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Circular convolution

 Finite length signals (N, samples) — circular or periodic convolution

— the summation is over 1 period

No—1
— the resultis a N, period sequence C[k] =1 [k] ® g[k] - Z; f[n]g[k B n]

« The circular convolution is equivalent to the linear convolution of the
zero-padded equal length sequences

f[m]*g[m] < F[KIG[K]

f[m]

Length=P

g[m] H f[m]*g[m]
JI - I, = I,

Length:Q Length=P+Q-1

For the convolution property to hold, M must be greater than or equal to P+Q-1.




Zero padding

Convolution

f[m]*g[m] < F[K]G[K]

f[m] g[m]
2 I T I P
4-point DFT I I
(M=4)
F[K] G[k]

f[m]*g[m]

allr,

|
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In words

Given 2 sequences of length N and M, let y[k] be their linear convolution

ylk]= T[k]*h[k] = ZOO: fIn]hlk —n]

N=—o0

y[k] is also equal to the circular convolution of the two suitably zero padded
sequences making them consist of the same number of samples

Ny —1
c[k]= f[k]®h[k]=>_ f[nlh[k —n]
N, =N, +N, —1: Iennégh of the zero-padded seq

In this way, the linear convolution between two sequences having a different length
(filtering) can be computed by the DFT (which rests on the circular convolution)
— The procedure is the following

Pad f[n] with N-1 zeros and h[n] with N1 zeros

Find Y[r] as the product of F[r] and H[r] (which are the DFTs of the corresponding zero-padded
signals)

Find the inverse DFT of Y][r]

Allows to perform linear filtering using DFT




2D Discrete Fourier Transform

Fourier transform of a 2D signal defined over a discrete finite 2D grid
of size MxN

or equivalently

Fourier transform of a 2D set of samples forming a bidimensional
sequence

As in the 1D case, 2D-DFT, though a self-consistent transform, can
be considered as a mean of calculating the transform of a 2D
sampled signal defined over a discrete grid.

The signal is periodized along both dimensions and the 2D-DFT can
be regarded as a sampled version of the 2D DTFT




2D Discrete Fourier Transform (2D DFT)

« 2D Fourier (discrete time) Transform (DTFT) [Gonzalez]

o0 o0

F (U,V) = Z Z f[m, n]e_j2”(um+vn) a-periodic signal

Me—o0 Ne—oo periodic transform

« 2D Discrete Fourier Transform (DFT)

(k]
Ek 11— 1 M_lN_lf ‘12”(ﬁm+ﬁ”j periodized signal
[k.11= MN [m,n]e periodic and sampled
m=0n=o transform

2D DFT can be regarded as a sampled version of 2D DTFT.




2D DFT: Periodicity

A [M,N] point DFT is periodic with period [M,N]
— Proof

Fk,1]=

(In what follows: spatial coordinates=Kk,l, frequency coordinates: u,v)




2D DFT: Periodicity

« Periodicity
Flu,v]=F[u+mM,v]=F[u,v+nN]=F[u+mM,v+nN]
f[k,1]= f[k+mM,I]= f[k,I+nN]= f[K+mM,|+nN]

« This has important consequences on the implementation and energy
compaction property

- 1D f[u] The two inverted periods meet here
FIN —u]=F"[u] I
K] real—F[u] is symmetric I ‘ T T
M/2 samples are enough -1 .[ ‘ T l “ [ Ty
T e T T,
0 M/2 M u




Periodicity: 1D

f[k] <> F[u]
jzzzM changing the sign of every other
flkle: ™ <> F[u—-u,] sample puts F[0] at the center of the
M 2710 12,2 MK interval [0,M]

Uy=— —e M=g oM =gl = (1)
O_ 2 - - -

(D" [kl > Flu-" ]

X flul  The two inverted periods meet here

It is more practical to have one complete period positioned in [0, M-1]
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data contain one centered

Periodicity: 2D

Flu,v] N1 complete period
jzﬁ(%jﬂil) CTTTT i ------------ DFT periOdS
flk,1le. ™ N > Flu—uy,v—Vv,] ’
U, = M,V0 = N MxN values
2 2 N2
M N
“D*" k] & F{u——,v——}
(-1 f[k] > 5
(0,0)

4 inverted
periods meet
here

...............................................................................................
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Periodicity: 2D

M/2

4 inverted
periods meet
here
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Periodicity in spatial domain

[M,N] point inverse DFT is periodic with period [M,N]

M -1N-1 jzﬂ(ﬁmlnj
flm,n]=> > Flk,Ie " "
k=0 1=0
M-1N-1 j2z(£(m+M )+ﬁ(n+N )j
fIm+M,n+N]= Flk,l]e
k=0 1=0 1
M-IN-1 27 Xmitn) jorl XN
=3 S Flk,1]e’ R |
k=0 1=0
= f[m,n]
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Angle and phase spectra

F[u,v]=|F[u,v]e""

‘F [u,v]\ = [Re{F [u,v]}2 +Im { F [u,v]}z T/Z modulus (amplitude spectrum)
®[u,v]=arctan Im{F [u,v]} phase

