Lecture Notes for the course

Representation Theory Part I
Francesca Mantese
Master Degree in Mathematics
Università di Verona, 2014/2015

These notes are based on the following books:
F. W. Anderson, K. R. Fuller , Rings and categories of modules, second ed., Springer, New York, 1992;
B. Stenström , Rings of quotients, Springer-Verlag (1975)
M. Auslander, I. Reiten, S. O. Smalø, Representation theory of artin algebras, Cambridge University Press (1994).

1. Rings and Modules

Recall that a ring is a system $(R,+, \cdot, 0,1)$ consisting of a set R, two binary operations, addition $(+)$ and multiplication (\cdot), and two elements $0 \neq 1$ of R, such that $(R,+, 0)$ is an abelian group, $(R, \cdot, 1)$ is a monoid (i.e., a semigroup with identity 1) and multiplication is left and right distributive over addition. A ring whose multiplicative structure is abelian is called a commutative ring.
Example 1.1. (1) $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ are commutative rings.
(2) Let K be a field; the ring $K\left[x_{1}, \ldots, x_{n}\right]$ of polynomials in the indeterminates x_{1}, \ldots, x_{n} is a commutative ring.
(3) Let K be a field; consider the ring $R=M_{n}(K)$ of $n \times n$-matrices with coefficients in K with the usual "rows times columns" product. Then R is a non-commutative ring
Definition 1.2. A left R-module is an abelian group M togheter with a map $R \times M \rightarrow M$, $(r, m) \mapsto r m$, such that for any $r, s \in R$ and any $x, y \in M$

```
M1 \(r(x+y)=r x+r y\)
\(\mathrm{M} 2(r+s)=r x+s x\)
\(\mathrm{M} 3(r s) x=r(s x)\)
M4 \(1 x=x\)
```

We write ${ }_{R} M$ to indicate that M is a left R-module.
Example 1.3. (1) Any abelian group G is a left \mathbb{Z}-module by defining, for any $x \in G$ and $n>0, n x=\underbrace{x+\cdots+x}_{n \text { times }}$.
(2) Given a field K, any vector space V over K is a left K-module.
(3) Let R be the matrix ring $M_{n}(K)$ and consider the vector space $V=K^{n}$. Given a matrix A and a vector $v \in V$, let $A v$ the usual "rows times columns" product. Then V is a left R-module.
(4) Any ring R is a left R-module, by using the left multiplication of R on itself. It is called the regular module.
(5) Consider the zero element of the ring R. Then the abelian group $\{0\}$ is trivially a left R-module.

Remark 1.4. Consider M an abelian group and $\operatorname{End}^{l}(M)$ the ring of the endomorphism of M acting on the left (i.e. $f g(x)=f(g(x))$. A representation of R in $\operatorname{End}^{l}(M)$ is a homomorphism of ring

$$
\lambda: R \rightarrow \operatorname{End}^{l}(M), \quad r \mapsto \lambda(r)
$$

From the properties of ring homomorphisms it follows that for any $r, s \in R$ and $x, y \in M$
(1) $\lambda(r)(x+y)=\lambda(r) x+\lambda(r) y$
(2) $\lambda(r+s) x=\lambda(r) x+\lambda(s) x$
(3) $\lambda(r s) x=\lambda(r)(\lambda(s) x)$
(4) $\lambda(1) x=x$

In other words, we can consider $\lambda(r)$ acting on the elements of M as a left multiplication by the element $r \in R$: then we can define $r x:=\lambda(r) x$, and this gives a structure of left R-module on M. Conversely, to any left R-module M, we can associate a representation of R in $\operatorname{End}^{l}(M)$, by defining $\lambda(r):=r x$.

Similarly, we define right R-modules:
Definition 1.5. A right R-module is an abelian group M togheter with a map $M \times R \rightarrow M$, $(m, r) \mapsto m r$, such that for any $r, s \in R$ and any $x, y \in M$

$$
\begin{aligned}
& \text { M1 }(x+y) r=x r+y r \\
& \text { M2 } x(r+s)=x r+x s \\
& \text { M3 } x(r s)=(x r) s \\
& \text { M4 } x 1=x
\end{aligned}
$$

We write M_{R} to indicate that M is a right R-module.
For the connection between right modules and representations see Exercise 3.8.

If R is a commutative ring, then left R-modules and right R-modules coincide. Indeed, given a left R-module M with the map $R \times M \rightarrow M(r, m) \mapsto r m$, we can define a map $M \times R \rightarrow M$ $(m, r) \mapsto m r:=r m$. This map satisfies the axioms of Definition 1.5 (Verify!) and so M is also a right R-module. The crucial point is that, in the third axiom, since R is commutative we have $x(r s)=(r s) x=(s r) x=s(r x)=(r x) s=(x r) s$.
Example 1.6. Consider the ring $R=M_{n}(K)$ and V the vector space of the columns $M_{n \times 1}(K)$. This is in a obvious way a left R-module but not a right R-module. Similarly, the vector space of the rows $M_{1 \times n}(K)$ is a right R-module but not a left R-module.
Exercise 1.7. Show that given ${ }_{R} M$, for any $x \in M$ and $r \in R$, we have
(1) $r 0=0$
(2) $0 x=0$
(3) $r(-x)=(-r) x=-(r x)$

Definition 1.8. Let ${ }_{R} M$ be a left R-module. A subset L of M is a submodule of M if L is a subgroup of M and $r x \in L$ for any $r \in R$ and $x \in L$ (i.e. L is a left R-module under operations inherit from M). We write $L \leq M$.
Example 1.9.
(1) Let G be a \mathbb{Z}-module. The submodules of G are exactly the subgroups of G.
(2) Let K a field and V a K-module. The submodules of V are exactly the vector subspace of K.
(3) Let R a ring. The submodules of the left R-module ${ }_{R} R$ are the left ideals of R. The submodules of the right R-module R_{R} are the right ideals of R.
Definition 1.10. Let ${ }_{R} M$ be a left R-module and $L \leq M$. The quotient module M / L is the quotient abelian group together with the map $R \times M / L \rightarrow M / L$ given by $(r, \bar{x}) \mapsto \overline{r x}$.
Remark 1.11. The map $R \times M / L \rightarrow M / L$ given by $(r, \bar{x}) \mapsto \overline{r x}$ is well-defined, since if $\bar{x}=\bar{y}$ then $x-y \in L$ and hence $r(x-y)=r x-r y \in L$, that is $\overline{r x}=\overline{r y}$.

In this part of the course we mainly deal with left modules. So, in the following, unless otherwise is stated, with module we always mean left module.

2. Homomorphisms of modules

Definition 2.1. Let ${ }_{R} M$ and ${ }_{R} N$ be R-modules. A map $f: M \rightarrow N$ is a homomorphism if $f(r x+s y)=r f(x)+s f(y)$ for any $x, y \in M$ and $r, s \in R$.
Remark 2.2.
(1) From the definition it follows that $f(0)=0$.
(2) Clearly if f and g are homomorphisms from M to N, also $f+g$ is a homomorphism. Since the zero map is obviously a homomorphism, the set $\operatorname{Hom}_{R}(M, N)=\{f \mid f: M \rightarrow$ N is a homomorphism $\}$ is an abelian group.
(3) If $f: M \rightarrow N$ and $g: N \rightarrow L$ are homomorphisms, then $g f: M \rightarrow L$ is a homomorphism. Thus the abelian group $\operatorname{End}_{R}(M)=\{f \mid f: M \rightarrow M$ is a homomorphism $\}$ has a natural structure of ring, called the ring of endomorphisms of M. The identity homomorphism $\operatorname{id}_{M}: M \rightarrow M, m \mapsto m$, is the unity of the ring.
Definition 2.3. Given a homomorphism $f \in \operatorname{Hom}_{R}(M, N)$, the kernel of f is the set $\operatorname{Ker} f=$ $\{x \in M \mid f(x)=0\}$. The image of f is the set $\operatorname{Im} f=\{y \in N \mid y=f(x)$ for $x \in M\}$.

It is easy to verify that $\operatorname{Ker} f \leq M$ and $\operatorname{Im} f \leq N$. Thus we can define the cokernel of f as the quotient module Coker $f=N / \operatorname{Im} f$.

A homomorphism $f \in \operatorname{Hom}_{R}(M, N)$ is called a monomorphism if $\operatorname{Ker} f=0 . f$ is called an epimorphism if $\operatorname{Im} f=N . f$ is called isomorphism if it is both a monomorphism and an epimorphism. If f is an isomorphism we write $M \cong N$.
Remark 2.4. (1) For any submodule $L \leq M$ there is a canonical monomorphism $i: L \rightarrow M$, which is the usual inclusion, and a canonical epimorphism $p: M \rightarrow M / N$ which is the usual quotient map.
(2) For any M the trivial map $0 \rightarrow M, 0 \mapsto 0$, is a mono. The trivial map $M \rightarrow 0, m \mapsto 0$, is an epi.
(3) The monomorphisms, the epimorphisms and the isomorphisms are exactly the injective, surjective and bijective homomorphisms.

Exercise 2.5. Show that $f \in \operatorname{Hom}_{R}(M, N)$ is an isomorphism if and only if there exist $g \in$ $\operatorname{Hom}_{R}(N, M)$ such that $g f=\operatorname{id}_{M}$ and $f g=\operatorname{id}_{N}$. In such a case g is unique. (We usually denote g as f^{-1}).

Proposition 2.6. Any $f \in \operatorname{Hom}_{R}(M, N)$ induces an isomorphism $M / \operatorname{Ker} f \cong \operatorname{Im} f$.
Proof. The induced map $M / \operatorname{Ker} f \rightarrow \operatorname{Im} f, \bar{m} \mapsto f(m)$ is a homomorphism. Moreover it is clearly a mono and an epi.

The usual homomorphism theorems which hold for groups hold also for homomorphisms of modules.

Proposition 2.7. (1) If $L \leq N \leq M$, then $(M / L) /(N / L) \cong M / L$.
(2) If $L, N \leq M$, denote by $L+N=\{m \in M \mid m=l+n$ for $l \in L$ and $n \in N\}$. Then $L+N$ is a submodule of M and $(L+N) / N \cong N /(N \cap L)$.

Exercise 2.8. Prove the previous Proposition.

3. Exact Sequences

Definition 3.1. A sequence of homomorphisms of R-modules

$$
\cdots \rightarrow M_{i-1} \xrightarrow{f_{i-1}} M_{i} \xrightarrow{f_{i}} M_{i+1} \xrightarrow{f_{i+1}} \ldots
$$

is called exact if $\operatorname{Ker} f_{i}=\operatorname{Im} f_{i-1}$ for any i.
An exact sequence of the form $0 \rightarrow M_{1} \rightarrow M_{2} \rightarrow M_{3} \rightarrow 0$ is called a short exact sequence
Observe that if $L \leq M$, then the sequence $0 \rightarrow L \xrightarrow{i} M \xrightarrow{p} M / L \rightarrow 0$, where i and p are the canonical inclusion and quotient homomorphisms, is short exact (Verify!) Conversely, if $0 \rightarrow M_{1} \xrightarrow{f} M_{2} \xrightarrow{g} M_{3} \rightarrow 0$ is a short exact sequence, then f is a mono, g is an epi, and $M_{3} \cong$ Coker f (Verify!).

