
Chapter 5

Reaction diffusion systems and

pattern formation

5.1 Reaction diffusion systems from biology

In ecological problems, different species interact with each other, and in chemical reactions, different
substances react and produce new substances. System of differential equations are used to model
these events.

Similar to scalar reaction diffusion equations, reaction diffusion systems can be derived to model
the spatial-temporal phenomena. Suppose that U(t, x) and V (t, x) are population density functions
of two species or concentration of two chemicals, then the reaction diffusion system can be written
as

∂U

∂t
= DU

∂2U

∂x2
+ F (U, V ),

∂V

∂t
= DV

∂2V

∂x2
+G(U, V ),

(5.1)

where DU and DV are the diffusion constants of U and V respectively, and F (U, V ) and G(U, V )
are the growth and interacting functions.

For simplicity, we only consider one-dimensional spatial domains. The domain can either be
the whole space (−∞,∞) when considering the spread or invasion of population in a new territory,
or a bounded interval say (0, L). In the latter case, appropriate boundary conditions need to be
added to the system. Typically we consider the Dirichlet boundary condition (hostile exterior):

U(t, 0) = U(t, L) = 0, V (t, 0) = V (t, L) = 0, (5.2)

or Neumann boundary condition (no-flux):

Ux(t, 0) = Ux(t, L) = 0, Vx(t, 0) = Vx(t, L) = 0. (5.3)

The following are a list of models which has been studied by biologists and chemists:
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Two species spatial ecological models:

Predator-prey:

Ut = DUUxx +A(U) −B(U, V ), Vt = DV Vxx − C(V ) + kB(U, V ). (5.4)

Here U is a prey and V is a predator, A(U) is the growth rate of U , C(V ) is the death rate of V ,
k > 0, and B(U, V ) is the interaction between U and V . Typical forms of these functions are

A(U) = aU or aU

(
1 − U

N

)
, C(V ) = cV,

B(U, V ) = dUV or
dUV

1 + eU
.

(5.5)

Other ecological models are

Competition:

Ut = DUUxx +A(U) −B(U, V ), Vt = DV Vxx + C(V ) − kB(U, V ), (5.6)

and

Mutualism:

Ut = DUUxx −A(U) +B(U, V ), Vt = DV Vxx − C(V ) − kB(U, V ). (5.7)

Chemical reaction models: See more introduction in Murray’s book.

Thomas mechanism

Ut = DUUxx + a− U − ρR(U, V ), Vt = DV Vxx + c(b− V ) − ρR(U, V ), (5.8)

where R(U, V ) =
dUV

e+ fU + gU2
. Thomas model is based on a specific reaction involving the

substrates oxygen and uric acid which reacts in the presence of the enzyme uricase. U and V are
the concentration of the uric acid and the oxygen respectively, and they are supplied at constant
rates a and bc. Both U and V degrde linearly proportional to their concentrations, and both are
used in the reaction at a rate of ρR(U, V ). R(U, V ) is an empirical formula. For fixed V , R(U, V )
is nearly linear in U for small U , and it approached to zero as U → ∞.

Schnakenberg reaction

Ut = DUUxx + a− bU + cU2V, Vt = DV Vxx − d− cU2V. (5.9)

This equation is from an artificial tri-molecular chemical reaction proposed by Schnakenberg:

X ⇀↽k1
k
−1
A, B →k2 Y, 2X + Y →k3 3X, (5.10)

Gierer-Meinhardt model
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Ut = DUUxx + a− bU + c
U2

V
, Vt = DV Vxx + dU2 − eV. (5.11)

Chlorine dioxide, iodine and malonic acid reaction (CIMA reaction)

Ut = DUUxx − s

(
a− U − 4UV

1 + U2

)
, Vt = DV Vxx + b

(
U − UV

1 + U2

)
. (5.12)

Gray-Scott model

Ut = DUUxx − U2V + f(1 − U), Vt = DV Vxx + U2V − (f + k)V. (5.13)

All these models can be rewritten to a standard form:

∂u

∂t
=
∂2u

∂x2
+ λf(u, v),

∂v

∂t
= d

∂2v

∂x2
+ λg(u, v),

(5.14)

after a nondimensionalization procedure.

5.2 Turing instability and pattern formation

We consider the nondimensionalized system





ut = uxx + λf(u, v), t > 0, x ∈ (0, 1),

vt = dvxx + λg(u, v), t > 0, x ∈ (0, 1),

ux(t, 0) = ux(t, 1) = vx(t, 0) = vx(t, 1) = 0,

u(0, x) = a(x), v(0, x) = b(x).

