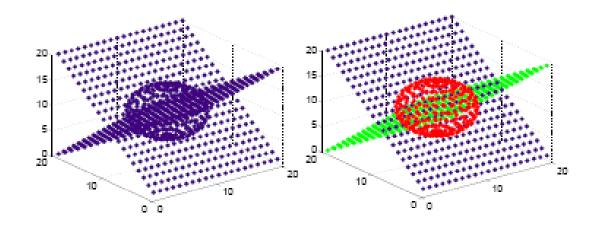
Mean Shift: theory and applications



Summary

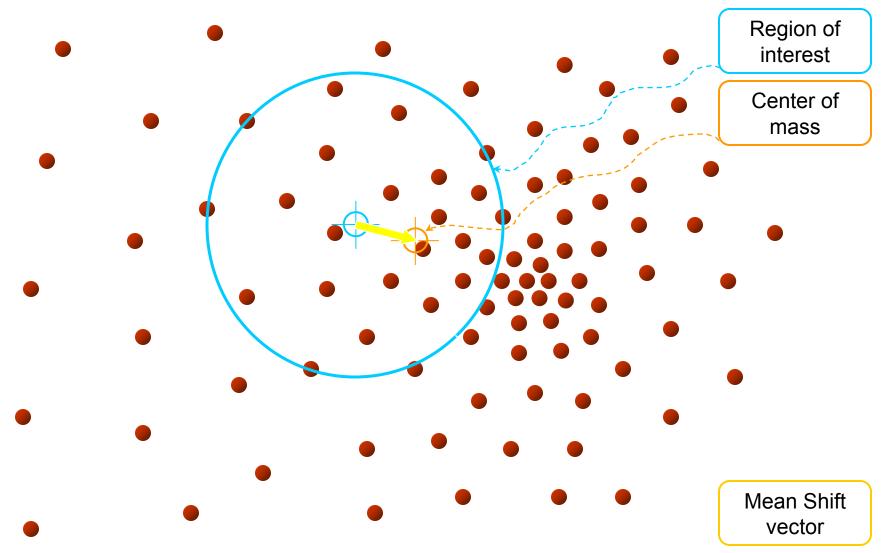
Fundamentals

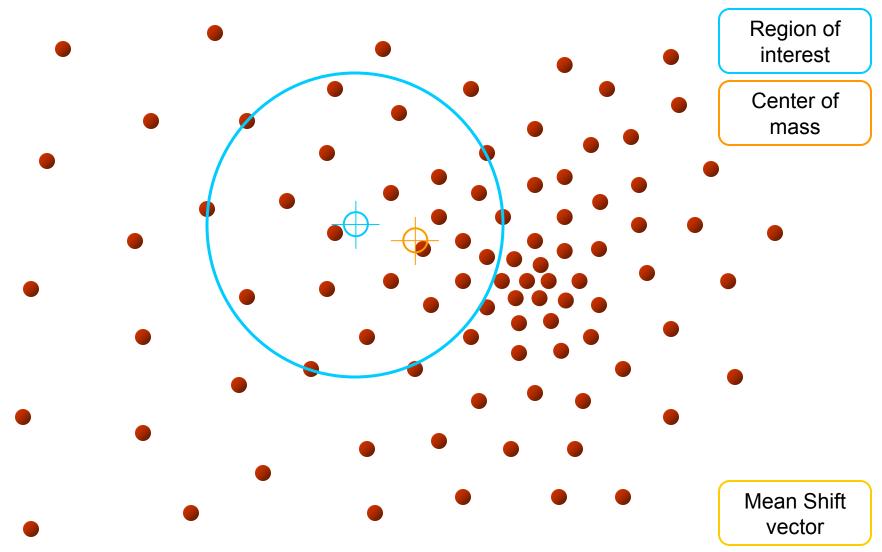
- Basic Idea
- Preliminaries: Parzen Windows
- Mean Shift
 - Introduction
 - Properties

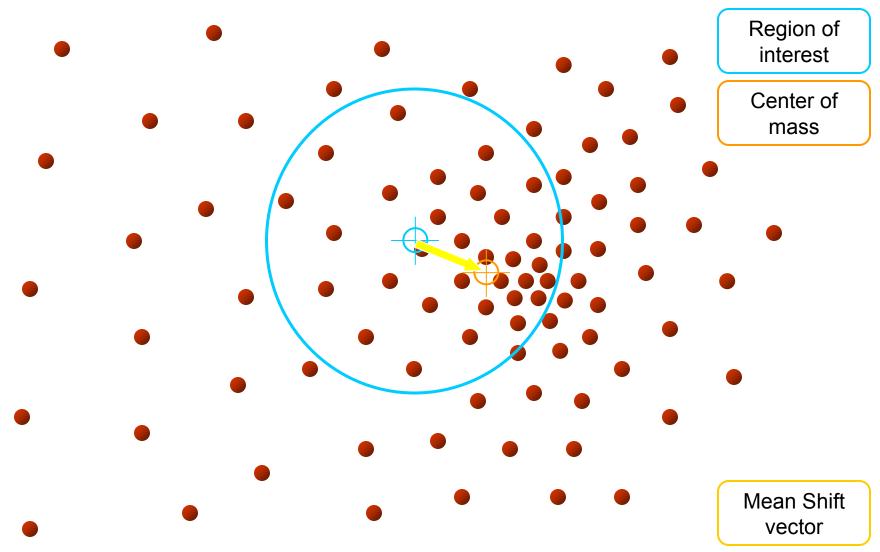
Applications

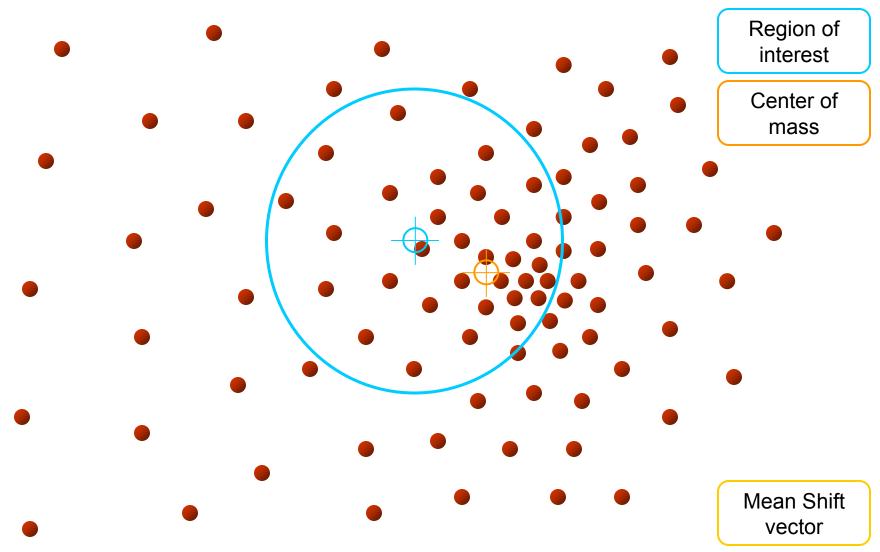
- Clustering
- Discontinuity Preserving Smoothing
- 2D Segmentation
- N-D Segmentation
 - Geometrical data, Biomedical data

