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1 Motivation. Smooth and nonsmooth functions

There are two ways to characterize a function f : X — Y (two kinds of its
properties):

o differential or locally

@ integral or globally

Depending on X and Y (usually topological vector spaces) the differential
characteristics admit various sense but they always mean a rate of
changement of one variable (function f(x)) with respect to other
(argument x)

For example,
o usual derivative, if X =Y =R
@ partial derivatives, gradient, if X =R", Y =R
e divergence, curl, jacobean etc., if X =Y =R"
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1 Motivation. Smooth and nonsmooth functions

Each differential characteristics can be interpreted in three ways:

(a) physically as the rate of changement (see above) that in different
applications has a proper more concrete sense (e.g., velocity if x is
time or something like that)

(b) geometrically as slope of the tangent line, position of the tangent
plane, degree of extension (contraction) of a solid under some forces
etc.

(c) analitically as the possibility to approximate the function f at a
neighbourhood of a given point by some simpler function (affine one)
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1 Motivation. Smooth and nonsmooth functions

Due to these interpretations the smoothness means

(a) existence of an instantaneous velocity (or, in general, rate of
changement of some variable) at a given point
(b) possibility to pass a tangent line (plane) to the graph at a given point

(c) possibility to approximate the function by a linear one near a given
point; existence of a certain (continuous) limit etc.
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1 Motivation. Smooth and nonsmooth functions

Respectively, nonsmoothness means the lack of the above properties

In other words,

(a) at some time moment a velocity fails to exist: the material point
suddenly stops, accelerates or changes direction of the movement; in
other (physical) interpretation: the lack of elasticity in a certain
material that results appearance of some cracks, splits and so on

(b) there are some "acute” points of the graph (some peaks, edges etc.)

(c) it is impossible to approximate by an affine function due to non
existence of limit at a given point
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2 Examples. Contingent and paratingent derivatives

Let f : R — R. There are possible various situations

1). Left- and right-sided derivatives f{(x) exist, are finite and different

f(x+h)—f(x)

/ _ .
fi(x) = lim, h
Example
x if x>0
f(x)_|x|—{_x if x<0

Flo)y=1;  f(0)=-1
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2 Examples. Contingent and paratingent derivatives
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2 Examples. Contingent and paratingent derivatives

2). Left- and right-sided derivatives f{ (x) exist but can be infinite

Examples

a).

Vladimir V. Goncharov (Departamento de M: Multivalued & Nonsmooth Analysis



Lection |

2 Examples. Contingent and paratingent derivatives

v h 1
fL (0) = lim vh i = +oo

MO im ——
h—0+ h h—0+ h2/3
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2 Examples. Contingent and paratingent derivatives

V1Al li L = +o0;

! I
+(0) = ot h o ot A
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£ AVAL AU VAL (R
(0) = Jim == = lim Z 5 = ,fim, NI
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2 Examples. Contingent and paratingent derivatives

3). One of the one-sided derivatives (or both) does not exist (neither
finite nor infinite)

This means that the limit (called derivative number)

im f(x+hp)—1~(x)

n—00 h,

depends on choice of a sequence h, — 0
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2 Examples. Contingent and paratingent derivatives

Example
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2 Examples. Contingent and paratingent derivatives

Given a € [—1,1] let us define

1
n=——————0, n— oo
arcsin a + 2mn

Then f(h f(0 hpsi i 2
im (hn) — £ (0) ~ im nsin (arcsin a + 2mn) _,
n—o00 hn n—o00 hn

Thus the set of all derivative numbers (so called contingent derivative)
of the function f(-) is [—1,1]

One can write

11 1
sin< — =cos = se x#0;
Contf (x) = { { X[—].X].] 2 o x i 0
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2 Examples. Contingent and paratingent derivatives

Sometimes another so named paratingent derivative can be useful. It is
defined as the set of all limits

lim f(Xn) - f()’n)

n—oo Xn — yn

where {x,} and {y,} are arbitrary sequences tending to x (x, # yn)

Always Cont f (x) C Parat f (x) but the reverse inclusion can fail

In the latter example setting
1 1
Xp= ————— =
" w/2+27n

we see that
’ f(xn) — f(yn) Xpsin (/2 + 2mwn) — 1/2x, sin (7 + 4mn)
im ——————~> = lim
n—o0 Xn — Yn n—o00 1/2X,,

=2 ¢ Contf (0)
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2 Examples. Contingent and paratingent derivatives

In this case indeed
Parat f (0) = |—o0, +o0]

To see this it is enough for each / € R choose a and b such that
| = 2a — b and define

1 1
=" e e —
Xn = rcsin a + 27n Yn = Srcsin b+ 47n

Finish the proof l
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2 Examples. Contingent and paratingent derivatives

If f: R — R is lipschitzean then both Contf (x) and Paratf (x) are
bounded but nevertheless Parat f (x) can be larger as well J

Example
f(x) = x|

In fact,
Contf (0) ={—1,1} while Paratf (0) =[-1,1]

To see this take / €] — 1, 1], an arbitrary sequence x, — 0+ and set
Yn = —ax, wWhere
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2 Examples. Contingent and paratingent derivatives

Show that

n—o0 Xn — yn
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2 Examples. Contingent and paratingent derivatives

Observe more that f(-) can be even differentiable at x with Parat f (x) not
singleton

Example

_ x3/2 sm(l) if x#0;
f(X)_{ 0 if x=0,

Here the derivative f'(0) exists but Parat f (0) =] — oo, +00[

Prove this l
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2 Examples. Contingent and paratingent derivatives

Observe that this function is not lipschitzean, and its derivative is not
continuous at 0,

£ (x) = 3x2sin (L) + %cos (L) if x#0;
B 0 if x=0,
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2 Examples. Contingent and paratingent derivatives

Whenever the function () is continuously differentiable (smooth) at x
one has

Parat f (x) = Cont f (x) = {f' (x)}

Indeed, given {x,} and {y,} tending to x with x, # y, we find z,
between x, and y, such that

f(xn) = (¥n) = f'(20) (xn — )
(Langrange Theorem), and then by the continuity:

lim f(xn) = f (yn)

n—oo Xpn — yn

= lim £/ (z) = ()
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2 Examples. Contingent and paratingent derivatives

There is another approach to generalized differentiation of nonsmooth
functions

For the function, e.g., f(x) = |x| let us consider (geometrically) the set of
all lines passing below the graph of f and "touching” it at 0

Analitically, the set of slopes of those lines (called subdifferential 9f(x))
will be introduced in sequel for the class of convex functions. In our
example

0f(0) = Parat f (0) = [-1, 1]
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2 Examples. Contingent and paratingent derivatives

However, this definition has essential defect: there is a lot of situations
when 0f(x) does not describe well the local structure of the function

Example
f(x) = x* — 1

We have 0f(—1) = [-1,0] and 90f(1) = [0, 1] while
of(x)=10

whenever x €] — 1,1 (in spite of the continuous differentiability)

Vladimir V. Goncharov (Departamento de M:
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2 Examples. Contingent and paratingent derivatives

In fact, the subdifferential Of (x) characterizes well only so named convex
functions (see Lection II)

We say that the lines with slopes from 0f(x) support the function f(-) at x
In general, a definition of the (generalized) derivative should combine two

approaches:

@ "supporting” the graph of f(-) (from below or from above) at least
locally at some given point

@ approximating f(+) near a given point by a simpler function
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3 Functional spaces. Variational problems

Mapping studied in the Nonsmooth Analysis can be defined not necessarily
in R but in R" or in infinite dimensional Hilbert or Banach spaces

So, we consider f : X — R (the case of operators f : X — Y is out of our
objectives)

The motivation comes from, e.g., Calculus of Variations

The basic problem of Calculus of Variations is minimizing the functional
[51
f:x(-)»—)/@(t,x(t),i((t)) dt
to

on a set of functions x : [to, t1] — R” satisfying some suplementary
conditions (end-point, isoperimetric, holonomic, nonholonomic etc.)
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3 Functional spaces. Variational problems

In classic theory (it goes back to J. Bernoulli, L. Euler etc.) the functional
f is supposed to be defined on the space C?([to, t1], R") of functions twice
continuously differentiable on [tp, t;] that excludes from consideration a lot
of real applications

Necessary optimality condition (famous Euler-Lagrange equation) in classic
form requires differentiability of the integrand ¢(-,-,-) up to the second
order (under this assumption the functional f is differentiable in the sense
of Fréchet)

All of this is very restrictive and needs to be extended to nonsmooth case

Nowadays, the functional f usually is considered to be defined in a more
general space AC(([tp, t1], R") of all absolutely continuous functions
X : [1.'0, tl] — R”
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3 Functional spaces. Variational problems

The functional f can be defined also in a space of functions depending on
various variables, say

f:u(-)r—>/¢(x,u(x),Vu(x)) dx
Q

Here u: Q2 C R"™ — R is an admissible function satisfying some boundary
(or other) conditions

For instance, the famous Newton's problem on minimum resistence leads

to minimization of such kind functional with the integrand

1
O(x,u,8) = T4 e

under some appropriate physically reasonable constraints
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3 Functional spaces. Variational problems

Due to necessity to consider resistence of various (not only smooth) solids,
nowadays one supposes the functional f to be defined on the (maximally
general) space X = WP (Q R) of Sobolev functions u(-), which are
integrable (of the order p > 1) together with their gradients Vu (in the
sense of distributions)

Extending more one can consider the functional f above defined on the
space X = WLP (Q R™) with m > 1. Here Vu(x) is the (generalized)
Jacobi matrix of the function u(-), which can be treated as the
deformation of a solid

Variational problems with such functionals have a lot of applications in
Elasticity, Plasticity, Theory of Phase Tranfers etc. Certainly, the integrand
® as well as the functional f may be nonsmooth
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4 Multivalued Analysis. Games Theory

So, Nonsmooth Analysis is one of the sourses and motivations of
Multivalued Analysis since each generalization of the usual derivative
(gradient and so on) is a set (multivalued object)

Another sourse is Game Theory, which nowadays has a lot of applications
in various fields of Engineering and Economics

We have two players (may be more) A and B (for instance, 2 factories,
which have economic relations with each other; two competitive species of
animals etc.)

Assume that the player A can choose its strategy x from some set Sy
while B chooses a strategy y € Sg

Furthermore, let us given two utility functions fa(x,y) e fg(x,y) that
mean the profit obtained by the player A or B, respectively, after
realization of the strategies x and y
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4 Multivalued Analysis. Games Theory

Assuming that the players have no information about behaviour of other,
the main problem is how to choose strategies x and y in order to
guarantee a maximal possible profit?

