FLT: Characterization of some classes of languages and automata

Dr Giuditta Franco

Department of Computer Science, University of Verona, Italy

イロト イポト イヨト イヨト

Regular languages, FSA Context-free languages, PDA Linear, CS, and decidable languages

Chomsky grammar

$$G=(A,T,S,R)$$

A alphabet, $T \subset A$ terminal ¹ alphabet ($N = A \setminus T$), $S \in N$ starting symbol, R binary relation on A^* . Namely, if $(\alpha, \beta) \in R$, then $\alpha \notin T^*$, and we denote it $\alpha \to \beta$.

One-step rewriting: $\phi \Rightarrow_G \psi$, if $\phi = x \alpha y$, $\psi = x \beta y$, $(\alpha, \beta) \in R$ Multiple-steps rewriting ² (transitive closure): $\phi \Rightarrow_G^* \phi$, if $\exists \phi_1, \phi_2, \dots, \phi_n$ such that $\phi = \phi_1, \psi = \phi_n$, and $\phi_i \Rightarrow_G \phi_{i+1} \forall i$

$$L(G) = \{\beta \mid \beta \in T^{\star}, S \Rightarrow^{\star}_{G} \beta\}$$

¹halt criterion

²Conventiona rewriting systems are non-deterministically sequencial. Unconventional ways to apply these rules: probabilistic, by priority relation, (maximal, conditionated) parallel.

Regular languages, FSA Context-free languages, PDA Linear, CS, and decidable languages

イロン 不得 とくほ とくほう 一日

Examples

- $\{S \rightarrow a, S \rightarrow aS\}$ generates monosomatic language
- $\{S \rightarrow ab, S \rightarrow aSb\}$ generates bisomatic language
- $\{S \rightarrow aS, S \rightarrow Sb, S \rightarrow \lambda\}$ generates bipartite language

 $\{S \rightarrow abc, S \rightarrow aSBc, cB \rightarrow Bc, bB \rightarrow bb\}$ generates trisomatic language

 $\{S \rightarrow abc, S \rightarrow aaBbc, Bb \rightarrow bbC, Cb \rightarrow bC, Cc \rightarrow cc, Cc \rightarrow Dcc, bD \rightarrow Db, aD \rightarrow aaB\}$.. homework

Four types of grammars/languages

Type 0: $\alpha \in A^*NA^*$ (general form)

- **Type 1**: (type 0 AND) $|\alpha| \le |\beta|$ (monotonic form)
- **Type 2**: (type 1 AND) $|\alpha| = 1$ (context-free form)
- **Type 3**: (type 2 AND) $\beta \in T \cup TN$ (regular form).

For i=0,1,2,3, a grammar is of type i if all its rules are of type i.

 \mathcal{L}_i is the class of languages generated by grammars of type *i*.

A language *L* is of type *i* if $L \in \mathcal{L}_i \setminus \mathcal{L}_{i-1}$.

By definition, $\mathcal{L}_3 \subseteq \mathcal{L}_2 \subseteq \mathcal{L}_1 \subseteq \mathcal{L}_0$. With strict inclusions, this is the Chomsky hierarchy.

Bottom and top of the Chomsky hierarchy

Definition: FIN is the class of finite languages.

Since a^* is an infinite regular language (see grammar $S \to a$ and $S \to aS$), then $\{a\}^* \in \mathcal{L}_3 \setminus FIN$, and we have proved that $FIN \subset REG$.

Def: a language is infinite, if in its grammar there exists an *autoduplicating rule*: $\alpha \rightarrow \beta$ with $X \in N$ such that X occurs both in α and β . In formal terms: $\exists X \in N$ and $\alpha \rightarrow \beta$, such that $\alpha = \gamma X \delta$ and $\beta = \eta X \epsilon$ for some $\gamma, \delta, \eta, \epsilon \in A^*$.

Remark: $|\mathcal{P}(A^*)| > |\mathcal{L}_0|$. Here we notice $RE \subset \mathcal{P}(A^*)$. We will see a language outside RE, in the proof of Post theorem.

Regular languages, FSA Context-free languages, PDA Linear, CS, and decidable languages

・ロト ・ 同ト ・ ヨト ・ ヨト

Regular languages: REG

REG is defined as Close(A, +, +).

Theorem (Kleene): $REG = \mathcal{L}_3$

Theorem: $\mathcal{L}_3 = L(FSA)$, where $L(FSA) = \{\alpha \mid q_0 \alpha \Rightarrow_M^* q_f, q_f \in F\}$. Proof: $REG \subseteq L(FSA)$ easy (by def of REG). Viceversa, it is evident by comparing FSA transitions and grammars of type 3.

Then, FSA recognize all and only regular languages.

 $DFSA \equiv NDFSA$, FSA are equivalent to λ -transition FSA, and to one-final-state FSA.

Remark: \mathcal{L}_3 is closed by \star , by union, by complement, by intersection (to prove, homework).

Regular languages, FSA Context-free languages, PDA Linear, CS, and decidable languages

・ロット (雪) (山) (山)

Examples of regular patterns

Examples of regular languages: strings over $\{a, b, c\}$ starting with b and ending not with a: xyz, where x=b, $y \in \{a, b, c\}^*$, $z \in \{b, c\}$, or strings starting with a, followed by an arbitrary number of bs and ending with the string bab or aba: $ab^*(bab + aba)$.

