Modal Logic



Propositional logic may be defined in a Hilbert style fashion

Propositional logic is a set H defined as smallest set X of formulas verifying the
following properties:

1.if A, B, C are formulas then X contains the formulas (called axioms)

P1 A—-(B—A)

P2 (A—(B—C))—((A—B)—(A—C))

P3 ((-B—-A)—=((-B—A)—B))

L is closed w.r.t. the following operation

MP if AeX and A—BeX then BeX(modus ponens)

We write —H4 A to denote that AcH

If Q) is a finite set of formulas we write QQ 4 A to denote that 4 AQ - A

If Q) is an infinite set of formulas we write QQ 4 A to denote that there is a finite
subset Q,of Q s.t. Q,HA.




language of modal logic
alphabet:
(1) proposition symbols : po, p1, P2, - - -,
(i) connectives : —, L
(1ii) modal operator O
(iv) auxiliary symbols : (, ).

AT:{pO/ P1, P2, - - - /}U{J—}

The set WFF of (modal) formulas is the smallest set X
with the properties

(1) pi X (ieN), LeX,

(1i) A,BeX= (A—B)eX,

(lii))AeX =(~A)eX

(iv) AcX =(0A)eX




Let Z be a set o formula.
The normal modal logic L[Z] is defined as smallest set X of formulas verifying the
following properties:
1. Zc X
2. if A, B, C are formulas then X contains the formulas (called axioms)
P1 A—-(B—A)
P2 (A—»(B—C))—((A—B)—(A—C))
P3 ((-B—-A)—=((-B—A)—B))
P4 O(A—B)»(O0A—0OB)
3. Lis closed w.r.t. the following operation
MP if AeX and A—BeX then BeX(modus ponens)

NEC if AeX then O0AeX (necessitation)

We write |—L[z] A to denote that AcL[Z]

If Q is a finite set of formulas we write Q +- . Ato denote that - Aq - A

If QQ is an infinite set of formulas we write QQ — A to denote that there is a finite

L[Z]
subset Qg of Q) s.t. Qo |—L[Z] A.




L[2] is called minimal normal modal logic and
L[2] is denoted simply by K

Abbreviations

The usual abbreviations of classical logic plus
QA =-0-A

If N1,..,Nkx are names of schemas of formula
the sequence N1..Nk is the set
N1*u...uN1*, where

Ni* ={A: A is an instance of the schema N}

some schema some modal logic
D.OA-OA T :=L[T]
T DA A S4 = L[T4]

S5 = L[T4B]
4. OA—COOA KT := L[T]

B. ASOI0A Kd:= L[A]



Possible world semantics

o] g
Kripke semantics




Let Prop be the set of propositional symbols.

A structure F =(U,R), where U is a nonempty set and R € UxU is
called frame (& is a graph).

A valuation on a frame F=(U,R) is a function V : U—2Prop,

A (Kripke) model M is a frame plus a valuation V, M =(U,R,V>



Let M =(U,R,V) a model,
the satisfiability relation M = ¢ UXWFF

is defined as
1. M ,we=AABe M,w =EA AND M,w =B

M ,w EAvBe M,w A OR M,wE=B
3. MwE A e M,w A,
4. M,w EA—-Be (M,w EA= M,w E=B),

. M,w EO0Ae v u (WRu =M,u = A)

. M,weQAe 3 u (WRu AND M,u E A)

.M ,wW L
. M ,wE piff peV(w)




let M be a model, M = A iff for each uw € U we have M,u = A

let M be a model and let > be a set of formulas, M = X iff for each
AeX M=A

— A iff for each model M we have M = A.

let F' be a frame, F' = A iff for each valuation V, (F,V) = A

let F' be a frame, F,w = A iff for each valuation V', (F, V), w

let M be a model, Th(M) ={A: M
let F'be a, Th(F)={A:F = A}

Md(A) ={M : Mis a model, M
Md(¥) ={M : Mis a model, M
Fr(A)={F: Fis a frame, F
Fr(3) ={F : Fis a model,




Theorem 1.2.2 (soundness) Let ¥ be a set of formulas and let M €

Md(¥%) (F € Fr(X)) then for each theorem A €L|X] we have that M = A
(FEA).




