
Chapter  3

Introduction to MATLAB Programming 

Linguaggio Programmazione Matlab-Simulink (2017/2018)



Algorithms
 An algorithm is the sequence of steps needed to 

solve a problem 

 Top-down design approach to programming: break 
a solution into steps, then further refine each one

 Generic algorithm for many programs:
1. Get the input

2. Calculate result(s)

3. Display the result(s)

 A modular program would consist of functions that 
implement each step



Scripts
 Scripts are files in MATLAB that contain a sequence of 

MATLAB instructions, implementing an algorithm

 Scripts are interpreted, and are stored in code files 
(files with the extension .m)

 To create a script, click on “New Script” under the 
HOME tab; this opens the Editor

 Once a script has been created and saved, it is 
executed by entering its name at the prompt

 the type command can be used to display a script in 
the Command Window



Documentation
 Scripts should always be documented using 

comments

 Comments are used to describe what the script does, 
and how it accomplishes its task

 Comments are ignored by MATLAB

 Comments are anything from a % to the end of that 
line; longer comment blocks are contained in between        
%{   and   %}

 In particular, the first comment line in a script is called 
the “H1 line”; it is what is displayed with help



Input
 The input function does two things: prompts the 

user, and reads in a value

 General form for reading in a number:
variablename = input(‘prompt string’)

 General form for reading a character or string:
variablename = input(‘prompt string’, ‘s’)

 Must have separate input functions for every value to 
be read in



Output
 There are two basic output functions:

 disp, which is a quick way to display things
 fprintf, which allows formatting

 The fprintf function uses format strings which include place
holders; these have conversion characters:

%d integers
%f floats (real numbers)
%c single characters
%s strings

 Use %#x  where # is an integer and x is the conversion character 
to specify the field width of #

 %#.#x specifies a field width and the number of decimal places
 %.#x specifies just the number of decimal places (or characters 

in a string); the field width will be expanded as necessary



Formatting Output
 Other formatting:

 \n newline character

 \t tab character

 left justify with ‘-’ e.g. %-5d

 to print one slash: \\

 to print one single quote: ‘‘ (two single quotes)

 Printing vectors and matrices: usually easier with disp



Examples of fprintf
 Expressions after the format string fill in for the place 

holders, in sequence
>> fprintf('The numbers are %4d and %.1f\n', 3, 24.59)

The numbers are    3 and 24.6

 It is not the case that every fprintf statement prints a 
separate line; lines are controlled by printing \n; e.g. 
from a script:

fprintf('Hello and')

fprintf(' how \n\n are you?\n')

 would print:
Hello and how 

are you?

>> 



Scripts with I/O
 Although input and output functions are valid in the 

Command Window, they make most sense in scripts (and/or 
functions)

 General outline of a script with I/O:

1. Prompt the user for the input (suppress the output with ;)

2. Calculate values based on the input (suppress the output)

3. Print everything in a formatted way using fprintf (Normally, print 
both the input and the calculated values)

 Use semicolons throughout so that you control exactly what 
the execution of the script looks like



Script with I/O Example
 The target heart rate (THR) for a relatively active 

person is given by 

THR = (220-A) * 0.6   where A is the person’s age in years

 We want a script that will prompt for the age, then 
calculate and print the THR.  Executing the script 
would look like this:
>> thrscript

Please enter your age in years: 33

For a person 33 years old,

the target heart rate is 112.2.

>> 



Example Solution

% Calculates a person's target heart rate

age = input('Please enter your age in years: ');

thr = (220-age) * 0.6;

fprintf('For a person %d years old,\n', age)

fprintf('the target heart rate is %.1f.\n', thr)

thrscript.m

Note that the output is suppressed from both assignment statements.  The 
format of the output is controlled by the fprintf statements.