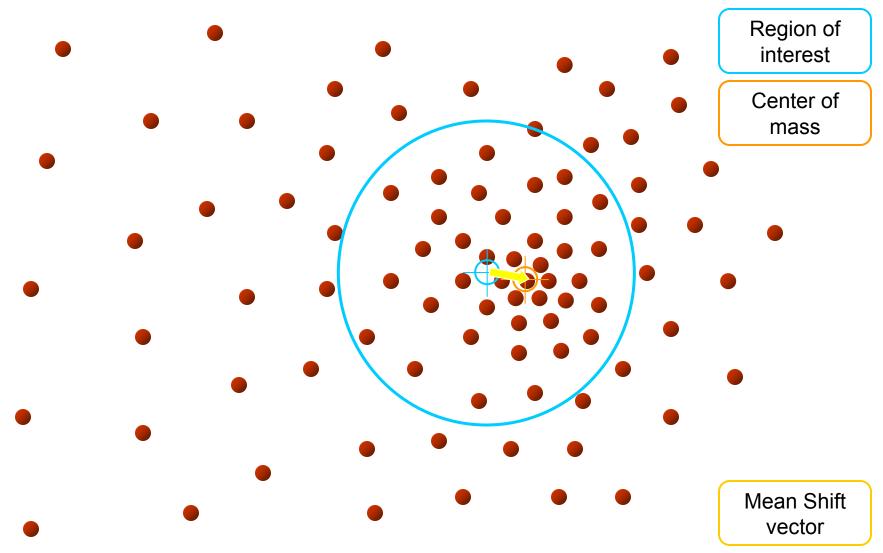
Fundamentals

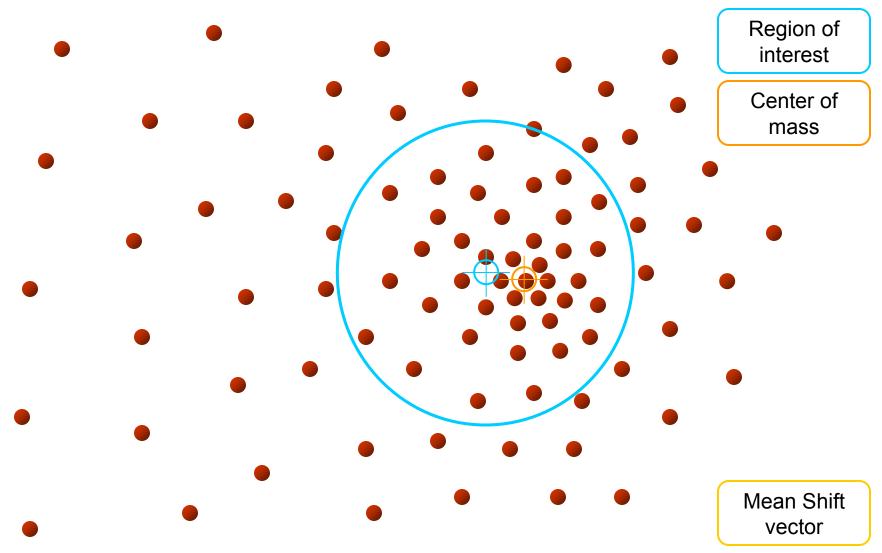


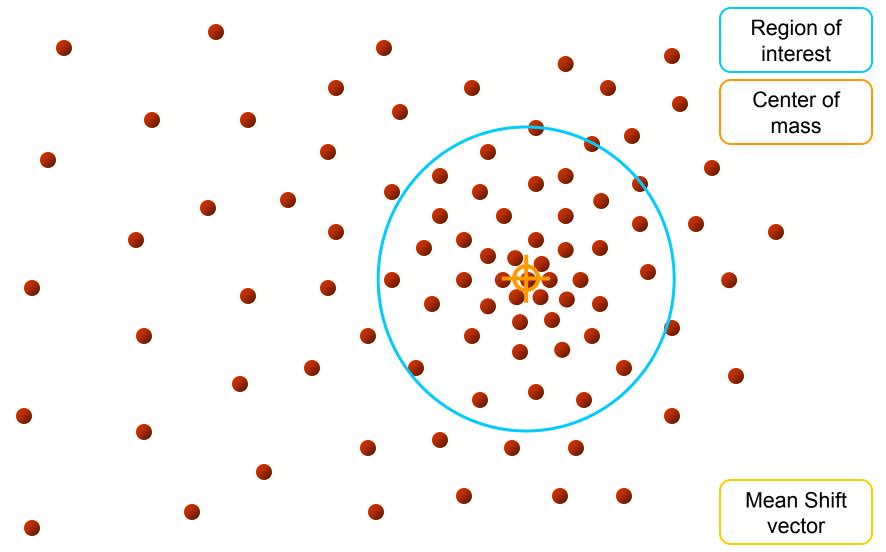












What is Mean Shift ?

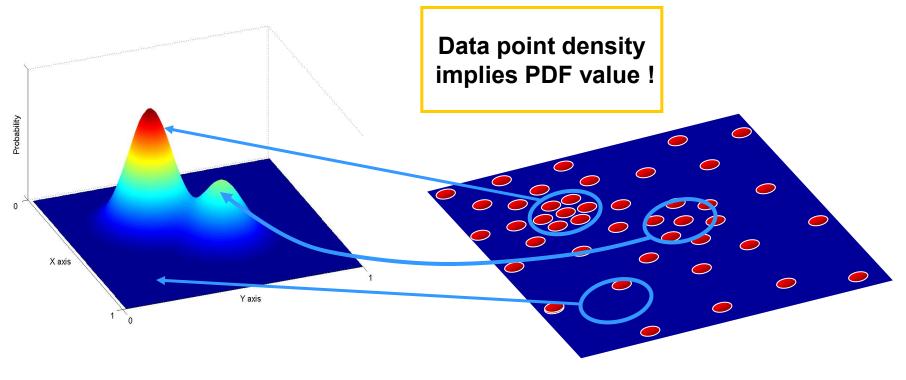
- A technique for *finding* modes in a set of data samples, manifesting an underlying probability density function (PDF) in R^N
- The samples (and the related PDF) can represent and characterize different objects features:
 - Position
 - Color

. . .

