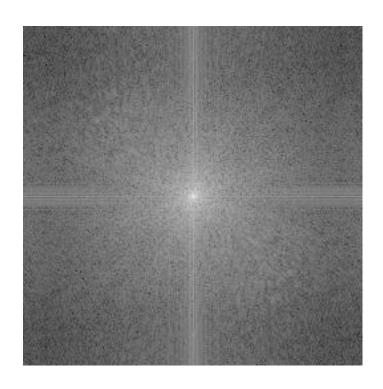




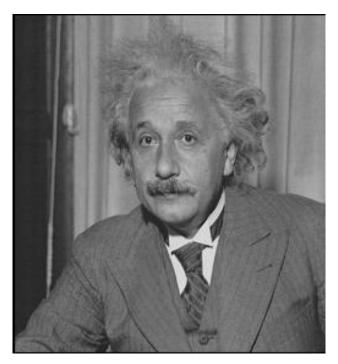


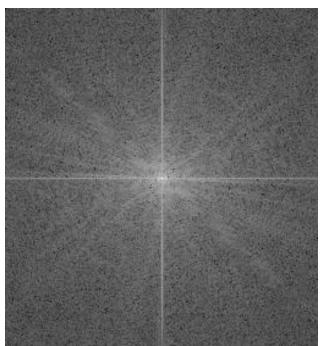


Margherita Hack



Einstein





log amplite of the spectrum

What we are going to analyze

2D Fourier Transform of continuous signals (2D-CTFT)

1D
$$F(\omega) = \int_{-\infty}^{+\infty} f(t)e^{-j\omega t}dt, f(t) = \int_{-\infty}^{+\infty} F(\omega)e^{j\omega t}dt$$

2D Fourier Transform of discrete signals (2D-DTFT)

1D
$$F(\Omega) = \sum_{k=-\infty}^{\infty} f[k]e^{-j\Omega k}, f[k] = \frac{1}{2\pi} \int_{2\pi} F(\Omega)e^{j\Omega k} dt$$

2D Discrete Fourier Transform (2D-DFT)

$$\text{1D} \quad F_r = \sum_{k=0}^{N_0-1} f[k] e^{-jr\Omega_0 k}, f_{N_0}[k] = \frac{1}{N_0} \sum_{r=0}^{N_0-1} F_r e^{jr\Omega_0 k}, \Omega_0 = \frac{2\pi}{N_0} \sum_{r=0}^{N_0-1} F_r e^$$

2D Continuous Fourier Transform

Continuous case (x and y are real) – 2D-CTFT (notation 1)

$$\hat{f}(\omega_{x}, \omega_{y}) = \int_{-\infty}^{+\infty} f(x, y) e^{-j(\omega_{x}x + \omega_{y}y)} dxdy$$

$$f(x, y) = \frac{1}{4\pi^{2}} \int_{-\infty}^{+\infty} \hat{f}(\omega_{x}, \omega_{y}) e^{j(\omega_{x}x + \omega_{y}y)} d\omega_{x} d\omega_{y}$$

$$\iint f(x,y)g^*(x,y)dxdy = \frac{1}{4\pi^2}\iint \hat{f}(\omega_x,\omega_y)\hat{g}^*(\omega_x,\omega_y)d\omega_x d\omega_y \text{Parseval formula}$$

$$f = g \to \iint |f(x,y)|^2 dxdy = \frac{1}{4\pi^2}\iint |\hat{f}(\omega_x,\omega_y)|^2 d\omega_x d\omega_y \text{ Plancherel equality}$$

2D Continuous Fourier Transform

Continuous case (x and y are real) – 2D-CTFT

$$\omega_{x} = 2\pi u$$

$$\omega_{y} = 2\pi v$$

$$\hat{f}(u,v) = \int_{-\infty}^{+\infty} f(x,y)e^{-j2\pi(ux+vy)}dxdy$$

$$f(x,y) = \frac{1}{4\pi^{2}} \int_{-\infty}^{+\infty} \hat{f}(u,v)e^{j2\pi(ux+vy)} (2\pi)^{2} dudv =$$

$$= \frac{1}{4\pi^{2}} \int_{-\infty}^{+\infty} \hat{f}(u,v)e^{j2\pi(ux+vy)} (2\pi)^{2} dudv$$