First of all each player should minimize the risks coming from behaviour
(unknown) of the other player. Namely, they define so called marginal
functions

fa(x) := inf {fa(x,y) : y € Sg}
fe (v) :=inf {fg (x,y) : x € Sa}
and then the respective guaranteed profit

fa =sup{fa(x):x € Sa}

fg = sup{l_‘B (v):y € Ss}
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4 Multivalued Analysis. Games Theory

Observe that analysing the set of strategies of the "adversary”, which
tends to minimize the profit

Ma (x) = {y € Sg:fa(x,y)=fa (x)}

the player A can diminish his riscs (so, augment the profit), e.g., excluding
strategies hardly realizable

Similarly, the player B does considering the set of strategies
Mg (y) :={x€Sa:fe(x,y) =fs(y)}

So, the (multivalued) mappings Dta () and Mg (-) called marginal
mappings are very useful as well
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4 Multivalued Analysis. Games Theory

There is a special class of games (antagonistic games or games with zero
sum) where the gain of one of players equals the loss of other, i.e.,

fa(x,y) = —fa(x. y)

In such a case the positive function, say f(x,y) = fa(x,y) = —fg(x,y), is
called cost of the game, and

fa = sup inf f(x,y);

A= sup inf (x,y)
—fg = inf supf(x,y

5 = jnf sup (x,y)

mean the profit of the player A and the loss of B, respectively
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4 Multivalued Analysis. Games Theory

Observe that always
fa<—fg

If, instead, the equality holds
fAat+fg=0

then the game has an equilibrium

If, moreover, there exists a point (x*, y*) € Sa x Sg such that
f(x*y")=1

then (x*,y*) is said to be a saddle point of the game (Sa, Sg, f(x,y))
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5 Differential equations with discontinuous right-hand side

Multivalued Analysis includes Differential and Integral Calculus as
extension of the respective classic Calculus as well as some specific
problems (e.g., continuous selections or parametrization)

The counterpart of the Differential Equations Theory on multivalued level
is Theory of Differential Inclusions, which studies such objects:

x(t) € F(t,x(t))

where F(t,x) is a multivalued mapping

Among numerous fields leading to differential inclusions we touch
Differential Equations with discontinuous right-hand side and Optimal
Control
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5 Differential equations with discontinuous right-hand side

Let us consider the Cauchy problem
x="f(t,x), x(to) =xo0

where the function f : [ty, t1] X R” — R" can be discontinuous w.r.t. x at

various points including xp. Such equations often appear in problems of
Mechanics

In the classic sense the problem above may have no solutions. Let, for
instance, tp = 0, xp = 0 and

1 se x<O0;
f(t’x)_{—l se x> 0.
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5 Differential equations with discontinuous right-hand side

If a solution x(-) is such that x(t) > 0 in a neighbourhood of some t*, say
for all t € [t* — 0, t* + ¢], then x(t) = —1 and

t
x(t):—/ds:t*—d—tgo
t*—§

Similarly, we have contradiction assuming that x(t*) < 0
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5 Differential equations with discontinuous right-hand side

In order to overcome this inconvenience A.F.Filippov in 1960 proposed
to relax somehow the problem by considering the Differential Inclusion

x € F(t,x), x(to) =xo0

where
F(t,x):= co{ lim f (t,xp) : Xp — x}

n—o0

Such problem for DI with convex-valued upper semicontinuous right-hand
side always admits a solution
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6 Optimal Control and Differential Games

Another sourse of Differential Inclusions is Optimal Control Theory that
gets a lot of applicatios in numerous fields of technology, natural sciences,
economics, even medicine etc.

Suppose that some (physical, biological, economic etc.) process is
governed by the differential system

x = f(t,x,u), x(ty) = xo,

containing a parameter u in the right-hand side. This means that the
process can be controlled by substituting in the place of u some
(measurable) function u : [tg, t1] = R”

Assume that the control function u(-) admits its values in some set U(t, x)
(possibly depending on the system state x as well)
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6 Optimal Control and Differential Games

The problem is to find an admissible control function v*(-) and the
respective trajectory x*(-), x*(ty) = xo, of the equation

x = f(t,x,u"(t)).
which gives minimum to some functional
Z(x,u)=®(x(t1))

It is so called Optimal Control Problem in the Maier form (or with
terminal functional)
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6 Optimal Control and Differential Games

The case of more general Bolza functional

t1

Z(x,u)=®(x(t1)) —i—/ap(t,x(t),u(t)) dt

to

can be easily reduced to a terminal one

Make this reduction l
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6 Optimal Control and Differential Games

Denoting by
F(t,x):={f(t,x,u):ue U(t,x)}

the set of velocities we naturally associate to our control system the
Differential Inclusion

x(t) € F(t,x(t))

So, we should only minimize the terminal functional
Z(x,u)=®(x(t1))

among all the solutions of DI and find a trajectory x*(+)
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6 Optimal Control and Differential Games

Applying then Filippov's Lemma (which is a consequence of the
measurable selection Theorem, see Lection Ill) we can construct a
measurable control function u*() such that

X (t) = (£, x*(2) 0" (1))
for almost all t € [to, ti]

In order to minimize a functional on the solution set of DI the notion of
attainable set is relevant
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6 Optimal Control and Differential Games

Namely, denoting by H£(to, xo) the family of all solutions x(+), x(ty) = xo,
of DI, the set

HF (to, x0) (7)== {x(7) : x(:) € HF (to, x0)}
is said to be attainable set of DI at the time moment 7

So, the Optimal Control problem is reduced in some sense to the (finite
dimensional) minimization problem:

Minimize {® (x) : x € He (x0) (t1)}

Consequently, we should
@ study properties of the attainable sets

@ reconstruct a trajectory x*(-) of DI by its initial and terminal positions
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6 Optimal Control and Differential Games

Further development of Optimal Control Theory leads to Differential
Games where there are two (or more) control functions corresponding to
each of the players (say A and B)

Namely, let us assume that two players (two factories in economic relation;
two adversaries in a military conflict etc.) at each time moment t € [ty, t1]
have resources x(t) and x?(t), respectively, that satisfy the differential
equation

x(t) =f(t,x(t),u,v),
x(to) = (X&,Xg)

where x(t) = (x!(t), x?(t)), and the control parameters u and v admit
values in some sets U(t,x) C R™ and V/(t,x) C R", respectively
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6 Optimal Control and Differential Games

Assuming the antagonistic character of the game, define, furthermore, the
cost functional

J (x,u,v) =V (x(t1)) /¢ (t,x(t),u(t),v(t)) dt

Thus, the problem is

o for the player A to minimize J (x, u, v) among all the strategies v(-)
of the player B and then maximize a profit

o for the player B to maximize J (x, u, v) among all the strategies u(+)
of the player A and then minimize a loss
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7 Problems with phase constraints. Viability

If in an Optimal Control Problem or in a Differential Game above a phase
constraint
x(t) e K

appears then this problem can be reduced to so called viability problem
for Differential Inclusion:

x(t) € F(t,x(t));
x(t) € K;
x(th) = x €K

Here K is a (locally) closed set, which can be given, e.g., by means of finite
number of algebric equalities and inequalities (K can depend also on t)

For existence of a (viable) solution in the problem above one needs to
impose some suplementary tangential hypothesis
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8 Structure of the course. Bibliography

In the next Lection we consider the simplest class of nonsmooth objects:
convex functions and sets

Convex Analysis is the basis of all modern Analysis, combines methods of
Abstract Functional Analysis and Geometry

The principal feature of Convex Analysis is duality. So, our goal is to
explain the relations between various dual objects (conjugate functions,
polar sets and so on)

One of the properties (Krein-Milman theorem) will be proved

Then we introduce so important concepts of Convex Analysis as
subdifferential of a convex function and normal and tangent cones to a
convex set. Some possible generalizations to nonconvex sets will be given
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8 Structure of the course. Bibliography

Lection Il is devoted to very brief survey of the Multivalued Analysis. We
introduce the most current continuity concepts for multivalued mappings
concentrating our efforts on the continuous selection problem

Then we pay attention to measurability properties of multifunctions and to
the concept of the multivalued (Aumann) integral

We will prove two very important theorems on multivalued mappings
(Michael Theorem on continuous selections and Kuratowski and
Ryll-NardZewski theorem on measurable choice)

As a consequence of the latter result we formulate Filippov's Lemma on
implicit functions we talked already about
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8 Structure of the course. Bibliography

In the first part of Lecture IV we prove the fundamental theorem of
Multivalued Analysis, so called A.A.Lyapunov’s Theorem on the range of
vector measure

Then we pass to multivalued mappings, which admit values in functional
spaces (of integrable functions), in particular, to mappings with so called
decomposability property

We are interested in continuous selections of such mappings (another
version of Michael's Theorem)

Here we give a sketch of the nice and suggestive proof of so called
Fryzskowski's selections Theorem
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8 Structure of the course. Bibliography

In the Lection V we introduce the notion of Differential Inclusion and of its
Carathéodory type solution

Further, we give survey of the most significative methods for resolving of
the inclusions and sketch of proofs of some important existence theorems

Finally, the last Lection VI will be devoted to Viability Theory or to
Differential Inclusions with phase constraints

We conclude, applying one of the methods presented in the previous
lecture (namely, method of continuous selections and fixed points) to a
viability problem
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8 Structure of the course. Bibliography

For thorough studying of the subject | would recommend the following
books and some papers:
@ Rockafellar R.T. Convex Analysis, Princeton University Press,
Princeton, New Jersey (1972)
o Ekeland I. & Temam R. Convex Analysis and Variational Problems,
North-Holland, Amsterdam (1976)
o Kuratowski K. Topology, Vol. |, PWN -Polish Scientific Publishers &
Academic Press, London (1958)
@ Aubin J.-P. & Frankowska H. Set-Valued Analysis, Birkhauser,
Boston (1990)
@ Aubin J.-P. & Cellina A. Differential Inclusions, Springer, Berlin
(1984)
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1 Convex functions and sets. Topological properties

We start with convex functions f : X — RU {400} (for convenience it is
allowed to admit infinite values as well)

Here X can be any Hilbert, Banach or a Topological Vector Space

Definition

A function f(-) is said to be convex if for each x,y € X and each
0 < X <1 the inequality

FMX+A=N)y) <A X)+(1-=N)F(y). (1)

holds. If in (1) the strict inequality takes place whenever x # y and
0 < X\ < 1 then we say that f(+) is strictly convex
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1 Convex functions and sets. Topological properties

We consider also convex sets as a counterpart to convex functions

Definition

A set A is said to be convex if Ax + (1 — \)y € A for each x,y € A and
0<A<1
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1 Convex functions and sets. Topological properties

The convex functions and sets are usually studied together because to each
(convex) function f : X — RU {400} one can associate the (convex) set

epif :={(x,a):a>f(x)}
(epigraph of f(-))
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1 Convex functions and sets. Topological properties

On the other hand, to each (convex) set A C X one can associate the
(convex) indicator function

L= 0 if xeA
AT 400 if x¢A

Observe, moreover, the following simple fact

Proposition

The function f : X — RU {400} is lower semicontinuous if and only if its
epigraph epif is closed

Consider also the (effective) domain
domf :={x € X :f(x) < +oo}

and say that f(+) is proper if dom f # ()
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1 Convex functions and sets. Topological properties

For topology of the convex sets and functions we refer to the books given

in the bibliography. Here instead we only emphasize two remarkable
properties:

e if a convex function f : X — R U {+o0} is upper bounded in a
neighbourhood of some point xg € dom f then it is continuous at xg

e for very large class of spaces X (including all Banach spaces) a convex
lower semicontinuous function f : X — R U {400} is continuous (and
even locally lipschitzean) on the interior of the effective domain dom £
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2 Separation of convex sets. Support function

The main geometric property of convex sets is the linear separation, i.e.,
the possibility to separate disjoint sets by affine manifolds (lines, planes
etc.)

In a finite dimensional space this is almost obvious (geometric, algebraic)
fact, but, in general, it is derived from Hahn-Banach Theorem, which is
the basic principle of Functional Analysis

Its geometric formulation can be given as follows

Mazur's Theorem

Let X be a Locally Convex Space (LCS). If C C X is convex, open and
such that C N L = () for some affine manifold L C X then there exists a
closed (affine) hyperplane H O L with CNH =)
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2 Separation of convex sets. Support function

Each affine hyperplane can be written analytically as
H=1{xeX: p(x)=a} (*)

for some linear continuous functional ¢ (¢ € X’ where X’ is the dual LCS)

For the sake of symmetry we denote such functional ¢ by x’ and in the
place of p(x) write (x, x’)

To (*) we associate naturally two (closed) half-spaces
Hy = {X eX: <X,X/> < Oé} and H = {X e X: <X,X/> > a}

The respective open half-spaces will be denoted by /‘_',;r and A~ resp.