Preliminaries: Parzen Windows

Non-Parametric Density Estimation

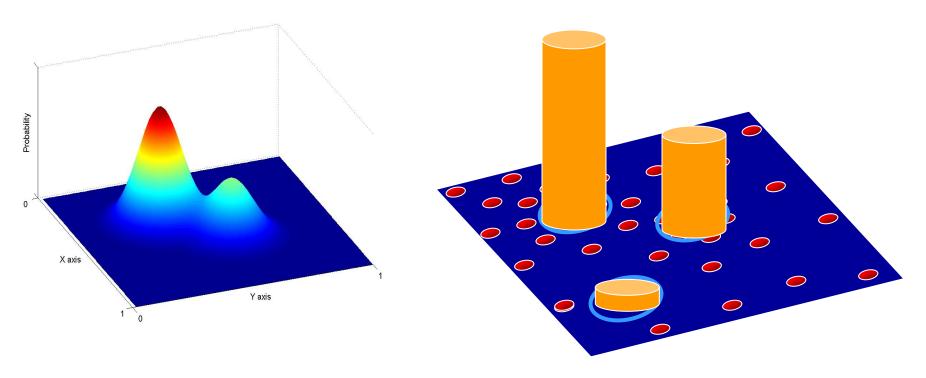
<u>Assumption</u> : The data points are sampled from an underlying PDF



Assumed Underlying PDF

Real Data Samples

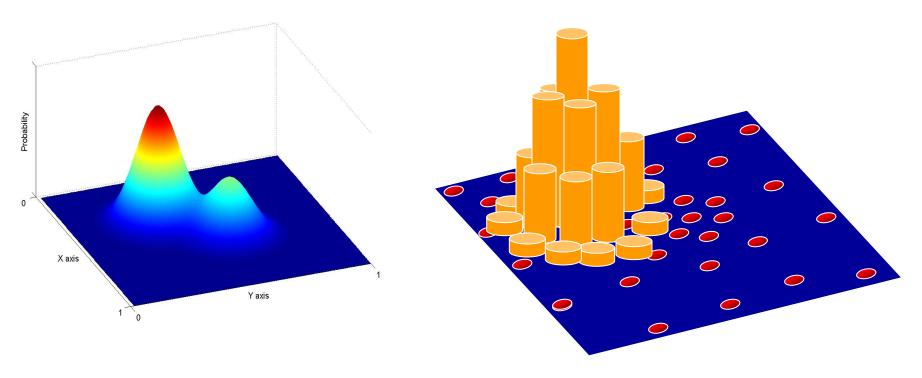
Non-Parametric Density Estimation



Assumed Underlying PDF

Real Data Samples

Non-Parametric Density Estimation



Assumed Underlying PDF

Real Data Samples

Kernel Density Estimation

Parzen Windows - General Framework

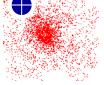
Kernel K(): function of some finite number of data points $x_1 \dots x_n$

Kernel Properties:

- Normalized

• Symmetric

- Exponential weight decay
- Other (see [Meer 02])

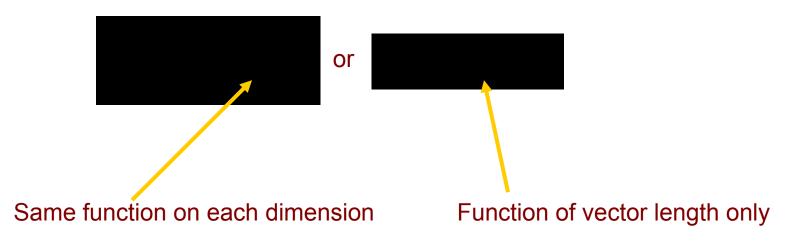


Kernel Density Estimation Parzen Windows - Function Forms

Parzen Windows - Function Forn

Kernel K(·): function of some finite number of data points $x_1...x_n$

In practice one uses the forms:



The 1D function k is called **profile** of the kernel

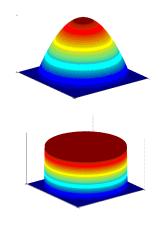
Kernel Density Estimation Various Kernels

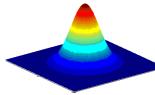
Kernel K(·): function of some finite number of data points $x_1...x_n$

Examples:

• Epanechnikov Kernel

$$K_{E}(\mathbf{x}) = \begin{cases} c\left(1 - \|\mathbf{x}\|^{2}\right) & \|\mathbf{x}\| \le 1\\ 0 & \text{otherwise} \end{cases}$$