2D Continuous Fourier Transform

2D Continuous Fourier Transform (notation 2)

$$\hat{f}(u,v) = \int_{-\infty}^{+\infty} f(x,y) e^{-j2\pi(ux+vy)} dxdy$$

$$f(x,y) = \int_{-\infty}^{+\infty} \hat{f}(u,v) e^{j2\pi(ux+vy)} dudv =$$

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |f(x,y)|^2 dxdy = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |\hat{f}(u,v)|^2 dudv$$

Plancherel's equality

2D Discrete Fourier Transform

The independent variable (t,x,y) is discrete

$$F_{r} = \sum_{k=0}^{N_{0}-1} f[k]e^{-jr\Omega_{0}k}$$

$$F[u,v] = \sum_{i=0}^{N_{0}-1} \sum_{k=0}^{N_{0}-1} f[i,k]e^{-j\Omega_{0}(ui+vk)}$$

$$f_{N_{0}}[k] = \frac{1}{N_{0}} \sum_{r=0}^{N_{0}-1} F_{r}e^{jr\Omega_{0}k}$$

$$\Omega_{0} = \frac{2\pi}{N_{0}}$$

$$\Omega_{0} = \frac{2\pi}{N_{0}}$$

Delta

Sampling property of the 2D-delta function (Dirac's delta)

$$\int_{-\infty}^{\infty} \delta(x - x_0, y - y_0) f(x, y) dx dy = f(x_0, y_0)$$

Transform of the delta function

$$F\left(\delta(x,y)\right) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \delta(x,y) e^{-j2\pi(ux+vy)} dxdy = 1$$

$$F\left(\delta(x-x_0,y-y_0)\right) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \delta(x-x_0,y-y_0)e^{-j2\pi(ux+vy)}dxdy = e^{-j2\pi(ux_0+vy_0)}$$
 shifting property

Constant functions

Fourier Transform of the constant (=1 for all x and y)

$$k(x,y) = 1 \qquad \forall x, y$$

$$F\{k\} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-j2\pi(ux+vy)} dxdy = \delta(u,v)$$

Take the inverse Fourier Transform of the impulse function

$$F^{-1}\left\{\delta(u,v)\right\} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \delta(u,v)e^{j2\pi(ux+vy)}dudv = e^{j2\pi(0x+v0)} = 1$$

Trigonometric functions

- Cosinusoidal function oscillating along the x axis
 - Constant along the y axis

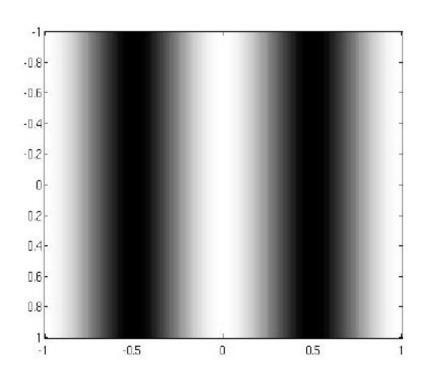
$$s(x, y) = \cos(2\pi f x)$$

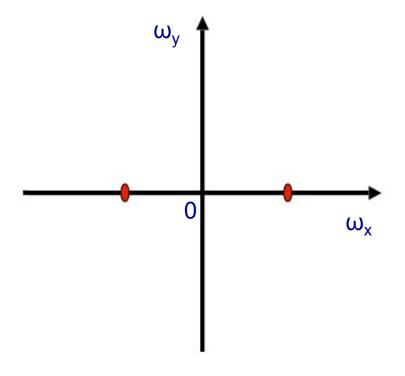
$$F\left\{\cos(2\pi f x)\right\} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \cos(2\pi f x) e^{-j2\pi(ux+vy)} dx dy =$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left[\frac{e^{j2\pi(f x)} + e^{-j2\pi(f x)}}{2}\right] e^{-j2\pi(ux+vy)} dx dy$$

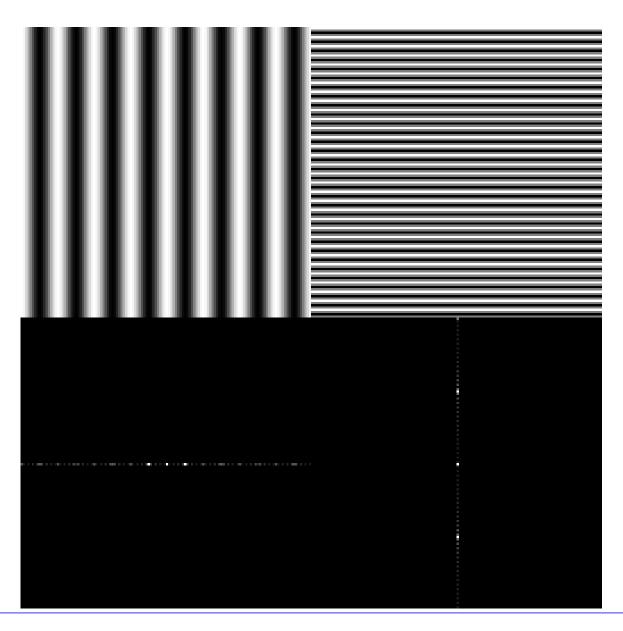
$$=\frac{1}{2}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty} \left[e^{-j2\pi(u-f)x} + e^{-j2\pi(u+f)x}\right] dxdy = \frac{1}{2}\left[\delta\left((u-f)\right) + \delta\left((u+f)\right)\right]$$