The following result is very useful:
Proposition 3.2. Consider the commutative diagram with exact rows

If α and γ are monomorphisms (epimorphims, or isomorphisms, respectively), then so is β
Proof. (1) Suppose α and γ are monomorphisms and let m such that $\beta(m)=0$. Then $\gamma(g(m))=0$ and so $m \in \operatorname{Ker} g=\operatorname{Im} f$. Hence $m=f(l), l \in L$ and $\beta(m)=\beta(f(l))=$ $f^{\prime}(\alpha(l))=0$. Since f^{\prime} and α are mono, we conclude $l=0$ and so $m=0$.
(2) Suppose α and γ are epimorphisms and let $m^{\prime} \in M^{\prime}$. Then $g^{\prime}\left(m^{\prime}\right)=\gamma(g(m))$, so $g^{\prime}\left(m^{\prime}\right)=g(\beta(m))$; hence $m^{\prime}-\beta(m) \in \operatorname{Ker} g^{\prime}=\operatorname{Im} f^{\prime}$ and so $m^{\prime}-\beta(m)=f^{\prime}\left(l^{\prime}\right), l^{\prime} \in L^{\prime}$. Let $l \in L$ such that $l^{\prime}=\alpha(l)$: then $m^{\prime}-\beta(m)=f^{\prime}(\alpha(l))=\beta(f(l))$ and so we conclude $m^{\prime}=\beta(m-f(l))$.

Exercises

Exercise 3.3. Let ${ }_{R} M$ be a R-module and ${ }_{R} R$ the regular module. Consider the abelian group $\operatorname{Hom}_{R}(R, M)$ and the map $\varphi: \operatorname{Hom}_{R}(R, M) \rightarrow M, f \mapsto f(1)$. Verify that φ is an isomorphism of \mathbb{Z}-modules.

Exercise 3.4. Let $\varphi: S \rightarrow R$ a ring homomorphism. Show that any left R-module M is also a left S-modules, by the map $S \times M \rightarrow M,(s, m) \mapsto \varphi(s) m$.

Exercise 3.5. Let ${ }_{R} M$ and define $\operatorname{Ann}_{R}(M)=\{r \in R \mid r m=0$ for any $m \in M\} . M$ is called faithful if $\operatorname{Ann}_{R}(M)=0$. Verify that $\operatorname{Ann}_{R}(M)$ is a two-sided ideal of R. Verify that M has a natural structure of $R / \operatorname{Ann}_{R}(M)$-module, given by the map $R / \operatorname{Ann}_{R}(M) \times M \rightarrow M$, $(\bar{r}, m) \mapsto r m$. Verify that M over $R / \operatorname{Ann}_{R}(M)$ is a faithful module.
Exercise 3.6. Let f be a homomorphism of R-modules.
Show that f is a mono if and only if $f g=0$ implies $g=0$.
Show f is an epi if and only if $g f=0$ implies $g=0$
Exercise 3.7. Consider the ring $R=\left(\begin{array}{cc}K & K \\ 0 & K\end{array}\right)$. Show that $P_{1}=\left\{\left.\left(\begin{array}{cc}k & 0 \\ 0 & 0\end{array}\right) \right\rvert\, k \in K\right\}$ and $P_{2}=\left\{\left.\left(\begin{array}{cc}0 & k_{1} \\ 0 & k_{2}\end{array}\right) \right\rvert\, k_{1}, k_{2} \in K\right\}$ are left submodules of ${ }_{R} R$. Show that $Q_{1}=\left\{\left.\left(\begin{array}{cc}k_{1} & k_{2} \\ 0 & 0\end{array}\right) \right\rvert\, k_{1}, k_{2} \in\right.$ $K\}$ and $Q_{2}=\left\{\left.\left(\begin{array}{cc}0 & 0 \\ 0 & k\end{array}\right) \right\rvert\, k \in K\right\}$ are right submodules of R_{R}
Exercise 3.8. Consider M an abelian group and $\operatorname{End}^{r}(M)$ the ring of the endomorphism of M acting on the right (i.e. $(x) f g=((x) f) g$. Show that any representation of R in $\operatorname{End}^{r}(M)$ corresponds to a right R-module M_{R}.

4. Sums and products of modules

Let I be a set and $\left\{M_{i}\right\}_{i \in I}$ a family of R-modules. The cartesian product $\prod_{I} M_{i}=\left\{\left(x_{i}\right) \mid x_{i} \in\right.$ M_{i} \} has a natural structure of left R-module, by defining the operations component-wise:

$$
\left(x_{i}\right)_{i \in I}+\left(y_{i}\right)_{i \in I}=\left(x_{i}+y_{i}\right)_{i \in I}, \quad r\left(x_{i}\right)_{i \in I}=\left(r x_{i}\right)_{i \in I}
$$

This module is called the direct product of the modules M_{i}. It contains a submodule

$$
\bigoplus_{I} M_{i}=\left\{\left(x_{i}\right) \mid x_{i} \in M_{i} \text { and } x_{i}=0 \text { for almost all } i \in I\right\}
$$

Recall that "almost all" means "except for a finite number". The module $\oplus_{I} M_{i}$ is called the direct sum of the modules M_{i}. Clearly if I is a finite set then $\prod_{I} M_{i}=\left\{\left(x_{i}\right) \mid x_{i} \in M_{i}\right\}=\oplus_{I} M_{i}$. For any component $j \in I$ there are canonical homomorphisms

$$
\prod_{I} M_{i} \rightarrow M_{j},\left(x_{i}\right)_{i \in I} \mapsto x_{j} \quad \text { and } \quad M_{j} \rightarrow \prod_{I} M_{i}, x_{j} \mapsto\left(0,0, \ldots, x_{j}, 0, \ldots, 0\right)
$$

called the projection on the $j^{t h}$-component and the injection of the $j^{\text {th }}$-component. They are epimorphisms and monomorphism, respectively, for any $j \in I$. The same is true for $\oplus_{I} M_{i}$.

When $M_{i}=M$ for any $i \in I$, we use the following notations

$$
\prod_{I} M_{i}=M^{I}, \quad \bigoplus_{I} M_{i}=M^{(I)}, \quad \text { and if } I=\{1, \ldots, n\}, \oplus_{I} M_{i}=M^{n}
$$

Let ${ }_{R} M$ be a module and $\left\{M_{i}\right\}_{i \in I}$ a family of submodules of M. We define the sum of the M_{i} as the module

$$
\sum_{I} M_{i}=\left\{\sum_{i \in I} x_{i} \mid x_{i} \in M_{i} \text { and } x_{i}=0 \text { for almost all } i \in I\right\} .
$$

Clearly $\sum_{I} M_{i} \leq M$ and it is the smallest submodule of M containing all the M_{i}. (Notice that in the definition of $\sum_{I} M_{i}$ we need almost all the components to be zero in order to define properly the sum of elements of M).

Remark 4.1. Let ${ }_{R} M$ be a module and $\left\{M_{i}\right\}_{i \in I}$ a family of submodules of M. Following the previous definitions we can construct both the module $\oplus_{I} M_{i}$ and module $\sum_{I} M_{i}$ (which is a submodule of M). We can define a homomorphism

$$
\alpha: \oplus_{I} M_{i} \rightarrow M, \quad\left(x_{i}\right)_{i \in I} \mapsto \sum_{i \in I} x_{i} .
$$

Then $\operatorname{Im} \alpha=\sum_{I} M_{i}$. If α is a monomorphism, then $\oplus_{I} M_{i} \cong \sum_{I} M_{i}$ and we say that the module $\sum_{I} M_{i}$ is the (internal) direct sums of its submodules M_{i}. Often we omit the word "internal" and if $M=\sum_{I} M_{i}$ and α is an isomorphism, we say that M is the direct sums of the submodules M_{i} and we write $M=\oplus_{I} M_{i}$.

5. Split exact sequences

If L and N are R-modules, there is a short exact sequence, called split,

$$
0 \rightarrow L \xrightarrow{i_{L}} L \oplus N \xrightarrow{\pi_{N}} N \rightarrow 0, \text { with } i_{L}(l)=(l, 0) \pi_{N}(l, n)=n, \quad \text { for any } l \in L, n \in N .
$$

More generally:
Definition 5.1. A short exact sequence $0 \rightarrow L \xrightarrow{f} M \xrightarrow{g} N \rightarrow 0$ is said to be split if there is an isomorphism $M \cong L \oplus N$ such that the diagram

commutes.
Proposition 5.2. The following properties of an exact sequence $0 \rightarrow L \xrightarrow{f} M \xrightarrow{g} N \rightarrow 0$ are equivalent:
(1) the sequence is split
(2) there exists a homomorhism $\varphi: M \rightarrow L$ such that $\varphi f=\operatorname{id}_{L}$
(3) there exists a homomorhism $\psi: N \rightarrow M$ such that $g \psi=\mathrm{id}_{N}$

Proof. $1 \Rightarrow 2$. Since the sequence splits, then there exists α as in Definition 5.1. Let $\varphi=\pi_{L} \circ \alpha$. So for any $l \in L \varphi f(l)=\pi_{L} \alpha f(l)=\pi_{L}(l, 0)=l$.
$1 \Rightarrow 3$ Similar (Verify!)
$2 \Rightarrow 1$. Define $\alpha: M \rightarrow L \oplus N, m \mapsto(\varphi(m), g(m))$. Since $\alpha f(l)=(\varphi(f(l)), g(f(l)))=(l, 0)$ and $\pi_{N} \alpha(m)=g(m)$ we get that the diagram

commutes. Finally, by Proposition 3.2, we conclude that α is an isomorphism. $2 \Rightarrow 3$ Similar (Verify!)
Definition 5.3. Given ${ }_{R} L \leq_{R} M, L$ is a direct summand of M if there exists a submodule ${ }_{R} N \leq_{R} M$ such that M is the direct sum of L and $N . N$ is called a complement of L. If M does not admit direct summands it is said to be indecomposable.

By the results in the previous section, if L is a direct summand of M and N a complement of L, it means that any m in M can be written in a unique way as $m=l+n, l \in L$ and $n \in N$. We write $M=L \oplus N$ and $L \stackrel{\oplus}{\leq} M$.

Example 5.4. (1) consider the \mathbb{Z}-module $\mathbb{Z} / 6 \mathbb{Z}$. Then $\mathbb{Z} / 6 \mathbb{Z}=3 \mathbb{Z} / 6 \mathbb{Z} \oplus 2 \mathbb{Z} / 6 \mathbb{Z}$. The regular module $\mathbb{Z} \mathbb{Z}$ is indecomposable
(2) let K be a field and V a K-module. Then, by a well-know result of linear algebra, any $L \leq V$ is a direct summand of V.
(3) Let $R=\left(\begin{array}{cc}K & K \\ 0 & K\end{array}\right)$. Then $R=P_{1} \oplus P_{2}$, where $P_{1}=\left\{\left.\left(\begin{array}{cc}k & 0 \\ 0 & 0\end{array}\right) \right\rvert\, k \in K\right\}$ and $P_{2}=\left\{\left.\left(\begin{array}{cc}0 & k_{1} \\ 0 & k_{2}\end{array}\right) \right\rvert\, k_{1}, k_{2} \in K\right\}$.