!
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2 Separation of convex sets. Support function

So, let us remind two main Separation Theorems, which give basis of
the whole Convex Analysis

Separation Theorems

| Let A, B C X be convex nonempty sets such that A (or B) is open
and AN B = (). Then there exist x' € X/, x’ #0, and « € R (a
hyperplane H C X associated to x” and «) such that A C H} (X))
and B C H; (x) (we say that H separates the sets A and B)

Il Let A, B C X be convex nonempty sets such that A is compact, B is
closed and AN B = (). Then there exist X' € X', X’ #0, and a € R
(a hyperplane H C X associated to them) such that A ¢ A (x) and
B c Az (x') (in this case H separates the sets A and B strictly)
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2 Separation of convex sets. Support function

If AC X is convex, closed and int A # () then each point x € 0A
(boundary of A) can be (nonstrictly) separated from intA by some closed
hyperplane H called supporting hyperplane (see Separation Theorem )

A N

We see that at some points supporting hyperplane is unique (at the point
y in pic.), at others no (at the point x)

In the first case we say that the set A (or its boundary) is smooth at y
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2 Separation of convex sets. Support function

Otherwise, if we fix a hyperplane H (an "orthogonal” vector x’, which

defines H) then it can "touch” (be supporting) the convex set A at unique
point x or no (see pic.)

In the first case we say that A is strictly convex (or rotund) at x

Here we have the first duality of Convex Analysis between rotundity and
smoothness
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2 Separation of convex sets. Support function

For quantitative description of convex sets we need to introduce the
support function o4 : X’ — R U {+o0} associated to A:

O'A(X/) ::sup{<x,x’>:x€A}, x e X' J

The following picture illustrates the geometric sense of the support
function (the maximal distance, for which one should move the plane in
the direction x” in order to touch the boundary of A)
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2 Separation of convex sets. Support function

We have naturally

AcC {xeX:(x,xX)<oa(xX)}

However, if we take all of vectors x’ € X’ (in a normed space it is enough
to choose those with ||x’|| = 1) we obtain complete representation of A

Representation of a convex closed set

If X is a normed space with the norm || - || then the equality
A= m {xeX:{(x,x') <oalx)}
Ix"l=1
holds
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3 Geometry of convex sets. Krein-Milman theorem

This formula gives the "external” representation of a convex closed set as
the intersection of (supporting) half-spaces

Another "internal” representation is given by famous
Krein-Milman Theorem proved in finite dimensions by H. Minkowski in
the initial of XX century

To formulate this Theorem let us return to the duality between rotundity
and smoothness considered above and make it more precise
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3 Geometry of convex sets. Krein-Milman theorem

There are two dual approachs to study a convex (closed) set

@ To fix x € 0A and consider the set
F*:={x' € 0B : (x,x) = oa(x)}

If F¥ is a singleton then we have smoothness at x. If it is not then we
come to the notion of the normal cone (considered below)

e To fix x' € X" with ||x'|| =1 and consider the set
Fo = {x €A (x,x) = UA(X')}

called exposed face of A. If F,/ is a singleton (called exposed point)
then we have rotundity w.r.t. x’
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3 Geometry of convex sets. Krein-Milman theorem

There is another type of faces besides the exposed ones, which are used in
Krein-Milman theorem

Definition

A convex subset F C A is said to be extremal face of A if for each
X,y € A such that |x, y[NF # () we have x,y € F

We say that a point x € JA is extremal point of A if F = {x} is its
(0-dimensional) extremal face

Prove that each exposed face (point) is also an extremal one
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3 Geometry of convex sets. Krein-Milman theorem

The opposite implication is, in general, false already in R? as the following
example shows

Example

Another important property of extremal faces (unlike exposed ones) is the
transitivity

@ F is an extremal face of A & G is an extremal face of F = G is an
extremal face of A
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3 Geometry of convex sets. Krein-Milman theorem

Now we are able to formulate the basic Theorem

Krein-Milman Theorem

Let A C X be a nonempty convex compact set (X is a Locally Convex
Space). Then we have

@ ext A# ()

@ A—=—CoextA

Here it is important that X is an arbitrary LCS because afterwards this
theorem will be applied to Banach spaces with the weak topology, which is
not normable
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3 Geometry of convex sets. Krein-Milman theorem

Observe that the set of extreme points of a compact set may be not closed
already in the space R3 as the following example shows

Example A = co (B U C) where

B = {(x0,x):x +x5 <1, x3 =0}
C = {(xa,x2,x3):max(|x1|, |x3]) <1, xo =0}

In finite dimensions, nevertheless, the convex hull coext A is always closed,
and the closure in the Krein-Milman Theorem can be omitted (this is so
named Minkowski Theorem proved at the beginning of XX century)

Prove that for each convex compact A C R? the set ext A is closed l
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3 Geometry of convex sets. Krein-Milman theorem

Hypothesis of the compactness of the set A in the Krein-Milman Theorem
is essential

Prove that the unit closed ball in the space of all summable functions
L1(T,R) has no extreme points. Here T = [a, b] is a segment of the
number line

By the way, it follows from the assertion above that the space L!(T,R)
can not be conjugate for some Banach space (in particular, it is not
reflexive)
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4 Legendre-Fenchel conjugation. The duality theorem

Let us define now a construction for functions similar to the support
function for sets

Namely, fix (x’,a) € (X x R)' = X’ x R and consider oepi r(x’, a). Since
epif is upper unbounded, we obviously have

Oepif(X', @) = +00 whenever a >0

The case a = 0 characterizes dom f but not properly f(+)

So, after normalizing (dividing by |a]) we get f* : X’ — R U {+o0},

Fr(X) = oepir (X', —1) = §:§(<X7X’> - f(x))

called conjugate function (or Legendre-Fenchel transform) of f(-)
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4 Legendre-Fenchel conjugation. The duality theorem

The conjugate function and specially the double conjugation (called also
[-regularization of the function f : X — R U {+o0}) are very important
for various fields of Analysis and for Applications

If the space X is reflexive then the second conjugate function f** = (f*)*
is defined on the same space X and admits the following (equivalent)
characterizations

e f**(x) is the pointwise supremum of all the affine functions below f(-)

o f**(x) is the greatest convex lower semicontinuous function among
those below f(-)

@ epif™ ==coepif for all x € int dom f**
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4 Legendre-Fenchel conjugation. The duality theorem

Calculate the conjugation of the following functions
(@) F R R, f(x) =L with p>1

(b) f:R =R, f(x) = el

(c) f:R2 5 R, f(x) = ext2e
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4 Legendre-Fenchel conjugation. The duality theorem

Furthermore, the following formula holds:

k

**(x) = inf {Z Aif(xi) = Ai = 0,

i=1
k k
Z)\,': 1, x; € X, Z}\,’X,‘X}
i=1 i=1

I[f X = R" then in the above formula one can set k =n+1

Vladimir V. Goncharov (Departamento de M: Multivalued & Nonsmooth Analysis



Lection Il

4 Legendre-Fenchel conjugation. The duality theorem

In particular, from these characterizations one deduces

Theorem on double conjugation

For each proper convex lower semicontinuous function f : X — RU {+o0}
(and only for that) we have

f**(x) = f(x) forall x € X
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4 Legendre-Fenchel conjugation. The duality theorem

The second conjugate function has a lot of applications in Calculus of
Variations. For instance, in order to resolve the minimization problem

minimize / F(Vu(x))dx: u(-) € up(-) + W' () ¢,
Q

where f(+) is, in general, nonconvex integrand, one usually minimizes first
the relaxed functional

/ F(Vu(x)) dx
Q

and then by using obtained minimizer ii(-) constructs a minimizer of the
original one
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4 Legendre-Fenchel conjugation. The duality theorem

Similarly, as in the case of sets we have alternative

e Given x’ € X’ (with ||x’|| = 1 in the case of a normed space) consider
the set

Fo = {(x, f(x)): (x,x") — f(x) = F(xX)},
which is nothing else than an exposed face of epif. If F/ is a
singleton then the function f(-) is strictly convex w.r.t. x’

y=f(x)
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5 Subdifferential and its properties. Sum rule

e Otherwise, given x € dom f consider the set
F*:={x" e X": (x,x) — f(x) = f*(x')}
(the set of all "directions”, in which the respective (" orthogonal”)
hyperplane touches epi f at x)

3
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5 Subdifferential and its properties. Sum rule

Recalling the definition of the conjugate function we have

The set

of(x) :=={x e X' : F*(X') = (x,x') — f(x)}
={x'eX :f(y)>f(x)+ (x—y,x) Vy e X}

is said to be subdifferential of f(-) at x
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5 Subdifferential and its properties. Sum rule

Definition
In general, a function f : X — R U {+00} (not necessarily convex nor Isc)
is said to be subdifferentiable at x € X if 9f(x) # 0

In fact, subdifferentiability is equivalent to (local) convexity

Proposition
f(-) is subdifferentiable at x € int dom f iff

f(x) = 7(x)

In this case Of(x) = 0f**(x)

In other words, subdifferential does not distinguish a function f(-) near x
from its " convex envelope”
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5 Subdifferential and its properties. Sum rule

Let us emphasize now some important properties of Of for a convex Isc
function f : X - RU {+o0}

@ Of(x) is always convex and closed subset of X’

e if x € int dom f then Of(x) is nonempty bounded, consequently,
weakly compact in X’

e for any sequence {(xn, x,)} C X x X’ such that x, — x, {x}
converges weakly to x’ € X’ and x/, € 0f(x,) we always have
x' € Of(x) (the graph of Of is strongly xweakly sequentially closed)

e for all x,y € domf and all x' € 9f(x), y' € Of(y) the inequaity
<X_yaxl_yl> 20

holds. We say that the mapping x — 9f(x) is monotone (or
accretive)
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5 Subdifferential and its properties. Sum rule

The condition of minimum of a convex function can be easily expressed in
terms of the subdifferential

x € X is a minimum point of a convex Isc function f(-) iff one of the
conditions below holds

e 0 € Jf(x)
e x € 0f*(0)

The last condition is equivalent to the first one due to the following
assertion

x" € Of (x) iff x € Of*(x') iff

F(x) + £ (x') = (x,X)
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5 Subdifferential and its properties. Sum rule

Subdifferential calculus for convex functions includes the rules
@ if A > 0 then J(\f)(x) = \Of(x)
@ always Of(x) + dg(x) C O(f + g)(x)
o (the sum rule) the equality

Of (x) + 0g(x) = A(f + g)(x)

holds true whenever

there exists a point x € dom f N dom g at which either the
function f or g is continuous
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6 Polar sets. Bipolarity theorem

Similarly to convex Isc functions there is duality between a convex set and
its polar

The set

A= {x e X': (x,x') <1 V¥x € A}
={x' e X :0a(x') <1}

is said to be polar to the set A C X (A is not necessarily convex nor
closed)
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6 Polar sets. Bipolarity theorem

Let us list the main properties of the polar sets

1. if A,B C X are such that A C B then B® ¢ A°
2. if AC X and X # 0 then (AA)? = A~1A°
3. for each family {A.} ., of subsets of X one has

) g

acl aecl

4. if each A, C X is closed convex and contains the origin then

(Na) == (U#)

Vladimir V. Goncharov (Departamento de M: Multivalued & Nonsmooth Analysis



Lection Il

6 Polar sets. Bipolarity theorem

The main property of polar sets is the following

Bipolar Theorem

For each A C X (X is a reflexive Banach space) we have
A% =5 (AU {0})

Thus A = A% iff A is closed, convex and 0 € A
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6 Polar sets. Bipolarity theorem

Justify the properties 1.-4. of the polar sets. Proving the equality 4. use
the Bipolar Theorem

Construct the polars to the following sets:
(a) A={x=(x1,%) €ER?: (x1 —1)>+ (xp — 1)?> < 4}

(b) A=co{(0,1),(2,0),(0,—-1),(—2,0)}

() A={x=(x1,x) €ER?: x| <1—-xZ, |x4| <1}
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7 Normal and tangent cones