Vertical grating

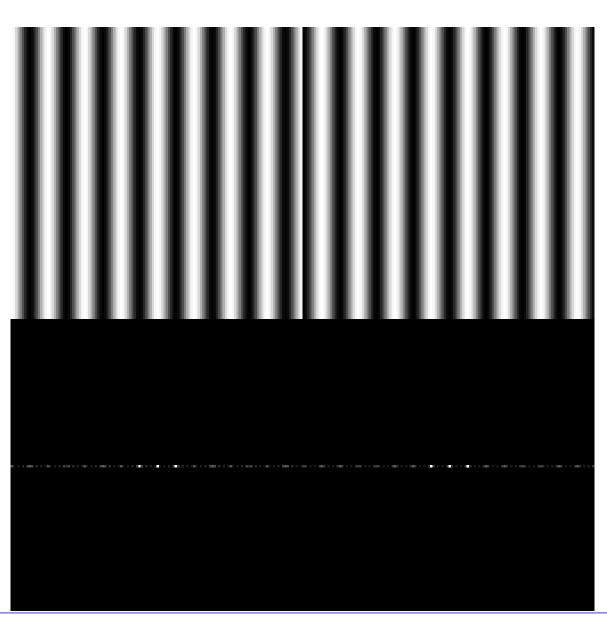




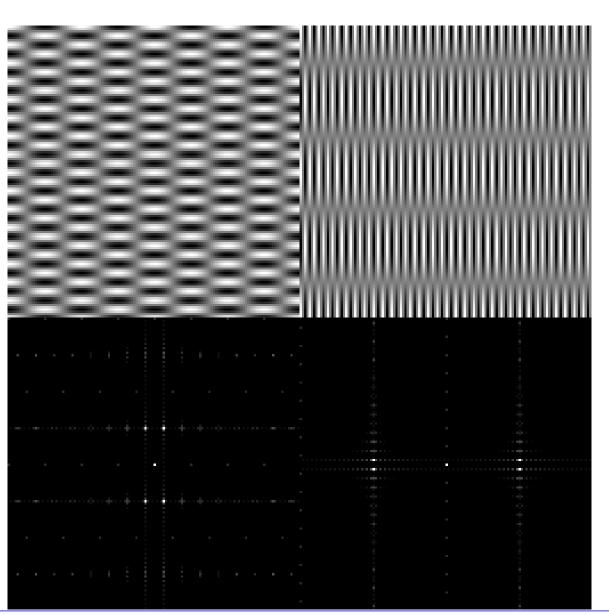
Ex. 1



Ex. 2

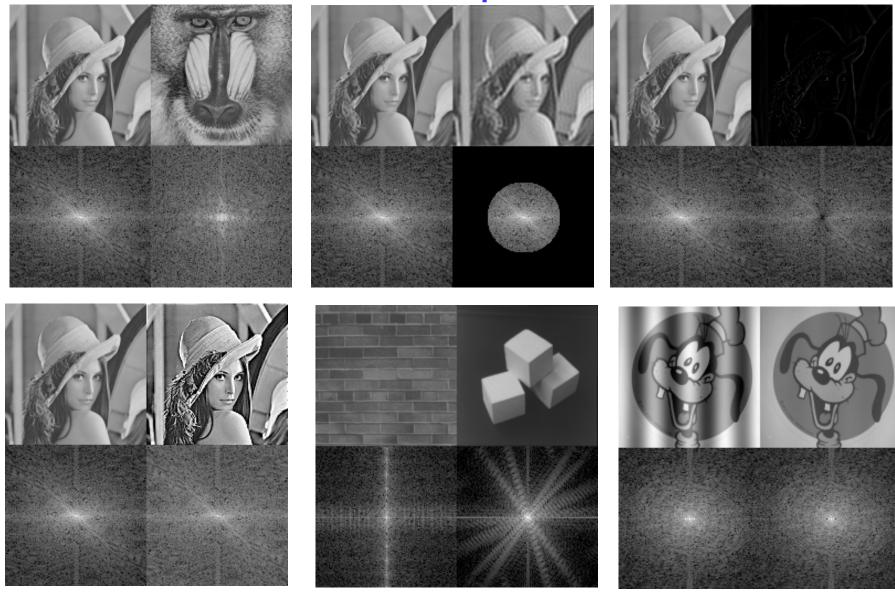


Ex. 3



Magnitudes

Examples



Properties

$$af(x, y) + bg(x, y) \Leftrightarrow aF(u, v) + bG(u, v)$$

$$f(x-x_0, y-x_0) \Leftrightarrow e^{-j2\pi(ux_0+vy_0)}F(u,v)$$

$$e^{j2\pi(u_0x+v_0y)}f(x,y) \Leftrightarrow F(u-u_0,v-v_0)$$

$$f(x, y) * g(x, y) \Leftrightarrow F(u, v)G(u, v)$$

$$f(x, y)g(x, y) \Leftrightarrow F(u, v) *G(u, v)$$

$$f(x, y) = f(x)f(y) \Leftrightarrow F(u, v) = F(u)F(v)$$

Separability

$$F(u,v) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y)e^{-j2\pi(ux+vy)}dxdy$$
$$= \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} f(x,y)e^{-j2\pi ux}dx \right] e^{-j2\pi vy}dy$$
$$= \int_{-\infty}^{\infty} F(u,y)e^{-j2\pi vy}dy$$

2D Fourier Transform can be implemented as a sequence of 1D Fourier Transform operations performed independently along the two axis

2D Fourier Transform of a Discrete function

- Fourier Transform of a 2D a-periodic signal defined over a 2D discrete grid
 - The grid can be thought of as a 2D brush used for sampling the continuous signal with a given spatial resolution (T_x, T_v)

$$F(\Omega) = \sum_{k=-\infty}^{\infty} f[k]e^{-j\Omega k}, f[k] = \frac{1}{2\pi} \int_{2\pi} F(\Omega)e^{j\Omega k} dt$$

$$F(\Omega_{x}, \Omega_{y}) = \sum_{k_{1} = -\infty}^{+\infty} \sum_{k_{2} = -\infty}^{+\infty} f[k_{1}, k_{2}] e^{-j(k_{1}\Omega_{x} + k_{2}\Omega_{y})}$$