 $a^{\star}(b+c)c^4$

a*bbc*

Regular languages, FSA Context-free languages, PDA Linear, CS, and decidable languages

Courtesy of Alex Meduna (Brno University of Technology, Czech Republic) from his book Formal Languages and Computation: Models and Their Applications (2014)

Regular languages, FSA Context-free languages, PDA Linear, CS, and decidable languages

Courtesy of Alex Meduna (Brno University of Technology, Czech Republic) from his book Formal Languages and Computation: Models and Their Applications (2014)

Regular languages, FSA Context-free languages, PDA Linear, CS, and decidable languages

Courtesy of Alex Meduna (Brno University of Technology, Czech Republic) from his book Formal Languages and Computation: Models and Their Applications (2014)

Regular languages, FSA Context-free languages, PDA Linear, CS, and decidable languages

6/29

Courtesy of Alex Meduna (Brno University of Technology, Czech Republic) from his book Formal Languages and Computation: Models and Their Applications (2014)

Chomsky hierarchy

Regular languages, FSA Context-free languages, PDA Linear, CS, and decidable languages

7/29

Finite Automata: Definition Definition: *A finite automaton* (FA) is a 5-tuple:

 $M = (Q, \Sigma, R, s, F)$, where

- Q is a finite set of states
- Σ is an *input alphabet*
- *R* is a *finite set of rules* of the form: $pa \rightarrow q$, where $p, q \in Q, a \in \Sigma \cup \{\varepsilon\}$
- $s \in Q$ is the *start state*
- $F \subseteq Q$ is a set of *final states*

Mathematical note on rules:

- Strictly mathematically, *R* is a relation from $Q \times (\Sigma \cup \{\varepsilon\})$ to *Q*
- Instead of (pa, q), however, we write the rule as $pa \rightarrow q$
- $pa \rightarrow q$ means that with a, M can move from p to q
- if $a = \varepsilon$, no symbol is read

Courtesy of Alex Meduna (Brno University of Technology, Czech Republic) from his

book Formal Languages and Computation: Models and Their Applications (2014)

Courtesy of Alex Meduna (Brno University of Technology, Czech Republic) from his book Formal Languages and Computation: Models and Their Applications (2014)

Chomsky hierarchy

Regular languages, FSA Context-free languages, PDA Linear, CS, and decidable languages

9/29

Courtesy of Alex Meduna (Brno University of Technology, Czech Republic) from his book Formal Languages and Computation: Models and Their Applications (2014)

Regular languages, FSA Context-free languages, PDA Linear, CS, and decidable languages

Courtesy of Alex Meduna (Brno University of Technology, Czech Republic) from his book Formal Languages and Computation: Models and Their Applications (2014)

Chomsky hierarchy

Regular languages, FSA Context-free languages, PDA Linear, CS, and decidable languages

9/29

Courtesy of Alex Meduna (Brno University of Technology, Czech Republic) from his book Formal Languages and Computation: Models and Their Applications (2014)

Chomsky hierarchy

Regular languages, FSA Context-free languages, PDA Linear, CS, and decidable languages

9/29

Courtesy of Alex Meduna (Brno University of Technology, Czech Republic) from his book Formal Languages and Computation: Models and Their Applications (2014)

Chomsky hierarchy

Regular languages, FSA Context-free languages, PDA Linear, CS, and decidable languages

9/29

Courtesy of Alex Meduna (Brno University of Technology, Czech Republic) from his book Formal Languages and Computation: Models and Their Applications (2014)

Chomsky hierarchy

Regular languages, FSA Context-free languages, PDA Linear, CS, and decidable languages

9/29

Courtesy of Alex Meduna (Brno University of Technology, Czech Republic) from his book Formal Languages and Computation: Models and Their Applications (2014)

Chomsky hierarchy

Regular languages, FSA Context-free languages, PDA Linear, CS, and decidable languages

9/29

Courtesy of Alex Meduna (Brno University of Technology, Czech Republic) from his book Formal Languages and Computation: Models and Their Applications (2014)

Chomsky hierarchy

Regular languages, FSA Context-free languages, PDA Linear, CS, and decidable languages

9/29

Courtesy of Alex Meduna (Brno University of Technology, Czech Republic) from his book Formal Languages and Computation: Models and Their Applications (2014)

Chomsky hierarchy

Regular languages, FSA Context-free languages, PDA Linear, CS, and decidable languages

9/29

Courtesy of Alex Meduna (Brno University of Technology, Czech Republic) from his book Formal Languages and Computation: Models and Their Applications (2014)

Chomsky hierarchy

Regular languages, FSA Context-free languages, PDA Linear, CS, and decidable languages

9/29

Courtesy of Alex Meduna (Brno University of Technology, Czech Republic) from his book Formal Languages and Computation: Models and Their Applications (2014)

Chomsky hierarchy

Regular languages, FSA Context-free languages, PDA Linear, CS, and decidable languages

9/29

Courtesy of Alex Meduna (Brno University of Technology, Czech Republic) from his book Formal Languages and Computation: Models and Their Applications (2014)

Chomsky hierarchy

Regular languages, FSA Context-free languages, PDA Linear, CS, and decidable languages

Courtesy of Alex Meduna (Brno University of Technology, Czech Republic) from his book Formal Languages and Computation: Models and Their Applications (2014)

Chomsky hierarchy

Regular languages, FSA Context-free languages, PDA Linear, CS, and decidable languages

9/29

Courtesy of Alex Meduna (Brno University of Technology, Czech Republic) from his book Formal Languages and Computation: Models and Their Applications (2014)

Regular languages, FSA Context-free languages, PDA Linear, CS, and decidable languages

16/29

Accepted Language

Gist: *M* accepts *w* if it can completely read *w* by a sequence of moves from *s* to a final state

Definition: Let $M = (Q, \Sigma, R, s, F)$ be a FA. The *language accepted by M*, L(M), is defined as:

$$L(M) = \{ w: w \in \Sigma^*, sw \mid -^* f, f \in F \}$$

 $M = (Q, \Sigma, R, \mathbf{s}, F):$

Courtesy of Alex Meduna (Brno University of Technology, Czech Republic) from his book Formal Languages and Computation: Models and Their Applications (2014)

Regular languages, FSA Context-free languages, PDA Linear, CS, and decidable languages

16/29

Accepted Language

Gist: *M* accepts *w* if it can completely read *w* by a sequence of moves from *s* to a final state

Definition: Let $M = (Q, \Sigma, R, s, F)$ be a FA. The *language accepted by M*, L(M), is defined as:

$$L(M) = \{ w: w \in \Sigma^*, sw \mid -^* f, f \in F \}$$

 $M = (Q, \Sigma, R, \mathbf{s}, F):$

Courtesy of Alex Meduna (Brno University of Technology, Czech Republic) from his book Formal Languages and Computation: Models and Their Applications (2014)

Regular languages, FSA Context-free languages, PDA Linear, CS, and decidable languages