Returning now to the first approach to convex sets introduce the notion of
normal cone at a point x € A as

Na(x) = {X eX :(x,x)
= {XeX:(y—xx
The normal cone can be also interpreted as dl4(x)
Na(x) is a convex closed cone, which equals {0} if x € int A

The normal cone is always non trivial (# {0}) whenever x € JA and
int A # 0 (it follows from the first separation theorem)
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7 Normal and tangent cones

Another important object associated to a convex closed set, which has a
lot of applications (in particular, in Viability Theory), is tangent cone

It is defined (unlike the normal cone) in the same space X as A (not in
dual):

Ta(x) = (NA(X))O ={veX:{v,x) <0 Vx € Na(x)}

It is nontrivial closed convex cone, and T 4(x) = X whenever x € int A
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7 Normal and tangent cones

The normal and tangent cones can be nicely characterized by means of the
distance function to the set (in a normed space)

Denoting by da(-) the distance from a point to the set A in X we have
I NA(X) NB= adA(X)

Il Na(x) = f_jlnadA(x) = U20da(x)

_ - lim L =
Il Ta(x) = VEX.)\lLI’g+)\dA(X+)\V) 0}

IV Ta(x) = U 2
A>0
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8 Tangent cones to nonconvex sets

If AC X is a closed nonconvex set then there is a multiplicity of notions
of normal as well as tangent cones

Let us mention some of the tangent cones, which will be used mostly in
viability theorems. We give only some definitions without comments,
interpretation and properties

b o T 1 _
o Ti(x) = {v e X: l,l\n;(l)rf sda(x + Av) 0}
Bouligand's tangent (ou contingent) cone

o Ti(x) = {v €X: ,\in(}+ Tda(x + Av) = O} Adjacent cone

TS (x) = X: l 1d Av) =
° Talx) {Ve A0y xyen X Aly +4v) 0}

Clarke's tangent cone
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1 Basic definitions

We will use the following notations and basic definitions:

o 2% is the family of all nonempty closed subsets A C X

e comp X (conv X) is the family of all compact (respectively, compact
and convex) sets A C X

@ F: X —2Y (or F: X = Y) is a multivalued mapping (or
multifunction)

o domF :={x e X:F(x)#0 } is said to be the domain of F
e graph F == {(x,y) € X x Y :y € F(x)} is the graph of F
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1 Basic definitions and examples

F~1(C):={x € X : F(x) C C} is said to be the small preimage of
C C Y (under the mapping F)

F_1(C) :={x € X : F(x) N C # 0} is the total preimage of C

F(A) := U,ca F(x) is the total image of A C X

o F1:Y =X, Fly):={xeX:ye F(x)} is said to be the
inverse mapping of F

The subdifferential Jf(x), the normal and tangent cones Na(x) and Ta(x)
are examples of multivalued mappings
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1 Basic definitions

Another example is the mapping & +— H¢(&) associating to each £ € X the
set of solutions to the Cauchy problem

x(t) = f(tx(t),  x(to) = ¢

Similarly, to the control system

x = f(t,x,u)
x(to) = &
u € U(t,x)

one can also associate the mulivalued mapping & — S(&) where 5(§) is
the set of all the trajectories of this system
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1 Basic definitions

Furthermore, the inverse mapping for an arbitrary (single-valued)
mapping is, in general, multivalued (if there is no injectivity)

For instance, the function y = x2 is "invertible” just for x > 0, although x

can admit negative values as well. In general, (multivalued) inverse
mapping here has the form x = F(y) = {,/y,—/y}, y >0
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2 Vietoris semicontinuity

The first definition of continuity for multivalued mappings is due to L.
Vietoris. It is associated with some topology in the space 2% (so called
exponential or Vietoris topology)

F : X =3 Y is said to be upper semicontinuous at a point x; € X (by

Vietoris) if for each open set V' O F(xg) there exists a neighbourhood U
of xp such that V O F(x) for all x € U

F: X =3 Y is said to be lower semicontinuous at a point x; € X (by
Vietoris) if for each open set V C Y with F(xp) NV # () there exists a
neighbourhood U of xq such that F(x) NV # () for all x € U

F : X =3 Y is said to be continuous at xp € X (by Vietoris) if it is both
lower and upper semicontinuous by Vietoris at this point
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2 Vietoris semicontinuity

Let's give the global version of semicontinuity

Definition

Naturally, F : X = Y is upper (lower) semicontinuous by Vietoris if it is
upper (lower) semicontinuous at each point xg € X

Otherwise, F : X = Y is upper (lower) semicontinuous by Vietoris if for
each open V C Y the small preimage F~1(V) (respectively, the total
preimage F_1(V)) is open in X
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2 Vietoris semicontinuity

Let's give the global version of semicontinuity

Definition

Naturally, F : X = Y is upper (lower) semicontinuous by Vietoris if it is
upper (lower) semicontinuous at each point xg € X

Otherwise, F : X = Y is upper (lower) semicontinuous by Vietoris if for
each open V C Y the small preimage F~1(V) (respectively, the total
preimage F_1(V)) is open in X

Upper semicontinuity of multifunctions is connected with the other
important property: closedness of the graph. Namely,

@ each upper semicontinuous multifunction F : X — 2" has the closed
graph (at least, if Y is a metric space)

@ converse is true whenever F admits values in a common compact set
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3 Hausdorff metrics

Furthermore, assuming Y to be a metric space with the distance d(-,-), in
the family of bounded sets from 2" one can define the metrics (so called
Pompeiu-Hausdorff metrics) by the formula

D(A, B) := max {sup inf d(x,y), sup inf d(x,y)}
xcA YEB yeB XEA

If Y is a normed space with the closed unit ball B then we have another
representation

D(A,B)=inf{e>0:ACB+¢cB and BC A+¢B}
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3 Hausdorff metrics

If X is a Banach space then

there exists a homeomorphism (even an isometry) between the space
conv X endowed with the Pompeiu-Hausdorff metrics ©(+,-) and the
subspace (indeed, a closed cone) in C(X’) of all continuous functions
X" — R (with the usual sup-norm): A — cg4(-). Namely,

D(A,B) = sup |oa(x') —op(xX)]

lIxlI=1
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3 Hausdorff continuity

This metrics (consisting, in fact, of two semimetrics) suggests another
definition of the semicontinuity

F: X = Y is said to be upper semicontinuous (by Hausdorff) at a

point xg € X if for any € > 0 there exists a neighbourhood U of xg such
that

F(x) C F(xo)+eB  VYxeU

F: X =2 Y is said to be lower semicontinuous (by Hausdorff) at a

point xg € X if for any € > 0 there exists a neighbourhood U of xg such
that

F(xo) C F(x)+eB  VxeU

Vladimir V. Goncharov (Departamento de Mz Multivalued & Nonsmooth Analysis



Lection I

4 Properties of semicontinuous multifunctions

In general, two (upper, lower) semicontinuity concepts (by Vietoris or by
Hausdorff) are different but they coincide if Y is a Banach space and
F: X —compY

Observe that speaking about multivalued mappings, the new operations
appear, namely, one can consider the union or intersection of given
multifunctions. So, the natural question arises: if some mappings

Fi,Fy : X = Y are upper (lower) semicontinuous then what can we say
about the mappings x — F1(x) U Fa(x) and x — F1(x) N Fa(x) ?
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4 Properties of semicontinuous multifunctions

It turns out that the union x — F1(x) U F2(x) is upper (lower)
semicontinuous whenever both F; and F, : X — 2" are upper
(respectively, lower) semicontinuous

As about the intersection the situation is much complicated. On one hand,
we have

always the intersection x — Fi(x) N F2(x) is upper semicontinuous
whenever both F; and F, : X — 2Y are upper semicontinuous (provided
just that Y is normal, thus for normed spaces it is OK)
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4 Properties of semicontinuous multifunctions

The latter implication is not true for intersections as one can see from the
following simple example

Example

Let F; : R — R? be the multifunction, which associates to each A € [0, 1]
the segment of the line in R?:

Fi(A) == {(x1,x2) : x0 = Axq, —1<x3 <1}
and
Fo(\) i= {(x1,%) : x2 + x5 <1, x» > 0}, AeR

Then F; and F, are even continuous (F; is constant) but the intersection
is not lower semicontinuous at A = 0 (see pic.)

v
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4 Properties of semicontinuous multifunctions

Faln)

Fia)
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4 Properties of semicontinuous multifunctions

However, let us mention the case very important for applications when
intersection inherits the lower semicontinuity

Theorem

Let Y be a metric space with the distance d(-,-) and F: X —2Y be a
lower semicontinuous (by Vietoris) multifunction. Assume that a
continuous (single-valued) function f : X — Y and a lower semicontinuous
real valued function ¢ : X —]0, +oc[ are such that

®(x) := F(x) N B(f(x), p(x)) = {y € F(x) - d(y, f(x)) < ¥(x)}

is not empty for all x. Then the set-valued mapping ®(-) as well as
x — ®(x) are lower semicontinuous (by Vietoris)

Notice that the strict inequality here (the ball is open) is extremely
important
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5 Continuous selections. Michael's theorem

The continuous selections problem is very important for Multivalued
Analysis. It is new one, i.e., has no counterpart in the Classic Analysis

A single-valued mapping f : X — Y is said to be selection of the
multifunction F : X =2 Y if f(x) € F(x) for each x € X
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5 Continuous selections. Michael's theorem

The continuous selections problem is very important for Multivalued
Analysis. It is new one, i.e., has no counterpart in the Classic Analysis

A single-valued mapping f : X — Y is said to be selection of the
multifunction F : X =2 Y if f(x) € F(x) for each x € X

A fundamental result was obtained by E. Michael in 1950"

Michael's Theorem

Let X be an arbitrary paracompact topological space (in particular,
metric space) and Y be a Banach space. Assume that F: X = Y is a
lower semicontinuous (by Vietoris) multifunction admiting nonempty
closed and convex values

Then a continuous selection f : X — Y of F exists and can be chosen
such that f(xp) = yo where (xo, o) € graph F is a given point
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5 Continuous selections. Michael's theorem

Let us pay attention to all of the hypotheses of Michael's Theorem.
Indeed, all of them are essential and can not be dropped

The first example of a continuous multifunction F : R = R? with closed
but nonconvex values, which has no any continuous selection, was
constructed by A.F. Filippov at the beginning of 1960t"

Furthermore, the existence of a continuous selection passing through
an a priori given point of the graph is a sufficient condition for the lower
semicontinuity

So, continuous selections give a characterization of lower semicontinuity
similarly as closedness of the graph characterizes upper semicontinuity
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6 Measurable multifunctions

Let us pass to the Integral Calculus for multivalued mappings and, first of
all, define measurability concepts for multifunctions

Definition

Let T be a measurable space with a o-algebra 91 of measurable sets (e.g.,
we may consider T = [0, 1] with the o-algebra £ of Lebesgue measurable
sets or the o-algebra of Borel sets). Let also X be any topological (or
metric) space

We say that the mapping F : T = X is measurable (weakly measurable) if
for any open U C X the preimage

FYU)={te T:F(t)c U}

(resp., F.1(U) ={t € T : F(t) N U # (0}) is measurable
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6 Measurable multifunctions

It is easy to show that

@ measurability of F implies weak measurability if X is any metric space

@ measurability and weak measurability are equivalent if X is metric and
F admits compact values

Furthermore, in the Definition we may take a closed set C C X in the
place of open U, just changing the preimages (F_1(C) in the case of
measurability and F~1(C) in the case of weak measurability)

Usually, one considers a metric separable space X where some nice
properties of measurable functions hold (such as Lusin’s Theorem)

Notice that if X is metric separable then the weak measurability of
F : T = X implies that the real function t > dg(;)(x) is measurable for
each x € X
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6 Measurable multifunctions

Let us give some example of a measurable multivalued mapping, which is
useful for proving, e.g., Filippov's Lemma

Example

Let X and Y be metric spaces (X is separable), U C Y be an open set
and f: T x X — Y be a single-valued function such that

e t — f(t,x) is measurable for each x € X

@ x — f(t,x) is continuous for each t € T
(f T is the space with a measure then in the latter assumption we
may require the continuity for a.e. t € T)

Then the mapping F : T = X,

F(t) :={xe X:f(t,x) € U}

is measurable

Vladimir V. Goncharov (Departamento de Mz Multivalued & Nonsmooth Analysis



Lection I

7 Measurable choice theorems

The main theorem on measurable selections of a multivalued mapping is
the following

Kuratowski and Ryll-NardZewski Measurable Selection Theorem

Let X be a separable complete metric space. Let also F: T == X be a
weakly measurable multifunction whose values are nonempty and closed.
Then F admits a measurable selection f(t) € F(t).