ExERCISES

Exercise 5.5. Let ${ }_{R} L \leq_{R} M$. Show that L is a direct summand of M if and only if there exists ${ }_{R} N \leq_{R} M$ such that $L+N=M$ and $L \cap N=0$.

Exercise 5.6. Let $M_{1}, M_{2} \leq M$ such that $M=M_{1} \oplus M_{2}$. Then for any $f_{1}: M_{1} \rightarrow N$ and $f_{2}: M_{2} \rightarrow N$ there exists a morphism $f: M \rightarrow N$ such that $f=f_{1} \pi_{1}+f_{2} \pi_{2}$. Conversely, show that for any $f: M \rightarrow N$ there exist unique $f_{1}: M_{1} \rightarrow N$ and $f_{2}: M_{2} \rightarrow N$ such that $f=f_{1} \pi_{1}+f_{2} \pi_{2}$

Exercise 5.7. Let ${ }_{R} M$ be a module and $\left\{M_{i}\right\}_{i \in I}$ a family of submodules of M and let the morphism α as in the Remark 4.1. The following are equivalent:
(1) α is an isomorphism
(2) if $m \in M$, then m can be written in a unique way as sum of elements of the M_{i}
(3) $M=\sum_{I} M_{i}$ and, for any $i \in I, M_{i} \cap\left(\sum_{I \backslash\{i\}} M_{j}\right)=0$

Exercise 5.8. Let $0 \rightarrow L \xrightarrow{f} M \xrightarrow{g} N \rightarrow 0$ be a split exact sequence and α the isomorphism as in Definition 5.1. Show that $M=\alpha^{-1}(L) \oplus \alpha^{-1}(N), \alpha^{-1}(L) \cong L$, and $\alpha^{-1}(N) \cong N$.

6. Free modules and finitely generated modules

Definition 6.1. A module ${ }_{R} M$ is said to be generated by a family $\left\{x_{i}\right\}_{i \in I}$ of elements of M if each $x \in M$ can be written as $x=\sum_{I} r_{i} x_{i}$, with $r_{i} \in R$ for any $i \in I$, and $r_{i}=0$ for almost every $i \in I$.
The $\left\{x_{i}\right\}_{i \in I}$ are called a set of generator of M and we write $M=<x_{i}, i \in I>$.
If the coefficients r_{i} are uniquely determined by x, the $\left(x_{i}\right)_{i \in I}$ are called a basis of M.
The module M is said to be free if it admits a basis.

Proposition 6.2. A module ${ }_{R} M$ is free if and only $M \cong R^{(I)}$ for some set I.
Proof. The module $R^{(I)}$ is free with basis $\left(e_{i}\right)_{i \in I}$, where e_{i} is the canonical vector with all zero components except for the i-th equal to 1 .
Conversely if M is free with basis $\left(x_{i}\right)_{i \in I}$, then we can define a homomorphism $\alpha: R^{(I)} \rightarrow M$, $\left(r_{i}\right)_{i \in I} \mapsto \sum_{I} r_{i} x_{i}$. It is easy to show that α is an isomorphism, as a consequence of the definition of a basis: indeed, it is clearly an epi and if $\alpha\left(r_{i}\right)=\sum r_{i} x_{i}=0$, since the r_{i} are uniquely determined by 0 , we conclude that $r_{i}=0$ for all i, i.e. α is a mono.

Given a free module M with basis $\left(x_{i}\right)_{I}$, then every homomorphism $f: M \rightarrow N$ is uniquely determined by its value on the x_{i} and the elements $f\left(x_{i}\right)$ can be chosen arbitrarily in N. Indeed, chosen the $f\left(x_{i}\right)$, given $x=\sum r_{i} x_{i} \in M$, we construct $f(x)=\sum r_{i} f\left(x_{i}\right)$. Since $\left(x_{i}\right)_{i \in I}$ is a basis this is a good definition. (Notice: analogy with vector spaces!).
Proposition 6.3. Any module is quotient of a free module
Proof. Let M be an R-module. Since we can always choose $I=M$, the module M admits a set of generators. Let $\left(x_{i}\right)_{i \in I}$ a set of generators for M and define a homomorphism $\alpha: R^{(I)} \rightarrow M$, $\left(r_{i}\right)_{i \in I} \mapsto \sum_{i} r_{i} x_{i}$. Clearly α is an epi and so $M \cong R^{(I)} / \operatorname{Ker} \alpha$
Definition 6.4. A module ${ }_{R} M$ is finitely generated it there exists a finite set of generators for M. A module is cyclic if it can be generated by a single element.

By Proposition $6.3{ }_{R} M$ is finitely generated if and only if there exists an epimorphism $R^{n} \rightarrow M$ for some $n \in \mathbb{N}$. Similarly, ${ }_{R} M$ is cyclic if and only if $M \cong R / J$, for a left ideal $J \leq R$.
Example 6.5. The regular module ${ }_{R} R$ is cyclic, generated by the unity element ${ }_{R} R=<1>$
Proposition 6.6. Let ${ }_{R} L \leq{ }_{R} M$.
(1) If M is finitely generated, then M / L is finitely generated.
(2) If L and M / L are finitely generated, so is M

Proof. (1) If $\left\{x_{1}, \ldots, x_{n}\right\}$ is a set of generator of M, then $\left\{\bar{x}_{1}, \ldots, \bar{x}_{n}\right\}$ is a set of generator for M / L.
(2) Let $\left\langle x_{1}, \ldots, x_{n}\right\rangle=L$ and $\left.<\bar{y}_{1}, \ldots, \bar{y}_{m}\right\rangle=M / L$, where $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m} \in M$. Let $x \in M$ and consider $\bar{x}=\sum_{i=1, \ldots m} r_{i} \overline{y_{i}}$ in M / L. Then $x-\sum_{i=1, \ldots m} r_{i} y_{i} \in L$ and so $x-\sum_{i=1, \ldots m} r_{i} y_{i}=\sum_{j=1, \ldots, n} r_{j} x_{j}$. Hence $x=\sum_{i=1, \ldots m} r_{i} y_{i}+\sum_{j=1, \ldots, n} r_{j} x_{j}$, i.e. $\left\{x_{1}, \ldots, x_{n}, y_{1} \ldots, y_{m}\right\}$ is a finite set of generators of M.

Notice that M finitely generated doesn't imply L finitely generated. For example, let R be the ring $R=K\left[x_{i}, i \in \mathbb{N}\right]$. Consider the regular module ${ }_{R} R$ and its submodule $L=<x_{i}, i \in \mathbb{N}>$.

Exercises

Exercise 6.7. Show that any submodule of $\mathbb{Z} \mathbb{Z}$ is finitely generated.
Exercise 6.8. Show that the \mathbb{Z}-module \mathbb{Q} is not finitely generated.
Exercise 6.9. A module M is simple if $L \leq M$ implies $L=0$ or $L=M$ (i.e. M doesn't have non trivial submodules).
(1) show that any simple module is cyclic
(2) Exhibit a cyclic module which is not simple.

Exercise 6.10. Let R be a ring. An element $e \in R$ is idempotent if $e^{2}=e$. Show that
(1) if e is idempotent, then $(1-e)$ is idempotent and $R=R e \oplus R(1-e)$ (where $R e$ and $R(1-e)$ denote the cyclic modules generated by e and $(1-e)$, respectively)
(2) if $R=I \oplus J$, with I and J left ideals of R, then there exist idempotents e and f such that $1=e+f, I=R e$ and $J=R f$.
Exercise 6.11. Show that a left R-module M is finitely generated if and only if it is quotient of a finitely generated free module(i.e of a module R^{n} for a suitable n).

7. Categories and functors

This is very short introduction to the basic concepts of category theory. For more details and for the set-theoretical foundation (in particular the distinction between sets and classes) we refer to S. MacLane, Category for the working mathematician, Graduate Texts in Math., Vol 5, Springer 1971.
Definition 7.1. A category \mathcal{C} consists in:
(1) A class $\operatorname{Obj}(\mathcal{C})$, called the objects of \mathcal{C};
(2) for each ordered pair $\left(C, C^{\prime}\right)$ of objects of \mathcal{C}, a set $\operatorname{Hom}_{\mathcal{C}}\left(C, C^{\prime}\right)$ whose elements are called morphisms from C to C^{\prime};
(3) for each ordered triple $\left(C, C^{\prime}, C^{\prime \prime}\right)$ of objects of \mathcal{C}, a map

$$
\operatorname{Hom}_{\mathcal{C}}\left(C, C^{\prime}\right) \times \operatorname{Hom}_{\mathcal{C}}\left(C^{\prime}, C^{\prime \prime}\right) \rightarrow \operatorname{Hom}_{\mathcal{C}}\left(C, C^{\prime \prime}\right)
$$

called composition of morphisms
such that the following axioms C1, C2, C3 hold:
(before stating the axioms, we introduce the notations $\alpha: C \rightarrow C^{\prime}$ for any $\alpha \in \operatorname{Hom}_{\mathcal{C}}\left(C, C^{\prime}\right)$, and $\beta \alpha$ for the compostion of $\alpha \in \operatorname{Hom}_{\mathcal{C}}\left(C, C^{\prime}\right)$ and $\left.\beta \in \operatorname{Hom}_{\mathcal{C}}\left(C^{\prime}, C^{\prime \prime}\right)\right)$

C1: if $\left(C, C^{\prime}\right) \neq\left(D, D^{\prime}\right)$, then $\operatorname{Hom}_{\mathcal{C}}\left(C, C^{\prime}\right) \cap \operatorname{Hom}_{\mathcal{C}}\left(D, D^{\prime}\right)=\emptyset$
C2: if $\alpha: C \rightarrow C^{\prime}, \beta: C^{\prime} \rightarrow C^{\prime \prime}, \gamma: C^{\prime \prime} \rightarrow C^{\prime \prime \prime}$ are morphisms, then $\gamma(\beta \alpha)=(\gamma \beta) \alpha$
C3: for each object C there exists $1_{C} \in \operatorname{Hom}_{\mathcal{C}}(C, C)$, called identity morphism, such that $1_{C} \alpha=\alpha$ and $\beta 1_{C}=\beta$ for any $\alpha: C^{\prime} \rightarrow C$ and $\beta: C \rightarrow C^{\prime}$.
Notice that, for any $C \in \operatorname{Obj}(\mathcal{C})$, the identity morphism 1_{C} is unique. Indeed, if also 1_{C}^{\prime} satisfies [C3], then $1_{C}=1_{C} 1_{C}^{\prime}=1_{C}^{\prime}$.