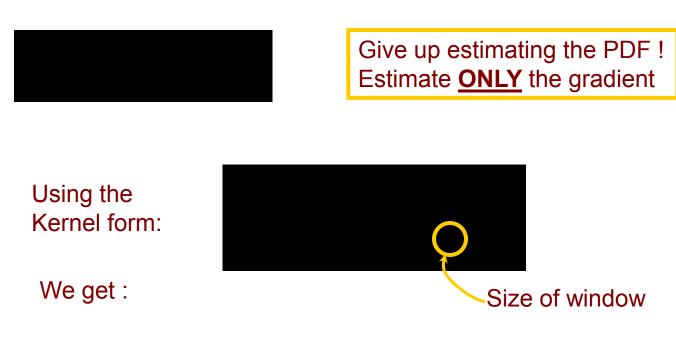




- Uniform Kernel
- Normal Kernel

Mean Shift

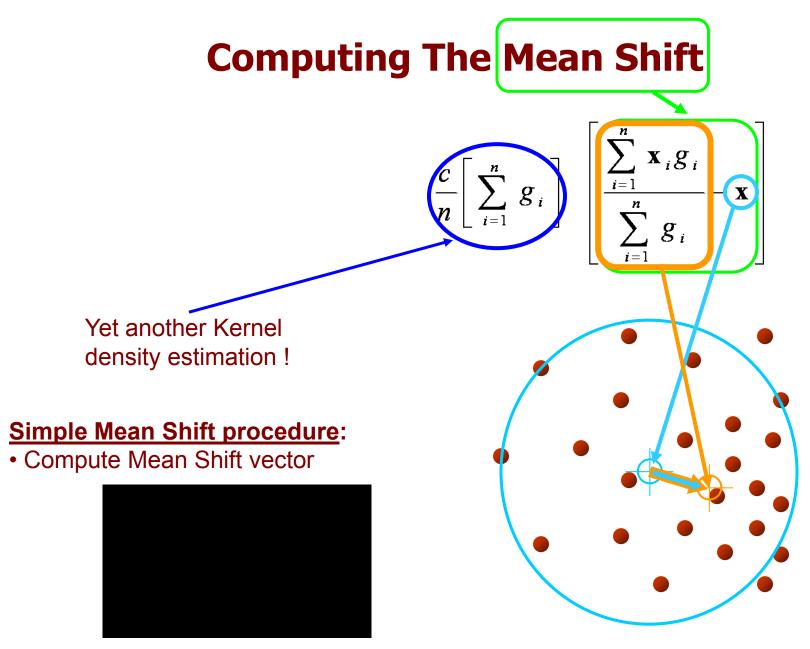
Kernel Density Estimation Gradient



$$\nabla P(\mathbf{x}) = \frac{c}{n} \sum_{i=1}^{n} \nabla k_i = \frac{c}{n} \left[\sum_{i=1}^{n} g_i \right] \left[\frac{\sum_{i=1}^{n} \mathbf{x}_i g_i}{\sum_{i=1}^{n} g_i} - \mathbf{x} \right]$$

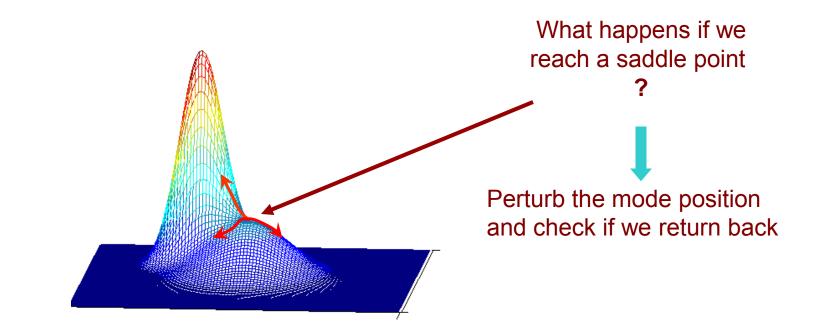
KomplibingsThye84tiama&ibifit Gradient

$$\nabla P(\mathbf{x}) = \frac{c}{n} \sum_{i=1}^{n} \nabla k_i = \frac{c}{n} \left[\sum_{i=1}^{n} g_i \right] \left[\frac{\sum_{i=1}^{n} \mathbf{x}_i g_i}{\sum_{i=1}^{n} g_i} - \mathbf{x} \right]$$



•Translate the Kernel window by **m(x)** until convergence (m(x)<thresh)

Mean Shift Mode Detection



Updated Mean Shift Procedure:

- Find all modes using the Simple Mean Shift Procedure
- Prune modes by perturbing them (find saddle points and plateaus)
- Prune nearby take highest mode in the window

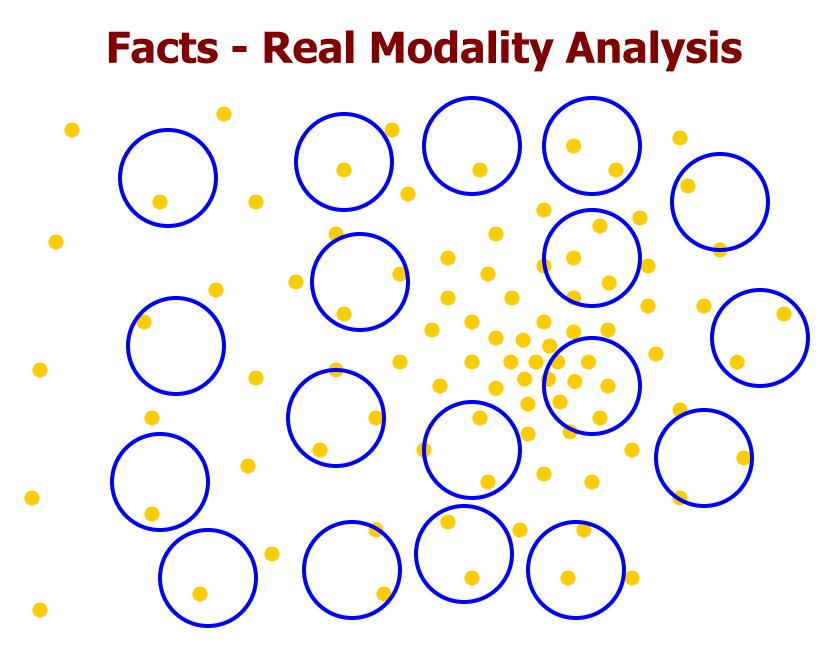
- Automatic convergence speed the Mean Shift vector size depends on the gradient itself.
- Near maxima, the steps are small and refined
- Convergence is guaranteed for infinitesimal steps only → infinitely convergent (therefore set a lower bound on the minimal distance covered after a step) [Comaniciu 2002, Chong 1995].
- For Uniform Kernel (, convergence is achieved in a finite number of steps [Comaniciu 2002].
- Normal Kernel () exhibits a smooth trajectory, but is slower than Uniform Kernel () [Comaniciu 2002].