16/29

Accepted Language

Gist: *M* accepts *w* if it can completely read *w* by a sequence of moves from *s* to a final state

Definition: Let $M = (Q, \Sigma, R, s, F)$ be a FA. The *language accepted by M*, L(M), is defined as:

$$L(M) = \{ w: w \in \Sigma^*, sw \mid -^* f, f \in F \}$$

$$M = (Q, \Sigma, R, \mathbf{s}, F)$$

$$\underbrace{sa_1a_2...a_n}_{W} \models q_1a_2...a_n \models ... \models q_{n-1}a_n \models q_n$$

Courtesy of Alex Meduna (Brno University of Technology, Czech Republic) from his book Formal Languages and Computation: Models and Their Applications (2014)

Regular languages, FSA Context-free languages, PDA Linear, CS, and decidable languages

16/29

Accepted Language

Gist: *M* accepts *w* if it can completely read *w* by a sequence of moves from *s* to a final state

Definition: Let $M = (Q, \Sigma, R, s, F)$ be a FA. The *language accepted by M*, L(M), is defined as:

$$L(M) = \{ w: w \in \Sigma^*, sw \mid -^* f, f \in F \}$$

 $M = (Q, \Sigma, R, s, F):$

$$\underbrace{sa_1a_2...a_n}_{W} | -q_1a_2...a_n | - ... | -q_{n-1}a_n | -q_n$$

Courtesy of Alex Meduna (Brno University of Technology, Czech Republic) from his book Formal Languages and Computation: Models and Their Applications (2014)

Regular languages, FSA Context-free languages, PDA Linear, CS, and decidable languages

16/29

Accepted Language

Gist: *M* accepts *w* if it can completely read *w* by a sequence of moves from *s* to a final state

Definition: Let $M = (Q, \Sigma, R, s, F)$ be a FA. The *language accepted by M*, L(M), is defined as:

$$L(M) = \{ w: w \in \Sigma^*, sw \mid -^* f, f \in F \}$$

$$M = (Q, \Sigma, R, s, F):$$

if $q_n \in F$ then $w \in L(M)$;
otherwise, $w \notin L(M)$
 $sa_1a_2...a_n \models q_1a_2...a_n \models ... \models q_{n-1}a_n \models q_n$

Courtesy of Alex Meduna (Brno University of Technology, Czech Republic) from his book Formal Languages and Computation: Models and Their Applications (2014)

Chomsky hierarchy

Regular languages, FSA Context-free languages, PDA Linear, CS, and decidable languages

17/29

FA: Example 1/3

 $M = (Q, \Sigma, R, s, F), \text{ where:}$ $Q = \{s, q\}, \Sigma = \{a, b\}, R = \{sa \rightarrow q, qb \rightarrow s\}, F = \{s\}$ **Question:** $ab \in L(M)$?

Courtesy of Alex Meduna (Brno University of Technology, Czech Republic) from his book Formal Languages and Computation: Models and Their Applications (2014)

Chomsky hierarchy

Regular languages, FSA Context-free languages, PDA Linear, CS, and decidable languages

18/29

FA: Example 2/3

 $M = (Q, \Sigma, R, s, F), \text{ where:}$ $Q = \{s, q\}, \Sigma = \{a, b\}, R = \{sa \rightarrow q, qb \rightarrow s\}, F = \{s\}$ **Question:** $ab \in L(M)$?

Courtesy of Alex Meduna (Brno University of Technology, Czech Republic) from his book Formal Languages and Computation: Models and Their Applications (2014)

Chomsky hierarchy

Regular languages, FSA Context-free languages, PDA Linear, CS, and decidable languages

19/29

FA: Example 3/3

 $M = (Q, \Sigma, R, s, F), \text{ where:}$ $Q = \{s, q\}, \Sigma = \{a, b\}, R = \{sa \rightarrow q, qb \rightarrow s\}, F = \{s\}$ **Question:** $ab \in L(M)$?

Courtesy of Alex Meduna (Brno University of Technology, Czech Republic) from his book Formal Languages and Computation: Models and Their Applications (2014)

Chomsky hierarchy

Regular languages, FSA Context-free languages, PDA Linear, CS, and decidable languages

19/29

FA: Example 3/3

 $M = (Q, \Sigma, R, s, F), \text{ where:}$ $Q = \{s, q\}, \Sigma = \{a, b\}, R = \{sa \rightarrow q, qb \rightarrow s\}, F = \{s\}$ **Question:** $ab \in L(M)$?

Courtesy of Alex Meduna (Brno University of Technology, Czech Republic) from his book Formal Languages and Computation: Models and Their Applications (2014)

Chomsky hierarchy

Regular languages, FSA Context-free languages, PDA Linear, CS, and decidable languages

20/29

Equivalent Models

Definition: Two models for languages, such as FAs, are equivalent if they both specify the same language.

Example:

Question: Is M_1 equivalent to M_2 ?

Courtesy of Alex Meduna (Brno University of Technology, Czech Republic) from his book Formal Languages and Computation: Models and Their Applications (2014)
Regular languages, FSA Context-free languages, PDA Linear, CS, and decidable languages

20/29

Equivalent Models

Definition: Two models for languages, such as FAs, are equivalent if they both specify the same language.

Example:

Question: Is M_1 equivalent to M_2 ?

Answer: M_1 and M_2 are equivalent because $L(M_1) = L(M_2) = \{a^n : n \ge 0\}$

Courtesy of Alex Meduna (Brno University of Technology, Czech Republic) from his book Formal Languages and Computation: Models and Their Applications (2014)

Regular languages, FSA Context-free languages, PDA Linear, CS, and decidable languages

13/26

Closure properties 1/2

Definition: The family of regular languages is closed under an operation *o* if the language resulting from the application of *o* to any regular languages is also regular.

Courtesy of Alex Meduna (Brno University of Technology, Czech Republic) from his book Formal Languages and Computation: Models and Their Applications (2014)

Regular languages, FSA Context-free languages, PDA Linear, CS, and decidable languages

13/26

Closure properties 1/2

Definition: The family of regular languages is closed under an operation *o* if the language resulting from the application of *o* to any regular languages is also regular.