(5.15)

We suppose that (u0, v0) is a constant equilibrium solution, i.e.

f(u0, v0) = 0, and g(u0, v0) = 0. (5.16)

In fact, the constant solution (u0, v0) is also an equilibrium solution of a system of ordinary differ-
ential equations: 




u′ = λf(u, v), t > 0,

v′ = λg(u, v), t > 0,

u(0) = a, v(0) = b.

(5.17)

In 1952, Alan Turing published a paper “The chemical basis of morphogenesis” which is now
regarded as the foundation of basic chemical theory or reaction diffusion theory of morphogenesis.
Turing suggested that, under certain conditions, chemicals can react and diffuse in such a way
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as to produce non-constant equilibrium solutions, which represent spatial patterns of chemical or
morphogen concentration. It is noticeable that Alan Turing was one of the greatest scientists in
twentieth century. He was responsible for much of the fundamental work that underlies the formal
theory of computation, general purpose computer, and artificial intelligence. During World War II,
Turing was a key figure in the successful effort to break the Axis Enigma code used in all German
U-boats, which is one of the most important contributions scientists made to the victory of the
war.

Turing’s idea is a simple but profound one. He said that if, in the absence of the diffusion
(considering ODE (5.17)), u and v tend to a linearly stable uniform steady state, then, under certain
conditions, the uniform steady state can become unstable, and spatial inhomogeneous patterns can
evolve through bifurcations. In another word, an constant equilibrium can be asymptotically stable
with respect to (5.17), but it is unstable with respect to (5.15). Therefore this constant equilibrium
solution becomes unstable because of the diffusion, which is called diffusion driven instability.
Diffusion is usually considered a smoothing and stablising process, that is why this was such a
novel concept. More information of Turing instability can be found in Murray’s book Chapter 14.

So now we look for the conditions for the Turing instability described above. If (u0, v0) is stable
with respect to (5.15), then the eigenvalues of Jacobian

J =

(
fu fv

gu gv

)
(5.18)

at (u0, v0) must all have negative real part, which is equivalent to

Trace(J) = fu + gv < 0, Determinant(J) = fugv − fvgu > 0. (5.19)

Now suppose that (u0, v0) is unstable with respect to (5.17). Then (u0, v0) must also be unstable
with respect to the linearized equation:





φt = φxx + λfu(u0, v0)φ+ λfv(u0, v0)ψ, t > 0, x ∈ (0, 1),

ψt = dψxx + λgu(u0, v0)φ+ λgv(u0, v0)ψ, t > 0, x ∈ (0, 1),

φx(t, 0) = φx(t, 1) = ψx(t, 0) = ψx(t, 1) = 0,

φ(0, x) = c(x), ψ(0, x) = d(x),

(5.20)

or in matrix notation:

Ψt = DΨxx + λJΨ, (5.21)

where

Ψ(t, x) =

(
φ(t, x)
ψ(t, x)

)
, and D =

(
1 0
0 d

)
. (5.22)

From the separation of variables for single equation, we expect that φ and ψ are both separable,
and we try the following form:

Ψ(t, x) =

(
φ(t, x)
ψ(t, x)

)
=

(
uk(t)
vk(t)

)
cos(kπx) = Wk(t) cos(kπx). (5.23)
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We shall try this form of solution, and the general solution for Ψ would be

Ψ(t, x) =
∞∑

k=0

Wk(t) cos(kπx) (5.24)

By substitution of this form into (5.21), we obtain that Wk(t) satisfies a system of ordinary differ-
ential equations:

dWk

dt
= (λJ − k2π2D)Wk. (5.25)

If (5.20) is an unstable system, then at least one of Wk(t) would go to infinity as t→ ∞, i.e. one
of the eigenvalues of matrix Mk = λJ − k2π2D has positive real part. The eigenvalues µ1 and µ2

of λJ − k2π2D satisfy

µ2 − [λ(fu + gv) − (d+ 1)k2π2]µ

+(fugv − fvgu)λ2 − k2π2(dfu + gv)λ+ dk4π4 = 0,
(5.26)

and

Trace(Mk) = λ(fu + gv) − (d+ 1)k2π2,

Determinant(Mk) = (fugv − fvgu)λ2 − k2π2(dfu + gv)λ+ dk4π4.
(5.27)

Since fu + gv < 0, then Trace(Mk) < 0 is always true. So Mk cannot be a source or spiral source.
If Mk is unstable, then it can only be a saddle. Therefore we must have Determinant(Mk) < 0.