$$f[k] = \frac{1}{4\pi^2} \int_{2\pi} \int_{2\pi} F(\Omega_x, \Omega_y) e^{j(k_1 \Omega_x + k_2 \Omega_y)} d\Omega_x \Omega_y$$

Unitary frequency notations

$$\begin{cases} \Omega_x = 2\pi u \\ \Omega_y = 2\pi v \end{cases}$$

$$F(u,v) = \sum_{k_1 = -\infty}^{+\infty} \sum_{k_2 = -\infty}^{+\infty} f[k_1, k_2] e^{-j2\pi(k_1 u + k_2 v)}$$

$$f[k_1, k_2] = \int_{-1/2}^{1/2} \int_{-1/2}^{1/2} F(u, v) e^{-j2\pi(k_1 u + k_2 v)} du dv$$

- The integration interval for the inverse transform has width=1 instead of 2π
 - It is quite common to choose

$$\frac{-1}{2} \le u, v < \frac{1}{2}$$

Properties

- Periodicity: 2D Fourier Transform of a discrete a-periodic signal is periodic with period
 - The period is 1 for the unitary frequency notations and 2π for normalized frequency notations. Referring to the firsts:

$$F(u+k,v+l) = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} f[m,n]e^{-j2\pi((u+k)m+(v+l)n)}$$

$$= \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} f[m,n]e^{-j2\pi(um+vn)}e^{-j2\pi km}e^{-j2\pi ln}$$
Arbitrary integers
$$= \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} f[m,n]e^{-j2\pi(um+vn)}$$

$$= F(u,v)$$

Properties

- Linearity
- shifting
- modulation
- convolution
- multiplication
- separability
- energy conservation properties also exist for the 2D Fourier Transform of discrete signals.
- NOTE: in what follows, (k_1, k_2) is replaced by (m, n)