A morphism $\alpha: C \rightarrow C^{\prime}$ is an isomorphism if there exists $\beta: C^{\prime} \rightarrow C$ such that $\beta \alpha=1_{C}$ and $\alpha \beta=1_{C^{\prime}}$. If α is an isomorphism, C and C^{\prime} are called isomorphic and we write $C \cong C^{\prime}$.
Example 7.2. (1) The category Sets: the class of objects is the class of all sets; the morphisms are the maps between sets with the usual compositions.
(2) The category $\mathbf{A b}$: the objects are the abelian groups; the morphisms are the group homomorphisms with the usual compositions.
(3) The category R-Mod for a ring R : the objects are the left R-modules and the morphisms are the module homomorphisms with the usual compositions.
(4) The category Mod- R for a ring R : the objects are the right R-modules and the morphisms are the module homomorphisms with the usual compositions.

Notice that, given a category \mathcal{C}, we can construct the dual category $\mathcal{C}^{o p}$, with $\operatorname{Obj}\left(\mathcal{C}^{o p}\right)=$ $\operatorname{Obj}(\mathcal{C}), \operatorname{Hom}_{\mathcal{C}^{o p}}\left(C, C^{\prime}\right)=\operatorname{Hom}_{\mathcal{C}}\left(C^{\prime}, C\right)$, and $\alpha * \beta=\beta \cdot \alpha$, where $*$ denotes the composition in $\mathcal{C}^{o p}$ and \cdot the composition in $\mathcal{C}\left(\mathcal{C}^{o p}\right.$ is obtained from \mathcal{C} by "reversing the arrows"). Any statement regarding a category \mathcal{C} dualizes to a corresponding statement for $\mathcal{C}^{o p}$.
Definition 7.3. Let \mathcal{B} and \mathcal{C} be two categories. A functor $F: \mathcal{B} \rightarrow \mathcal{C}$ assigns to each object $B \in \mathcal{B}$ an object $F(B) \in \mathcal{C}$, and assigns to any morphism $\beta: B \rightarrow B^{\prime}$ in \mathcal{B} a morphism $F(\beta): F(B) \rightarrow F\left(B^{\prime}\right)$ in \mathcal{C}, in such a way:

F1: $F(\beta \alpha)=F(\beta) F(\alpha)$ for any $\alpha: B \rightarrow B^{\prime}, \beta: B^{\prime} \rightarrow B^{\prime \prime}$ in \mathcal{B}
F2: $F\left(1_{B}\right)=1_{F(B)}$ for any B in \mathcal{B}.
By construction, a functor $F: \mathcal{B} \rightarrow \mathcal{C}$ defines a map for any B, B^{\prime} in \mathcal{B}

$$
\eta_{B, B^{\prime}}: \operatorname{Hom}_{\mathcal{B}}\left(B, B^{\prime}\right) \rightarrow \operatorname{Hom}_{\mathcal{C}}\left(F(B), F\left(B^{\prime}\right)\right), \quad \beta \mapsto F(\beta)
$$

The functor F is called faithful if all these maps are injective and is called full it they are surjective. If F is full and faithful, then all the maps $\eta_{B, B^{\prime}}$ are bijective and so the morphisms in the two categories are the same.

A functor $F: \mathcal{B}^{o p} \rightarrow \mathcal{C}$ is called a contravariant functor from \mathcal{B} to \mathcal{C}. In particular a contravariant functor F assigns to any morphism $\beta: B \rightarrow B^{\prime}$ in \mathcal{B} a morphism $F(\beta): F\left(B^{\prime}\right) \rightarrow$ $F(B)$ in \mathcal{C}.

Example 7.4. (1) Let \mathcal{B} and \mathcal{C} two categories. \mathcal{B} is a subcategory of \mathcal{C} if $\operatorname{Obj}(\mathcal{B}) \subseteq \operatorname{Obj}(\mathcal{C})$, $\operatorname{Hom}_{\mathcal{B}}\left(B, B^{\prime}\right) \subseteq \operatorname{Hom}_{\mathcal{C}}\left(B, B^{\prime}\right)$ for any B, B^{\prime} objects of \mathcal{B}, and the compositions in \mathcal{B} and \mathcal{C} are the same. In this case there is a canonical functor $\mathcal{B} \rightarrow \mathcal{C}$ which is clearly faithful. If this functor is also full, \mathcal{B} is said a full subcategory of \mathcal{C}.
(2) Let $M \in R$-Mod. As we have already observed $\operatorname{Hom}_{R}(M, N)$ is an abelian group for any $N \in R$-Mod. So we can define a functor (Verify the axioms!)

$$
\operatorname{Hom}_{R}(M,-): R \text {-Mod } \rightarrow \mathbf{A b}, \quad N \mapsto \operatorname{Hom}_{R}(M, N)
$$

such that for any $\alpha: N \rightarrow N^{\prime}$,

$$
\operatorname{Hom}_{R}(M, \alpha): \operatorname{Hom}_{R}(M, N) \rightarrow \operatorname{Hom}_{R}\left(M, N^{\prime}\right), \varphi \mapsto \alpha \varphi
$$

(3) Let $M \in R$-Mod and consider the abelian $\operatorname{group} \operatorname{Hom}_{R}(N, M)$ for any $N \in R$-Mod. So we can define a contravariant functor (Verify the axioms!)

$$
\operatorname{Hom}_{R}(-, M):(R \text {-Mod })^{o p} \rightarrow \mathbf{A b}, \quad N \mapsto \operatorname{Hom}_{R}(N, M)
$$

such that for any $\alpha: N \rightarrow N^{\prime}$,

$$
\operatorname{Hom}_{R}(\alpha, M): \operatorname{Hom}_{R}\left(N^{\prime}, M\right) \rightarrow \operatorname{Hom}_{R}\left(N^{\prime}, M\right), \psi \mapsto \psi \alpha
$$

In these lectures we will deal mainly with categories having some kind of additive structure. For instance in the category R-Mod, any set of morphisms $\operatorname{Hom}_{R}(M, N)$ is an abelian group and the composition preserves the sums.

Definition 7.5. A category \mathcal{C} is called preadditive if each set $\operatorname{Hom}_{\mathcal{C}}\left(C, C^{\prime}\right)$ is an abelian group and the compositions maps $\operatorname{Hom}_{\mathcal{C}}\left(C, C^{\prime}\right) \times \operatorname{Hom}_{\mathcal{C}}\left(C^{\prime}, C^{\prime \prime}\right) \rightarrow \operatorname{Hom}_{\mathcal{C}}\left(C, C^{\prime \prime}\right)$ are bilinear.

If \mathcal{B} and \mathcal{C} are preadditive categories, a functor $F: \mathcal{B} \rightarrow \mathcal{C}$ is additive if $F\left(\alpha+\alpha^{\prime}\right)=$ $F(\alpha)+F\left(\alpha^{\prime}\right)$ for $\alpha, \alpha^{\prime}: C \rightarrow C^{\prime}$.

Example 7.6. The category R-Mod is a preadditive category. If $M \in R$ - Mod, then $\operatorname{Hom}_{R}(M,-)$ and $\operatorname{Hom}_{R}(-, M)$ are additive functors.

Definition 7.7. Let R and S two rings and let $F: R-\operatorname{Mod} \rightarrow S$-Mod be an additive functor. F is called left exact if, for any exact sequence $0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0$ in R-Mod, the sequence $0 \rightarrow F(L) \rightarrow F(M) \rightarrow F(N)$ in S-Mod is exact. F is called right exact if, for any exact sequence $0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0$ in R-Mod, the sequence $F(L) \rightarrow F(M) \rightarrow F(N) \rightarrow 0$ in S-Mod is exact. The functor F is exact if it is both left and right exact.

In particular, if F is exact then for any exact sequence in R-Mod $0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0$, the corresponding sequence $0 \rightarrow F(L) \rightarrow F(M) \rightarrow F(N) \rightarrow 0$ in S-Mod is exact.

Proposition 7.8. Let $X \in R$-Mod. The functor $\operatorname{Hom}_{R}(X,-)$ is left exact
Proof. Let $0 \rightarrow L \xrightarrow{f} M \xrightarrow{g} N \rightarrow 0$ be an exact sequence in R-Mod. Denoted by $f^{*}=$ $\operatorname{Hom}_{R}(X, f)$ and $g^{*}=\operatorname{Hom}_{R}(X, g)$, we have to show that the sequence of abelian groups $0 \rightarrow \operatorname{Hom}_{R}(X, L) \xrightarrow{f^{*}} \operatorname{Hom}_{R}(X, M) \xrightarrow{g^{*}} \operatorname{Hom}_{R}(X, N)$ is exact. In particular, we have to show that f^{*} is a mono and that $\operatorname{Im} f^{*}=\operatorname{Ker} g^{*}$.

Let us start considering $\alpha: X \rightarrow L$ such that $f^{*}(\alpha)=0$. So for any $x \in X f^{*}(\alpha)(x)=$ $f \alpha(x)=0$. Since f is a mono we conclude $\alpha(x)=0$ for any $x \in X$, that is $\alpha=0$.

Consider now $\beta \in \operatorname{Im} f^{*} ;$ then there exists $\alpha \in \operatorname{Hom}_{R}(X, L)$ such that $\beta=f^{*}(\alpha)=f \alpha$. Hence $g^{*}(\beta)=g \beta=g f \alpha=0$, since $g f=0$. So we get $\operatorname{Im} f^{*} \leq \operatorname{Ker} g^{*}$.

Finally, let $\beta \in \operatorname{Ker} g^{*}$, so that $g \beta=0$ This means $\operatorname{Im} \beta \leq \operatorname{Ker} g=\operatorname{Im} f$. For any $x \in X$ define α as $\alpha(x)=f^{\leftarrow}(\beta(x))$: α is well-defined since f is a mono and clearly $\beta=f \alpha=f^{*}(\alpha)$. So we get $\operatorname{Ker} g^{*} \leq \operatorname{Im} f^{*}$

In a similar way one prove that the functor $\operatorname{Hom}_{R}(-, X)$ is left exact. Notice that, since $\operatorname{Hom}_{R}(-, X)$ is a contravariant functor, left exact means that for any exact sequence in R-Mod $0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0$, the corresponding sequence of abelian groups $0 \rightarrow \operatorname{Hom}_{R}(N, X) \rightarrow$ $\operatorname{Hom}_{R}(M, X) \rightarrow \operatorname{Hom}_{R}(L, X)$ is exact.
Remark 7.9. Notice that if F is an additive functor and $0 \rightarrow L \xrightarrow{f} M \xrightarrow{g} N \rightarrow 0$ is a split exact sequence in R-Mod, then $0 \rightarrow F(L) \xrightarrow{F(f)} F(M) \xrightarrow{F(g)} F(N) \rightarrow 0$ is split exact. Indeed, since there exists φ such that $\varphi f=i d_{L}$ (see Proposition 5.2), $F(\varphi) F(f)=i d_{F(L)}$, so $F(f)$ is a split mono. Similarly one show that $F(g)$ is a split epi.