Remember that we only need one of Mk is unstable. So let’s take a look of the values of
h(k2π2) = Determinant(Mk) for different k (or k2π2 indeed.) Here we define the function

h(w) = (fugv − fvgu)λ2 − w(dfu + gv)λ+ dw2. (5.28)

When w = 0, h(0) = (fugv − fvgu)λ2 > 0 because we require fugv − fvgu > 0, and when k2π2

is large (→ ∞), we also have lim
w→∞

h(w) = ∞. So we must hope that for some 0 < k2π2 < ∞,

h(k2π2) < 0. Since h is a quadratic equation, we must require min
w≥0

h(w) < 0. It is easy to calculate

that min
w≥0

h(w) is achieved at w0 =
dfu + gv

2d
. This implicitly implies that

dfu + gv > 0, (5.29)

otherwise h(w) > 0 for all w ≥ 0. The minimum value at w0 is

h(w0) = λ2

(
fugv − fvgu − (dfu + gv)

2

4d

)
, (5.30)

which must be negative, so
(dfu + gv)

2 − 4d(fugv − fvgu) > 0. (5.31)

Summarizing all conditions we got so far, if (u0, v0) is stable with respect to (5.15) but unstable
with respect to (5.17), then d and J must satisfy

fu + gv < 0, fugv − fvgu > 0,

dfu + gv > 0, (dfu + gv)
2 − 4d(fugv − fvgu) > 0.

(5.32)
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The conditions in (5.32) give the range of parameter d such that (u0, v0) is possibly unstable,
but only (5.32) can only assure that certain values of h(w) are negative, but it cannot guarantee
there is a value k2π2 such that h(k2π2) < 0. To achieve that, we directly calculate the conditions
for h(k2π2) < 0. From (5.28), we have

h(k2π2) = (fugv − fvgu)λ2 − k2π2(dfu + gv)λ+ dk4π4 < 0, (5.33)

and if fu > 0 and gv < 0, then

d >
λ(Dλ− k2π2gv)

k2π2(fuλ− k2π2)
≡ dk(λ), (5.34)

where D = fugv − fvgu. {dk(λ)} is a family of curves with dk(λ) defined on (k2π2/fu,∞) (see
example below.) For a pair of parameters (λ, d), if d > dk(λ) for some natural number k, then
(u0, v0) is unstable. But if d < dk(λ) for any k, then it is stable. Summarizing the above calculation,
we conclude

Theorem 5.1. Suppose that (u0, v0) is a constant equilibrium solution of the reaction diffusion

system 



ut = uxx + λf(u, v), t > 0, x ∈ (0, 1),

vt = dvxx + λg(u, v), t > 0, x ∈ (0, 1),

ux(t, 0) = ux(t, 1) = vx(t, 0) = vx(t, 1) = 0,

u(0, x) = a(x), v(0, x) = b(x),

(5.35)

and the Jacobian of (f, g) at (u0, v0) is J(u0, v0) =

(
fu fv

gu gv

)
. If J , d and λ satisfy

fu > 0, gv < 0, fu + gv < 0, fugv − fvgu > 0,

dfu + gv > 0, (dfu + gv)
2 − 4d(fugv − fvgu) > 0,

(5.36)

and d > dk(λ) for some k, where

dk(λ) =
λ(Dλ− k2π2gv)

k2π2(fuλ− k2π2)
, D = fugv − fvgu, (5.37)

then (u0, v0) is an unstable equilibrium solution with respect to (5.35), but a stable equilibrium

solution with respect to u′ = λf(u, v), v′ = λg(u, v).

We use the example of Schnackenberg to illustrate the theorem. Consider the following and a
nondimensionalized system of reaction diffusion equations describing the chemical reaction is





ut = uxx + λ(a− u+ u2v), t > 0, x ∈ (0, 1),

vt = dvxx + λ(b− u2v), t > 0, x ∈ (0, 1),

ux(t, 0) = ux(t, 1) = vx(t, 0) = vx(t, 1) = 0,

u(0, x) = A0(x), v(0, x) = B0(x),

(5.38)
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where a, b > 0. There is a unique equilibrium constant solution (u0, v0) such that

u0 = a+ b, v0 =
b

(a+ b)2
, (5.39)

and the Jacobian at (u0, v0) is

J(u0, v0) =




b− a

b+ a
(b+ a)2

− 2b

b+ a
−(b+ a)2


 (5.40)

Then from simple computation, the conditions (5.36) become

0 < b− a < (b+ a)3, (b+ a)2 > 0,

d(b− a) > (b+ a)3, [d(b− a) − (b+ a)3]2 > 4d(b+ a)4.
(5.41)

For simplicity and transparency of the result, we select a pair of (a, b) = (1, 2), then the first row
of (5.41) is satisfied. The formula for dk(λ) in this case is

dk(λ) =
27λ(λ+ k2π2)

k2π2(λ− 3k2π2)
. (5.42)
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Figure 5.1: Parameter space (λ, d) for Turing instability

The first three dk(λ) are drawn in Fig. 5.1. Each dk(λ) is a concave up curve with a unique
minimum point. From Theorem 5.1, if (λ, d) falls below all of dk(λ), then (u0, v0) is stable for that
parameter choice; and if (λ, d) is above any of dk(λ), then (u0, v0) is unstable.