Illustration:

• The family of regular languages is closed under *union*. It means:

Courtesy of Alex Meduna (Brno University of Technology, Czech Republic) from his

book Formal Languages and Computation: Models and Their Applications (2014)

Regular languages, FSA Context-free languages, PDA Linear, CS, and decidable languages

13/26

Closure properties 1/2

Definition: The family of regular languages is closed under an operation *o* if the language resulting from the application of *o* to any regular languages is also regular.

Illustration:

• The family of regular languages is closed under *union*. It means:

Courtesy of Alex Meduna (Brno University of Technology, Czech Republic) from his

Regular languages, FSA Context-free languages, PDA Linear, CS, and decidable languages

13/26

Closure properties 1/2

Definition: The family of regular languages is closed under an operation *o* if the language resulting from the application of *o* to any regular languages is also regular.

Illustration:

• The family of regular languages is closed under *union*. It means:

Courtesy of Alex Meduna (Brno University of Technology, Czech Republic) from his

Regular languages, FSA Context-free languages, PDA Linear, CS, and decidable languages

14/26

Closure properties 2/2

Theorem: The family of regular languages is closed under **union**, **concatenation**, **iteration**.

Proof:

- Let L_1 , L_2 be two regular languages
- Then, there exist two REs r_1, r_2 : $L(r_1) = L_1, L(r_2) = L_2$;
- By the definition of regular expressions:
 - $r_1 r_2$ is a RE denoting $L_1 L_2$
 - $r_1 + r_2$ is a RE denoting $L_1 \cup L_2$
 - r_1^* is a RE denoting L_1^*
- Every RE denotes regular language, so
 - $L_1L_2, L_1 \cup L_2, L_1^*$ are a regular languages

Courtesy of Alex Meduna (Brno University of Technology, Czech Republic) from his

Regular languages, FSA Context-free languages, PDA Linear, CS, and decidable languages

Closure properties: Complement

Theorem: the family of regular languages is closed under complement.

Proof: Let L be a regular language. Then, there exists a complete DFA M: L(M) = L.

We can construct a complete DFA M'(having as final states the complement of the final states of M) s.t. $L(M') = \overline{L}$

Every FA defines a regular language, so the complement of L is a regular language.

Regular languages, FSA Context-free languages, PDA Linear, CS, and decidable languages

18/26

Closure properties: Intersection

Theorem: The family of regular languages is closed under **intersection**.

Proof:

- Let L_1 , L_2 be two regular languages
- $\overline{L_1}$, $\overline{L_2}$ are regular languages

(the family of regular languages is closed under complement)

• $\overline{L_1} \cup \overline{L_2}$ is a regular language

(the family of regular languages is closed under union)

• $\overline{L_1} \cup \overline{L_2}$ is a regular language

(the family of regular languages is closed under complement)

• $L_1 \cap L_2 = \overline{L_1} \cup \overline{L_2}$ is a regular language (DeMorgan's law)

Courtesy of Alex Meduna (Brno University of Technology, Czech Republic) from his

Regular languages, FSA Context-free languages, PDA Linear, CS, and decidable languages

19/26

Boolean Algebra of Languages

Definition: Let a family of languages be closed under union, intersection, and complement. Then, this family represents a *Boolean algebra of languages*.

Theorem: The family of regular languages is a Boolean algebra of languages.

Proof:

• The family of regular languages is closed under union, intersection, and complement.

Courtesy of Alex Meduna (Brno University of Technology, Czech Republic) from his

Regular languages, FSA Context-free languages, PDA Linear, CS, and decidable languages

Pumping Lemma

By definition, $CF = \mathcal{L}_2$ and $CS = \mathcal{L}_1$.

Pumping Lemma Let *L* be an *infinite* CF language, \exists two numbers $q \leq p$, such that, $\forall \alpha \in L$ with $|\alpha| \geq p$, $\exists u, v, w, x, y$, $vx \neq \lambda$, $|vwx| \leq q$ such that $\alpha = uvwxy$ and $\forall i, uv^i wx^i y \in L$.

v and *x* are said *ancillaries*. Proof by the application of a free-context autoreplicative rule.

This lemma characterizes CF languages, and allows us to show that $REG \subset CF \subset CS$. Examples of this string inclusions are the bisomatic and trisomatic languages.

For any $a^n b^n$, $\exists q \leq p$ even and different than zero, such that, $2n \geq p$, $w = \lambda$, $u = a^{\frac{2n-q}{2}}$, $v = a^{\frac{q}{2}}$, $x = b^{\frac{q}{2}}$, $y = b^{\frac{2n-q}{2}}$

Regular languages, FSA Context-free languages, PDA Linear, CS, and decidable languages

イロト イポト イヨト イヨト

Bisomatic is a context free and non-regular language

$a^n b^n \in \mathit{CF} ackslash \mathit{REG}$

By contradiction, let us assume M to be a *deterministic* FSA recognizing $a^n b^n$. $\exists n \neq m$ such that both a^n and a^m end up in one same state, then $a^n b^n$ and $a^m b^n$ end up in the same final state.

Pigeon(hole) principle ("dei cassetti"): if *n* items are put into *m* containers, with n > m, then at least one container must contain more than one item.

Regular languages, FSA Context-free languages, PDA Linear, CS, and decidable languages

13/31

Pumping Lemma for CFL

• Let *L* be CFL. Then, there exists $k \ge 1$ such that: if $z \in L$ and $|z| \ge k$ then there exist *u*, *v*, *w*, *x*, *y* so z = uvwxy and

1) $vx \neq \varepsilon$ **2**) $|vwx| \leq k$ **3**) for each $m \geq 0$, $uv^m wx^m y \in L$

Example:

 $G = (\{\widehat{S}, A\}, \{a, b, c\}, \{\widehat{S} \rightarrow aAa, A \rightarrow bAb, A \rightarrow c\}, S)$ generate $L(G) = \{ab^n cb^n a : n \ge 0\}$, so L(G) is CFL. There is k = 5 such that 1), 2) and 3) holds: • for $z = abcba: z \in L(G)$ and $|z| \ge 5:$ $uv^0wx^0y = ab^0cb^0a = aca \in L(G)$ $vx = bb \neq \varepsilon$ $|vwx| = 3: 1 \le 3 \le 5$ • for $z = abbcbba: z \in L(G)$ and $|z| \ge 5:$

Courtesy of Alex Meduna (Brno University of Technology, Czech Republic) from his book Formal Languages and Computation: Models and Their Applications (2014)

Regular languages, FSA Context-free languages, PDA Linear, CS, and decidable languages

14/31

Pumping Lemma: Illustration

• *L* = any context-free language:

Courtesy of Alex Meduna (Brno University of Technology, Czech Republic) from his book Formal Languages and Computation: Models and Their Applications (2014)

Regular languages, FSA Context-free languages, PDA Linear, CS, and decidable languages

15/31

Pumping Lemma: Application

• Based on the pumping lemma for CFL, we often make a proof by contradiction to demonstrate that a language is **not** a CFL.