Fourier Transform: Properties

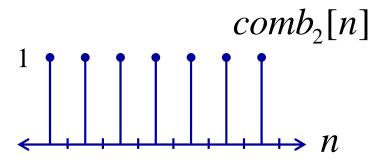
- Linearity $af[m,n] + bg[m,n] \Leftrightarrow aF(u,v) + bG(u,v)$
- Shifting $f[m-m_0, n-n_0] \Leftrightarrow e^{-j2\pi(um_0+vn_0)}F(u,v)$
- Modulation $e^{j2\pi(u_0m+v_0n)}f[m,n] \Leftrightarrow F(u-u_0,v-v_0)$
- Convolution $f[m,n] * g[m,n] \Leftrightarrow F(u,v)G(u,v)$
- Multiplication $f[m,n]g[m,n] \Leftrightarrow F(u,v)*G(u,v)$
- Separable functions $f[m,n] = f[m]f[n] \Leftrightarrow F(u,v) = F(u)F(v)$
- Energy conservation $\sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} |f[m,n]|^2 = \int_{-\infty}^{\infty} |F(u,v)|^2 du dv$

Impulse Train

Define a comb function (impulse train) as follows

$$comb_{M,N}[m,n] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} \delta[m-kM, n-lN]$$

where *M* and *N* are integers



2D-DTFT: delta

Define Kronecker delta function

$$\delta[m, n] = \begin{cases} 1, & \text{for } m = 0 \text{ and } n = 0 \\ 0, & \text{otherwise} \end{cases}$$

Fourier Transform of the Kronecker delta function

$$F(u,v) = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} \left[\delta[m,n] e^{-j2\pi(um+vn)} \right] = e^{-j2\pi(u0+v0)} = 1$$

Fourier Transform: (piecewise) constant

Fourier Transform of 1

$$f[m,n] = 1$$

$$F[u,v] = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} \left[1e^{-j2\pi(um+vn)} \right] =$$

$$= \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} \delta(u-k, v-l)$$

To prove: Take the inverse Fourier Transform of the Dirac delta function and use the fact that the Fourier Transform has to be periodic with period 1.

$$comb_{M,N}[m,n] \triangleq \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} \delta[m-kM,n-lN]$$

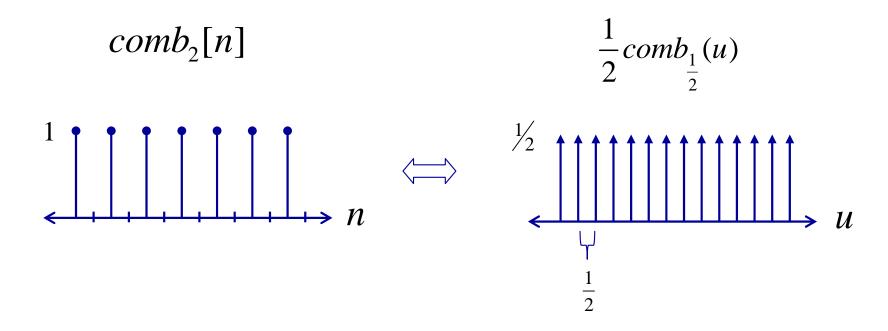
$$comb_{M,N}(x,y) \triangleq \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} \delta(x-kM,y-lN)$$

Fourier Transform of an impulse train is also an impulse train:

$$\sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} \delta[m-kM, n-lN] \Leftrightarrow \frac{1}{MN} \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} \delta\left(u-\frac{k}{M}, v-\frac{l}{N}\right)$$

$$comb_{M,N}[m,n]$$

$$comb_{\frac{1}{M},\frac{1}{N}}(u,v)$$



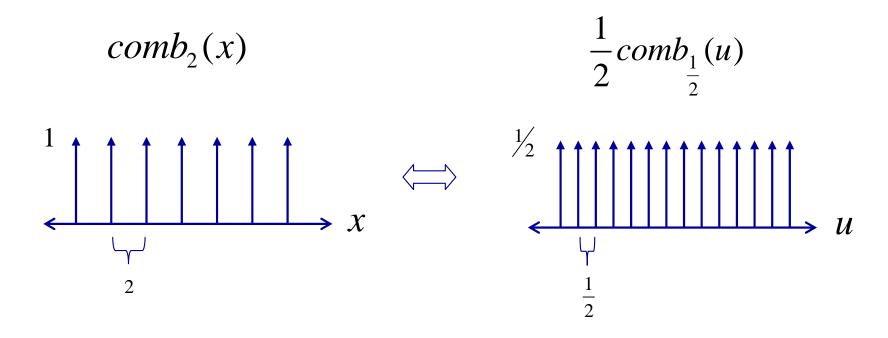
$$comb_{M,N}(x,y) \triangleq \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} \delta(x-kM,y-lN)$$