Simple Plots
 Simple plots of data points can be created using plot

 To start, create variables to store the data (can store one or more point 
but must be the same length); vectors named x and y would be 
common – or, if x is to be 1,2,3,etc. it can be omitted

plot(x,y)    or just     plot(y)

 The default is that the individual points are plotted with straight line 
segments between them, but other options can be specified in an 
additional argument which is a string

 options can include color (e.g. ‘b’ for blue, ‘g’ for greeen, ‘k’ for 
black, ‘r’ for red, etc.)

 can include plot symbols or markers (e.g. ‘o’ for circle, ‘+’, ‘*’)

 can also include line types (e.g. ‘--’ for dashed)

 For example, plot(x,y, ‘g*--’) 



Labeling the Plot
 By default, there are no labels on the axes or title on the plot

 Pass the desired strings to these functions:
 xlabel(‘string’)

 ylabel(‘string’)

 title(‘string’)

 The axes are created by default by using the minimum and 
maximum values in the x and y data vectors.  To specify different 
ranges for the axes, use the axis function:
 axis([xmin xmax ymin ymax])



Other Plot Functions
 clf clears the figure window

 figure creates a new figure window (can # e.g. 
figure(2))

 hold is a toggle; keeps the current graph in the figure 
window

 legend displays strings in a legend

 grid displays grid lines

 bar bar chart

 Note: make sure to use enough points to get a 
“smooth” graph



File I/O: load and save
 There are 3 modes or operations on files:

 read from

 write to (assumes from the beginning)

 append to (writing to, but starting at the end)

 There are simple file I/O commands for saving a 
matrix to a file and also reading from a file into a 
matrix: save and load

 If what is desired is to read or write something other 
than a matrix, lower level file I/O functions must be 
used (covered in Chapter 9)



load and save
 To read from a file into a matrix variable:

load filename.ext 

 Note: this will create a matrix variable named “filename” (same as the name 
of the file but not including the extension on the file name)

 This can only be used if the file has the same number of values on every line 
in the file; every line is read into a row in the matrix variable

 To write the contents of a matrix variable to a file:
save filename matrixvariablename –ascii

 To append the contents of a matrix variable to an existing file:
save filename matrixvariablename –ascii  -append



Example using load and plot

 A file ‘objweights.dat’ stores weights of some objects 
all in one line, e.g.   33.5  34.42  35.9   35.1  34.99  34

 We want a script that will read from this file, round the 
weights, and plot the rounded weights with red *’s:

1 2 3 4 5 6
34

34.5

35

35.5

36

Object #

W
e
ig

h
t

Practice Plot



Example Solution

load objweights.dat

y = round(objweights);

x = 1:length(y);  % Not necessary

plot(x,y, 'r*')

xlabel('Object #')

ylabel('Weight')

title('Practice Plot')

Note that load creates a row vector variable named objweights



User-Defined Functions
 User-Defined Functions are functions that you write

 There are several kinds; for now we will focus on the 
kind of function that calculates and returns one value

 You write what is called the function definition (which 
is saved in a code file with .m extension)

 Then, using the function works just like using a built-
in function: you call it by giving the function name 
and passing argument(s) to it in parentheses; that 
sends control to the function which uses the 
argument(s) to calculate the result – which is then 
returned



General Form of Function Definition
 The function definition would be in a file fnname.m:

function outarg = fnname(input arguments)

% Block comment

Statements here; eventually:

outarg = some value;

end

 The definition includes:

 the function header (the first line)

 the function body (everything else)



Function header
 The header of the function includes several things:

function outarg = fnname(input arguments)

 The header always starts with the reserved word 
“function”

 Next is the name of an output argument, followed by 
the assignment operator

 The function name “fnname” should be the same as 
the name of the code file in which this is stored

 The input arguments correspond one-to-one with the 
values that are passed to the function when called



Function Example
 For example, a function that calculates and returns the area of a circle

 There would be one input argument: the radius

 There would be one output argument: the area

 In a code file called  calcarea.m:

function area = calcarea(rad)

% This function calculates the area of a circle

area = pi * rad * rad;

end

 Function name same as the code file name

 Putting a value in the output argument is how the function returns the value; 
in this case, with an assignment statement (Note: suppress the output)

 The names of the input and output arguments follow the same rules as 
variables, and should be mnemonic



Calling the Function
 This function could be called in several ways:    

 >> calcarea(4)

 This would store the result in the default variable ans

 >> myarea = calcarea(9)

 This would store the result in the variable myarea

 A variable with the same name as the output argument could 
also be used

 >> disp(calcarea(5))