In particular, for a given module $X \in R$-Mod the functors $\operatorname{Hom}_{R}(X,-)$ and $\operatorname{Hom}_{R}(-, X)$ could be not exact. Nevertheless, if $0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0$ is a split exact sequence in R-Mod, then the sequence $0 \rightarrow \operatorname{Hom}_{R}(X, L) \rightarrow \operatorname{Hom}_{R}(X, M) \rightarrow \operatorname{Hom}_{R}(X, N) \rightarrow 0$ and the sequence $0 \rightarrow$
$\operatorname{Hom}_{R}(N, X) \rightarrow \operatorname{Hom}_{R}(M, X) \rightarrow \operatorname{Hom}_{R}(L, X) \rightarrow 0$ are split exact. In particular $\operatorname{Hom}_{R}(X, L \oplus$ $\left.N) \cong \operatorname{Hom}_{R}(X, L) \oplus \operatorname{Hom}_{(} X, N\right)$ and $\operatorname{Hom}_{R}(L \oplus N, X) \cong \operatorname{Hom}_{R}(L, X) \oplus \operatorname{Hom}_{R}(N, X)$

One often wishes to compare two functors with each other. So we introduce the notion of natural transformation:
Definition 7.10. Let F and G two functors $\mathcal{B} \rightarrow \mathcal{C}$. A natural transformation $\eta: F \rightarrow G$ is a family of morphisms $\eta_{B}: F(B) \rightarrow G(B)$, for any $B \in \mathcal{B}$, such that for any morphism $\alpha: B \rightarrow B^{\prime}$ in \mathcal{B} the following diagram in \mathcal{C} is commutative

If η_{B} is an isomorphism in \mathcal{C} for any $B \in \mathcal{B}$, then η is called a natural equivalence.
Two categories \mathcal{B} and \mathcal{C} are isomorphic if there exist functors $F: \mathcal{B} \rightarrow \mathcal{C}$ and $G: \mathcal{C} \rightarrow \mathcal{B}$ such that $G F=1_{\mathcal{B}}$ and $F G=1_{\mathcal{C}}$. This is a very strong notion, in fact there are several and relevant examples of categories \mathcal{B} and \mathcal{C} which have essentially the same structure, but where there is a bijective correspondence between the isomorphism classes of objects rather than between the individual objects. Therefore we define the following concept:
Definition 7.11. A functor $F: \mathcal{B} \rightarrow \mathcal{C}$ is an equivalence if there exists a functor $G: \mathcal{C} \rightarrow \mathcal{B}$ and natural equivalences $G F \rightarrow 1_{\mathcal{B}}$ and $F G \rightarrow 1_{\mathcal{C}}$

If the functor F is contravariant and gives an equivalence between $\mathcal{B}^{o p}$ and \mathcal{C}, we say that F is a duality.
Proposition 7.12. A functor $F: \mathcal{B} \rightarrow \mathcal{C}$ is an equivalence if and only if it is full and faithful, and every object of \mathcal{C} is isomorphic to an object of the form $F(B)$, with $B \in \mathcal{B}$.

Thanks to the previous proposition and its analogous for any duality, one can prove the following properties (we state everything in case of a duality, since we will deeply deal with this setting in the final section):
Proposition 7.13. Let $F: \mathcal{B} \rightarrow \mathcal{C}$ be a duality. Then:
(1) $0 \rightarrow M \xrightarrow{f} N$ is a mono in \mathcal{B} if and only if $F(N) \xrightarrow{F(f)} F(M) \rightarrow 0$ is an epi in \mathcal{C}.
(2) $M \xrightarrow{f} N \rightarrow 0$ is an epi in \mathcal{B} if and only if $0 \rightarrow F(N) \xrightarrow{F(f)} F(M)$ is an epi in \mathcal{C}.
(3) $M \xrightarrow{f} N$ is an iso in \mathcal{B} if and only if $F(N) \xrightarrow{F(f)} F(M)$ is an iso in \mathcal{C}.
(4) The sequence $0 \rightarrow L \xrightarrow{f} M \xrightarrow{g} N \rightarrow 0$ is exact in \mathcal{B} if and only if the sequence $0 \rightarrow$ $F(N) \xrightarrow{F(g)} F(M) \xrightarrow{F(f)} F(L) \rightarrow 0$ is exact in \mathcal{C}
(5) an object $B \in \mathcal{B}$ is projective if and only if $F(B) \in \mathcal{C}$ is injective.
(6) An object $B \in \mathcal{B}$ is injective if and only if $F(B) \in \mathcal{C}$ is projective.
(7) An object $B \in \mathcal{B}$ is indecomposable if and only if $F(B) \in \mathcal{C}$ is indecomposable.
(8) An object $B \in \mathcal{B}$ is simple if and only if $F(B) \in \mathcal{C}$ is simple.

Exercise

Exercise 7.14. Let $M, N, L \in R$-Mod. Give an explicit construction of the isomorphisms $\left.\operatorname{Hom}_{R}(X, L \oplus N) \cong \operatorname{Hom}_{R}(X, L) \oplus \operatorname{Hom}_{(} X, N\right)$ and $\left.\operatorname{Hom}_{R}(L \oplus N, X) \cong \operatorname{Hom}_{R}(L, X) \oplus \operatorname{Hom}_{(} N, X\right)$ of Remark 7.9.

Exercise 7.15. Let (P, \leq) be a partially ordered set. Let us define a category \mathcal{C} in this way: the objects of \mathcal{C} are the elements of P, and with a unique morphism $p \rightarrow q$ whenever $p \leq q$, while $\operatorname{Hom}_{\mathcal{C}}(p, q)=0$ if $p \not \leq q$. Verify that the axioms [C1], [C2], [C3] are satisfied. This is an example of a small category, i.e. a category where the class of objects is a set.
Exercise 7.16. Let $\varphi: R \rightarrow S$ be a homomorphism of rings. Each left S-module M has also a structure of left R-module, defining $r x:=\varphi(r) x$ for any $x \in M$ and any $r \in R$. Let φ^{*} : S-Mod $\rightarrow R$-Mod, $M \mapsto M, \alpha \mapsto \alpha$ for any $M \in S$-Mod and for any $\alpha \in \operatorname{Hom}_{S}(M, N)$. Verify that φ^{*} is an additive and faithful functor (called restriction of scalars)

Exercise 7.17. A functor F is exact if and only if $F(L) \rightarrow F(M) \rightarrow F(N)$ is exact whenever $L \rightarrow M \rightarrow N$ is exact.

8. Projective modules

In general, for a given R-module M, the functor $\operatorname{Hom}_{R}(M,-)$ is left exact but not right exact. In this section we study the R-modules P for which $\operatorname{Hom}_{R}(P,-)$ is also right exact.

Definition 8.1. A module $P \in R$-Mod is projective if $\operatorname{Hom}_{R}(P,-)$ is an exact functor.
The right exactness is equivalent to require that for any $M \xrightarrow{g} N \rightarrow 0$ in R-Mod the homomorphism $\operatorname{Hom}_{R}(P, M) \xrightarrow{\operatorname{Hom}_{R}(P, g)} \operatorname{Hom}_{R}(P, N)$ is an epi, that is for any $\varphi \in \operatorname{Hom}_{R}(P, N)$ there exists $\psi \in \operatorname{Hom}_{R}(P, M)$ such that $g \psi=\phi$.

Example 8.2. Any free module is projective. Indeed, let $R^{(I)}$ a free R-module with $\left(x_{i}\right)_{i \in I}$ a basis. Given $M \xrightarrow{g} N \rightarrow 0$ and $\varphi: R^{(I)} \rightarrow N$ in R-Mod, let $m_{i} \in M$ such that $g\left(m_{i}\right)=\varphi\left(x_{i}\right)$ for any $i \in I$. Define $\psi\left(x_{i}\right)=m_{i}$ and, for $x=\sum r_{i} x_{i}, \psi(x)=\sum r_{i} m_{i}$. We get that $g \psi=\varphi$. Notice that from the construction is clear that the homomorphism ψ could be not unique.
Proposition 8.3. Let $P \in R$-Mod. The following are equivalent:
(1) P is projective
(2) P is a direct summand of a free module
(3) every exact sequence $0 \rightarrow L \xrightarrow{f} M \xrightarrow{g} P \rightarrow 0$ splits.

Proof. $1 \Rightarrow 3$ Let $0 \rightarrow L \xrightarrow{f} M \xrightarrow{g} P \rightarrow 0$ be an exact sequence in R-Mod and consider the homorphism $1_{P}: P \rightarrow P$. Since P is projective there exists $\psi: P \rightarrow M$ such that $g \psi=1_{P}$. By Proposition 5.2 we conclude that the sequence splits.
$3 \Rightarrow 2$ The module P is a quotient of a free module, so there exist an exact sequence $0 \rightarrow K \xrightarrow{f}$ $R^{(I)} \xrightarrow{g} P \rightarrow 0$, which is split.
$2 \Rightarrow 1$ If $R^{(I)}=P \oplus L$, then $\operatorname{Hom}_{R}\left(R^{(I)}, N\right) \cong \operatorname{Hom}_{R}(P, N) \oplus \operatorname{Hom}_{R}(L, N)$ for any $N \in R$-Mod. So let us consider the homorphisms

where $(\varphi, 0)(p+l)=\varphi(p)+0(l)=\varphi(p)$ for any $p \in P$ and $l \in L$ and α exists since $R^{(I)}$ is projective. Then $\alpha=(\psi, \beta)$, with $\psi \in \operatorname{Hom}_{R}(P, N)$ and $\beta \in \operatorname{Hom}_{R}(L, N)$, where $\alpha(p+l)=$ $\psi(p)+\beta(l)$ for any $p \in P$ and $l \in L$. Hence $g(\psi(p))=g(\alpha(p))=\varphi(p)$ for any $p \in P$. So we conclude that P is projective.

Example 8.4. (1) Let R be a principal ideal domain (for instance, $R=\mathbb{Z}$). Then any projective module is free. In particular, free abelian groups and projective abelian group coincide.
(2) Let $R=\mathbb{Z} / 6 \mathbb{Z}$. Then $\mathbb{Z} / 6 \mathbb{Z}=3 \mathbb{Z} / 6 \mathbb{Z} \oplus 2 \mathbb{Z} / 6 \mathbb{Z}$. The ideals $3 \mathbb{Z} / 6 \mathbb{Z}$ and $2 \mathbb{Z} / 6 \mathbb{Z}$ are projective R-modules, but not free R-modules (why?)

Proposition 8.5. Let $P \in R$-Mod. P is projective if and only if there exists a family $\left(\varphi_{i}, x_{i}\right)_{i \in I}$ with $\varphi_{i} \in \operatorname{Hom}_{R}(P, R)$ and $x_{i} \in P$ such that for any $x \in P$ one has $x=\sum_{i} \varphi_{i}(x) x_{i}$ where $\varphi_{i}(x)=0$ for almost every $i \in I$.

Proof. Let P be projective and let $R^{(I)} \xrightarrow{\beta} P \rightarrow 0$ be a spli epi. Consider $\left(e_{i}\right)_{i \in I}$ a basis of $R^{(I)}$ and define $x_{i}=\beta\left(e_{i}\right)$. Observe that $\beta\left(\sum_{i} r_{i} e_{i}\right)=\sum_{i} r_{i} \beta\left(e_{i}\right)=\sum_{i} r_{i} x_{i}$. By Proposition 5.2, there exists $\varphi: P \rightarrow R^{(I)}$ such that $\beta \varphi=i d_{P}$, which induces homomorphisms $\varphi_{i}=\pi_{i} \varphi$ where π_{i} is the projection on the i-th component, so $\varphi_{i}(x) \in R$ for any $i \in I$ and $\varphi(x)=\sum \varphi_{i}(x)$. Hence for any $x \in P$ one has $x=\beta \varphi(x)=\beta\left(\sum_{i} \varphi_{i}(x)\right)=\sum_{i} \varphi_{i}(x) x_{i}$, so $\left(\varphi_{i}, x_{i}\right)_{i \in I}$ satisfies the stated properties.