Courtesy of Alex Meduna (Brno University of Technology, Czech Republic) from his book Formal Languages and Computation: Models and Their Applications (2014)

Regular languages, FSA Context-free languages, PDA Linear, CS, and decidable languages

15/31

Pumping Lemma: Application

• Based on the pumping lemma for CFL, we often make a proof by contradiction to demonstrate that a language is **not** a CFL.

Assume that *L* is a CFL.

Courtesy of Alex Meduna (Brno University of Technology, Czech Republic) from his book Formal Languages and Computation: Models and Their Applications (2014)

Regular languages, FSA Context-free languages, PDA Linear, CS, and decidable languages

15/31

Pumping Lemma: Application

• Based on the pumping lemma for CFL, we often make a proof by contradiction to demonstrate that a language is **not** a CFL.

Consider the PL constant k and select $z \in L$, whose length depends on k so $|z| \ge k$ is surely true.

Courtesy of Alex Meduna (Brno University of Technology, Czech Republic) from his book Formal Languages and Computation: Models and Their Applications (2014)

Regular languages, FSA Context-free languages, PDA Linear, CS, and decidable languages

15/31

Pumping Lemma: Application

• Based on the pumping lemma for CFL, we often make a proof by contradiction to demonstrate that a language is **not** a CFL.

Courtesy of Alex Meduna (Brno University of Technology, Czech Republic) from his

book Formal Languages and Computation: Models and Their Applications (2014)

Regular languages, FSA Context-free languages, PDA Linear, CS, and decidable languages

15/31

Pumping Lemma: Application

• Based on the pumping lemma for CFL, we often make a proof by contradiction to demonstrate that a language is **not** a CFL.

Courtesy of Alex Meduna (Brno University of Technology, Czech Republic) from his book Formal Languages and Computation: Models and Their Applications (2014)

Regular languages, FSA Context-free languages, PDA Linear, CS, and decidable languages

15/31

Pumping Lemma: Application

• Based on the pumping lemma for CFL, we often make a proof by contradiction to demonstrate that a language is **not** a CFL.

Courtesy of Alex Meduna (Brno University of Technology, Czech Republic) from his book Formal Languages and Computation: Models and Their Applications (2014)

Regular languages, FSA Context-free languages, PDA Linear, CS, and decidable languages

16/31

Pumping Lemma: Example 1/2

Prove that $L = \{a^n b^n c^n : n \ge 1\}$ is not CFL.

- 1) Assume that *L* is a CFL. Let $k \ge 1$ be the pumping lemma constant for *L*.
- 2) Let $z = a^k b^k c^k$: $a^k b^k c^k \in L$, $|z| = |a^k b^k c^k| = 3k \ge k$
- **3**) All decompositions of *z* into *uvwxy*; $vx \neq \varepsilon$, $|vwx| \leq k$:

Courtesy of Alex Meduna (Brno University of Technology, Czech Republic) from his book Formal Languages and Computation: Models and Their Applications (2014)

Regular languages, FSA Context-free languages, PDA Linear, CS, and decidable languages

17/31

Courtesy of Alex Meduna (Brno University of Technology, Czech Republic) from his book Formal Languages and Computation: Models and Their Applications (2014)

Classes of languages Chornsky hierarchy
Regular languages, FSA Context-free languages, PDA Linear, CS, and decidable language 17/31
Pumping Lemma: Example 2/2
a) $vwx \in \{a\}^*\{b\}^*$: • Pumping lemma:

Note: uwy contains k as, but fewer than k bs or cs. All these decompositions lead to a contradiction! 4) Therefore, L is not a CFL.

Courtesy of Alex Meduna (Brno University of Technology, Czech Republic) from his book Formal Languages and Computation: Models and Their Applications (2014)

Regular languages, FSA Context-free languages, PDA Linear, CS, and decidable languages

18/31

Closure properties of CFL

Definition: The family of CFLs is closed under an operation *o* if the language resulting from the application of *o* to **any** CFLs is a CFL as well.

Courtesy of Alex Meduna (Brno University of Technology, Czech Republic) from his book Formal Languages and Computation: Models and Their Applications (2014)

Regular languages, FSA Context-free languages, PDA Linear, CS, and decidable languages

18/31

Illustration:

• The family of CF languages is closed under *union*. It means:

Courtesy of Alex Meduna (Brno University of Technology, Czech Republic) from his

book Formal Languages and Computation: Models and Their Applications (2014)

Regular languages, FSA Context-free languages, PDA Linear, CS, and decidable languages

18/31

• The family of CF languages is closed under *union*. It means:

Courtesy of Alex Meduna (Brno University of Technology, Czech Republic) from his

book Formal Languages and Computation: Models and Their Applications (2014)

Regular languages, FSA Context-free languages, PDA Linear, CS, and decidable languages

18/31

Illustration:

• The family of CF languages is closed under *union*. It means:

Courtesy of Alex Meduna (Brno University of Technology, Czech Republic) from his

Regular languages, FSA Context-free languages, PDA Linear, CS, and decidable languages

22/31

Closure properties

Theorem: The family of CFLs is closed under **union, concatenation, iteration**.