In fact, there exists a countable family of measurable selections {f,} such
that

F(t) = {fa(t): n>1}

(this is so called Castaing representation)
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7 Measurable choice theorems

Now as a consequence of the above theorem we obtain

Filippov's Lemma on implicit functions

Let X and Y be some metric spaces (X is separable and complete). Let
also a (single-valued) function f : T x X — Y be such that

@ t > f(t,x) is measurable for each x € X

@ x — f(t,x) is continuous for each t € T

and U : T = X be a measurable multifunction with compact values. If,
furthermore, v : T — X is some measurable function satisfying

v(t) € f(t,U(t)) :={f(t,u) :uec U(t)}, teT,
then one can choose a measurable selection u(t) € U(t) such that

v(t) ="f(t,u(t)), teT
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8 Aumann integral

Let now T be a space with some nonatomic complete measure i (we may
consider the segment T = [0, 1] with Lebesgue measure denoted by pq or
dt). Then we can define the integral of a multivalued mapping

Assume that the multifunction F : T — 2X is weakly measurable and
integrably bounded, i.e., there is a nonnegative summable function

I(-) € LY(T, X) such that sup ||v|| < I(t) for a.e. t € T. Then the
veF(t)
Aumann integral of the mapping F on T is defined as

/f(t) dt : f(-) is a measurable selection of F(-) on T
-
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8 Aumann integral

By the measurable selections theorem the Aumann integral denoted

further by
/ F(t)dt

-
is always a nonempty bounded set

It turns out that in the case X = R"” the Aumann integral is closed,
therefore compact subset of R”

This follows from Dunford-Pettis Theorem if F admits convex values

Otherwise, it is a consequence of the famous A.A.Lyapunov’'s Theorem
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1 A.A.Lyapunov’'s theorem

A.A.Lyapunov’'s Theorem on the range of vector measure
Let f : T — R" be an integrable function (f(-) € LY(T,R"))
Then the set

Y = /f(t)dt:EEgﬁ
E
is convex and compact in R". More precisely, ¥ = [F(t) dt where

-
F : T = R" is the measurable multifunction,

F(t):={Af(t):0< A <1}, teT

Here 91 is the o-algebra of Lebesgue measurable subsets of T = [0, 1]

Vladimir V. Goncharov (Departamento de Mz

Multivalued & Nonsmooth Analysis

enze NAotoe
/217



Lection IV

1 A.A.Lyapunov’'s theorem

The integral [F(t)dt is convex set because the multifunction F : T = R”
T

admits convex values. It is also compact by Dunford-Pettis Theorem as
was said above. So, we should prove just the equality

Z:/F(t)dt

We represent

/F(t)dt: /a(t)f(t)dt:a(.)ew — QW)

T T
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1 A.A.Lyapunov’'s theorem

Here
W:={a(-) e L(T,R):0< a(t) <1 forae teT}

and Q : L*°(T,R) — R is the linear continuous functional,
Q:al) /a(t)f(t) dt
T

It is obvious that X C Q(W)

In order to prove the opposite inclusion let us fix x € Q(W) and consider
the preimage

W, = WnQ *x)
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1 A.A.Lyapunov’'s theorem

The set W, is nonempty and weakly compact in the space
L>°(T,R) = (L}(T,R))’" (by Banach-Alaoglu Theorem)

Applying Krein-Milman Theorem we find «ag(-) € ext W, and prove that
ap(+) can admit only values 0 and 1 a.e.

Assuming the contrary, we find ¢ > 0 such that (A.) > 0 where
A ={teT:e<a(t)<1-¢}
Represent the function f(-) as
f(t) = (f(t), K(t), ..., fa(t))

where all f(-) are summable on T and, consequently, on A,
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1 A.A.Lyapunov’'s theorem

Denote by A the linear (finite dimensional) subspace of L}(A., R)
generated by the restrictions of f;(:), i =1,2,...,n, onto A,

Since A is closed and different from the whole space L(A.,R), applying
Hahn-Banach Theorem we find a linear continuous nontrivial functional on

L'(A.,R), which is equal to zero on A

This functional can be identified with some function () € L*(A.,R)

such that
16() =1 and / Be)F(t) dt —
Ac
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1 A.A.Lyapunov’s theorem

Extend the function 3(-) out of A, by setting 5(t) =0, t € T \ A, and
observe that

@ 0<ap(t)tep(t) <1 forall teT
® Q(ap£ef)=x

Thus, ag =8 € Wy and ag = 1/2(cvg + 8) + 1/2(cvg — €)
contradicting the choice of ag
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2 Convexity of the Aumann integral

By using A.A.Lyapunov's Theorem we can easily prove the convexity of

the integral
/F(t) dt

T

If £(-) and g(+) are measurable selections of F(-) on T and 0 < A <1 then
we should find another measurable selection ¢(-) such that

)\/f(t)dt+(1)\)/g(t)dt:/cp(t)dt

T T T
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2 Convexity of the Aumann integral

By A.A.Lyapunov's Theorem there exists a measurable set E € 9 such
that

A / (F(t) - g(t)) dt = / (F(t) — (1)) dt
T E
Finally, we set

p(t) = F(t)xe(t) + &(t)xme(t) € F(t)

where xg(-) is the characteristic function of the set E
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2 Convexity of the Aumann integral

In fact, in a finite dimensional space a more precise result than the
convexity can be proved

Aumann Theorem

If F: T — compR" is measurable and integrably bounded then
t +— co F(t) is also measurable and integrably bounded (with compact

values) and
/co F(t)dt = /F(t) dt

T T
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3 Application in Calculus of Variation

Let f : R" — R be a lower semicontinuous function satisfying the
superlinear growth assumption:

F(&) = o(€l])

where ® : Rt — RT is a real function such that
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3 Application in Calculus of Variation

Consider the variational problem

Minimize f(X(t))dt:x(-) e W
4

where
W= {x(-) € AC(T,R") : x(0) = xo, x(1) = x1}
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3 Application in Calculus of Variation

One of the approaches for resolving this problem is to relax it, namely, to
reduce it to the convexified one

Minimize /f**(x'(t)) dt . x(-) eWwW
T

Let X(-) be a minimizer in this relaxed problem existing by the famous
Tonelli's Theorem. Then we represent

PR (1)
through the infimum (see the properties of double conjugations above)

More exactly, we represent the point g(t) := (X'(t), f**(X/(t)) through the
extremal points of the (bounded) n-dimensional face of epi f**, which
contains g(t)

Boundedness follows from the growth assumption
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3 Application in Calculus of Variation

Applying then the Kuratowski and Ryll-Nardzevski Theorem we find
measurable functions v : T — R"and A\ : T — [0,1], k=1,2,..,n+1,

such that
n+1

> M(t) =1
k=1
n+1

() = > Mlt)vi(t)
k=1

n+1

FrE () = ) (0 f(v(t))
k=1
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3 Application in Calculus of Variation

In particular, if n =1 then we find two measurable functions
vi,vo : T — R and measurable A : T — [0, 1] such that

() = At)(t) + (1= A(1))va(2)

FrE (1) = Mo)f(v(t)) + (1 = A1) (va(t))
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3 Application in Calculus of Variation

By A.A.Lyapunov’s theorem, considering the measurable function

B vi(t) — va(t)
t—g(t) = ( f(vltt)) - f2(V2(f)) >

we find a measurable set E € 91 such that

/)\(t)g(t) dt — /g(t) dt

T E
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3 Application in Calculus of Variation

After setting
v(t) = va(t)xe(t) + va(t)xme(t)
it is easy to see that the function x(-),
t
x(t) == xo +/ v(s) ds, teT,
to

belongs to W and minimizes the original functional
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4 Darboux property of a vector measure

Now we deduce from A.A.Lyapunov's Theorem an important property of a
vector measure, which will be useful in sequel

Let us consider a vector measure p : 9t — R” represented by
H(E) = / F(t)dt, Ecm
E

with some f(:) € L}(T,R")

Its norm (in the space of measures M (9, R")) or so called total variation

Il = /T 17(t)] dt
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4 Darboux property of a vector measure

Darboux property

There exist measurable sets A, € M, « € [0, 1], such that
@ Ay CAgifa<p
® 1(Aa) = ap(T)

First, given A € 9t and applying A.A.Lyapunov's Theorem to the
o-algebra My .= {ANE : E € M} (taking into account that p(0) = 0)
we find B € 9 such that
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4 Darboux property of a vector measure

Let us prove the statement for the binary fractions 25,,, k=1,2..2"
n=1,2 ... (denote by D the set of these fractions)

For n=1 and kK = 0,1, 2 such sets are already constructed above. By
induction let us assume that A x with the above properties are found for

al 1< k<on ’

So, we should construct sets A e just for odd numbers 1 < k < 27+1
an+

Define A:= Axu \ Ax: and find B € 9 with

PYEa ! o+l

1 1
u(B) = i,u,(A) =3 (/1, (A;n%ll) —p (A;nlll)>

1/k+1 k-1 1
:2<2,,+1—2,,+1> M(T):WM(T)
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4 Darboux property of a vector measure

We set

and see that

@ monotonicity property continues to hold

° 1 (A%> = srzp(T)

on+1

Now given « € [0, 1] let us define
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4 Darboux property of a vector measure

Obviously A, € Mt and the family {A,} is increasing

Taking an arbitrary increasing sequence {r,} C D with r, — a— we have

#(Aa) = Tim o (A,,) = Tim rpp(T) = ap(T)

n—oo
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4 Darboux property of a vector measure

We'll use the following nice consequence of the Darboux property of the
Lebesgue measure pi:

If the functions f : K — L;1(T,X) and z : K — [0, 1] are continuous at a
point xp € K (here K is an arbitary metric or even topological space, X is
a Banach space), then the function g : x — f(X)XAZ(X) is continuous at xg
as well

We deduce continuity of g(-) at xo from the following estimates:

1g(x) — g(xo)l I (x)xA, = F(x0)xA,yl

<
+ [ (x0)xA ) = FO0)XA ) | < IF(X) = F(0)
+

/ 1F(0)(8)] dt

Az AAz(x)
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4 Darboux property of a vector measure

Then we use continuity of 7(-), the Lebesgue integrability of the function
t — |f(x0)(t)| and the obvious equality

Ho (AZ(X)AAZ(Xo)) = |Z(X) - Z(XO)|
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4 Darboux property of a vector measure

Finally, we need the following

Parametrized Darboux property

Let x — ux be a continuous mapping from a compact metric space K to
the space of measures M (M1, R")

Then for any £ > 0 there exists a family of measurable sets {A,} C M
satisfying the Darboux property above for the Lebesgue measure pg (or for
an a priori given finite dimensional measure) such that

® |px(Aa) —apx(T)[ < e
for all @ € [0,1] and all x € K

v

It is obtained by using the compactness argument (recall that the space K
is compact)
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5 Decomposable mappings in L}(T, X) and selections