Modal definability



First order translation

Let us assume a modal language with a denumerable set Prop of
propositional symbols.

Let us consider a first order language L, with a denumerable set Tl
of unary predicate symbols, and a binary predicate symbol R.

Let T:Prop—TI1 a bijective map

Let Form be the set of first order formula formulas in the language
L.

Given a fixed variable x, we define an injective mapping

ST: WFF—Form

1. ST(p) = P(x) for p eProp and P = 1(p);

2. ST(—-A)——-ST( )

3. ST(A—B)=ST(A)—ST(B)

4. ST(OA) = vy(xRy—ST (A)[x/y]) where y does no occur in ST(A).




definability



Let A (2) be a formula (a set of formulas), we say that A (%) defines
a first/second order property @ in the language with (R, =), if for

each F (F € Fr(A) (FeFr(Z)) «Fr o)

If the set 2 defines the condition ® then we say also that the logic
L[] defines O.

formula name formula first order property
OA-CA Vrdy.x Ry
T OA"A Va.x Rx
4 OA-00A4  Vayz. (zRyAyRz-zRz)
B OCOA-A VaVy.(xRy—yRx)
G SCOA~OCA Vayz.((rRyArRz) -»Fw(yRwAzRw))




Proposition 1.3.7 Oa-00a defines transitivity Voyz.(x RyAyRz-xRz)

PROOF




Proposition 1.3.7 Oa-00a defines transitivity Voyz.(x RyAyRz-xRz)

Proof.

1. ' =Vaeyz.(eRyhyRz-xRz) = F

therefore F, w”

2. F = OO0 = F

— «; namely F,w’

— O -»00«. Let F,w = Oa, and
w', w” s.t. wRw', w Rw” then by transitivity we have that wRw” and

— Do and F, w

— [

= Vayz.(tRyAyRz-xRz). Let us suppose that

F,w = Oa-00a; we fix the following assignment V(a) = {v|lwRv}.

We have that F.V, w

— Oa and by hypothesis F,V,w = OOa. Now

for a generic v € V(a) let w” s.t. vRw”. As F,V,w" = a, we must
have that R is transitive.




Proposition 1.3.8 COa-»0Oa defines directness:
dir = Vreyz((zRyAxRz)— Ju(yRuiAzRu))




Proposition 1.3.8 COa-0OCa defines directness:
dir = Vryz((zRyAxRz) - Ju(yRuiAzRu))

Proof
1. F =Veyz((xRyAzRz)~Ju(yRunzRu)) = F | COa-»00a
Let w € W and F,w = OO« then Jw’, wRw's t. Vw"w' Rw" = w" & «.

As dir holds we have that Vow Rvdsw'Rs, vRs as F, s = « and therefore
Fow = O0Ca

. FEO0aDO00a = F = Vaeyz((eRyAxRz) - Fu(yRuNzRu))
Let w,w’,w” s.t. wRw',wRw" and let V the assignment s.t. V(a) =
{s:w'Rs}
We have that F,w' = O« and that F,w' = COa. As F' = G we have

that F,w = OO« and therefore VowRv = dtFt Fa =t € V(a) =
F = dir




R is a preorder}
. R is an equivalence }




COMPLETENESS




L[Z] is defined as smallest set X of formulas verifying the following properties:
1. Zc X

2. if A, B, C are formulas then X contains the formulas (called axioms)
P1 A—(B—A)
P2 (A—(B—C))—((A—B)—~(A—C))
P3 ((-B—-A)—((-B—A)—B))
P4 o(A—B)—~»(O0A—OB)
3. Lis closed w.r.t. the following operation
MP if AeX and A—BeX then BeX(modus ponens)
NEC if AeX then OAeX (necessitation)