Re(F[u.v]
P[u,v] = “: [u V"Z power spectrum

For a real function

F[-u,-v]=F"[u,v] conjugate symmetric with respect to the origin
F[-u,—v] =|F[u,v]
®[-u,—-v] =-D[u,V]
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Translation and rotation

' n(mk+”|

e Flu-myv—1]

f[k—m,I-n]<F [u,v]‘jz”(3k+nnl'j

kK =rcosd U= @C0S¢@
| =rsing | = wsing

flr,9+9 ] Flo.p+3]

Rotations in spatial domain correspond equal rotations in Fourier domain
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1 N-1M-1

mean value

f[n,m] DC coefficient
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Separability

« The discrete two-dimensional Fourier transform of an image array is
defined in series form as

-1N-1

g S8

* inverse transform

M-1N-1 jz,{Lanj
flm,n]=> > FlkIle " "
k=0 1=0
« Because the transform kernels are separable and symmetric, the two
dimensional transforms can be computed as sequential row and column
one-dimensional transforms.
» The basis functions of the transform are complex exponentials that may be
decomposed into sine and cosine components.
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TABLE 4.1
Summary of some
important
properties of the
2-) Fourier
transform.

2D DFT: summary

Property Expression(s)
1 M-1 N-1 . . )
Fourier transform  F{u. v) = NN . y)e 2/ Mvy/N)
MN e i
PV v =0 y=0
Inverse Fourier M1 N1 _
" x - vy @i2T (M +uy /N
transform flx.y) = 2 EFUL v)e
w=0 wv=0
Polar Flu, v) = ‘F(-'L v)le b1,

FLZPFLJF:L‘['HEI[I'{}H

Spectrum

Phase angle
Power spectrum
Average value

Translation

IF(u.v)| = [R2(u.v) + I*(u.v)]'?. R = Real(F) and
I = Imag(F)

r B [ ()
dh(u, v) = tan R(z.0) |
P(u,v) = |F(u,v)
_ ] .1»%‘I NY\I
x,v) = F(0,0) =—— flx,y

(e, y) PO N o B v )
flx = %,y = ) & Flu, v)ePrssn
When x, = 4y = M/2and y, = v, = N/2.then
flae. (1" < Flu—- M/2.v — N/2)

flx — M/2,y — N/2) & Flu.v)(—1)"""
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2D DFT: summary

Conjugate
symmetry

Differentiation

Laplacian

Distributivity

Scaling

Rotation

Periodicity

Separability

(2. y)

F(u,v) = F(—u,—v)
F ()| = [F (-, -v)

< (ju)"Flu,v)
a"Fu, v)
"
Vif(x, y) < —(u* + v})F(u,v)
L%, ¥) + fa(x )] = 3[fx )] + [ fa(x, )]
M[fix.y) - falxp)] # S[AC )] - S falx.y)]

af(x, v) < aF(u. v). flax,by) < ﬁF(uﬁL v/b)

ax"

(—ix)'f(x.y) =

)

o

X = rcos# y = rsin# U= wcose V= wsing

Flu,v) = F(u + M.v) = F(u.v + N) = F(u + M,v + N)
fle.y) =flx + M.y) = f(x.y + N) =f(x + M,y + N)

See Eqs. (4.6-14) and (4.6-15). Separability implies that we can
compute the 2-D transform of an image by first computing 1-D
transforms along each row of the image. and then computing a
-1 transform along each column of this intermediate result.
The reverse. columns and then rows, yields the same result.
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2D DFT: summary

Property Expmssiun{s]

a - - l,'r I
(nmpu!atmn ! “(x., y) 2 2 F*(u, v)e 727x/M -+ ww/N)
of the inverse MN' Y i

Fourier

transform using

a forward
transform
algorithm

Convolution’

Correlation’
Convolution
theorem’

Correlation
theorem’

This equation maluatas that inputting the function F*(u, v)
into an algorithm designed to compute the forward transform
(right side of the preceding equation) vields f*(x, v)/MN.
Taking the complex conjugate and multiplying this result by
MN gives the desired inverse.

flx,y)=h{x.y) = ﬁ IZ[] ;E{]f{m n)hix — m.y — n)
flx,y)eh(x,y) = ﬁ:ﬁ{ ;E:jf*[:::.;;j&@ + m,y + n)
flx.y)=hix.y) = Flu,v)H(u, v):

flx, vi(x, ¥) = Flu,v) = H(u. v)

flx,y)eh(x.y) <= F*(u v)H(u. v);

fA(x. yv)h(x,y) <& Flu.v) e H(u,v)
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2D DFT: summary

Some useful FT pairs:

Impuilse

(raussian
Rectangle

Cosine

Sine

alx, y) <= 1

A \-"'fE-rrE’ 27w+ yF) = Ae {0+ v')/20”

sin(srua) sin((wovb)
(rua)  (wvh)