Speaking about A.A.Lyapunov’'s and Aumann's Theorems we already
considered the measurable selections, which are constructed starting from
given ones by using the " concatenation” procedure, i.e., a new function

v(+) is obtained as equal to v1(-) on a measurable subset, and to v»(-) on
its complement

Definition

We say that a set & C L}(T, X) is decomposable if for each functions
u(-) and v(-) from U we have also

Uxe +vXxT\e €U

whenever E € 9
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5 Decomposable mappings in L}(T, X) and selections

It is known that a set i C LY(T, X) is decomposable iff it is the set of
measurable selections of some measurable integrably bounded multivalued

mapping

It turns out that the decomposability property can substitute the convexity
in Michael's selections Theorem
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5 Decomposable mappings in L}(T, X) and selections

Fryszkowski's Theorem

Let K be a compact metric space and X be a separable Banach one.
Then each lower semicontinuous multifunction F : K = L}(T, X) with
nonempty closed decomposable values (we say that the mapping F(-) is
decomposable) admits a continuous selection (passing through an arbitrary
point of the graph)

This Theorem was proved by A.Fryszkowski in 1983 and afterwards was
extended first by A.Bressan and G.Colombo to the case of an arbitrary
metric space K (in 1986) and then by S.Ageev and D.Repovs to the
paracompact case (2000)

Vladimir V. Goncharov (Departamento de Mz Multivalued & Nonsmooth Analysis



Lection IV Some advanced properties of multifunctions
6 Approximate multifunctions

Sketch of the proof

The first step is construction of an approximate multivalued mapping.
Namely, given € > 0 we want to find two continuous (single-valued)
mappings f : K — L}(T,X) and r: K — LY(T,R") such that for all
xeK

o[ t)dt<e

ﬂ{ ) € LY(T, X) : |lu(t) — F(x)(t)]| < r(x)(t) a.e. onT};é@
Compare with the respective construction in Michael’s Theorem

By using lower semicontinuity of F(-) (by Vietoris) and Egorov's and
Lusin's Theorems on measurable functions we prove that this intersection
is lower semicontinuous as well. Consequently, its closure (in L1( T, X)) is
lower semicontinuous and admits closed decomposable values
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6 Approximate multifunctions

Thus, we construct a sequence of lower semicontinuous multifunctions
Fn(-) with nonempty closed decomposable values such that for all x € K

e Fi(x) = F(x)
@ F1(x) D F(x)D...D Fa(x) D ...

® Foy1(x) = {u(:) € Fu(x) = [lu(t) = f(x)(8)[| < ra(x)(t) a.e. onT}
where {f,} is a sequence of continuous functions K — L(T, X) and
{r,} is a sequence of continuous functions K — L}(T,RT) with

/rn(x)(t) dt < 2—1n

T

Here the overbar means the closure in L}( T, X)
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7 Construction of a continuous selection

Fix now x € K and take an arbitrary measurable function u}(-) € Fp(x)

Then for any m > n due to motonicity we have uX,(-) € Fny1(x) and
||um(t) = f(x)(t)|| < ra(x)(t) for ae. t e T
On the other hand.
|lum(t) = fn—1(X)(t)]| < rm—1(x)(t) fora.e. t€ T

Adding these two inequalities and integrating on T we arrive at
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7 Construction of a continuous selection

Since the space L!(T, X) is complete, the sequence {f,(x)} converges (for
a fixed x € K) to some (integrable) function f(x): T — X

Passing to the limit as m — oo in (*), we have

2R

J166® - F@ < 550 x€ K,
/

and, hence, the convergence is uniform, implying that  : K — L1(T, X)
is continuous

Finally, f(x) = limpcouf(:) € Fo(x) = F(x), x € K, due to the
closedness of F(x)
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8 Properties of the essential infimum

Thus, in order to conclude the proof we should find continuous functions
f:K—LYT,X)and r: K— LY(T,R*") with the approximate property
above

Let us recall that given a closed set A C L'(T,R) its essential infimum is
defined as the infimum of A in the lattice of the real measurable functions
(defined on T) with the partial order

a(-) < b(-) iff a(t) < b(t) forae. te T

i.e., essinf A is a measurable function ap(+) such that
@ ap(t) < a(t) for a.e. t € T whenever a(-) € A

o if for some measurable function b(-) € A we have b(t) < a(t) for a.e.
t € T whenever a(-) € A then b(t) < ap(t) a.e. on T
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8 Properties of the essential infimum

It is well known that essinf.A always exists, unique (up to changes on sets
of null measure) and

essinfA = infa,(t), t€ T
n

for some sequence {a,(-)} C A

If all functions from A are nonnegative then due to the closedness of A by
Lebesgue Dominated Convergence Theorem we deduce that essinfA € A
whereas some other properties follow from the decomposability of A
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8 Properties of the essential infimum

Given a decomposable set U C L}(T,X) (X is a separable Banach space)
let us denote by

b(t) := essinf||u(t)

u(-)eu
i.e., ¥(+) is the essential infimum of the set A := {||u(-)|| : u(-) € U} as

defined above

Then there exists a sequence {up(-)} C U decreasing in norm, i.e., such
that
lua(t)|| = [Jua(t)]| > ... > ||ua(t)|| > ... forae. t e T

and
Y(t) := lm |Jus(t)|l, te€ T

n—o0

In construction of {u,(-)} we strongly use decomposability of the set U

v
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8 Properties of the essential infimum

Another useful property of a decomposable set I/ is the following
t) = essinf||u(t)|| = [|u*(t
() = essinfllu(t)]] = [l (2)]

for some function u*(-) € U
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8 Properties of the essential infimum

Let us consider now a lower semicontinuous mapping F : K — LY(T, X)
with closed decomposable values and set 1, (t) := ?b)b iFI%f)|U(t)|
u(-)er(x

The mapping G : K — L}(T,R),

G(x) = {v() € LY(T,R) : v(t) > () forae. t€ T}

admits closed and convex values and is (Vietoris) lower semicontinuous

v

To see this let us take xp € K, a sequence {x,} C K converging to x and
vo € G(xo)
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8 Properties of the essential infimum

Then there exists up(-) € F(xg) with
vo(t) > |luo(t)]] = tx(t) forae. t€ T

Due to l.s.c. of F(x) there exists a sequence up(-) € F(x,) converging to
UO(') in Ll(T’X)

Therefore the sequence v, := ||un|| — ||uo|| + vo converges to vy and

va(t) > |lun(t)]| > 9, (t) forae. te T
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8 Properties of the essential infimum

So, now we are ready to construct an approximate mapping for
F:K— LYT,X)

Given xp € K and ug € F(xp) let us denote by G,, the multivalued

mapping from Theorem above where we substitute F — ug in the place of F

Then by I.s.c. of G, applying Michael's selections Theorem we find a
continuous real function ¢, 4, defined on K such that

@ P(xo,u0)(X)(t) = ess,__i(ng llu(t) — up(t)|| a.e. on T for all x € K
’ ueF(x

° @(Xg,uo)(XO) =0
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8 Properties of the essential infimum

Fixed € > 0 consider the open neighbourhood of xg:

Vixo,uo) = § X : /go(xo’uo)(x)(t) dt <e/4
T

and choose by the compactness of K a finite number of the sets
Vi := V(s u) for some x; € K, u; € F(x;), i =1,..., p, such that

Let {ei(-)} be a continuous partition of unity corresponding to {V;}
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8 Properties of the essential infimum

Then we consider the parametrized vector measure with the density
(depending on x € K) given by

(20)(); -+ 0p(x)())

where p;(x) = SD(X,-,u,-)(X)

For this measure we construct a family of measurable sets {Aq }4e[0,1] With
the properties

o A, C Ag whenever a < 3
o 1o(An) = auo(T) (uo is the Lebesgue measure on T)

o | [pi(x)(t) dt — afpi(x)(t) dt| < ) XEK, i=1,..,p
A T
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8 Properties of the essential infimum

Introduce now the continuous functions z; : K — [0, 1],
zi(x) = e1(x) + e2(x) + ... + €i(x), i=1,..,p,

and define

FO() =Y uixa, o\, (2)
fi=il
() = D (010 + ) Xayena, (0
X

shown above

v

Vladimir V. Goncharov (Departamento de Mz Multivalued & Nonsmooth Analysis



Lection IV

8 Properties of the essential infimum

The inequality
/r(x)(t) dt<e
-
follows easily from the last property of the family {A,}

Finally, by the properties of essinf (see above) for each u;(-), i=1,2,..,p
(recall that u; € F(x;)) and each x € K there exists a function
u(-) € F(x) with

|ui(t) — uj(t)|| = essinf |u(t) — ui(t)|| forae. te T
u(-)EF(x)
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8 Properties of the essential infimum

By decomposability the function

P
u(t) := ZULXAz,(X)\Az,-,lm(t)
i=1

belongs to F(x), x € K

From the properties of the family {A,} we easily deduce that
llux(t) — F(x)(t)]| < r(x)(t) for a.e. t€ T
and, hence,
{u() € FO) = lu(@) = FO)(@)] < r(x)(t) a.e. on T} # 0

for all x € K, and everything is proved
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1 Basic definitions. Cauchy problem

Let us consider the segment T = [0, 1] endowed with the Lebesgue
measure dt and the o-algebra 9t of Lebesgue measurable sets. Assume
that F: T x R"” = R" is a multifunction with nonempty closed values

The expression

x € F(t,x) (DI)
is said to be Differential Inclusion

An absolutely continuous function x : T — R”, which satisfies the relation
x(t) € F(t,x(t)) for a.e. t € T is said to be Carathéodory type solution
of the inclusion (DI)

v
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1 Basic definitions. Cauchy problem

In what follows we will consider also DI with the right-hand side defined on
an infitite dimensional Banach space X in the place of R”

Notice that in this case the definition of (Carathéodory type) solution
should be changed

Indeed, we should require that to be solution an absolutely continuous
function x : T — X must have derivative at almost each point t € T,
which must be Lebesgue integrable on T (then from absolute continuity
one conclude also that the function x(-) can be recovered from its
derivative X() by using the Newton-Leibnitz formula)

However, the above property (existence a.e. of the integrable derivative)
holds for an arbitrary absolutely continuous function not only in R"” but in
very large class of Banach spaces (so called spaces with Radon-Nikodym
property), which includes all reflexive spaces (in particular, all Hilbert ones)
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2 Existence theorems. Convex l.s.c. case

If F admits convex values and is lower semicontinuous w.r.t. both
variables (¢, x) then given point (xg, vp) with vy € F(0,xp) by Michael's
Theorem we can find a continuous selection f(t,x) € F(t, x) such that
f(O,X()) =W

Applying now Peano’s Theorem we find a classic (i.e., continuously
differentiable) solution of the Cauchy problem

x = f(t, x), x(0) = xo

Then x(-) is a classic solution of the Differential Inclusion, satisfying
the conditions x(0) = xp and x(0) = vy (with fixed initial state and initial
velocity)
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3 Basic methods

All methods for proving existence of a solution can be divided in two kinds:

@ direct methods
@ indirect methods

Direct methods are those where a solution is obtained as limit of a
sequence of some good functions, which can be treated as approximative
solutions with some a priori given exactness

Indirect methods instead refer to some either analitical or topological
results in order to establish existence of a solution such as Schauder fixed
point Theorem or Contractions Principle

To illustrate this let us recall the basic existence theorems for ODE (Peano
and Picard-Lindeloff Theorems), which can be proved by using both direct
and indirect methods
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3 Basic methods

In turn the direct methods can be distinguished according with the
fundamental principles, which are on the base of these methods

Indeed, there are two different fundamental priciples in Analysis, and any
eistence theorem is somehow based on one of them:

@ Compactness Principle when a solution is an eventual limit
(accumulation) point of some approximate sequence, which may be
not unique

e Completeness Principle when a solution is the (unique) limit (!) of
the convergent Cauchy sequence
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3 Basic methods