Proof:

- Let L_1 , L_2 be two CFLs.
- Then, there exist two CFGs G_1 , G_2 such that $L(G_1) = L_1$, $L(G_2) = L_2$;
- Construct grammars
 - G_u such that $L(G_u) = L(G_1) \cup L(G_2)$
 - G_c such that $L(G_c) = L(G_2) \cdot L(G_2)$
 - G_i such that $L(G_i) = L(G_1)^*$ by using the previous three algorithms
- Every CFG denotes CFL, so
- L_1L_2 , $L_1 \cup L_2$, L_1^* are CFLs.

Courtesy of Alex Meduna (Brno University of Technology, Czech Republic) from his

Regular languages, FSA Context-free languages, PDA Linear, CS, and decidable languages

23/31

Intersection: Not Closed

Theorem: The family of CFLs is **not** closed under **intersection**.

Proof:

• The intersection of some CFLs is not a CFL:

- $L_1 = \{a^m b^n c^n : m, n \ge 1\}$ is a CFL
- $L_2 = \{a^n b^n c^m : m, n \ge 1\}$ is a CFL
- $L_1 \cap L_2 = \{a^n b^n c^n : n \ge 1\}$ is not a CFL (proof based on the pumping lemma) *QED*

Courtesy of Alex Meduna (Brno University of Technology, Czech Republic) from his book Formal Languages and Computation: Models and Their Applications (2014)

Regular languages, FSA Context-free languages, PDA Linear, CS, and decidable languages

24/31

Complement: Not Closed

Theorem: The family of CFLs is not closed under **complement**.

Proof by contradiction:

- Assume that family of CFLs is closed under complement.
- $L_1 = \{a^m b^n c^n : m, n \ge 1\}$ is a **CFL**
- $L_2 = \{a^n b^n c^m : m, n \ge 1\}$ is a CFL
- $\overline{L_1}$, $\overline{L_2}$ are CFLs
- $\overline{L_1} \cup \overline{L_2}$ is a **CFL** (the family of CFLs is closed under union)
- $\overline{L_1 \cup L_2}$ is a **CFL** (assumption)
- DeMorgan's law implies $L_1 \cap L_2 = \{a^n b^n c^n : n \ge 1\}$ is a CFL
- { $a^n b^n c^n$: $n \ge 1$ } is not a **CFL** \Rightarrow **Contradiction**

Courtesy of Alex Meduna (Brno University of Technology, Czech Republic) from his book Formal Languages and Computation: Models and Their Applications (2014)

Regular languages, FSA Context-free languages, PDA Linear, CS, and decidable languages

Courtesy of Alex Meduna (Brno University of Technology, Czech Republic) from his book Formal Languages and Computation: Models and Their Applications (2014)
Regular languages, FSA Context-free languages, PDA Linear, CS, and decidable languages

21/50

Pushdown Automata: Definition

Definition: A pushdown automaton (PDA) is

- a 7-tuple $M = (Q, \Sigma, \Gamma, R, s, S, F)$, where
- Q is a finite set of states
- Σ is an *input alphabet*
- Γ is a pushdown alphabet
- *R* is a *finite set of rules* of the form: $Apa \rightarrow wq$ where $A \in \Gamma$, $p, q \in Q$, $a \in \Sigma \cup \{\varepsilon\}$, $w \in \Gamma^*$
- $s \in Q$ is the *start state*
- $S \in \Gamma$ is the *start pushdown symbol*
- $F \subseteq Q$ is a set of *final states*

Courtesy of Alex Meduna (Brno University of Technology, Czech Republic) from his

book Formal Languages and Computation: Models and Their Applications (2014)

Regular languages, FSA Context-free languages, PDA Linear, CS, and decidable languages

22/50

Notes on PDA Rules

Mathematical note on rules:

- Strictly mathematically, *R* is a finite relation from $\Gamma \times Q \times (\Sigma \cup \{\varepsilon\})$ to $\Gamma^* \times Q$
- Instead of $(Apa, wq) \in R$, however, we write $Apa \rightarrow wq \in R$

Courtesy of Alex Meduna (Brno University of Technology, Czech Republic) from his book Formal Languages and Computation: Models and Their Applications (2014)

Regular languages, FSA Context-free languages, PDA Linear, CS, and decidable languages

22/50

Notes on PDA Rules

Mathematical note on rules:

- Strictly mathematically, *R* is a finite relation from $\Gamma \times Q \times (\Sigma \cup \{\varepsilon\})$ to $\Gamma^* \times Q$
- Instead of $(Apa, wq) \in R$, however, we write $Apa \rightarrow wq \in R$
- Interpretation of $Apa \rightarrow wq$: if the current state is *p*, current input symbol is *a*, and the topmost symbol on the pushdown is *A*, then *M* can read *a*, replace *A* with *w* and change state *p* to *q*.
- Note: if $a = \varepsilon$, no symbol is read

Courtesy of Alex Meduna (Brno University of Technology, Czech Republic) from his book Formal Languages and Computation: Models and Their Applications (2014)

Regular languages, FSA Context-free languages, PDA Linear, CS, and decidable languages

23/50

Graphical Representation

$$q$$
 represents $q \in Q$

s represents the initial state $s \in Q$

represents a final state $f \in F$

$$\underbrace{p} \xrightarrow{A/w, a} q \quad \text{denotes } Apa \rightarrow wq \in R$$

Courtesy of Alex Meduna (Brno University of Technology, Czech Republic) from his book Formal Languages and Computation: Models and Their Applications (2014)

Regular languages, FSA Context-free languages, PDA Linear, CS, and decidable languages

24/50

Courtesy of Alex Meduna (Brno University of Technology, Czech Republic) from his book Formal Languages and Computation: Models and Their Applications (2014)

Regular languages, FSA Context-free languages, PDA Linear, CS, and decidable languages

24/50

Courtesy of Alex Meduna (Brno University of Technology, Czech Republic) from his book Formal Languages and Computation: Models and Their Applications (2014)

Regular languages, FSA Context-free languages, PDA Linear, CS, and decidable languages

24/50

Courtesy of Alex Meduna (Brno University of Technology, Czech Republic) from his book Formal Languages and Computation: Models and Their Applications (2014)

Regular languages, FSA Context-free languages, PDA Linear, CS, and decidable languages