When (u0, v0) is unstable, the solution of linearized equation (5.20) has a form

Ψ(t, x) =
∞∑

k=0

(c1ke
µ1ktW1k + c2ke

µ2ktW2k) cos(kπx), (5.43)
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where µ1k and µ2k are the eigenvalues of λJ−k2π2D, and W1k, W2k are corresponding eigenvectors.
Since it is unstable, then one or more eigenvalues µ1k or µ2k are positive. For example, if (λ, d) is
a point such that d > d2(λ) but d < dk(λ) for all other k, then there is one eigenvalue µ12 > 0 (or
complex with positive real part), and all other eigenvalues have negative real part, and as t→ ∞,

Ψ(t, x) ≈ c12e
µ12tW12(t) cos(2πx). (5.44)

So the solution grows exponentially as t→ ∞, and it grows in a temporal-spatial pattern W1k(t) cos(2πx),
which is called an unstable mode of this equilibrium solution. For an unstable equilibrium, there
may be more than one unstable modes if the parameter pair (λ, d) is below two curves dk(λ).

The linear analysis of Turing instability is completed now. For nonlinear systems, if the initial
value is near the constant equilibrium solution, then in a short time, the orbit would be close to
that of linearized equation. When the equilibrium is unstable, a spatial pattern is formed following
its unstable mode, and the pattern grows exponentially fast for a short period. But after that, the
nonlinear structure takes over, and usually nonlinear functions force the solutions staying bounded
(like in the logistic model), thus the solution approaches a bounded spatial pattern as t → ∞.
Although the mechanism of the nonlinear evolution is still not clear mathematically, people believe
that the spatial pattern formed in the earlier stage near equilibrium solution is kept, which seems to
be supported by numerical simulations. Many problems are still topics of current research interests.
More biological discussion can be found in Murray’s book page 388-414.

5.3 Turing patterns in 2-D and animal coat patterns

5.4 Chemotactic motion of microorganisms

5.5 Spatial epidemic model

Chapter 5 Exercises

1. Consider the diffusive predator-prey model





∂U

∂t
= DU

∂2U

∂x2
+AU −BUV, s > 0, y ∈ (0, L),

∂V

∂t
= DV

∂2V

∂x2
− CV +DUV, s > 0, y ∈ (0, L),

∂U

∂y
(t, 0) =

∂U

∂y
(t, L) =

∂V

∂y
(t, 0) =

∂V

∂y
(t, L) = 0,

U(0, y) = U0(y), V (0, y) = V0(y).

(5.45)

Use the substitution

t =
DU

L2
s, x =

y

L
, u =

B

A
U, v =

D

C
V,
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to show the nondimensionalized equation has the form





ut = uxx + λ[Au− (C/D)uv), t > 0, x ∈ (0, 1),

vt = dvxx + λ[−Cv + (A/B)uv], t > 0, x ∈ (0, 1),

ux(t, 0) = ux(t, 1) = vx(t, 0) = vx(t, 1) = 0,

u(0, x) = u0(x), v(0, x) = v0(x).

(5.46)

Express the new parameters d and λ in terms of old parameters.

2. Consider Gierer-Meinhardt system:





ut = uxx + λ(−0.5u+
u2

v
), t > 0, x ∈ (0, 1),

vt = dvxx + λ(−v + u2), t > 0, x ∈ (0, 1),

ux(t, 0) = ux(t, 1) = vx(t, 0) = vx(t, 1) = 0,

u(0, x) = A0(x), v(0, x) = B0(x).

(5.47)

Apply Theorem 5.1, and determine the regions in (λ, d) plane where the equilibrium (u0, v0) =
(1, 1) is linearly unstable.

3. In (5.38) with (a, b) = (1, 2), we assume that λ = 4π2 and 0 < d <∞. From Fig. 5.1, there is
a unique d1 = d1(4π

2) such that (u0, v0) is stable when d < d1 and it is unstable with unstable
mode cos(πx) when d > d1. At d = d1, a bifurcation occurs. Use perturbation method to
calculate the bifurcating solutions when d is near d1, and determine the types of bifurcation
(subcritical, supercritical, transcritical, pitchfork, etc.)