Jaita+ vl

rect|a. b] < ab

cos(2mugx + 271py) <=

%[ﬁ{u + Uy, v + vy} + S — uy v — vy)]

sin(2wtgx + 27vgy) <

.-’% [ﬁ(u oy, U T 'L'[]) — olu — gy, v — .L‘[]\’]]

' Assumes that functions have been extended by zero padding.
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other formulations




2D Discrete Fourier Transform

2D Discrete Fourier Transform (DFT)

(g S8 o

where 1=01.. N-1

k=01..M-1
Inverse DFT
M-IN-1 jZﬁ(Lm+—nj
flmn]=> > F[kIle " ™
k=0 1=0
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2D Discrete Fourier Transform

It is also possible to define DFT as follows

FIk.1] Nzl f[m, n]e‘””(ﬁm*ﬁ”)

where k=01...M-1
|=0,1..,N-1

Inverse DFT

f[m,n] ‘leNZl FLk, ue"z”(ﬁ””ﬁ”j

25




2D Discrete Fourier Transform

Or, as follows

Flk 1= f[m, n]e_””(”man

where k=0,1... M -1 and [=0,1...,N-1

Inverse DFT

ol (g B e
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2D DFT

The discrete two-dimensional Fourier transform of an image array is
defined in series form as

N-1 N-1 _
T, v) 9 Z Z Fi(j, k) ::xp{%{w# vﬁc}}

i=0 k=0

inverse transform

V-1 N-1
. 2Ti, .
F(j, k) Au, v) expd —(uj + vk)
! ‘%’2%] 2% 1{ v }
= 1.I=
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2D DCT

Discrete Cosine Transform




2D DCT

based on most common form for 1D DCT

o Zf [fr(”erlju |

N-1 N
)= Tetulctuleod D
1
~ for u=20
alu)y=1""_
2
L\{; for u=0
EE=
Clu=0)= |—Zf{t

u,x=0,1,..., N-1

“mean” value
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Figure 1

[ ]

X

1D basis functions

Il u=C
1 2 3 4 &5 6 T B8

I -2
] II
IIII
T 2 3 4 5 6 7 8
1 m 1
:|234:3r~?8

B =5
al 1=
1" |

1234:3?‘?8

Cosine basis functions are orthogonal

l:l

]I =
.
:
| I o
B S
-I
! I-
B =7
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2D DCT

« Corresponding 2D formulation

:'- 1 —
T(2x+1
direct  Clu.v) = arlu (v ZZf cc}s[ (2x+ u |co

r=0 y=0 N

BE
_ u=20
\j? for wu

afu) =
i for uwu=0
VIV
N-1N-]
T(2x+1u
inverse ;" X v) ZZ&'H}J Clu. ﬂcms[ ( )
u=0 v=0 2N

=

T(2y+1)v
1T N ’

T(2v+1n

2N

|

31




2D basis functions

The 2-D basis functions can be generated by multiplying the
horizontally oriented 1-D basis functions (shown in Figure 1) with
vertically oriented set of the same functions.

The basis functions for N = 8 are shown in Figure 2.

— The basis functions exhibit a progressive increase in frequency both in
the vertical and horizontal direction.

— The top left basis function assumes a constant value and is referred to
as the DC coefficient.
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Figure 2

2D DCT basis functions
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Separability

I'? > >

Jx y) Row transform Ct. v) Column transform Cu, v)

The inverse of a multi-dimensional DCT is just a separable product of the inverse(s) of the
corresponding one-dimensional DCT , e.g. the one-dimensional inverses applied along one
dimension at a time
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Separability

Symmetry

— Another look at the row and column operations reveals that these
operations are functionally identical. Such a transformation is called a
symmetric transformation.

— A separable and symmetric transform can be expressed in the form

T = AfA
— where A is a NxN symmetric transformation matrix which entries a(i,j)
are given by
V-1 | .
(o N (25D
ali. j) =l }Z LD:.|: vt

» This is an extremely useful property since it implies that the transformation
matrix can be pre computed offline and then applied to the image thereby
providing orders of magnitude improvement in computation efficiency.
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Computational efficiency

Computational efficiency

— Inverse transform f=AaTT4

— DCT basis functions are orthogonal. Thus, the inverse transformation
matrix of A is equal to its transpose i.e. A-1= AT. This property renders
some reduction in the pre-computation complexity.
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Block-based implementation

Block-based transform

Block size
N=M=8

The source data (8x8) is transformed to a
linear combination of these 64 frequency
squares.

Basis function

e AL RiRIRLnn
i N TRIINI

N =

"
E_nul
—— *

a
™
|
e
L
=




Energy compaction

(a)

(b)
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Energy compaction

P

(d)
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Appendix

Eulero’s formula

A(J, kiu,v)

B(j, k.u,v)

s = =
= cxp{ “m(s{,ﬁ + vk)} = cos{%(sy' + vk)}— isin{%(uj + vk)}

- . -
= cxp{%(z{j+vk)} = C-GS{“I—‘:T(I{;#vk)}+isil1{"‘l—‘:f(f{;'+vk)}
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