For instance, considering the Cauchy problem for ODE
x € f(t,x), x(0)=xp
we have two possibilities:

(i) assuming continuity of f in x (and measurability w.r.t. t +
integrable boundedness), we prove existence of a solution (not
unique), constructing so called Euler polygons (or other
approximations) and applying to them compactness argument due to
Arzela-Askoli Theorem

(ii) assuming lipschitzeanity of f in x (and measurability w.r.t. t as well),
we constract a sequence of successive approimations, which
converges in a complete space (of continuous functions) being a
Cauchy sequence there
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3 Basic methods

All of these methods are applicable in the case of Differential Inclusions as
well with some modifications due to multivaluedness of the right-hand side

The question, which method can be used, depends on the hypotheses
imposed to the right-hand side

As about indirect methods, besides the Fixed point Theorems, which are
relevant also here, we will use the new tool concerned with continuous
selections and also a topological tool based on famous Baire Category
Theorem
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4 Euler polygons. Compactness argument

This method can be applied whenever the right-hand side F is upper
semicontinuous in x and admits convex compact values

For the sake of simplicity we consider only the autonomous case (when F
depends only on x and is upper semicontinuous). In fact, a solution exists
also in general case when F depends on t in a measurable way (and it is
integrably bounded) but in this case the algorithm of proving should be a
bit more complicate

Theorem

Let us assume that F : R” — conv(R") is upper semicontinuous and
bounded, i.e.,
sup |v| <R (B)
veF(x)
for all x € R" with some constant M > 0. Then given xg € R" there exists
a Carathéodory solution x(-) of DI such that x(0) =xo
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4 Euler polygons. Compactness argument

Observe that without the boundedness hypothesis (B) we can also prove
existence but just of a local solution (defined on some interval
[0,0], 0<d<1)

Sketch of the proof
Fix n=1,2,... and divide the segment T = [0, 1] into n parts by points

First, we set xJ = xo, choose v§ € F(0,x{) and define x := x§ + Ly

Then, by induction in i construct two finite sequences {x} and {v/'} such
that

1
X =X\ + ;v-” and v/ € F(t/,x{"),

! 127
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4 Euler polygons. Compactness argument

Define continuous (polygonal) function
xo(t) 7= X"+ (t = t7) v, t e[t t]

We have
Xn(t) € F (t7, xn(t)), t €]t7, 4] (*)
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4 Euler polygons. Compactness argument

The sequence {x,(-)} is uniformly bounded and equicontinuous on T
(%a(t)| <R, t€T)

By Arzela-Askoli Theorem {x,(-)} is relatively compact in C(T,R"), so
without of generality assume that it converges (uniformly) to some
continuous function x(-)

On the other hand, by Danford-Pettis Theorem the sequence {x,(-)} is
weakly relatively compact in L*(T,R"). So, without loss of generality
assume that x,(-) — v(-), n — oo, with some v(-) € L}(T,R")

Hence,

t
xn(t)x0+/>'<(7)d7—>x0+/v(7), n—oo, teT
0
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4 Euler polygons. Compactness argument

Consequently, the function x(-) is absolutely continuous on T and
x(t) =v(t) forae. teT

Now, let us apply Mazur's Lemma and find a sequence of convex
combinations of {x(-)}, converging to v(-) strongly in L*(T,R")
Namely, let
o
Va(-) 1= D Aik(-) = X(-), n— o0
k=knp

Here 0 < A} <1 with >332, A7 =1 and only finite number of
s, k > kn, are positive

Without loss of generality we assume that v,(t) — x(t), t — oo, a.e.
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4 Euler polygons. Compactness argument

Denote now by 7 the set (of full measure) of all t € T, where the
convergence above takes place and where all the inclusions (*) hold

Fix t € 7. Then given € > 0 by (Hausdorff) upper semicontinuity of F we
find 0 > 0 such that for each x € R" with |x — x(t)| < ¢ we have

F(x) C F(x(t)) + eB
Let us choose n > 1 so large that

1
() = xa(tf)| S SR8, i =01,
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4 Euler polygons. Compactness argument

Hence, taking into account (*) we find

x(t) € F(t,x(t)) +¢eB
Since € > 0 is arbitrary, we have

x(t) € F(t,x(t)),

and x(+), x(0) = xo, is a requied solution
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5 Variational problem. Tonelli's Theorem

The similar reasoning can be applied, for instance, proving existence of a
minimizer in a variational problem

Minimize / F(t,x(8)) dt = x(-) € W
T

where W is the set of all absolutely continuous functions x : T — R”
with x(0) = xp and x(1) = x1

We can consider a minimization problem where some restriction on
derivative (in the form of differential inclusion x € F(t, x) assuming that F
is u.s.c. with convex compact values) as well as some phase constraints
are involved
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5 Variational problem. Tonelli's Theorem

We assume the following hypotheses:
(i) the mapping (t,v) — f(t, v) is continuous
(ii) for each t € T the mapping v — f(t,v) is convex

(iii) for some p > 1 there exist constants a; > 0, ap > 0, 5 € R and an
integrable function v : T — R™ such that

ar|v]? + B < f(t, v) < as|v[? +4(t)

for a.e. t € T and all v (the first inequality is so called coercivity
condition of the rank p)
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5 Variational problem. Tonelli's Theorem

Sketch of the proof

Let us denote by

| := inf f(t,x(t))dt: x(-) e W p < 400
/

Find a minimizing sequence {x,(-)} C W satisfying

/f(t, (1)) dt < /+%

T
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5 Variational problem. Tonelli's Theorem

From the coercivity assumption we have

' I +1—
/%mwm<*‘5n>1
A

)
a7

So, the sequence {x,(-)} is bounded in the space LP(T,R") and, by
Alaoglu-Banach Theorem, it is relatively weakly compact

Assume without loss of generality that {Xx,(-)} converges weakly to
v(:) € LP(T,R")

Then for each given t € T the sequence {x,(t)} converges to

t

An—m+/wﬂm

0
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5 Variational problem. Tonelli's Theorem

In particular, x(1) = x; and so x(-) € W
It remains thus to prove that x(-) is a minimizer

To this end by using again Mazur's Lemma (as in the proof of the
existence theorem for DI) we choose a subsequence of convex
combinations converging to v(-) strongly (in the space LP(T,R")) and
(without loss of generality) almost everywhere on T:

va(t) = ) Aii(t) — v(t) forall t € T
k=kn

where T C T with po(7) = po(T)

Here for each n just finite family of numbers A} (k > k) are positive
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5 Variational problem. Tonelli's Theorem

By using convexity of f in the second variable we have

f(t, va(t Z)\k t, Xk (t

k=kn

Integrating on T and continuing the latter inequality we arrive at:

=~ 1 1
/f(t,vn ) dt < Z)\k/ (t, % (1)) dt < | + 227 <+ oy
T k= kn k:kn
On the other hand, due to continuity of f

f(t,va(t)) — f(t,x(t)), n — o0

forae. te T
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5 Variational problem. Tonelli's Theorem

Finally, by Lebesgue's Dominated convergence Theorem we arrive at

lg/f(t,k(t))dt_ T /f(t,k,,(t))dtgl

n—0o0,
T T

We use here the second inequality from the hypothesis (iii)

So, infimum is attended on the function x(-)
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6 Successive approximations. Completeness

The method of successive approximations based on the completeness
argument is used for Differential Inclusions with (not necessarily
convex-valued) lipschitzean right-hand side (compare with Picard-Lindeloff
Theorem for ODE) even in an arbitrary Banach space

Theorem

Let us assume that F : T x X — comp X is such that
e t — F(t,x) is measurable for each x € X
@ there exists an integrable function k(-) € LY(T,R™) such that

D(F(t,x), F(t,y)) < k(t)llx -y

forall x,y € X and ae. t € T

Let us take more an arbitrary absolutely continuous function y : T — X,
y(0) = yo
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6 Successive approximations. Completeness

Then there exists a solution x(+), x(0) = xp, of DI such that
(@) [[x(t) —y(t)|| <&(t) forall te T
(b) [1%(£) — ()]l < k(DE() + p(t) for ae. te T

where

§(t) == [Ix0 — yoll exp m(t) + /Ot p(s) exp(m(t) — m(s)) ds
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6 Successive approximations. Completeness

Traditionally the estimates (a)-(b) are called Filippov-Gronwall inequalities

Sketch of the proof

We construct a sequence of approximate solutions x,(-) by some recursive
procedure

Let us choose a measurable selection vy(t) of t — F(t,y(t)) with

Ivo(t) = y(2)l| = p(t)
(projection of the drivative y(-) on the set F(t,y(t)))

Then define .
x1(t) —xo+/ vo(t) dt
0
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6 Successive approximations. Completeness

and choose a measurable selection v (t) of the mapping t — F(t, x1(t))
such that

va(t) = 5 ()] = dF(ex(e) (a(t))
Denoting by

xo(t) = xp + /Ot vi(t) dt

we continue this process and find a sequence of measurable functions
{vn(*)} and a sequence of absolutely continuous functions {x,(:)} s. t.

(i) va(t) € F(t,xn(t)) forae. te T
(ii) [lva(t) = xa()] = dr(ean(e)) (n(t))
(iii) xn(t) = x0 + [y Va—1(t) dt, n=1,2

g eee
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6 Successive approximations. Completeness

From (ii) by using lipschitzeanity assumption we obtain

IXn+1(8) = Xn(B)l] < D(F(t, xa-1(2)), F (£, %n(t)))
< k(B)lxa(t) = xa-1 (1))

By successive integrating of these inequalities (for n =1,2,...) and
applying the recursive procedure we obtain the estimates for

|xn+1(t) — xn(t)]|, which will imply that {x,(:)} is a Cauchy sequence in
the complete space C(T, X) and that the sequence of derivatives is a
Cauchy sequence in the space L}(T, X)

So they converge to a solution x(-) and to its derivative, respectively

Then, passing to limits in respective inequalities, we easily obtain the
estimates (a) and (b)
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7 Continuous selections approach

This is an indirect approach, which allows by using Fryzkowski selections
Theorem to avoid the convexity assumption in the case when the
right-hand side is just l.s.c. in x

Theorem

Let us assume the mapping F : T x R” — comp(R") to be such that
@ x — F(t,x) is lower semicontinuous for a.e. t € T
@ F is superpositionally measurable
o |v|| <I(t)forall ve F(t,x), xe Xandae. teT

Then for each xp € X there exists a solution x(-), x(0) = xo, of DI

In order to obtain the superposional measurability one usually assumes F
to be jointly measurable in both variables t and x w.r.t. the o-algebra
M @ B (here B is the o-algebra of Borel subsets of X)
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7 Continuous selections approach

Let us denote by
K :={x(:) € AC(T,R") : [|x(t)|| < I(t) forall te T},

which is relatively compact in C(T,R") by Arzela-Askoli Theorem and
also closed, consequently, compact

Let us consider the so called (multivalued) Nemytsky operator
F:K— [YT,R"),

F(x) = {v(-) € LY(T,R") : v(t) € F(t,x(t)) forae te T}

The values §(x) are obviously decomposable and closed
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7 Continuous selections approach

It is easy to show that the multivalued mapping § is (Vietoris) lower
semicontinuous

Applying now Fryzkowski Theorem (on the compact space K) we find a
continuous selection

g(x)€3(x),  x()ek

Let us define the continuous mapping f : X — I,

f(x)(t) :=xo + /Otg(x)(s) ds, teT
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7 Continuous selections approach

Since K is compact, convex and f(+) is continuous, by Schauder’s fixed
point Theorem we find a function x*(-) € K such that x* = f(x*)

Then, obviously, x*(0) = f(x*)(0) = xo, and

x*(t) = g(x*)(t) € F(t,x*(t)) forae teT

So, x*(+) is a required solution of the Cauchy problem
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8 Extremal solutions. Baire category approach