Adaptive

Gradient

Ascent

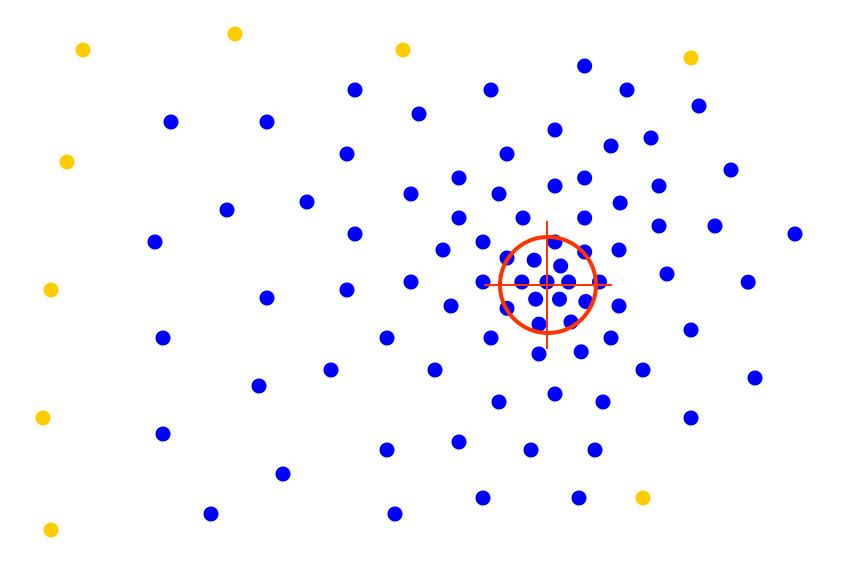
90°<α<135°



Tessellate the space with windows

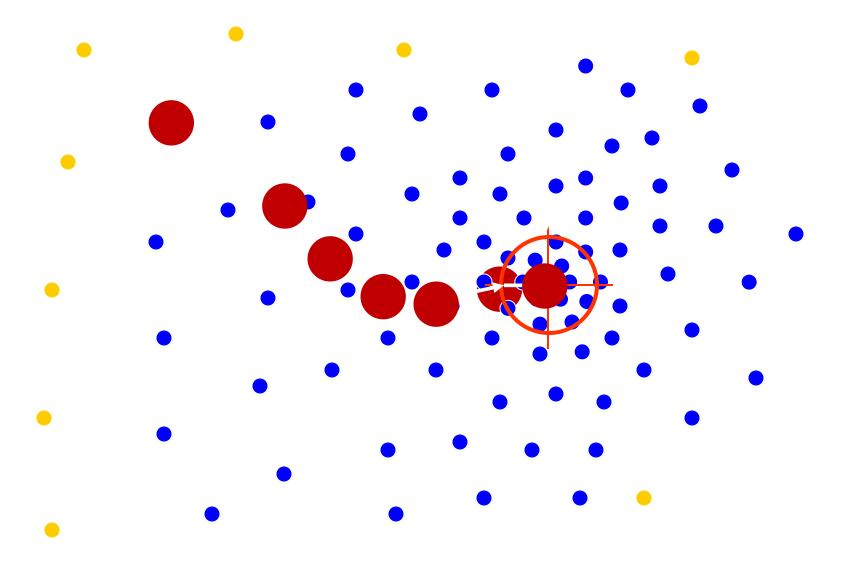
Run the procedure in parallel

Facts - Real Modality Analysis



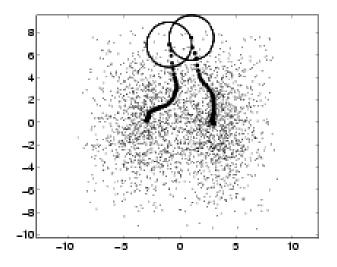
The blue data points were traversed by the windows towards the mode

Facts - Data Analysis



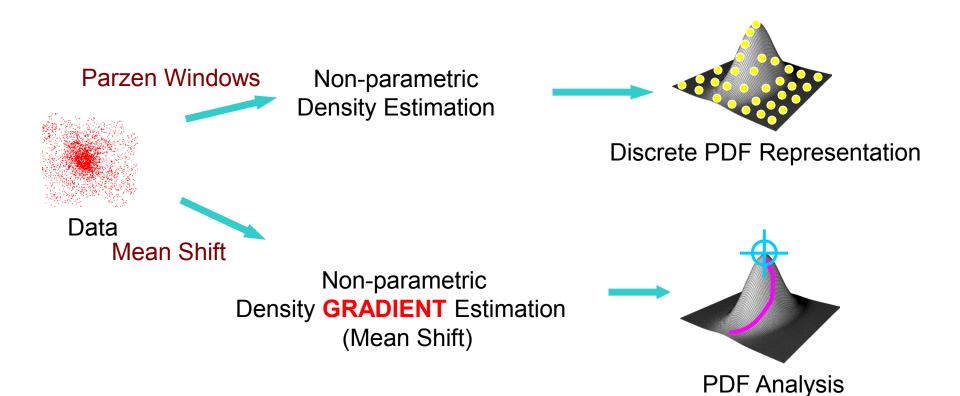
Each point x_i generates a trajectory formed by y₁...y_c

Real Modality Analysis An example



Window tracks signify the steepest ascent directions

Remarks - Parzen Windows vs Mean Shift



Mean Shift Strengths & Weaknesses

Strengths :

- Application independent technique
- Suitable for real data analysis
- Does not assume any prior shape (e.g. elliptical) *on data clusters*
- Can handle arbitrary feature spaces
- Only ONE parameter to choose
 h (window size)

Weaknesses :

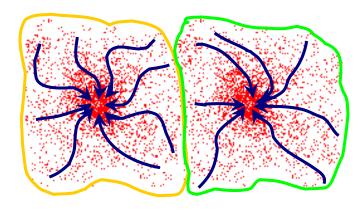
- The window size (bandwidth selection) is not trivial
 - Inappropriate window size can cause modes to be merged, or generate additional "shallow" modes → Use adaptive window size

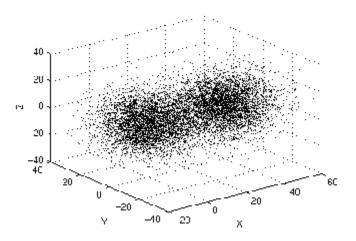
Mean Shift applications: Clustering

Clustering

<u>Cluster</u> : All data points in the *attraction basin* of a mode

<u>Attraction basin</u> : the region for which all trajectories lead to the same mode



