COMPUTATIONAL ALGEBRA 24/06/14

1. Let C be the linear code over \mathbb{F}_2 with generator matrix

- (a) Find the parity check of C
- (b) Find the length, the dimension, and the minimum distance of $\ensuremath{\mathcal{C}}$
- (c) Using the code C, encode the vector $(110) \in \mathbb{F}_2^3$
- (d) Using the Syndrome Decoding Algorithm, correct the received vectors $y_1 = (101001)$ and $y_2 = (101110)$. Denoted by c_1 and c_2 the corrected vectors, verify that c_1 and c_2 are codewords.
- (e) Decode c_1 and c_2 (i.e find the vectors in \mathbb{F}_2^3 corresponding to c_1 and c_2).
- 2. (a) Find the lattice of subfields of \mathbb{F}_{64} .
 - (b) The field \mathbb{F}_{27} is contained in the field \mathbb{F}_{81} ?
 - (c) The polynomial $x^5 1 \in \mathbb{F}_2[x]$ splits in $\mathbb{F}_{32}[x]$? And in $\mathbb{F}_{256}[x]$?
- 3. (a) Construct the field \mathbb{F}_8 ;
 - (b) find the primitive elements of \mathbb{F}_8
 - (c) Is is true that a primitive 7^{th} -root of the unit over \mathbb{F}_2 belongs to \mathbb{F}_8 ? Why? If yes, find such a root α .
- 4. Let C the cyclic code of length 7 over \mathbb{F}_2 with idempotent polynomial $e(x) = 1 + x^3 + x^5 + x^6$
 - (a) find the generator polynomial of C
 - (b) Apply the BCH bound to study the minimum distance of C.
- 5. Give the definition of a cyclic code of length n over \mathbb{F}_q . Show that the cyclic codes of length n over \mathbb{F}_q correspond to the ideals of the ring $\mathbb{F}_q[x]/(x^n 1)$.