Conversely, let $\left(\varphi_{i}, x_{i}\right)_{i \in I}$ satisfy the statement and let $\beta: R^{(I)} \rightarrow P, e_{i} \mapsto x_{i}$. The homomorphism β is an epi, since the family $\left(x_{i}\right)_{i \in I}$ generates P, and $\beta\left(\sum r_{i}\right)=\sum r_{i} x_{i}$. Define $\varphi: P \rightarrow R^{(I)}, x \mapsto \sum \varphi_{i}(x)$. Then for any $x \in P$ one gets $\beta \varphi(x)=\beta\left(\sum \varphi_{i}(x)\right)=\sum \varphi_{i}(x) x_{i}=x$. By Proposition 5.2 we conclude that β is a split epi and so P is projective.

Note that, from the results in the previous sections, the projective module ${ }_{R} R$ plays a crucial role in the category R-Mod, since for any $M \in R$-Mod there exists an epi $R^{(I)} \rightarrow M \rightarrow 0$, for some set I. A module with such property is called a generator and so R is a projective generator for R-Mod.

In particular, for any $M \in R$-Mod there exists a short exact sequence $0 \rightarrow K \rightarrow P_{0} \rightarrow M \rightarrow 0$, with P_{0} projective. The same holds for the module K, and so, iterating the argument, we can construct an exact sequence

$$
\cdots \rightarrow P_{i} \rightarrow \cdots \rightarrow P_{1} \rightarrow P_{0} \rightarrow M \rightarrow 0
$$

where all the P_{i} are projectiveSuch a sequence is called a projective resolution of P. It is clearly not unique.

It is natural to ask if, for a given $M \in R$-Mod, there exists a projective module P and a "minimal" epi $P \rightarrow M \rightarrow 0$, in the sense that $f_{\mid L}: L \rightarrow M$ is epi for no proper projective submodule of P. More precisely, we define:

Definition 8.6. A homomorphism $f: M \rightarrow N$ is right minimal if for any $g \in \operatorname{End}_{R}(M)$ such that $f g=f$, one gets g is an isomomorphism.
If P_{M} is a projective module and $P_{M} \rightarrow M$ is epimorphism right minimal, then P_{M} is a projective cover of M.

Remark 8.7. Consider the diagram

where P_{M} is a projective cover of M and P is a projective module. Since P_{M} and P are projective, there exist φ and ψ such that the diagram commutes. Hence $f \psi=g$ and $g \varphi=f$, so $f \psi \varphi=f$ and, since f is right minimal, we conclude $\psi \varphi$ is an iso. In particular φ is a mono. Define $\theta: P \rightarrow P_{M}$ as $\theta=(\psi \varphi)^{-1} \psi$: then $\theta \varphi=i d_{P}$ and so φ is a split mono (see Proposition 5.2). We conclude that P_{M} is a direct summand of P. This explains the minimality property of the projective cover announced above.

If also P is a projective cover of M, using the same argument we get that $\varphi \psi$ is an iso, that is $\varphi=\psi^{-1}$ and P_{M} is isomorphic to P. We have shown that the projective cover is unique (modulo isomorphisms).

We state the following characterization of projective covers:
Theorem 8.8. Let P a projective module. Then $P \xrightarrow{f} M \rightarrow 0$ is a projective cover of M if and only if $\operatorname{Ker} f$ is a superfluous submodule of P (i.e. for any submodule $L \leq P, L+\operatorname{Ker} f=P$ implies $L=P$.)

Observe that, given $M \in R$-Mod, a projective cover for M could not exist. A ring in which any module admits a projective cover is called semiperfect

Let now $M \in R$-Mod and suppose there exist a projective resolution of M

$$
\ldots P_{2} \xrightarrow{f_{2}} P_{1} \xrightarrow{f_{1}} P_{0} \xrightarrow{f_{0}} M \rightarrow 0
$$

such that P_{0} is a projective cover of M and P_{i} is a projective cover of $\operatorname{Ker} f_{i-1}$ for any $i \in \mathbb{N}$. Such a resolution is called a minimal projective resolution of M.

Exercise

Exercise 8.9. Let $P_{1}, P_{2}, \ldots, P_{n} \in R$-Mod. Then $\oplus_{i=1, \ldots, n} P_{i}$ is projective if and only if P_{i} is projective for any $i=1, \ldots, n$.

Exercise 8.10. Let $0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0$ a short exact sequence in R-Mod. If L and N are projective, then M is projective
Exercise 8.11. Let $P \in R$-Mod be a projective module. Show that, if P is finitely generated, then P is a direct summand of R^{n}, for a suitable $n \in \mathbb{N}$.

Exercise 8.12. Show that any abelian group $n \mathbb{Z}, n \in \mathbb{N}$, is a projective \mathbb{Z}-module.
Exercise 8.13. An epimorphism $f: M \rightarrow N \rightarrow 0$ is called superfluous if $\operatorname{Ker} f$ is a superfluous submodule of M. Show that, if f is superfluous and $f g$ is an epimorphism, then g is an epimorphism.

9. Bimodules

Definition 9.1. Let R and S rings. An abelian group M is a left R- right S-bimodule if M is a left R-module and a right S-module such that the two scalar multiplications satisfy $r(x s)=(r x) s$ for any $r \in R, s \in S, x \in M$. We write ${ }_{R} M_{S}$.
Example 9.2. Let $M \in R$-Mod and consider $S=\operatorname{End}_{R}^{r}(M)$, the ring of homomorphism R-linear of M, where homorphisms act on the right (i.e. $m f=f(m)$ and $m(f g)=g(f(m)))$. So M is a right S-module (Verify!) and ${ }_{R} M_{S}$ is a bimodule. Indeed $(r m) f=f(r m)=r f(m)=r(m f)$ for any $r \in R, m \in M$ and $f \in S$.

Given a bimodule ${ }_{R} M_{S}$ and a left R-module N, the abelian group $\operatorname{Hom}_{R}(M, N)$ is naturally endowed with a structure of left S-module, by defining $(s f)(x):=f(x s)$ for any $f \in$ $\operatorname{Hom}_{R}(M, N)$ and any $x \in M$. (Verify! crucial point: $\left(s_{1}\left(s_{2} f\right)\right)(x)=\left(s_{2} f\left(x s_{1}\right)\right)=f\left(x s_{1} s_{2}\right)=$ $\left.\left(\left(s_{1} s_{2}\right) f\right)(x)\right)$.

Similary, if ${ }_{R} N_{T}$ is a left R - right T-bimodule and $M \in R$-Mod, then $\operatorname{Hom}_{R}(M, N)$ is naturally endowed with a structure of right T-module, by defining $(f t)(x):=f(x) t$ (Verify! crucial point: $\left.\left.\left(f\left(t_{1} t_{2}\right)\right)(x)=f(x)\left(t_{1} t_{2}\right)=(f(x)) t_{1}\right) t_{2}=\left(\left(f t_{1}\right)(x)\right) t_{2}=\left(\left(f t_{1}\right) t_{2}\right)(x)\right)$.

Moreover, one can show that if ${ }_{R} M_{S}$ and ${ }_{R} N_{T}$ are bimodules, then $\operatorname{Hom}_{R}\left({ }_{R} M_{S}{ }_{R} N_{T}\right)$ is a left S - right T-bimodule (Verify!).

Arguing in a similar way for right R-modules, if ${ }_{S} M_{R}$ and ${ }_{T} N_{R}$ are bimodules, then the abelian group $\operatorname{Hom}_{R}\left({ }_{S} M_{R},{ }_{T} N_{R}\right)$ is a left T - right S-bimodule, by $(t f)(x)=t(f(x))$ and $(f s)(x)=f(s x)$.

10. Injective modules

In this section we study the R-modules E for which $\operatorname{Hom}_{R}(-, E)$ is an exact functor. Observe that many results we are going to show are dual of those proved for projective modules.

Definition 10.1. A module $E \in R$-Mod is injective if $\operatorname{Hom}_{R}(-, E)$ is an exact functor.
The exactness is equivalent to require that for any $0 \rightarrow L \xrightarrow{f} M$ in R-Mod the homomorphism $\operatorname{Hom}_{R}(M, E) \xrightarrow{\operatorname{Hom}_{R}(f, E)} \operatorname{Hom}_{R}(L, E)$ is an epi, that is for any $\varphi \in \operatorname{Hom}_{R}(L, E)$ there exists $\psi \in \operatorname{Hom}_{R}(M, E)$ such that $\psi f=\varphi$.

Any module is quotient of a projective module. Does the dual property hold? that is, given any module $M \in R$-Mod, is it true that M embeds in a injective R-module? In the sequel we will answer to this crucial question.

An abelian group G is divisible if, for any $n \in \mathbb{Z}$ and for any $g \in G$, there exists $t \in G$ such that $g=n t$. We are going to show that an abelian group is injective if and only if it is divisible. We need the the following useful criterion to check whether a module is injective, known as Baer's Lemma.

Lemma 10.2. Let $E \in R$-Mod. The module E is injective if and only if for any left ideal J of R and for any $\varphi \in \operatorname{Hom}_{R}(J, E)$ there exists $\psi \in \operatorname{Hom}_{R}(R, E)$ such that $\psi i=\varphi$, where i is the canonical inclusion $0 \rightarrow J \xrightarrow{i} R$.

The lemma states that it is sufficient to check the injectivity property only for left ideals of the ring. In particular, the Baer's Lemma says that E is injective if and only if for any ${ }_{R} J \leq{ }_{R} R$ and for any $\varphi \in \operatorname{Hom}_{R}(J, E)$ there exists $y \in E$ such that $\varphi(x)=x y$ for any $x \in J$.
Proposition 10.3. A module $G \in \mathbb{Z}$-Mod is injective if and only if it is divisible.
Proof. Let us assume G injective, consider $n \in \mathbb{Z}$ and $g \in G$ and the commutative diagram

where $\varphi(s n)=s g$ for any $s \in \mathbb{Z}$ and ψ exists since G is injective. Let $t=\psi(1), t \in G$. Then $\varphi(n)=\psi(i(n))$ implies $g=n t$ and we conclude that G is divisible.

Conversely, suppose G divisible and apply Baer's Lemma. The ideal of \mathbb{Z} are of the form $\mathbb{Z} n$ for $n \in \mathbb{Z}$, so we have to verify that for any $\varphi \in \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z} n, G)$ there exists ψ such that

commutes. Let $g \in G$ such that $\varphi(n)=g$. Since \mathbb{Z} is a free \mathbb{Z}-module, define $\psi(1)=t$ where $g=n t$ and so $\psi(r)=r t$ for any $r \in \mathbb{Z}$. Hence $\varphi(s n)=s g=s n t=\psi(i(s n))$.