 This would display the result, but it would not be stored for 
later use



Passing arrays to functions
 Because the * operator was used instead of .*,

area = pi * rad * rad;

arrays could not be passed to this function as it is

 To fix that, change to the array multiplication operator 
.*

function area = calcarea(rad)

% This function calculates the area of a circle

area = pi * rad .* rad;

end

 Now a vector of radii could be passed to the input 
argument rad



Notes
 You can pass multiple input arguments to a function

 Variables that are used within a function (for example, 
for intermediate calculations) are called local variables



MATLAB Programs
 Note: a function that returns a value does NOT 

normally also print the value

 A function can be called from a script

 This combination of a script (stored in a code file) and 
the function(s) (also stored in code files) that it calls is 
a program



General Form of Simple Program

 Get input 

 Call fn to calculate 
result

 Print result

function out = fn(in)

out = value based on in;

end

script.m

fn.m



Example Program
 The volume of a hollow sphere is given by

4/3 Π (Ro
3 – Ri

3)  where Ro is the outer radius and Ri is the 
inner radius

 We want a script that will prompt the user for the radii, 
call a function that will calculate the volume, and print 
the result.

 Also, we will write the function!



Example Solution
% This script calculates the volume of a hollow sphere

inner = input('Enter the inner radius: ');
outer = input('Enter the outer radius: ');

volume = vol_hol_sphere(inner, outer);

fprintf('The volume is %.2f\n', volume)

function hollvol = vol_hol_sphere(inner, outer)

% Calculates the volume of a hollow sphere

hollvol = 4/3 * pi * (outer^3 - inner^3);

end

vol_hol_sphere.m



Introduction to scope
 The scope of variables is where they are valid

 The Command Window uses a workspace called the 
base workspace

 Scripts also use the base workspace

 This means that variables created in the Command 
Window can be used in a script and vice versa (this is a 
bad idea, however)

 Functions have their own workspaces – so local 
variables in functions, input arguments, and output 
arguments only exist while the function is executing



Commands and Functions
 Commands (such as format, type, load, save) are 

shortcut versions of function calls

 The command form can be used if all of the arguments 
that are passed to the function are strings, and the 
function is not returning any values.

 So,
fnname   string

 and
fnname(‘string’)

 are equivalent



Common Pitfalls
 Spelling a variable name different ways in different 

places in a script or function.

 Forgetting to add the second ‘s’ argument to the input
function when character input is desired.

 Not using the correct conversion character when 
printing.

 Confusing fprintf and disp. Remember that only 
fprintf can format.

 Not realizing that load will create a variable with the 
same name as the file.



Programming Style Guidelines
 Use comments to document scripts and functions

 Use mnemonic identifier names (names that make sense, e.g. radius
instead of xyz) for variable names and for file names 

 Put a newline character at the end of every string printed by fprintf so 
that the next output or the prompt appears on the line below.

 Put informative labels on the x and y axes and a title on all plots. 

 Keep functions short – typically no longer than one page in length.

 Suppress the output from all assignment statements in functions and 
scripts.

 Functions that return a value do not normally print the value; it should 
simply be returned by the function.  

 Use the array operators .*, ./, .\, and .^ in functions so that the input 
arguments can be arrays and not just scalars.



Exercises
1. Create a script that would prompt the user for a length, 
and then ‘f ’ for feet or ‘m’ for meters, and store both 
inputs in variables.  For example, when executed it 
would look like this (assuming the user enters 12.3 and 
then m):

Enter the length: 12.3

Is that f(eet)or m(eters)?: m



Exercises
2. Write a script to prompt the user separately for a 
character and a number, and print the character in a 
field width of 3 and the number left justified in a field 
width of 8 with 3 decimal places.  Test this by entering 
numbers with varying widths.

3. Write a script that plots exp(x) and log(x) for values 
of x ranging from 0 to 3.5.



Exercises
4. Write a function calcrectarea that will receive the length 
and width of a rectangle in meters as input arguments, and 
will return the area of the rectangle.  For example, the 
function could be called as shown, in which the result is 
stored in a variable and then the amount of material required 
is printed, rounded up to the nearest square inch.

>> ra = calcrectarea(3.1, 4.4)

ra =

13.6400

>> fprintf('We need %d square meters \n', ceil(ra))

We need 14 square meters.