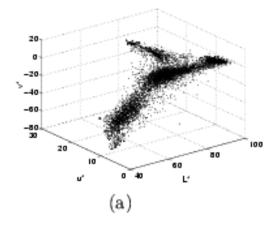


Simple Modal Structures

Complex Modal Structures

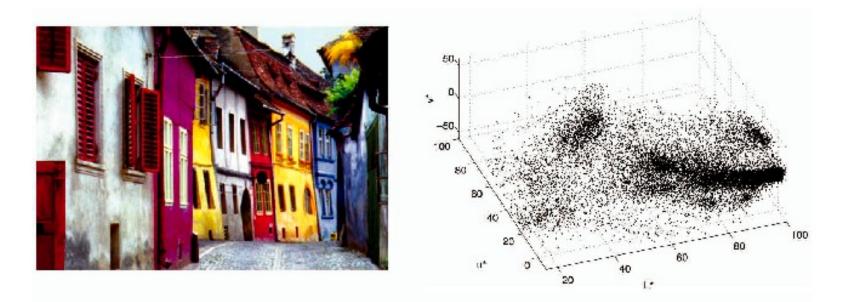
Clustering Real Example

Initial window centers

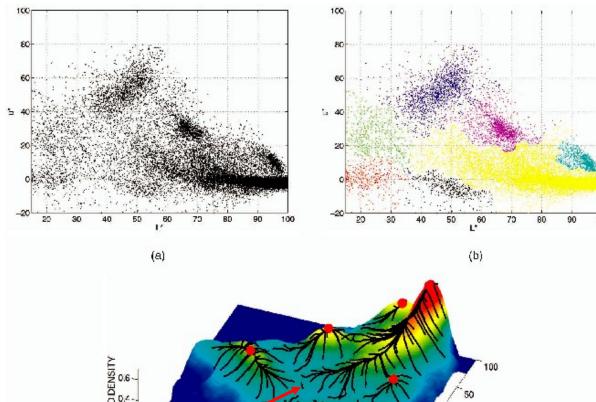


Modes found

Modes after pruning



L*u*v space representation



Final clusters

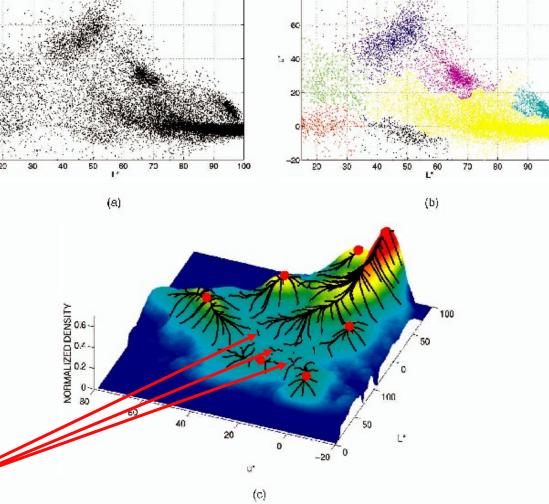
100

From the attraction basin points depart and reach different modes

2D (L*u)

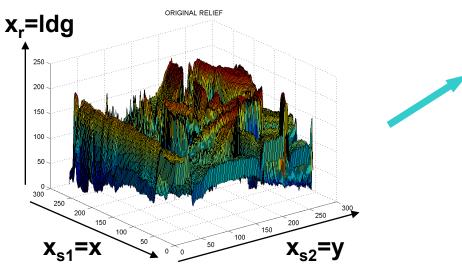
representation

space



Mean Shift applications: Discontinuity Preserving Smoothing

The image gray levels... ... can be viewed as data points in the x_s , x_r space (joined *spatial* And *color* space)



Feature space : Joint domain = spatial coordinates + color space

$$K(\mathbf{x}) = C \cdot k_s \left(\left\| \frac{\mathbf{x}^s}{h_s} \right\| \right) \cdot k_r \left(\left\| \frac{\mathbf{x}^r}{h_r} \right\| \right)$$

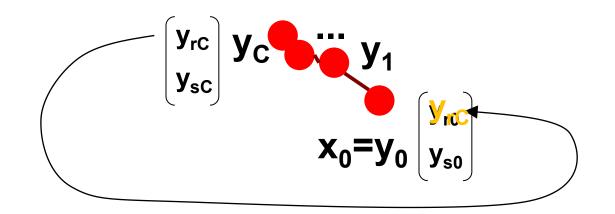
Meaning : treat the image as data points in the spatial and gray level domain

Algorithm:

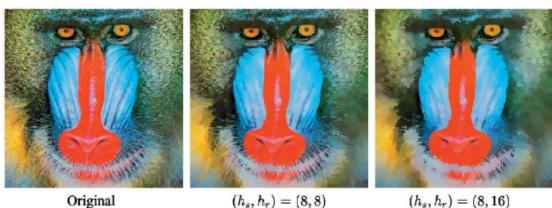
1) For each pixel, run the MS procedure generating in the joint *spatial-chromatic* domain a trajectory

 $x_0 = y_0, y_1, ..., y_C$

- 2) assign **to each pixel** the gray level of the mode reached

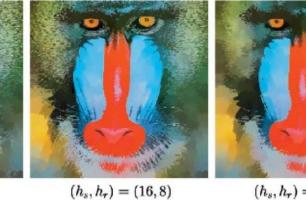


The effect of window size in spatial and range spaces



 $(h_s, h_r) = (8, 8)$

 $(h_s, h_r) = (8, 16)$



 $(h_s, h_r) = (16, 4)$

 $(h_s, h_\tau) = (16, 16)$

 $(h_s, h_r) = (32, 4)$

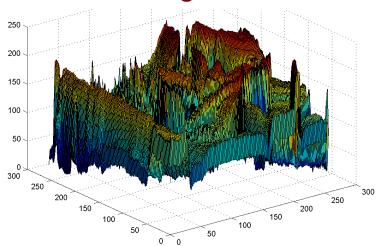
 $(h_s, h_r) = (32, 8)$

 $(h_s, h_r) = (32, 16)$

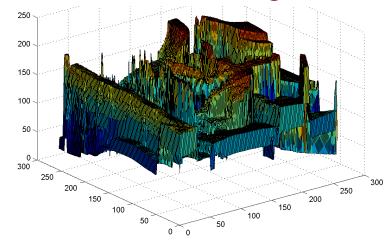
Original

After smoothing

Original



After smoothing

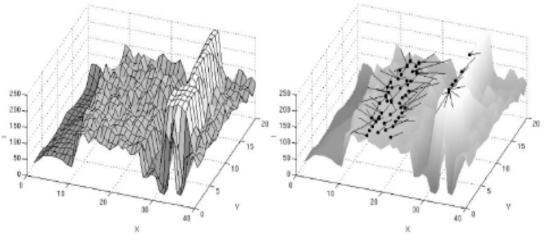


Mean Shift applications: 2D Segmentation

Segmentation

Algorithm:

Run Filtering (*discontinuity preserving* smoothing)