The result stated in the previous proposition holds for any Principal Ideal Domain R (see Exercise 10.14).

Example 10.4. The \mathbb{Z}-module \mathbb{Q} is injective.
Remark 10.5. Any abelian group G embeds in a injective abelian group. Indeed, consider a short exact sequence $0 \rightarrow K \rightarrow \mathbb{Z}^{(I)} \rightarrow G \rightarrow 0$ and the canonical inclusion in \mathbb{Z}-Mod $0 \rightarrow \mathbb{Z} \rightarrow \mathbb{Q}$. One easily check that $\mathbb{Q}^{(I)} / K$ is divisible (Verify!) and so injective. Then we get the induced monomorphism $0 \rightarrow G \cong \mathbb{Z}^{(I)} / K \rightarrow \mathbb{Q}^{(I)} / K$.

Proposition 10.6. Let R be a ring. If $D \in \mathbb{Z}-\operatorname{Mod}$ is injective, then $\operatorname{Hom}_{\mathbb{Z}}(R, D)$ is an injective left R-module

Proof. First notice that, since $\mathbb{Z}_{\mathbb{Z}} R_{R}$ is a bimodule, $\operatorname{Hom}_{\mathbb{Z}}(R, D)$ is naturally endowed with a structure of left R-module. In order to verify that it is injective, we apply Baer's Lemma. So let ${ }_{R} I \leq{ }_{R} R$ and $h: I \rightarrow \operatorname{Hom}_{\mathbb{Z}}(R, D)$ an R-homomorphism. Then $\gamma: I \rightarrow D, a \mapsto h(a)(1)$ defines a \mathbb{Z}-homomorphism and, since D is an injective abelian group, there exists $\bar{\gamma}: R \rightarrow D$ which extends γ. Now we have, for any $a \in I$ and $r \in R$,

$$
(a \bar{\gamma})(r)=\bar{\gamma}(r a)=\gamma(r a)=[h(r a)](1)=[r h(a)](1)=[h(a)](r)
$$

so $h(a)=a \bar{\gamma}$ for any $a \in I$. Hence we conclude $\operatorname{Hom}_{\mathbb{Z}}(R, D)$ is injective by Baer's Lemma.
Corollary 10.7. Let $M \in R$-Mod. Then there exists an injective module $E \in R$-Mod and a monomorphism $0 \rightarrow M \rightarrow E$.
Proof. Consider the isomorphism of \mathbb{Z}-modules $\varphi: \operatorname{Hom}_{R}(R, M) \rightarrow M, f \mapsto f(1)$. Observe that since ${ }_{R} R_{R}$ is a left R - right R-bimodule, then $\operatorname{Hom}_{R}(R, M)$ is naturally endowed with a structure of left R-module. One easily check that φ is also R-linear, hence ${ }_{R} M \cong \operatorname{Hom}_{R}\left(R_{R}, M\right) \leq$ $\operatorname{Hom}_{\mathbb{Z}}\left(R_{R}, M\right)$. By Remark 10.5, there is a mono of \mathbb{Z}-modules $0 \rightarrow M \rightarrow G$ from which we obtain a mono of R-modules $0 \rightarrow \operatorname{Hom}_{\mathbb{Z}}\left(R_{R}, M\right) \rightarrow \operatorname{Hom}_{\mathbb{Z}}\left(R_{R}, G\right)$, where $\operatorname{Hom}_{\mathbb{Z}}\left(R_{R}, G\right)$ is an injective left R-module by Proposition 10.6.

Since any module M embeds in a injective one, it is natural to ask whether there exists a "minimal" injective module containing M.
Definition 10.8. A homomorphism $f: M \rightarrow N$ is left minimal if for any $g \in \operatorname{End}_{R}(N)$ such that $g f=f$, one gets g is an isomomorphism.
If E_{M} is an injective module and $M \rightarrow E_{M}$ is a monomorphism left minimal, then E_{M} is an injective envelope of M.
Remark 10.9. Consider the diagram

where E_{M} is an injective envelope of M and E is an injective module. Since E_{M} and E are injective, there exist φ and ψ such that the diagram commutes. Hence $\psi g=f$ and $\varphi f=g$, so $\psi \varphi f=f$ and, since f is left minimal, we conclude that $\psi \varphi$ is an iso. In particular φ is a mono and so it is a split mono. We conclude that E_{M} is a direct summand of E. This explains the minimality property of the injective envelope announced above.

If also E is an injective envelope of M, using the same argument we get that $\varphi \psi$ is an iso, that is φ is an iso and E_{M} is isomorphic to E. We have shown that the injective envelope is unique (modulo isomorphisms).

We state the following characterization of injective envelope.
Theorem 10.10. Let E be an injective module. Then $0 \rightarrow M \xrightarrow{f} E$ is an injective envelope if and only if $\operatorname{Im} f$ is an essential submodule of M (i.e. for any submodule $L \leq E, L \cap \operatorname{Im} f \neq\{0\}$)
Proof. Suppose $0 \rightarrow M \xrightarrow{f} E$ is an injective envelope and let $L \leq E$ such that $L \cap \operatorname{Im} f=\{0\}$. Then $\operatorname{Im} f \oplus L \leq E$ and we can consider the commutative diagram

where i is the canonical inclusion of $\operatorname{Im} f \oplus L$ in E and φ exists since E is injective. Then $\varphi f=f$ but φ is clearly not an iso.

Conversely, let $\operatorname{Im} f$ be essential in M and let $g \in \operatorname{End}_{R}(E)$ such that $g f=f$. Since f is an essential mono we conclude that g is a mono (see Exercise 10.17), so it is a split mono. In particular, $\operatorname{Im} f \leq \operatorname{Im} g \stackrel{\oplus}{\leq} E$, contradicting the essentiality of $\operatorname{Im} f$.

Not every module has a projective cover. Thus the next result is especially remarkable
Theorem 10.11. Every module has an injective envelope.
Proof. Let $M \in R$-Mod; by Corollary 10.7 there exists an injective module Q such that $0 \rightarrow$ $M \rightarrow Q$. Consider the set $\left\{E^{\prime} \mid M \leq E^{\prime} \leq Q\right.$ and M essential in $\left.E^{\prime}\right\}$. One easily check that it is an inductive set so, by Zorn's Lemma, it contains a maximal elemnt E. Let us show that E is a direct summand of Q and so E is injective (see Exercise 10.16). To this aim, consider the set $\left\{F^{\prime} \mid F^{\prime} \leq Q\right.$ and $\left.F^{\prime} \cap E=0\right\}$. It is inductive so, again by Zorn's Lemma, it contains a maximal element F. Then there exists an obvious iso $g: E \oplus F / F \rightarrow E$ and $E \oplus F / F \leq Q / F$: from the maximality of F it follows that $E \oplus F / F \leq Q / F$ is an essential inclusion (Verify!) so consider the diagram

where j is the canonical inclusion and φ exists since Q is injective. Moroever φ is a mono since $\varphi j=g$ is a mono and j is an essential mono (see Exercise 10.17). It follows that M is essential in $E=\operatorname{Im} g$ and $E=\operatorname{Im} g=\varphi(E \oplus F / F)$ is essential in $\operatorname{Im} \varphi$. Thus M is essential in $\operatorname{Im} \varphi$ so, from the maximality of E we conclude that $E=\operatorname{Im} \varphi$ and hence $\varphi(E \oplus F / F)=\varphi(Q / F)$. Since φ is a mono we conclude $E \oplus F=Q$.

Proposition 10.12. Let $E \in R$-Mod. The following are equivalent:
(1) E is injective
(2) every exact sequence $0 \rightarrow E \xrightarrow{f} M \xrightarrow{g} N \rightarrow 0$ splits.

Proof. $1 \Rightarrow 2$ Consider the commutative diagram

where φ exists since E is injective. Since $\varphi f=\operatorname{id}_{E}$, by Proposition 5.2 we conclude that f is a split mono.
$2 \Rightarrow 1$ By Corollary 10.7 there exists an exact sequence $0 \rightarrow E \rightarrow F \rightarrow N \rightarrow 0$, where F is an injective module. Since the sequence splits, we get that E is a direct summand of a injective module, and so E is injective (see Exercise 10.16).

Comparing the previous proposition with the analogous one for projective modules (see Proposition 8.3), there is an evident difference. Speaking about projective modules, we saw that a special role is played by the projective generator R. Does a module with the dual property exist? An injective module $E \in R$-Mod such that any $M \in R$-Mod embeds in $E^{I_{M}}$, for a set I_{M}, is called an injective cogenerator of R-Mod. We will see in the sequel that such a module always exists.

Remark 10.13. Dualizing what we showed in the projective case, for any module $M \in R$-Mod there exists a long exact sequence $0 \rightarrow M \xrightarrow{f_{0}} E_{0} \xrightarrow{f_{1}} E_{1} \xrightarrow{f_{2}} E_{2} \rightarrow \ldots$, where the E_{i} are injective. This is called an injective coresolution of M. If E_{0} is an injective envelope of M and E_{i} in an injective envelope of $\operatorname{Ker} f_{i}$ for any $i \geq 1$, then the sequence is called a minimal injective coresolution of M.

Exercises

Exercise 10.14. Let R be a Principal Ideal Domain. Prove that an R-module is injective if and only if it is divisible.

Exercise 10.15. Let G be a divisible abelian group. Then $G^{(I)}$ and G / N are divisible, for any set I and for any subgroup N of G.

Exercise 10.16. Let E_{i} for $i=1, \ldots, n$ in R-Mod. Then $\bigoplus_{i \in I} E_{i}$ is injective if and only if E_{i} is injective for any $i=1 \ldots n$.

Exercise 10.17. A monomorphism $0 \rightarrow L \rightarrow M$ is R-Mod is called essential monomorphism if $\operatorname{Im} L$ is essential in M. Prove that if f is an essential morphism and $g f$ is a mono, then g is a mono.
Exercise 10.18. Let $0 \rightarrow M \xrightarrow{f} L$ and $0 \rightarrow L \xrightarrow{g} N$ two essential monomorphism. Show that $g f$ is an essential monomorphism.

11. On the lattice of submodules of M

Let $M \in R$-Mod and consider the partially ordered set $\mathcal{L}_{M}=\{L \mid L \leq M\}$. Then \mathcal{L}_{M} is a complete lattice, where for any $N, L \in \mathcal{L}, \sup \{N, L\}=L+N$ and $\inf \{N, L\}=L \cap N$. The greatest element of \mathcal{L}_{M} is M and the smallest if $\{0\}$.

Given an arbitrary module $M \in R$-Mod, it is natural to ask whether minimal or maximal elements of \mathcal{L} exist. They are exactly the maximal submodules of M and the simple submodules of M, respectively. More precisely we introduce the following definitions:

Definition 11.1. A module $S \in R$-Mod is simple if $L \leq S$ implies $L=\{0\}$ or $L=S$.
A submodule $N<M$ is a maximal submodule of M if $N \leq L \leq M$ implies $L=N$ or $L=M$.
Example 11.2. (1) Let K be a field. Then K is the unique (modulo isomorphisms) simple module in K-Mod.
(2) In \mathbb{Z}-Mod any abelian group $\mathbb{Z} / \mathbb{Z} p$ with p prime is a simple abelian group. So in \mathbb{Z}-Mod there are infinite simple modules.
(3) The regular module \mathbb{Z} does not contain any simple submodule, since any ideal of \mathbb{Z} is of the form $\mathbb{Z} n$ and $\mathbb{Z} m \leq \mathbb{Z} n$ whenever n divides m.

