L2 – Integration to notes

Contents: Lathi chap. 2

• Time-domain analysis of Continuous time systems

System response = Zero-state response + Zero-input response

- Zero-state response
 - The initial conditions are all zero: y(t)=f(t)*h(t)
 - Convolution integral
- Zero-input response
 - The input signal is zero: y(t)=y₀(t)=linear combination of system modes
- Unit impulse response
 - The input signal is the delta function: h(t)

Unit impulse response

where b_n is the coefficient of the *n*th-order term in P(D) [see Eq. (2.17b)], and $y_n(t)$ is a linear combination of the characteristic modes of the system subject to the following initial conditions:

$$y_n^{(n-1)}(0) = 1$$
, and $y_n(0) = \dot{y}_n(0) = \ddot{y}_n(0) = \dots = y_n^{(n-2)}(0) = 0$ (2.20)

where $y_n^{(k)}(0)$ is the value of the *k*th derivative of $y_n(t)$ at t = 0. We can express this condition for various values of *n* (the system order) as follows:

$$n = 1 : y_n(0) = 1$$

$$n = 2 : y_n(0) = 0 \text{ and } \dot{y}_n(0) = 1$$

$$n = 3 : y_n(0) = \dot{y}_n(0) = 0 \text{ and } \ddot{y}_n(0) = 1$$

$$n = 4 : y_n(0) = \dot{y}_n(0) = \ddot{y}_n(0) = 0 \text{ and } \ddot{y}_n(0) = 1$$
(2.21)

and so on.

If the order of P(D) is less than the order of Q(D), $b_n = 0$, and the impulse term $b_n \delta(t)$ in h(t) is zero.

Continuous time linear systems

• Physically realizable, linear time-invariant systems can be described by a set of linear dierential equations (LDEs):

$$f(t) \longrightarrow \mathcal{H} \longrightarrow y(t)$$

$$\frac{d^n}{dt^n} y(t) + a_{n-1} \frac{d^{n-1}}{dt^{n-1}} y(t) + \dots + a_1 \frac{d}{dt} y(t) + a_0 y(t) = b_m \frac{d^m}{dt^m} f(t) + \dots + b_1 \frac{d}{dt} f(t) + b_0 f(t)$$

$$\sum_{i=0}^n \left(a_i \frac{d^i}{dt^i} y(t) \right) = \sum_{i=0}^m \left(b_i \frac{d^i}{dt^i} f(t) \right)$$

Continuous time convolution

$$f(t) * g(t) = \int_{-\infty}^{+\infty} f(\tau)g(t-\tau)d\tau$$

Summary

Summary of the Graphical Procedure

The procedure for graphical convolution can be summarized as follows:

- 1. Keep the function $f(\tau)$ fixed.
- 2. Visualize the function $g(\tau)$ as a rigid wire frame, and rotate (or invert) this frame about the vertical axis ($\tau = 0$) to obtain $g(-\tau)$.
- 3. Shift the inverted frame along the τ axis by t_0 seconds. The shifted frame now represents $g(t_0 \tau)$.
- 4. The area under the product of $f(\tau)$ and $g(t_0 \tau)$ (the shifted frame) is $c(t_0)$, the value of the convolution at $t = t_0$.
- 5. Repeat this procedure, shifting the frame by different values (positive and negative) to obtain c(t) for all values of t.