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Circular convolution 

•  Finite length signals (N0 samples) → circular or periodic convolution 
–  the summation is over 1 period 
–  the result is a N0 period sequence 

•  The circular convolution is equivalent to the linear convolution of the zero-
padded equal length sequences 
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Convolution 
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In words 

•  Given 2 sequences of length N and M, let y[k] be their linear convolution 

•  y[k] is also equal to the circular convolution of the two suitably zero padded 
sequences making them consist of the same number of samples 

•  In this way, the linear convolution between two sequences having a different length 
(filtering) can be computed by the DFT (which rests on the circular convolution) 

–  The procedure is the following 
•  Pad f[n] with Nh-1 zeros and h[n] with Nf-1 zeros 
•  Find Y[r] as the product of F[r] and H[r] (which are the DFTs of the corresponding zero-padded 

signals) 
•  Find the inverse DFT of Y[r] 

•  Allows to perform linear filtering using DFT 
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2D Discrete Fourier Transform 

•  Fourier transform of a 2D signal defined over a discrete finite 2D grid of size 
MxN 

or equivalently 

•  Fourier transform of a 2D set of samples forming a bidimensional sequence  

•  As in the 1D case, 2D-DFT, though a self-consistent transform, can be 
considered as a mean of calculating the transform of a 2D sampled signal 
defined over a discrete grid. 

•  The signal is periodized along both dimensions and the 2D-DFT can be 
regarded as a sampled version of the 2D DTFT 
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2D Discrete Fourier Transform (2D DFT) 
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•  2D Fourier (discrete time) Transform (DTFT)  [Gonzalez] 
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•  2D Discrete Fourier Transform (DFT) 

2D DFT can be regarded as a sampled version of 2D DTFT. 

a-periodic signal 
periodic transform 

periodized signal 
periodic and sampled 
transform 



2D DFT: Periodicity 
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•  A [M,N] point DFT is periodic with period [M,N] 
–  Proof 

[ , ]F k l=

(In what follows: spatial coordinates=k,l, frequency coordinates: u,v) 



2D DFT: Periodicity 

•  Periodicity 

•  This has important consequences on the implementation and energy 
compaction property 

–  1D 
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Periodicity: 1D 
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Periodicity in 2D 
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1/M↔128 
1/N↔128 

I 4 semiperiodi si incontrano ai vertici I 4 semiperiodi si incontrano al centro 



Periodicity 
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Periodicity: 2D 
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DFT periods 

MxN values 

4 inverted 
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here 
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Periodicity: 2D 
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Angle and phase spectra 
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Translation and rotation 
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DFT Properties: (5) Rotation 

•  Rotating f(x,y) by θ rotates F(u,v) by θ 



mean value 
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Separability 

•  The discrete two-dimensional Fourier transform of an image array is defined 
in series form as 

•  inverse transform 

•  Because the transform kernels are separable and symmetric, the two dimensional 
transforms can be computed as sequential row and column one-dimensional 
transforms.  

•  The basis functions of the transform are complex exponentials that may be 
decomposed into sine and cosine components. 
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2D DFT: summary 
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2D DFT: summary 
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2D DFT: summary 
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2D DFT: summary 
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Magnitude and Phase of DFT 

•  What is more important? 

Hint: use inverse DFT to reconstruct the image using 
magnitude or phase only information 

magnitude phase 



Magnitude and Phase of DFT (cont’d) 

Reconstructed image using  
 magnitude only 
(i.e., magnitude determines the  
contribution of each component!) 
 

Reconstructed image using  
 phase only 
(i.e., phase determines 
which components are present!) 
 



Magnitude and Phase of DFT (cont’d) 



Ex. 1 
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Ex. 2 
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Ex. 3 
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Magnitudes 



Margherita Hack 
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log amplitude of the spectrum 



Einstein 
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log amplitude of the spectrum 



Examples 
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other formulations 



2D Discrete Fourier Transform 

•  Inverse DFT 
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•  2D Discrete Fourier Transform (DFT) 
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where 
0,1,..., 1k M= −
0,1,..., 1l N= −



2D Discrete Fourier Transform 

•  Inverse DFT 

35 

1 1 2

0 0

1[ , ] [ , ]
k lM N j m n
M N

m n
F k l f m n e

MN

π ⎛ ⎞− − − +⎜ ⎟
⎝ ⎠

= =

= ∑∑

•  It is also possible to define DFT as follows 
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where 0,1,..., 1k M= −
0,1,..., 1l N= −



2D Discrete Fourier Transform 

•  Inverse DFT 
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•  Or, as follows 
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where                               and  0,1,..., 1k M= − 0,1,..., 1l N= −



2D DFT 

•  The discrete two-dimensional Fourier transform of an image array is defined 
in series form as 

•  inverse transform 
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2D DCT 

Discrete Cosine Transform 



2D DCT 

•  based on most common form for 1D DCT 
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u,x=0,1,…, N-1 

“mean” value 



1D basis functions 
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Cosine basis functions are orthogonal 

Figure 1 



2D DCT 

•  Corresponding 2D formulation 
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u,v=0,1,…., N-1 

direct 

inverse 



2D basis functions 

•  The 2-D basis functions can be generated by multiplying the horizontally 
oriented 1-D basis functions (shown in Figure 1) with vertically oriented set 
of the same functions.  

•  The basis functions for N = 8 are shown in Figure 2.  
–  The basis functions exhibit a progressive increase in frequency both in the 

vertical and horizontal direction.  
–  The top left basis function assumes a constant value and is referred to as the DC 

coefficient. 
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2D DCT basis functions 
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Figure 2 



Separability 
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The inverse of a multi-dimensional DCT is just a separable product of the inverse(s) of the 
corresponding one-dimensional DCT , e.g. the one-dimensional inverses applied along one 
dimension at a time 
 



Separability 

•  Symmetry 
–  Another look at the row and column operations reveals that these operations are 

functionally identical. Such a transformation is called a symmetric transformation.  
–  A separable and symmetric transform can be expressed in the form 

–  where A is a NxN symmetric transformation matrix which entries a(i,j) are given 
by 

•  This is an extremely useful property since it implies that the transformation matrix can 
be pre computed offline and then applied to the image thereby providing orders of 
magnitude improvement in computation efficiency. 

45 

T AfA=



Computational efficiency 

•  Computational efficiency 
–  Inverse transform 
–  DCT basis functions are orthogonal. Thus, the inverse transformation matrix of A 

is equal to its transpose i.e. A-1= AT. This property renders some reduction in the 
pre-computation complexity. 
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Block-based implementation 
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The source data (8x8) is transformed to a 
linear combination of these 64 frequency 
squares.  

Block size 
N=M=8 

Block-based transform 

Basis function 



Energy compaction 
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Energy compaction 
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Appendix 

•  Eulero’s formula 
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