
2D Discrete Fourier Transform (DFT)



2

Outline

• Circular and linear convolutions

• 2D DFT

• 2D DCT

• Properties

• Other formulations

• Examples



3

Circular convolution

• Finite length signals (N0 samples) → circular or periodic convolution
– the summation is over 1 period
– the result is a N0 period sequence

• The circular convolution is equivalent to the linear convolution of the 
zero-padded equal length sequences
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Convolution

• Zero padding
[ ]* [ ] [ ] [ ]f m g m F k G k⇔
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In words

• Given 2 sequences of length N and M, let y[k] be their linear convolution

• y[k] is also equal to the circular convolution of the two suitably zero padded 
sequences making them consist of the same number of samples

• In this way, the linear convolution between two sequences having a different length 
(filtering) can be computed by the DFT (which rests on the circular convolution)

– The procedure is the following
• Pad f[n] with Nh-1 zeros and h[n] with Nf-1 zeros
• Find Y[r] as the product of F[r] and H[r] (which are the DFTs of the corresponding zero-padded 

signals)
• Find the inverse DFT of Y[r]

• Allows to perform linear filtering using DFT
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2D Discrete Fourier Transform

• Fourier transform of a 2D signal defined over a discrete finite 2D grid 
of size MxN

or equivalently

• Fourier transform of a 2D set of samples forming a bidimensional
sequence 

• As in the 1D case, 2D-DFT, though a self-consistent transform, can 
be considered as a mean of calculating the transform of a 2D 
sampled signal defined over a discrete grid.

• The signal is periodized along both dimensions and the 2D-DFT can 
be regarded as a sampled version of the 2D DTFT
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2D Discrete Fourier Transform (2D DFT)

• 2D Fourier (discrete time) Transform (DTFT)  [Gonzalez]
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• 2D Discrete Fourier Transform (DFT)

2D DFT can be regarded as a sampled version of 2D DTFT.

a-periodic signal
periodic transform

periodized signal
periodic and sampled 
transform
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2D DFT: Periodicity
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• A [M,N] point DFT is periodic with period [M,N]
– Proof

[ , ]F k l=

(In what follows: spatial coordinates=k,l, frequency coordinates: u,v)
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2D DFT: Periodicity

• Periodicity

• This has important consequences on the implementation and energy
compaction property
– 1D

[ , ] [ , ] [ , ] [ , ]F u v F u mM v F u v nN F u mM v nN= + = + = + +

[ , ] [ , ] [ , ] [ , ]f k l f k mM l f k l nN f k mM l nN= + = + = + +

f[u]

uM/2 M
0

[ ] [ ]F N u F u∗− =
The two inverted periods meet here

f[k] real→F[u] is symmetric
M/2 samples are enough
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Periodicity: 1D

f[u]

uM/2 M0
It is more practical to have one complete period positioned in [0, M-1]
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The two inverted periods meet here
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Periodicity: 2D

DFT periods

MxN values

4 inverted 
periods meet 
here
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Periodicity: 2D

DFT periods

MxN values

4 inverted 
periods meet 
here
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Periodicity: 2D
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Periodicity in spatial domain
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• [M,N] point inverse DFT is periodic with period [M,N]
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Angle and phase spectra
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Translation and rotation
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mean value

[ ] [ ]
1 1

0 0

10,0 ,
N M

n m

F f n m
NM

− −

= =

= ∑∑ DC coefficient



18

Separability

• The discrete two-dimensional Fourier transform of an image array is 
defined in series form as

• inverse transform

• Because the transform kernels are separable and symmetric, the two 
dimensional transforms can be computed as sequential row and column 
one-dimensional transforms. 

• The basis functions of the transform are complex exponentials that may be 
decomposed into sine and cosine components.
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2D DFT: summary
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2D DFT: summary
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2D DFT: summary
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2D DFT: summary



other formulations
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2D Discrete Fourier Transform

• Inverse DFT
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• 2D Discrete Fourier Transform (DFT)
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where
0,1,..., 1k M= −
0,1,..., 1l N= −
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2D Discrete Fourier Transform

• Inverse DFT
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• It is also possible to define DFT as follows

1 1 2

0 0

1[ , ] [ , ]
k lM N j m n
M N

k l

f m n F k l e
MN

π ⎛ ⎞− − +⎜ ⎟
⎝ ⎠

= =

= ∑∑

where 0,1,..., 1k M= −
0,1,..., 1l N= −



26

2D Discrete Fourier Transform

• Inverse DFT
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• Or, as follows
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where                               and 0,1,..., 1k M= − 0,1,..., 1l N= −
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2D DFT

• The discrete two-dimensional Fourier transform of an image array is 
defined in series form as

• inverse transform



2D DCT

Discrete Cosine Transform
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2D DCT

• based on most common form for 1D DCT

u,x=0,1,…, N-1

“mean” value
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1D basis functions

Cosine basis functions are orthogonal

Figure 1
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2D DCT

• Corresponding 2D formulation

u,v=0,1,…., N-1

direct

inverse
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2D basis functions

• The 2-D basis functions can be generated by multiplying the 
horizontally oriented 1-D basis functions (shown in Figure 1) with 
vertically oriented set of the same functions. 

• The basis functions for N = 8 are shown in Figure 2. 
– The basis functions exhibit a progressive increase in frequency both in 

the vertical and horizontal direction. 
– The top left basis function assumes a constant value and is referred to 

as the DC coefficient.
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2D DCT basis functions
Figure 2
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Separability

The inverse of a multi-dimensional DCT is just a separable product of the inverse(s) of the 
corresponding one-dimensional DCT , e.g. the one-dimensional inverses applied along one 
dimension at a time
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Separability

• Symmetry
– Another look at the row and column operations reveals that these

operations are functionally identical. Such a transformation is called a 
symmetric transformation. 

– A separable and symmetric transform can be expressed in the form

– where A is a NxN symmetric transformation matrix which entries a(i,j) 
are given by

• This is an extremely useful property since it implies that the transformation 
matrix can be pre computed offline and then applied to the image thereby 
providing orders of magnitude improvement in computation efficiency.

T AfA=
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Computational efficiency

• Computational efficiency
– Inverse transform
– DCT basis functions are orthogonal. Thus, the inverse transformation 

matrix of A is equal to its transpose i.e. A-1= AT. This property renders 
some reduction in the pre-computation complexity.
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Block-based implementation

The source data (8x8) is transformed to a 
linear combination of these 64 frequency 
squares. 

Block size
N=M=8

Block-based transform

Basis function
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Energy compaction
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Energy compaction
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Appendix

• Eulero’s formula