24/50

Courtesy of Alex Meduna (Brno University of Technology, Czech Republic) from his book Formal Languages and Computation: Models and Their Applications (2014)

Regular languages, FSA Context-free languages, PDA Linear, CS, and decidable languages

24/50

Courtesy of Alex Meduna (Brno University of Technology, Czech Republic) from his book Formal Languages and Computation: Models and Their Applications (2014)

Regular languages, FSA Context-free languages, PDA Linear, CS, and decidable languages

24/50

Courtesy of Alex Meduna (Brno University of Technology, Czech Republic) from his book Formal Languages and Computation: Models and Their Applications (2014)

Regular languages, FSA Context-free languages, PDA Linear, CS, and decidable languages

24/50

Courtesy of Alex Meduna (Brno University of Technology, Czech Republic) from his book Formal Languages and Computation: Models and Their Applications (2014)

Regular languages, FSA Context-free languages, PDA Linear, CS, and decidable languages

24/50

Courtesy of Alex Meduna (Brno University of Technology, Czech Republic) from his book Formal Languages and Computation: Models and Their Applications (2014)

Regular languages, FSA Context-free languages, PDA Linear, CS, and decidable languages

24/50

Courtesy of Alex Meduna (Brno University of Technology, Czech Republic) from his book Formal Languages and Computation: Models and Their Applications (2014)

Regular languages, FSA Context-free languages, PDA Linear, CS, and decidable languages

24/50

Courtesy of Alex Meduna (Brno University of Technology, Czech Republic) from his book Formal Languages and Computation: Models and Their Applications (2014)

Regular languages, FSA Context-free languages, PDA Linear, CS, and decidable languages

24/50

Courtesy of Alex Meduna (Brno University of Technology, Czech Republic) from his book Formal Languages and Computation: Models and Their Applications (2014)

Regular languages, FSA Context-free languages, PDA Linear, CS, and decidable languages

29/50

Accepted Language: Three Types

Definition: Let $M = (Q, \Sigma, \Gamma, R, s, S, F)$ be a PDA.

 The language that M accepts by final state, denoted by L(M)_f, is defined as L(M)_f = {w: w ∈ Σ*, Ssw |-* zf, z ∈ Γ*, f ∈ F}

2) The language that M accepts by empty pushdown, denoted by $L(M)_{\mathfrak{g}}$, is defined as $L(M)_{\mathfrak{g}} = \{w: w \in \Sigma^*, Ssw \mid -^* zf, \mathbf{z} = \mathbf{\varepsilon}, f \in Q\}$

3) The language that M accepts by final state and empty pushdown, denoted by L(M)_{fε}, is defined as L(M)_{fε} = {w: w ∈ Σ*, Ssw |-* zf, z = ε, f ∈ F}

Courtesy of Alex Meduna (Brno University of Technology, Czech Republic) from his book Formal Languages and Computation: Models and Their Applications (2014)

Ssaabb

Courtesy of Alex Meduna (Brno University of Technology, Czech Republic) from his book Formal Languages and Computation: Models and Their Applications (2014)

Regular languages, FSA Context-free languages, PDA Linear, CS, and decidable languages

30/50

Courtesy of Alex Meduna (Brno University of Technology, Czech Republic) from his book Formal Languages and Computation: Models and Their Applications (2014)

Regular languages, FSA Context-free languages, PDA Linear, CS, and decidable languages

30/50

Courtesy of Alex Meduna (Brno University of Technology, Czech Republic) from his book Formal Languages and Computation: Models and Their Applications (2014)

Regular languages, FSA Context-free languages, PDA Linear, CS, and decidable languages

30/50

Courtesy of Alex Meduna (Brno University of Technology, Czech Republic) from his book Formal Languages and Computation: Models and Their Applications (2014)

Regular languages, FSA Context-free languages, PDA Linear, CS, and decidable languages

30/50

Courtesy of Alex Meduna (Brno University of Technology, Czech Republic) from his book Formal Languages and Computation: Models and Their Applications (2014)

Regular languages, FSA Context-free languages, PDA Linear, CS, and decidable languages

30/50

Courtesy of Alex Meduna (Brno University of Technology, Czech Republic) from his book Formal Languages and Computation: Models and Their Applications (2014)

Regular languages, FSA Context-free languages, PDA Linear, CS, and decidable languages

30/50

Courtesy of Alex Meduna (Brno University of Technology, Czech Republic) from his book Formal Languages and Computation: Models and Their Applications (2014)

Regular languages, FSA Context-free languages, PDA Linear, CS, and decidable languages

30/50

Courtesy of Alex Meduna (Brno University of Technology, Czech Republic) from his book Formal Languages and Computation: Models and Their Applications (2014)

Regular languages, FSA Context-free languages, PDA Linear, CS, and decidable languages

30/50

Courtesy of Alex Meduna (Brno University of Technology, Czech Republic) from his book Formal Languages and Computation: Models and Their Applications (2014)

Regular languages, FSA Context-free languages, PDA Linear, CS, and decidable languages

Linear languages

Linear grammars have rules $X \to \beta$, with at most one non-terminal symbol in β . If we require β to be shorter or equal than 2, we have regular languages. In particular, we may define R-LIN ($X \to aY$) and L-LIN ($X \to Ya$).

Theorem: $L - LIN \equiv R - LIN \equiv REG$.

However, linear is strictly more general than regular, and $REG \subset LIN$. Indeed, the bisomatic language $a^n b^n$ is linear (see gramma $S \rightarrow ab, S \rightarrow aSb$) is an (infinite) linear language, which is not regular.

Btw, LIN equals languages generated by grammars having (possibly) both rigth linear and left right rules. See for example $S \rightarrow aA$ and $A \rightarrow Sb$.

Language of palindromes is not regular (CF, and linear), while the Dyck language is not even linear ($S \rightarrow xSyS$, and $S \rightarrow \lambda$ where x is the open parenthesis and v the closed one).

Decidable and Recursively Enumerable languages

Church thesis ('36): Turing machines are universal computable automata. A function/problem/language is computable if it is algorithmically generable/recognizable.