In the case of continuous signals:

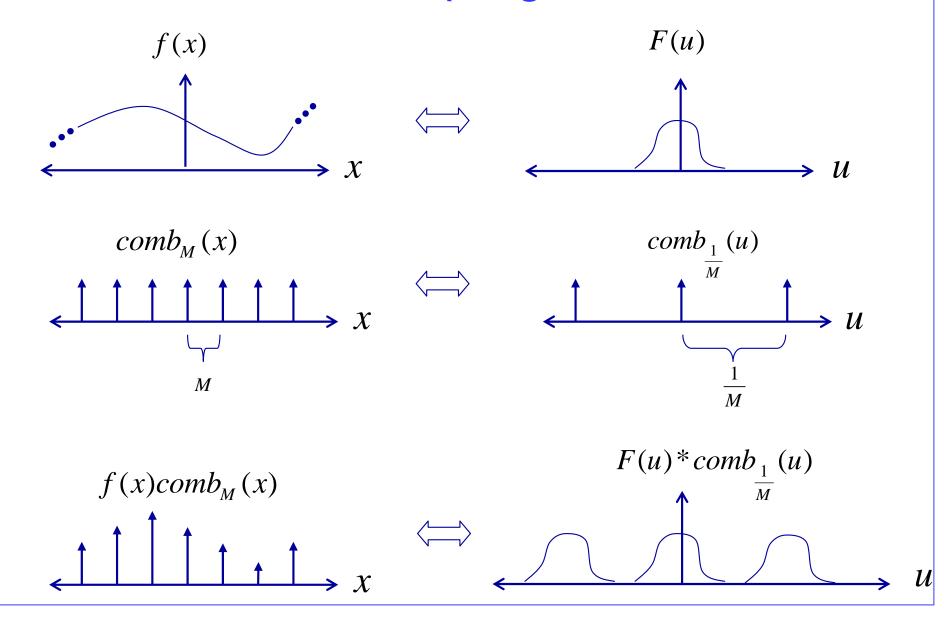
$$\sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} \delta(x-kM, y-lN) \Leftrightarrow \frac{1}{MN} \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} \delta(u-\frac{k}{M}, v-\frac{l}{N})$$