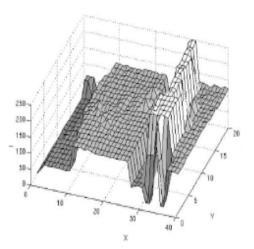
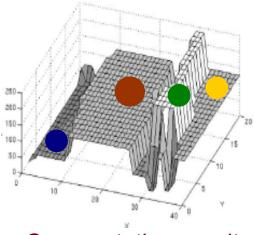


Image Data (slice)

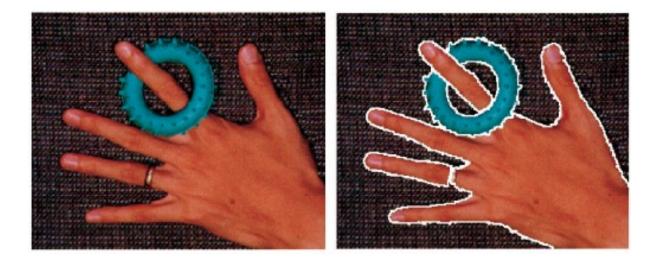
Mean Shift vectors

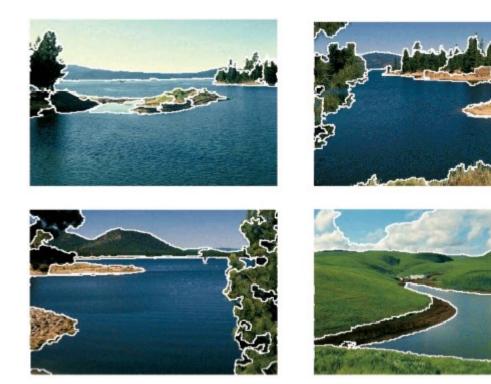
 Cluster the clusters which are closer than window size



Smoothing result

Segmentation result



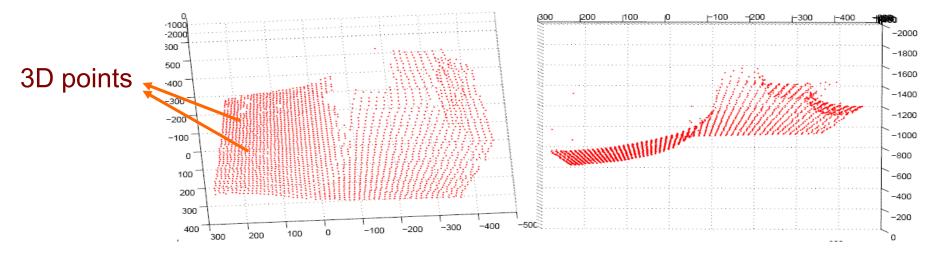


...when feature space is only gray levels...

Segmentation Example

Mean Shift applications: N-D Segmentation

N-D segmentation



Feature space : Joint domain = 3D spatial coordinates + curvature + ...

$$K(\mathbf{x}) = C \cdot k_s \left(\left\| \frac{\mathbf{x}^s}{s} \right\| \right) \cdot k_r \left(\left\| \frac{\mathbf{x}^r}{s} \right\| \right)$$

Problem : How to choose the kernel bandwidths!

Proposed Solution : A data driven stability criteria [Fukunaga 1990]

Stability criteria

• 1. Separate choice of the best bandwidth:

- for each sub-domain, perform MS clustering, using different increasing values of h.
- After that, choose as best bandwidth value h_(best) the center of the largest operating range over which the same number of partitions are obtained for the given data.

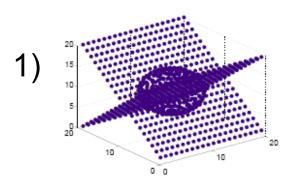
• 2. *Final clustering*:

 perform the mean shift clustering in the joint domain (position + curvature + etc.) using the kernel formed by concatenating the optimal sub-domain bandwidth values obtained in step 2)

$$\mathbf{h}_{(\text{best})} = [h_{(\text{p,best})} \ h_{(\text{c,best})} \ \dots \ h_{(\text{etc, best})}]$$

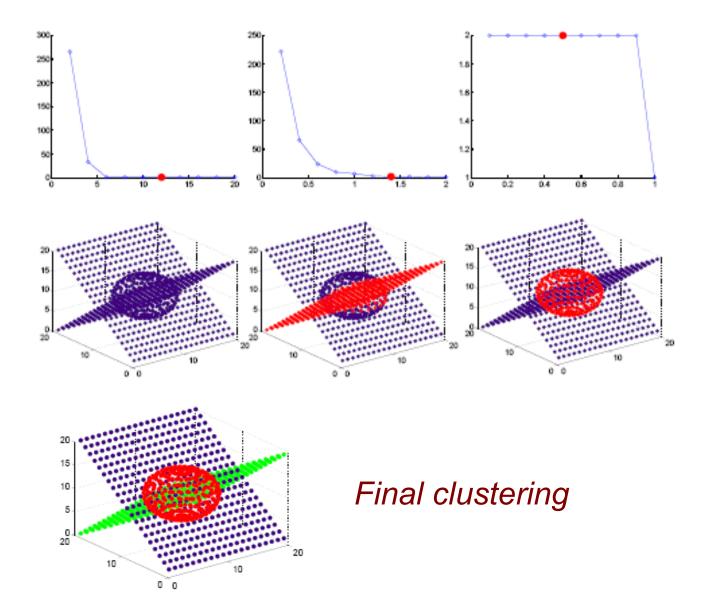
Stability criteria - example

- Input: a set of data samples $x_i = [x_{i,s}, x_{i,n}, x_{i,c}]$
 - x_{i,s}: *spatial* coordinates
 - x_{i,n}: *normal* coordinates
 - x_{i,c}: *curvature* coordinates
- Proposed algorithm:



Standardization

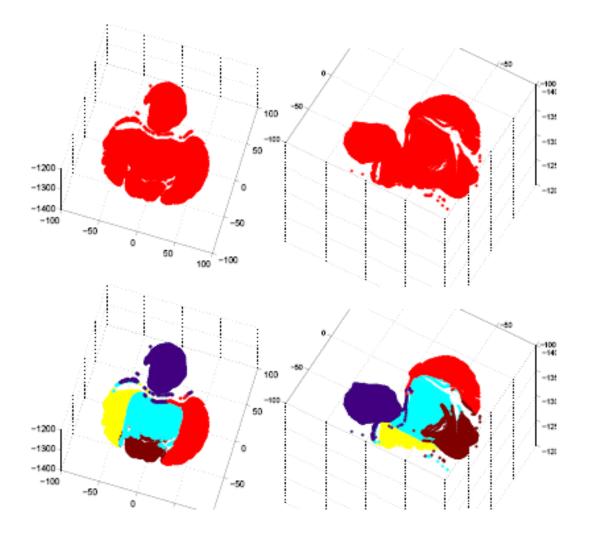
Stability criteria - example



Separate choice of the best bandwidth

Stability criteria - real data results

Original (Angel, Minolta dataset)