An interesting approach to search solutions of DI was proposed first by
A.Cellina in 1980 and then was developed in works by F.De Blasi,
G.Pianigiani, A.Bressan and others

It is based on a topological argument following from the so called Baire
category Theorem and allows to find a solution, whose derivatives not just
belong to the right-hand side but pass through its extremal points

So, being the sets F(t, x) convex and compact (in R"), we search a
solution x(+), x(0) = xp, of the Differential Inclusion

x(t) € ext F(t, x(t))

For the sake of simplicity in what follows we will consider only
autonomous case (when F does not depend on t)
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8 Extremal solutions. Baire category approach

Baire category Theorem

If X is a complete metric space then there is no a nonempty open set
G C X, which can be represented as a countable union of rare (or nowhere
dense) sets (usualy one says that each open set is of the second category)

v

The dual formulation

If X is a complete metric space and {U,} is a sequence of open dense sets

in X then the intersection -

2

n=1

is also dense in X (it is a dense Gs-set)

A\
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8 Extremal solutions. Baire category approach

Denote by Hg(xo) the set of all solutions to the convex problem, which is
nonempty (we already know this) and closed in C(T,R"), so it is a
complete metric space

We are going to construct a sequence {H} of open dense subsets of
HE(xo) such that

() H € Hext F(x0)

k=1
Then Baire Category Theorem formulated above gives that (—; Hx is
dense in He(xo) as well, so it is nonempty

Open and dense sets H can be constructed by using the so named
Choquet functions
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8 Extremal solutions. Baire category approach

To each nonempty compact convex K C R"” one can associate a Choquet
function (-, K) : R"” — R, which satisfies the following properties:
(i) I(x,K) = —o0 for x € K, and 0 < /(x, K) < diam K for all x € K
(ii) I(-, K) is concave
(i) /(+, K) is upper semicontinuous. Moreover, it is upper semicontinuous
in both variables x and K. In other words, for each sequence {Kp,}

converging to K w.r.t. Hausdorff distance, and for each {xp}
converging to x the inequality

I(x, K) > limsup /(Xm, Km)

m—o0

holds
(iv) I(x,K) =0 if and only if x € ext K
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8 Extremal solutions. Baire category approach

Examples of Choquet function were given by A.Bressan, F.De Blasi and
G.Pianigiani also in infinite-dimensional spaces

S.Suslov in 1991 proposed to characterize extreme points via a finite
sequence of functions {/;(-, K)} but not via single one (however, his
functions have very simple form in difference of usually used Choquet ones)

li(x,K) = max{(e;,y—z} 'y,z € K and yTH :x}

where {e;}"_; is orthonormal basis in R"

Then, in the place of the property (iv) above one should have
e x €ext K if and only if /i(x,K)=0forall i=1,...,n
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8 Extremal solutions. Baire category approach

To the Choquet function /(x, K) (or to each of /i(x,K), i =1,2,...,n) one
associates first a functional defined on the space of absolutely continuous
functions

£(x()) = /T I(%(t), F(x(2))) dt

which is equal to —oco out of the solution set Hg(xp), and then the family
of subsets

Hy = {x(-) € Hr(x0)  L(x()) <n},  n>0
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8 Extremal solutions. Baire category approach

To prove the openess of each H,, it is enough to show upper
semicontinuity of £(x(-)) on C(T,R")

But —£(x(-)) is nothing else than the integral functional with the
lagrangean, which is convex and lower semicontinuous w.r.t. the
derivative, and is lower semicontinuous w.r.t. the state variable

The lower semicontinuity of such functional is one of the elements of
proving existence of minimizers in Tonelli Method
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8 Extremal solutions. Baire category approach

In order to prove density we should already use the lipschitzeanity of the
right-hand side and resolve, in fact, the following problem:

taking x(-) € He(x0), we should find a sequence {x(-)} C He(xo) such
that xm(-) — x(-) uniformly in T and £(xy()) — 0 as m — oo

By Carathéodory Theorem for a.e. t € T the derivative x(t) can be
represented as a convex combination of not more than n+ 1 extreme
points; and this representation can be chosen measurable w.r.t. t

In other words, x(t) € co C(t) for some measurable compact-valued
mapping C(t) C ext F(x(t)) (card C(t) < n+1)

Vladimir V. Goncharov (Departamento de Mz Multivalued & Nonsmooth Analysis



Lection V

8 Extremal solutions. Baire category approach

Now by using Aumann Theorem we find a sequence of measurable
selections {vi,(+)} of the mapping C(:) itself such that
1x(t) = Ym(t)|| — O uniformly in T where yu(t) == xo + [ vi(s) ds

The functions yn,(-) could be candidats for approximation of x(-) because
their derivatives are extreme points, but of the set F(x(t)) (not of

F(ym(t))). so ym(-) & Hr(xo)
However, we have the estimate
p(ym(t), Fym(t))) < D(F(x(t)), F(ym(t))) < Ll[x(t) = ym(£)[| = 0

uniformly in t € T. Here we need already lipschitzeanity of F (with a
constant L > 0)
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8 Extremal solutions. Baire category approach

Hence, for each m there exists a solution xn,(-) of the convexified problem,
satisfying Filippov-Gronwall Inequality

t
[1Xm(t) = ym(t)[| < /0 pm(s)exp(L(t — s)) ds — 0
uniformly on T where

pm(t) = dF(ym(t))(ym(t))
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8 Extremal solutions. Baire category approach

Thus, on one hand, xn,(t) — x(t) uniformly in T

On the other hand, fix t € T such that x,(t) € F(xm(t)) and
ym(t) € C(t)

Since C(t) is compact, without loss of generality assume that
ym(t) = w € ext F(x(t))

Since also F(xm(t)) — F(x(t)), due to the upper semicontinuity of the
Choquet function we have

lim sup /(xm(t), F (xm(t))) < I(w, F(x(t))) = 0

m—>00

for a.e. t € T, and the density is proved
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1 Setting of the problem

In general, we consider a multifunction F : T x K = X where X = R" (or
even an arbitrary Banach space) and K is its nonempty closed (or locally
closed) subset

Sometimes K is considered depending on t, and so F is defined on the
graph of the mapping t — K(t)

Given xg € K we are interested to prove existence of an absolutely
continuous function x(-), x(0) = xp, such that

x(t)e K Vte T

and
x(t) € F(t,x(t)) forae. te T
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2 Nagumo's Theorem. Tangential condition

The first result on viability was obtained for ODE by M.Nagumo in 1942

He involved the tangential condition assuming that the right hand side
belongs to the contingent cone to a set K (not necessarily convex)

Nagumo's Theorem

Let K C R" be a nonempty closed set and f : K — R"” be continuous
satisfying the following condition

f(x) € TE(x) ¥xeK

Then for each xp € K there exists a solution x(-), x(0) = xo, of the
differential equation

x = f(x),
certainly, with x(t) e K, t € T
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3 Upper semicontinuous convex case. Haddad's Theorem

As about Differential Inclusions, the first result on viability was obtained
by G.Haddad in 1981 and was concerned with DI with upper
semicontinuous convex-valued right-hand side

Haddad's Theorem

Assume that K C R" is a closed set and F : T — K — conv(R") is
measurable in t for each x € K and is upper semicontinuous in x for a.e.
t € T. Let us assume also the tangential condition to be valid in the form:

F(t,x)NTE(x)# 0 V¥xe K

Then for each xg € K there exists a solution x(+), x(0) = xo, of the DI
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4 | ower semicontinuous nonconvex case

A.Bressan proved in 1983 the viability result for an autonomous
differential inclusion with lower semicontinuous right-hand side having not
necessarily convex values but with a more strong tangential assumption

F(x) C TR(x)
He showed also that under the weak Haddad's condition there is no

viability in a very simple case (F is constant but not convex)

The Bressan's result was extended to nonautonomous case by G.Colombo
in 1990

The prrofs by A.Bressan and G.Colombo were very technical involving
some special approximations similar to Euler polygons
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5 Continuous selections approach

The question is: how can the indirect methods (such as continuous
selections method) be applied to the viability problems?

There are some difficulties because this (continuous selections) method
not always works

However, it can be applied to the case when the set K is convex

Although existence of a solution to the Cauchy problem was already
proved by another method (Colombo's result), by using the continuous
selections technique we can get solutions with other (so named nonlocal)
initial data (for instance, with the periodical condition x(0) = x(1)) where
the convexity of the set K is very essential
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6 Formulation of theorem

Let X be a Banach space and K C X be a compact convex set. Let
F: T x K— 2X be such that
(i) F is M ® B-measurable mapping that implies easily the
superpositional meaasurability
(ii) the mapping x — F(t, x) is lower semicontinuous (by Vietoris) for
ae teT
(iii) there exists a summable function /: T — R such that ||v| < /()
forall ve F(t,x), x€ Kae on T
(iv) F(t,x) C Tk(x) for all x € K
Then, given xp € K there exists a solution x(-), x(0) = xg, of DI such that
x(t)e Kforallte T
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7 Approximation of tangential condition

Sketch of the proof

First, we consider the set

K:={x(:) e LYT,X): x(t) €K forae tc T}
and its compact convex subset
K* :={x(-) e KNAC(T, X) : ||x(t)]] <2(/(t) + 1) forae. t€ T}
As usual we prove that the Nemytski operator § : K = L1(T, X),
F(x) = {u(-) € LX(T,X) : u(t) € F(t,x(t)) for ae. t € T},

is lower semicontinuous (by Vietoris) and admits nonempty closed
decomposable values
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7 Approximation of tangential condition

So, choosing a continuous selection g(x) € §(x), x € K, we prove then
that

g(x) € Tk(x) Vx e K
or, in other form, .

lim — =

Jim ~Dic(x + Aglx)) =0
(Here Tx(+) is a tangent cone to the convex set K and D (-) is the
distance from the set K in the space L1(T, X))

It is easy to show that the convergence above is uniform on compact
subsets of /C, in particular, on I*

Hence, we choose a sequence A, — 0+ such that

D (x + Ang(x)) < An/n Vx(-) € £*
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7 Approximation of tangential condition

Let us consider now the multifunction P, : K* = LY(T, X),

Pa(x) = {v() € K:[Ix() + Ang(x)(t) — v(1)]
< di(x(t) + Ang(x)(t)) + An/n forae. te T}

It is lower semicontinuous (see above), so by Fryszkowski Theorem there
exists a continuous selection v,(x) € P(x)

Thus, we have the inequality

1X(2) + Ang (x)(2) = va(x) ()| < dic(x(t) + Ang(x)()) + An/n
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7 Approximation of tangential condition

Integrating on T, dividing by A, and changing the integral and the
distance, we arrive at

I£6) = o()llc < 3-Drx + Anglx)) + Ao/ < Ao/

where

and

F(x)(t) :—X0+/0 WlN) =) g ) ekt
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8 Exponential projections. Fixed points. Convergence

Extend the functions v,(-) (and, respectively, f,(-)) to a little bit larger
also compact convex set IC,, D K*,

Kn = {x(~) € KNAC(T,X) : [|x(t)| < diamK}

An

and define the following exponential operator on /C,:

o) = 7o exp(;nt) e /Ot va(x)(s) exp <t;ns) do

It turns out that o, maps K, to K,, it is continuous and satisfies the
equality
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8 Exponential projections. Fixed points. Convergence

Choosing by Schauder’s Theorem a fixed point x,(-) € K, of o, we have

L. xn(t) = on(xn)(t) = fo(xn)(1)
2. xp(-) e K* foralln=1,2, ...

It follows from 2. and from the compactness of I* that the sequence
{xn(-)} has a convergent subsequence

Assuming without loss of generality that it converges to some function
x(+), by 1. and by the previous estimates it is easy to show that
x(+), x(0) = xo, is the required solution
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