$$comb_{M,N}(x,y)$$

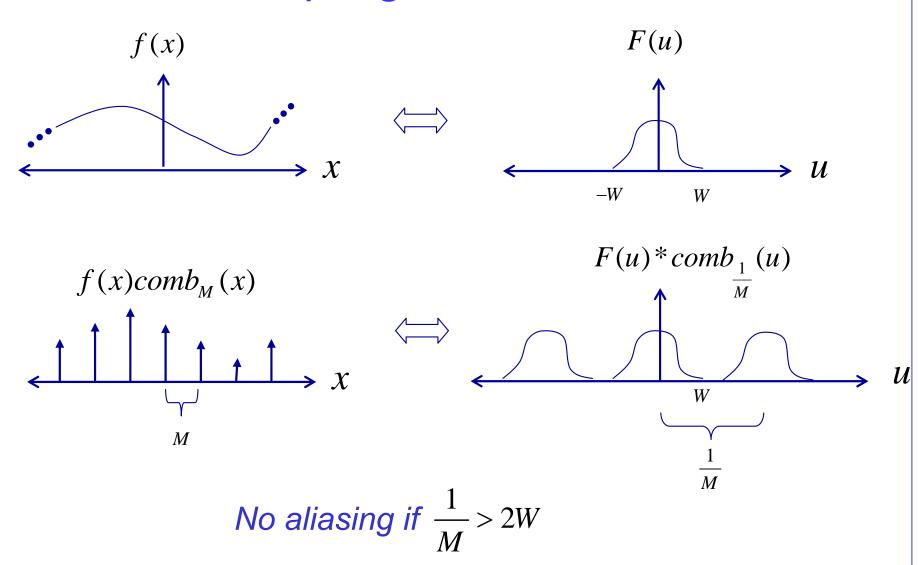
$$comb_{\frac{1}{M},\frac{1}{N}}(u,v)$$



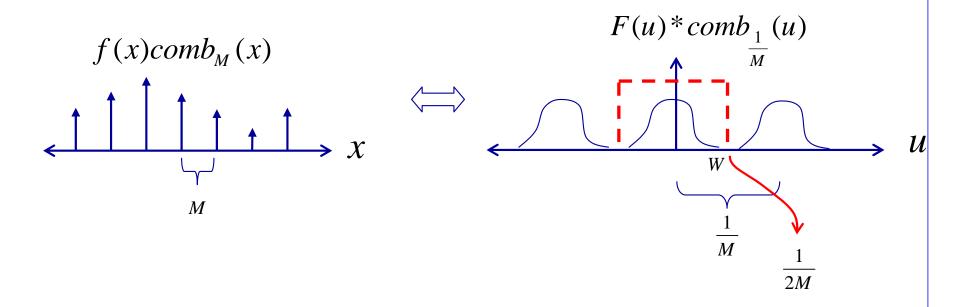
Sampling



Sampling revisitation



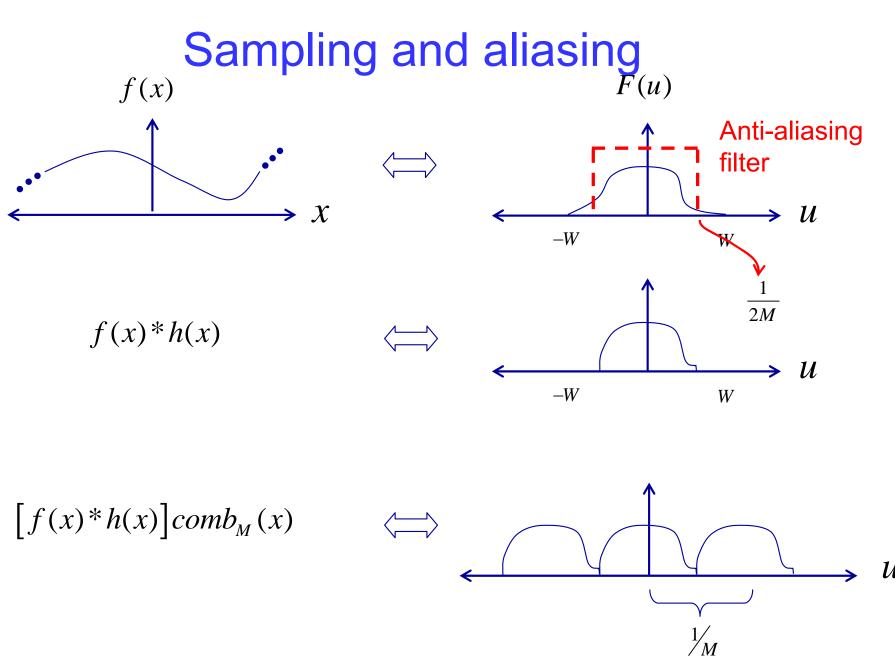
Sampling and aliasing



If there is no aliasing, the original signal can be recovered from its samples by low-pass filtering.

Sampling and aliasing

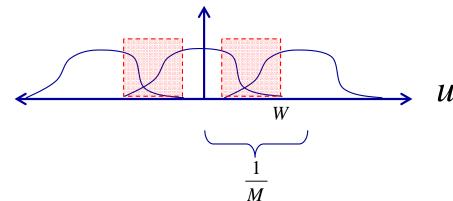




Sampling and aliasing

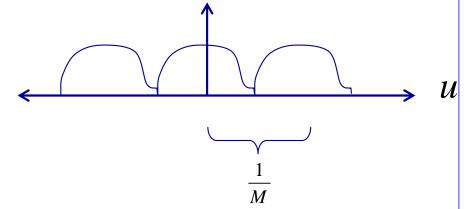
Without anti-aliasing filter:

$$f(x)comb_{M}(x)$$



With anti-aliasing filter:

$$[f(x)*h(x)]comb_{M}(x)$$



Aliasing in images

- Without the anti-aliasing filter the recovered image (subsampling+upsampling) is different from the original.
- With anti-aliasing filter (low-pass), the smoothed version of the original image can be recovered by interpolation

Anti-Aliasing

Original image

Anti-Aliasing

a=imread('barbara.tif');
b=imresize(a,0.25);
c=imresize(b,4);