Given a set Z of modal fomulas the modal logic L[Z] is defined by means of the following
axioms and inference rules plus a notion of derivation.
axioms
1. if A, B, C are formulas then the following are axioms
P1 A—(B—A)
P2 (A—(B—C))—((A—B)—(A—C))
P3 ((-B—-A)—((-B—A)—B))
P4 O(A—B)—»(0A—0OB)
2. if AeZ then A is an axiom
Inference rules

B

A
OA
Derivations
A derivation is a finite sequence A1, . . ., An of formulas s.t. for each i € [1, n]
Aj is an axiom; or
Ai=Band3j,k<is.t. Aj=A Ak=A— B;
Aj=0Aand 3k <is.t. Ak = A;

NEC

We write '_L[Z] A to denote that there is a derivation A4,...,A, with A, =A




The construction of the canonical model



A set I of WFF is consistent if
[ L.
A set I of WFF is inconsistent if
[ L.

A set [ is maximally consistent iff
(a) I' Is consistent,

(b) T < and I’ consistent ==l"".

If I is maximally consistent, then I' is closed under
derivability (i.,e. T -p=0cl).




Theorem:
Each consistent set ' is contained in a maximally
consistent set ™

1) enumerate all the formulas
Do, ©1, P2, .....

2) define the non decreasing sequence:
[o=I
Thu{dn}if [n u{dn}is consistent,

['n otherwise

rn+1: 3

3) define




Propositional logic:

If I is consistent, then there exists a CANONICAL valuation such that [¢] = 1 for all
Yel.

Let L be a normal modal logic, a model M =(U,R,V) is called

canonical iff
1. U ={w : wis maximal consistent}
2. R={(u,v) : {A:O0Aecu}cv

3. ueV(p) & peu




A logic L is called canonical if, taken the canonical model <U,R,V>,
we have (U,R) € Fr(L).

Theorem CM
Let (U,R,V) the canonical model of L

—La < UR,V)Ea




A normal modal logic L is said to be model complete if for each
formula A:

L AeVMeMd(L) M=A

Theorem
Each normal modal logic is model complete

Proof
(=)
. A=VMeMd(L)M=A by soundness
(<)

In order to prove
vMeMd(L)M=A =+ A we use the canonical model.

If vM € Md(L) M=A we have in particular that taken the canonical
model (U, R, V) we have that (U, R, V) = A, and applying theorem
CM we conclude.




A normal modal logic L(2) is said to be frame complete if for each
formula A:

L AeVFeFr(Z) F=A

Theorem The logics K, KD, KT, S4, S5, are frame complete.
Proof

Let Le{K, KD, KT, S4, S5}, it is sufficient to show that if (U,R,V) is
the canonical model of L then the frame (U,R)eFr(L).




Let 2 be a set of formulas, and let ¢ € Fr(2) a set of frames; the

modal logic L[2] is said to be Z-complete (complete w.r.t. the

class ¢ of frames) if
AclL(2)eVFeC,F=A

Theorem

1. The logics K (KD) is complete with respect to the class of
denumerable frames with irreflexive, asymmetric and
intransitive (total) accessibility relation.

2. The logic S4 is complete w.r.t. the set of denumerable partial
order.




Modal logic and intuitionism

Let us consider the following translation function []* from
propositional formulas to modal ones.

p* =0p (p is a propositional symbol)

[AAB]™ = [A]*A[B]”

[AvB]*= [A]*V[B]*
[A—=B]" = O([A]" = [B]")
[=A]" =0(=[A])




Lemma

Let (W,R,V) be an intuitionistic model and (W,R,Vsa) be a partial
order model of S4 s.t. for each propositional symbol p,

W I-i p iff w i=s4 O,
then for each propositional formula A, w I A Iff w =4 A”

Lemma

Let Mi=(W,R,V;) be an intuitionistic model and Mss=(W,R,Vs4) be a
partial order model of S4 s.t. for each propositional symbol p,

W I p Iff w i=s4 0P,
then for each propositional formula A, Mil-i A iff Mss =s4 A*

Theorem
i A ©Fs4 A"




natural deduction?



There is no general way of giving a

proof theory for modal logics.