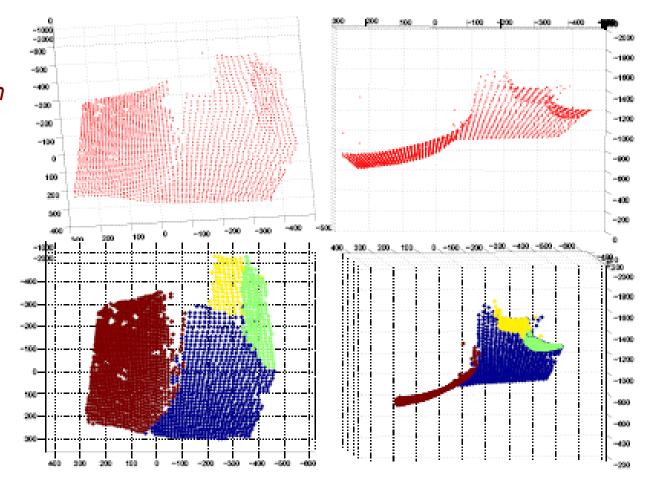


Result

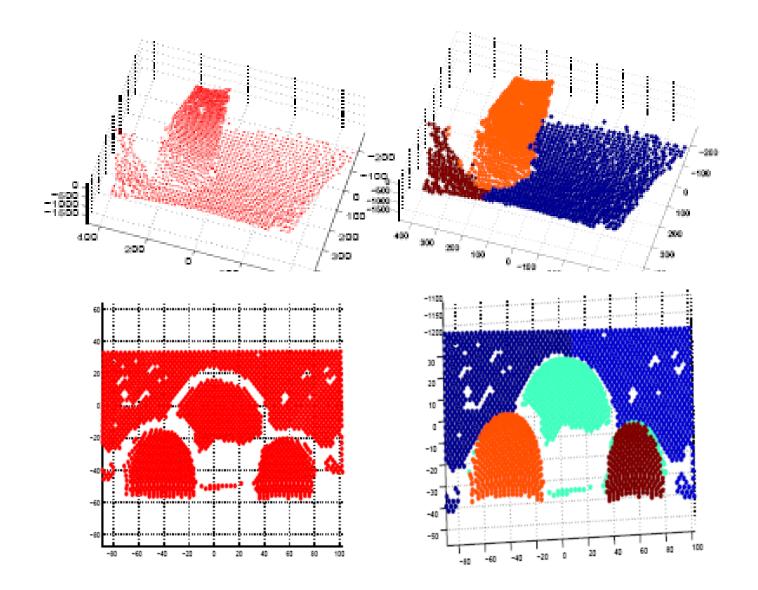
Stability criteria - real data results

Original (Acquired with echoscope sensor)

Result

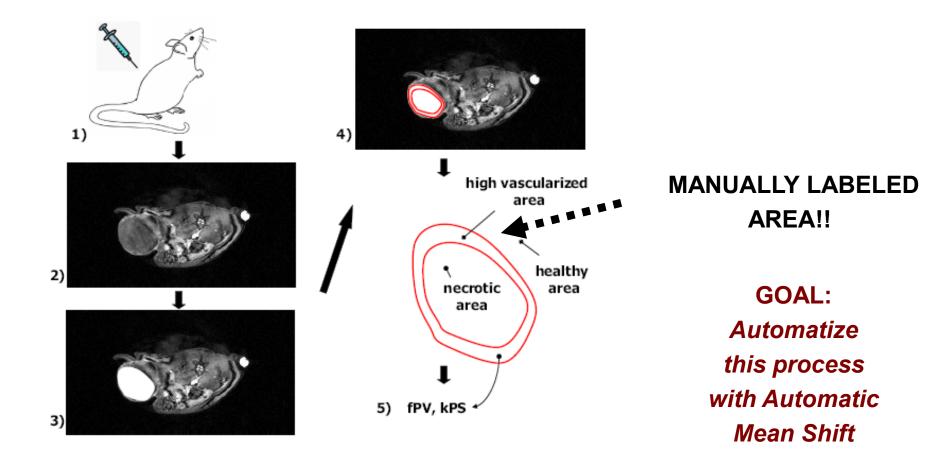


Stability criteria - real data results

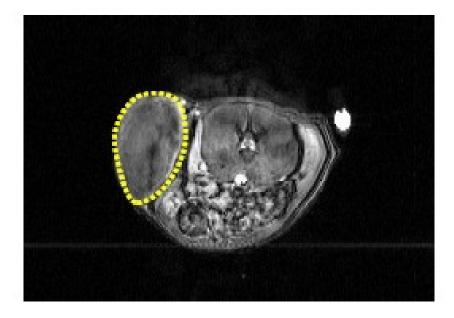


Another field of application: Medical-Imaging

The problem



Another field of application: Medical-Imaging



Input

Result

Conclusions

- A robust modes estimation technique has been presented
- The technique is adaptive and non parametric
 - several applications
 - Only one *tuning parameter* to set is the kernel bandwidth
- We propose a data driven stability technique, that works well for N-D segmentations
- Application of our technique to other fields are currently under development (f.e. biomedical imaging

Publications

- U. Castellani, M. Cristani, V.Murino *3D Data Segmentation Using a Non-Parametric Density Estimation Approach*, Proceedings of Eurographics Italian Chapter Conference '06 , pp.99-103, 2006.
- M. Cristani, U. Castellani, V.Murino Adaptive Feature Integration for Segmentation of 3D Data by Unsupervised Density Estimation, Proceedings of Int'l Conf. on Pattern Recognition ICPR 2006, August 2006
- U. Castellani, M. Cristani, V.Murino Acoustic Range Image Segmentation by Effective Mean Shift, Proceedings of Int'l Conf. on Image Processing ICIP 2006, October 2006

END! (and thanks to Denis Simakov)