Downsampling without anti-aliasing followed by interpolation

No anti-aliasing, bicubic interpolation

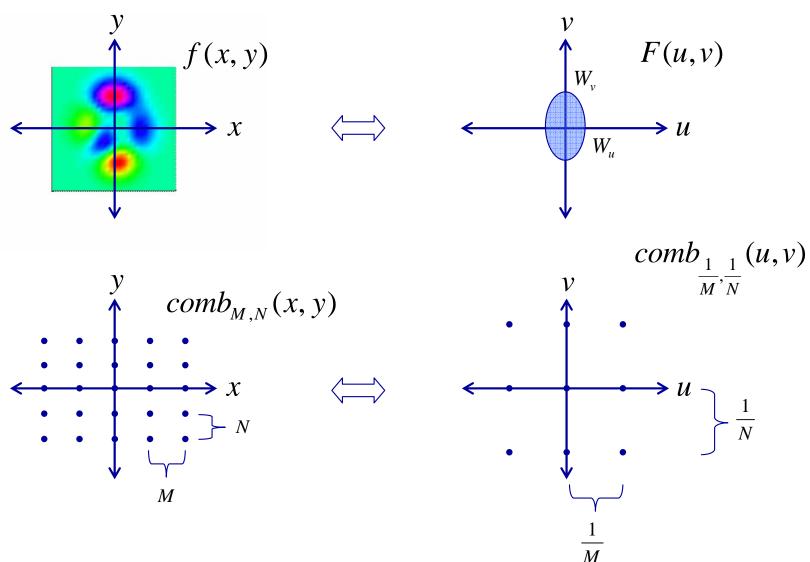
WITH anti-aliasing, bicubic interpolation

Anti-Aliasing

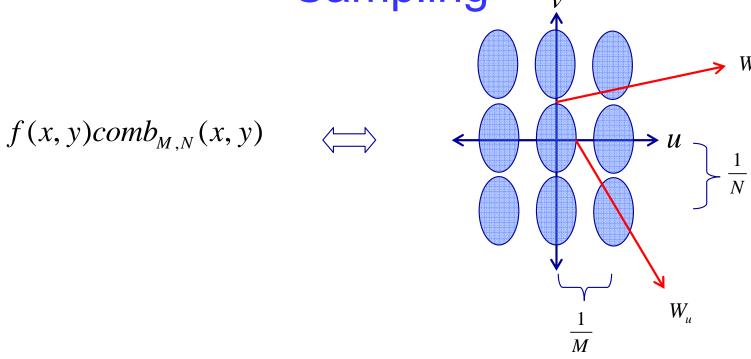
```
a=imread('barbara.tif');
H=zeros(512,512);
H(256-64:256+64, 256-64:256+64)=1;
Da=fft2(a);
Da=fftshift(Da);
Dd=Da.*H;
Dd=fftshift(Dd);
d=real(ifft2(Dd));
```

WITH anti-aliasing by lowpass filtering in frequency domain (box filter in image space)

Sampling

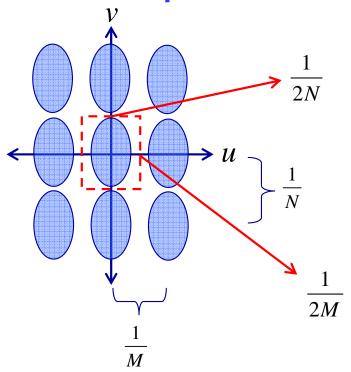


Sampling



No aliasing if
$$\frac{1}{M} > 2W_u$$
 and $\frac{1}{N} > 2W_v$

Interpolation



Ideal reconstruction filter:

$$H(u,v) = \begin{cases} MN, \text{ for } u \le \frac{1}{2M} \text{ and } v \le \frac{1}{2N} \\ 0, \text{ otherwise} \end{cases}$$

Ideal Reconstruction Filter

$$h(x, y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} H(u, v) e^{j2\pi(ux+vy)} du dv = \int_{\frac{1}{2N}}^{\frac{1}{2N}} \int_{\frac{1}{2M}}^{1} MN e^{j2\pi(ux+vy)} du dv$$

$$= \int_{-\frac{1}{2M}}^{\frac{1}{2M}} M e^{j2\pi ux} du \int_{\frac{1}{2N}}^{\frac{1}{2N}} N e^{j2\pi vy} dv$$

$$= M \frac{1}{j2\pi x} \left(e^{j2\pi x} \frac{1}{2M} - e^{-j2\pi x} \frac{1}{2M} \right) N \frac{1}{j2\pi y} \left(e^{j2\pi y} \frac{1}{2N} - e^{-j2\pi y} \frac{1}{2N} \right)$$

$$= \frac{\sin\left(\frac{\pi}{M}x\right)}{\frac{\pi}{M}x} \frac{\sin\left(\frac{\pi}{N}y\right)}{\frac{\pi}{N}y}$$

$$\sin(x) = \frac{1}{2j} \left(e^{jx} - e^{-jx} \right)$$