The case of S4







C ehp D < C has the shape either OB or =) B



faillure of normalisation




faillure of normalisation




The solution proposed by Prawitz




TEMPORAL LOGIC



LTL: Linear Temporal Logic



timeline/computation/fullpath
Kripke frame is Nat=(l\, o, <)
(as usual o(n) will be written as n+1)

each natural number identifies an temporal instant

A Linear Time Kripke model M (or, simply, a model) is a
frame plus a valuation of propositional symbols, namely

M= (Nat, V.N-»>2Prop)

o induces the accessibility relation
N C NXN

NA'M < m=n+1




language of linear temporal logic
alphabet:
(i) proposition symbols : po, p1, P2, - - -,
(i) connectives : —, L
(iii) modal operator O, %,

(iv) auxiliary symbols : (, ).

AT:{pO/ p1/ p2/ o o o /}U{J—}

The set WFF of (modal) formulas is the smallest set X
with the properties

(1) pi X (ieN), LeX,

(1i) A,BeX= (A—B)eX,

(lii))AeX =(~A)eX
(iv) AeX =(OA)eX
(v) A,BeX= (A % B)eX,

abbreviations:
OA = (—L)%A

A = —|Q—|A




Let M= (Nat, V) a model,
the satisfiability relation M = ¢ NxXWFF

Is defined as
1. M ,n=EAABe M,n EA & M,n =B

2. M ,nE=AvBe M,n =A OR M,nE=B

3. M,nE-=A & M,n A,

4. M,n EA—-B& (M,n EA= M,n =B),

5. \,n EAZB& 3 m(n<m & (M,m = B & Vvj(je[n,m-1]=M,j EA)))
6. M,n =E0Ae vm(n<m=M,mE A)

7. M,n =ECAe Im (n<m & M,m = A)

8. M,n EOAs M,n+1E=A)

O. M ,n EL
10.M ,n = p iff peV(n)




M,n =EAZB< 3 m=n M;m = B & vje[h,m-1] M,] A




Sometimes in literature a model is given by

K=(T,s:N—T, V)

where

T is a denumerable set of temporal instants

S is a bijection and

V:T—2Prop s a valuation

these models are completely equivalent to the models previously
introduced.




Let K=(T,s:N—T, V),
the satisfiablility relation K= ¢ TxWFF
Is defined as

M,sk EA—Be (M,sk =EA= M,sk =B),

M,snh EAZB< 3 m(h=sm & (M,sm = B & vj(je[n,m-1]=M,s;=A)))

M,Sn |=QA(E) M,Sn+1 = A)

M ,Sn ¥ L
M ,sn E p iff peV(sn)




MEA < vn M,n=A

A<= VM. MEA



AO All temporal instances of propositional classical tautologies.
A1 o(A—B)—(cA—0B)
A2 —|OA—>O—|A

A3

A4

A5

A6

A7

A8 AA

(A=B)=(

A—A

A —

A

A—0A

A— o0

A

(A—0A)—

vp A A—B

Gen

Geno

B

A

A

A—

B)




temporal induction

AAO(A—0A)—OA

O= AAO(A—0cA)—OA
=
(0=A & vn(n=A = n+1=A)) =Vn (n=A)

Let a(x) be the property x=A

O= AAO(A—0cA)—OA
—
(a(0) & vn(a(n) = a(n+1))) =Vn (a(n))

ke AAO(A—0A)—OA
—
(a(k) & vn=k(a(n) = a(n+1))) =Vn=k (a(n))




A = EA

(A simple induction on derivations: exercise)l

COMPLETENESS

A = A

Difficult: the canonical kripke model is not a temporal model




BRANCHING TIME



INTUITIVE IDEA: TREES/GRAPHS instead of COMPUTATIONS

v() =for each next time; 3= there exists a next time such that

vO= for each computation and for each state in it
vy = for each computation there exists a state in it such that

30 = there exists a computation such that for each state in it
3{> =there exists a computation and a state in it such that

= v()Q
=3 s A30p




language of UB

alphabet:

(1) proposition symbols : po, p1, P2, - - -,
(i) connectives : —, 1

(iii) modal operator vO,vO,v<O

(iv) auxiliary symbols : (, ).
AT={po, P1, P2, - - - JU{Ll}
The set WFF of (modal) formulas is the smallest
set X with the properties

(1) pi X (ieN), LeX,
(ii) A,BeX= (A—B)eX,

(ii)AeX =(-A)eX
(iv) AeX =(vO A), (vO A), (vO A) eX

abbreviations:
30 A =avO-A

3O A= avO- A
3OA=av(O)-A




Semantics

an (UB-)frame is a graph
(S,N)
where N € SxS is total (vs3s’ sNs’)

An s-branch/s-computation is a sequence
Ds=(Si)i<w S.t. S=So0 & V i€N SiNS;.1

if bs=(Si)i<w With bs[K] we denote sk and with
s’e bs we mean that 3k s.t. s’= bg[K]

an (UB-)model is a pair
(F,\V)

where F is a frame

and V:S—2FProp

IS a valuation




Let M= (5,N,V) a model,

the satisfiability relation M = ¢ SXWFF
is defined as

1.

O ® N U bk WN

M,S KEL

M ,s &= p iff peV(s)

M ,s =EAABe M,s EA & M,s =B

M ,s EAvBe M,s =EA OR M,s=B
M,sE-Ae M,s A,

M,s EA—-Be (M,s EA= M,s =B),
M,s EvO Ae vbsvs'ebs M,s" = A
M,s evO Ae vbsas’ebs M,s’ = A
M,s =30 A& 3bsvs’ebs M,s" = A

10.M,s 3 Ae 3bsas’ebs M,s’ = A

11.M,s evO A< vs' (sNs'= M,s’ = A)
12.M,s e300 A< 3s’ (sNs’ & M,s’ = A)




AXIOMATIZATION (% -free fragment)

A0 All temporal instances of propositional classical tautologies.
(A1) vO(A—B)>(vOA—vOB)

(A2) VO(A—B)>(VOA—-vOB)

(A3) VOA— (VOAA VOVO A)

(A4) AAVvO(A-2VvOA)—VIOA)

(E1) vO(A—B)>(30A—30B)

(E2)

(

(

E2) 30 A— (AA 3030A)
E3) vOA— 30A
E4) AAvO(A—30A) = 30A

A A-B

MP
B




A = EA

(A simple induction on derivations: exercise)l

COMPLETENESS

A = A

Difficult: the canonical kripke model is not an UB-model




The Logic CTL
CTL= UB+% s




language of CTL
alphabet:

(i) proposition symbols : po, p1, P2, - - - »
(if) connectives : —, 1 AT={po, p1, P2, - - - JU{L}

(iii) modal operator vO,v¥%, 3%

(iv) auxiliary symbols : (, ).

The set WFF of (modal) formulas is the smallest
set X with the properties

(i) pi €X (ieN), LeX,

(i) A,BeX= (A—B)eX,

(iiAeX =(-A)eX
(

iv) A,BeX =(VO A), (A v% B) eX

abbreviations:
A0OA = avO-A

30A=vO-A vOA=—-3O-A 30a = true I A vOA = true v A




NOTATION: if bs=(si)i<w With bs[k] we denote sk

M,s =B A% A

=

Hbs Hk ( M,bs[k] = A & VjE[O,k'1] bs[]] = B

M,s =EB V% A

=

vbs 3k ( M,bs[k] = A & vje[0,k-1] bs[j] = B




in order to axiomatize CTL we add to the axioms od UB
the following
vO(C—=(-BA(A—=vOC))—(C—-(AJd%B))

v (C—(-BA3OC))—(C—-(AV%B))




A = EA

(A simple induction on derivations: exercise)l

COMPLETENESS

A = A

Difficult: the canonical kripke model is not CTL-model




Model Checking
Given a model M and a formula A
M=A ?

model checking is important for verification of properties of
concurrent and distribute systems.

M represent the computational space and A the property to be
verified

Theorem

The model checking problem for CTL is in deterministic
polynomial time

Theorem

The model checking problem for LTL
is PSPACE-complete