L is decidable, if there exists $M_L \in TM$ such that $\forall \alpha \in A^*$ it answers whether $\alpha \in L$ or $\alpha \notin L$ in a finite number of steps. *L* is semi-decidable if the answer is given in a finite time only when it is positive.

By definition, $L \in RE$ iff there exists an algorithm to enumerate its strings. Then, RE = L(TM) and $\mathcal{L}_0 \subseteq RE$.

REC is the class of decidable languages³. Halting (machine termination) problem is undecidable.

³Characteristic funcions, partial for RE and total for REC, are computable

Regular languages, FSA Context-free languages, PDA Linear, CS, and decidable languages

イロト イポト イヨト イヨト

Central theorem of representation: $RE = \mathcal{L}_0$.

For any RE language there exists a (general) grammar generating it.

RE is the class of **computable** and in general **semidecidable** languages – for them there exists a (Turing) machine which recognizes a string membership in a finite number of steps *only for positive answers*. If not decidable, for negative answers the machine takes an infinite number of steps to give the answer.

$REC \subseteq RE$

Automata

Chomsky hierarchy

$$\mathcal{L}_3 \subset \mathcal{L}_2 \subset \mathcal{L}_1 \subseteq \mathcal{L}_0$$

We obtain this equivalent (strict?) hierarchy:

 $REG \subset CF \subset CS \subseteq RE$

We are going to prove that:

CS ⊆ REC (context sensitive languages are decidable);

(日) (同) (三) (三)

• *REC* \subset *RE* (Post theorem characterizing REC)

Recursive languages

Context sensitive languages are decidable: $\forall \alpha \in L \in CS$, since the rules cannot shorten the word during computation, starting from S, there exists a finite number of steps within α may be generated. After that time I can give the positive/negative answer, in both cases.

Theorem (Post): $L \in REC$ iff $L, \overline{L} \in RE$.

Proof: $K = \{\alpha_i / \alpha_i \in L(G_i)\}$ if $\forall (i, j) \in \mathbb{N} \times \mathbb{N}$ G_i has generated α_i in *j* steps. Notice that $\overline{K} = \{\alpha_i / \alpha_i \notin L(G_i)\}$ is not RE (this is the language outside RE). Indeed, by contradiction, $\exists d$ such that $\overline{K} = L(G_d)$, then $\alpha_d \in \overline{K}$??

Notice that RE is not closed by complementation, and $CS \subset REC \subset RE \subset \mathcal{P}(A^*)$, that is $\overline{K} \in \mathcal{P}(A^*) \setminus RE$.

Automata

44/45

Recursive Language

Gist: Recursive Language accepts TM that always halt

Definition: Let *L* be a language. If L = L(M), where *M* is DTM that always halts, then *L* is a *recursive language*.

Theorem: The family of recursive languages is closed under complement.

Proof: See page 693 in [Meduna: Automata and Languages]

Theorem: The family of recursively enumerable languages is <u>not</u> closed under complement.

Proof: See the $L_{\text{SelfAcceptance}}$

Courtesy of Alex Meduna (Brno University of Technology, Czech Republic) from his

book Formal Languages and Computation: Models and Their Applications (2014)

Automata

Parallel rewriting systems

There are infinitely many other classes between any couple of Chomsky classes. For example: $CF \subset EOL \subset ETOL \subseteq CS$, where OL are parallel rewriting systems, defined by an alphabet *A*, a starting word α and a morphism μ over A, rewriting in parallel each symbol a_i of the alphabet into one string $\beta_i \in A^*$ (if deterministic: DOL), otherwise into a set of strings: $\beta_i \in \mathcal{P}(A^*)$.

$\textit{DOL} \subset \textit{OL}$

EOL (Extended OL) is defined as OL with a set of terminals, while TOL (Table OL) introduces a non-deterministic choice among multiple morphisms. If this choice is deterministic, the system belongs to DTOL (or EDTOL, if extended).

Example of EDTOL generating trisomatic language, with two morphisms: $\{A \rightarrow aA, B \rightarrow bB, C \rightarrow cC, a \rightarrow a, b \rightarrow b, c \rightarrow c\}$ and $\{A \rightarrow a, B \rightarrow b, C \rightarrow c, a \rightarrow a, b \rightarrow b, c \rightarrow c\}$, start word ABC.

Automata

Automata

Comments on the Chomsky hierarchy

$\textit{FIN} \subset \textit{REG} \subset \textit{LIN} \subseteq \textit{CF} \subset \textit{EOL} \subset \textit{CS} \subset \textit{REC} \subset \textit{RE} \subset \mathcal{P}(\textit{A}^{\star})$

Savitch theorem: $\forall L \in RE \exists L' \in CS$ such that $L = \{ \alpha \mid \exists n \in \mathbb{N} : \alpha \#^n \in L', \# \notin A \}$

Boolean algebras (closed by \cdot , +, *C*): REG and CS (by Immerman theorem). RE is not Boolean, and CF is not closed by intersection (see trisomatic language): $L_1 \cap L_2 = \overline{(\overline{L_1} \cup \overline{L_2})}$

Another interesting property: $\forall L \in \mathcal{L}_i, i = 0, 1, 2, 3 \text{ and } \forall L' \in REG, \text{ we have } L \cap L' \in \mathcal{L}_i$

Incomputable Functions

- The set of all rewriting systems is countable because each definition of a rewriting system is finite, so this set can be put into a bijection with ℕ.
- The set of all Turing Machines, which are defined as rewriting systems, is countable.
- The set of all functions is uncountable.
- Thus, there are more functions than Turing Machines.
- Some functions are incomputable.
- Even some simple total well-defined functions over ℕ are incomputable.

Automata corresponding to Chomsky grammars

- Kleen theorem: REG = L(FSA)
- $CF = PDA = IFT_2$, $IFT_3 \subseteq CS$, $IFT_4 = RE$
- Kuroda theorem: CS = NLINSPACE (Savitch theorem: NPSPACE = PSPACE)
- RE=L(TM)

TM is universal, no matter if deterministic or not, the number of tapes, the number of final states.

Theorem (Shannon, '56): For any TM there exists one equivalent having two states, and (another) one equivalent having two symbols.