In general, it is not true that any module contains a simple or a maximal submodule. Nevertheless we have the following result (see also Exercise 11.17)

Proposition 11.3. Let R be a ring and ${ }_{R} I<_{R} R$. There exists a maximal left ideal M of R such that $I \leq M<R$. In particular R adimits maximal left ideals.

Proof. Let $\mathcal{F}=\{L \mid I \leq L<R\}$. The set \mathcal{F} is inductive since, given a sequence $L_{0} \leq L_{1} \leq \ldots$, the left ideal $\bigcup L_{i}$ contains all the L_{i} and it is a proper ideal of R. Indeed, if $\bigcup L_{i}=R$, there would exist an index $j \in \mathbb{N}$ such that $1 \in L_{j}$ and so $L_{j}=R$. So by Zorn's Lemma, \mathcal{F} has a maximal element, which is clearly a maximal left ideal of R.

Example 11.4. Consider the regular module \mathbb{Z}. Then $\mathbb{Z} p$ is a maximal submodule of \mathbb{Z} for any prime number p. Moreover the ideal $\mathbb{Z} n$ is contained in $\mathbb{Z} p$ for any p such that $p \mid n$.

Remark 11.5. Let $\mathcal{M} \leq R$ a maximal left ideal of R. Clearly R / \mathcal{M} is a simple R-module, and this shows that simple modules always exists in R-Mod, for any ring R.

Conversely, let $S \in R$-Mod be a simple module. So $S=R x$ for an element $x \in S$ and let $\operatorname{Ann}_{R}(x)=\{r \in R \mid r x=0\} . \operatorname{Ann}_{R}(x)$ is a maximal left ideal of R, since it is the kernel of the epimorphism $\varphi: R \rightarrow S, 1 \mapsto x$, and hence $S \cong R / \operatorname{Ann}_{R}(x)$.

Finally, for any simple module S consider the module $\operatorname{Ann}_{R}(S)=\cap_{x \in S} \operatorname{Ann}_{R}(x)$. It is easy to show that $\operatorname{Ann}_{R}(S)$ is a two-sided ideal of R, called the annihilator of the simple module S (see Exercises 11.18 and 3.5).

The simple modules play an crucial role in the study of the category R-Mod, for instance:
Proposition 11.6. Let $E \in R$-Mod be an injective module. The module E is a cogenerator of R-Mod if and only if for any simple module $S \in R$-Mod there exists a mono $0 \rightarrow S \rightarrow E$.

Proof. Assume E is a cogenerator, so for any simple module $S \in R$-Mod there exists a mono $0 \rightarrow S \xrightarrow{f_{S}} E^{I_{S}}$, for a set I_{S}. Then there exist $j \in I_{S}$ such that $\pi_{j} \circ f: S \rightarrow E$ is not the zero map. So, since $\operatorname{Ker}\left(\pi_{j} \circ f\right) \leq S$, we get that for any simple module S there exists a mono $\pi_{j} \circ f: S \rightarrow E$. Conversely, assume the existence a mono $0 \rightarrow S \rightarrow E$ for any simple module S. Let $M \in R$-Mod, and let $x \in M, x \neq 0$. So $R x \leq M$ and $R x \cong R / \operatorname{Ann}_{R}(x)$. By Proposition 11.3 there exists a maximal submodule $\mathcal{M} \leq R$ such that $\operatorname{Ann}_{R}(x) \leq \mathcal{M}$. Consider the diagram

where f is a mono that exists by assumption and $\varphi_{x}: M \rightarrow E$ exists since E is injective. In particular $\varphi_{x}(x) \neq 0$. Hence we can construct a mono $\varphi: M \rightarrow E^{M}, x \mapsto\left(0,0, \ldots, 0, \varphi_{x}(x), 0, \ldots, 0\right)$, where $\varphi_{x}(x)$ is the $x^{t h}$ position.

Corollary 11.7. Let $\left\{S_{\lambda}\right\}_{\lambda \in \Lambda}$ be a set of representative of the simple modules (modulo isomorphisms) in R-Mod. Then the injective envelope $E\left(\oplus S_{\lambda}\right)$ is a minimal injective cogenerator of R-Mod

Proof. The injective module $E\left(\oplus S_{\lambda}\right)$ cogenerates all the simple modules, so by the previous Proposition it is an injective cogenerator. If W is a injective cogenerator of R-Mod, since $S_{\lambda} \leq W$ for any $\lambda \in \Lambda$ (see the argument in the previous proof) one gets $\oplus S_{\lambda} \leq W$. Since $E\left(\oplus S_{\lambda}\right)$ is the injective envelope of $\oplus S_{\lambda}$, we conclude $E\left(\oplus S_{\lambda}\right) \stackrel{\oplus}{\leq} W$.

Remark 11.8. If there is a finite number of simple modules in R-Mod (modulo isomorphisms), $S_{1}, S_{2}, \ldots, S_{n}$, then $E\left(\oplus S_{i}\right)=\oplus E\left(S_{i}\right)$ is a minimal injective cogenerator of R-Mod

Definition 11.9. Let $M \in R$-Mod. The socle of M is the submodule $\operatorname{Soc}(M)=\sum\{S \mid S$ is a simple submodule of $M\}$. The radical of M is the submodule $\operatorname{Rad}(M)=\cap\{N \mid N$ is a maximal submodule of $M\}$.

Remark 11.10. If M does not contain any simpe module, we set $\operatorname{Soc}(M)=0$. If M does not contain any maximal submodule, we set $\operatorname{Rad}(M)=M$.

In the next Proposition we list some important properties of the socle and of the radical of a module. We leave the proofs for exercise.

Proposition 11.11. Let $M \in R$-Mod.
(1) $\operatorname{Soc}(M)=\oplus\{S \mid S$ is a simple submodule of $M\}$. In particular, $\operatorname{Soc}(M)$ is a semisimple module.
(2) $\operatorname{Soc}(M)=\cap\{L \mid L$ is an essential submodule of $M\}$.
(3) $\operatorname{Rad}(M)=\sum\{U \mid U$ is a superfluous submodule of $M\}$.
(4) Let $f: M \rightarrow N$. Let $f(\operatorname{Soc}(M)) \leq \operatorname{Soc}(N)$ and $f(\operatorname{Rad}(M)) \leq \operatorname{Rad}(N)$.
(5) if $M=\oplus_{\lambda \in \Lambda} M_{\lambda}$, then $\operatorname{Soc}(M)=\oplus_{\lambda \in \Lambda} \operatorname{Soc}\left(M_{\lambda}\right)$ and $\operatorname{Rad}(M)=\oplus_{\lambda \in \Lambda} \operatorname{Rad}\left(M_{\lambda}\right)$.
(6) $\operatorname{Rad}(M / \operatorname{Rad}(M))=0$ and $\operatorname{Soc}(\operatorname{Soc}(M))=\operatorname{Soc}(M)$.
(7) If M is finitely generated, then $\operatorname{Rad}(M)$ is a superfluous submodule of M.

Remark 11.12. It is clear that the radical can be described also by

$$
\operatorname{Rad}(M)=\{x \in M \mid \varphi(x)=0 \text { for every } \varphi: M \rightarrow S \text { with } S \text { simple }\}
$$

Indeed, given $\varphi: M \rightarrow S$ with S simple, the kernel of φ is a maximal submodule of M. Conversely, if N is a maximal submodule of M, then consider $\pi: M \rightarrow M / N$ where M / N is simple.

A crucial role is played by the radical of the regular module ${ }_{R} R$.
Definition 11.13. Let R be a ring. The Jacobson radical of R is the ideal $\operatorname{Rad}\left({ }_{R} R\right)$. It is denoted by $\mathrm{J}(R)$.

By the Remarks 11.5 and 11.12, the Jacobson radical of R can be described as the intersection of the annihilators $\operatorname{Ann}_{R}(S)$ of the simple left R-modules. In particular it is a two-sided ideal of R.

Lemma 11.14. For every $M \in R$ - $\operatorname{Mod}, \mathrm{J}(R) M \leq \operatorname{Rad}(M)$
Proof. Since $\mathrm{J}(R)$ annihilates any simple module S, all homomorphisms $M \rightarrow S$ are zero on $\mathrm{J}(R) M$ so, by Remark $11.12, \mathrm{~J}(R) M \leq \operatorname{Rad}(M)$

Proposition 11.15 (Nakayma's Lemma). Let M be a finitely generated R-module. If L is a submodule of M such that $L+\mathrm{J}(R) M=M$, then $L=M$.

Proof. $L+\mathrm{J}(R) M=M$ implies $L+\operatorname{Rad}(M)=M$ and since $\operatorname{Rad}(M)$ is superfluous in M (see Proposition 11.11) we get $L=M$.

We conclude with the following characterization of $\mathrm{J}(R)$
Proposition 11.16. $J(R)=\{r \in R \mid 1-x r$ has a left inverse for any $x \in R\}$

Exercise

Exercise 11.17. Let $M \in R$-Mod be finitely generated. Show that, for any $L<M$, there exists a maximal submodule of M containing L. In particular, $\operatorname{Rad}(M)<M$.
Exercise 11.18. Show that, for any simple module $S \in R-\operatorname{Mod}, \operatorname{Ann}_{R}(S)$ is a two-sided ideal of R.

Exercise 11.19. Let $S \in R$-Mod be a simple module. Prove that its injective envelops $E(S)$ is indecomposable. Show also that, if S and T are non-isomorphic simple modules, then $E(S)$ and $E(T)$ are non-isomorphic.

Exercise 11.20. Let $E \in R$-Mod an indecomposable injective module. Show that E is the injective envelope of its socle. Deduce that its socle is a simple module.

Exercise 11.21. Let $p \in \mathbb{N}$ a prime and $M=\left\{\left.\frac{a}{p^{n}} \in \mathbb{Q} \right\rvert\, a \in \mathbb{Z}, n \in \mathbb{N}\right\}$.
(1) Verify that $\mathbb{Z} \leq M \leq \mathbb{Q}$ in \mathbb{Z}-Mod.
(2) Let $\mathbb{Z}_{p \infty}=M / \mathbb{Z}$. Show that $\mathbb{Z}_{p \infty}$ is a divisible group.
(3) show that any $L \leq \mathbb{Z}_{p^{\infty}}$ is cyclic, generated by an element $\frac{1}{p^{\nu}}, l \in \mathbb{N}$.

Conclude the the lattice of the subgroups of $\mathbb{Z}_{p \infty}$ is a well-ordered chain and so $\mathbb{Z}_{p \infty}$ does not have any maximal subgroup.

12. Local Rings

Definition 12.1. A ring R is a local ring if all the non-invertible elements form a proper ideal of R.

In other words, setting $\mathrm{U}(R)=\{x \in R \mid x$ is invertible $\}, R$ is a local ring if $R \backslash \mathrm{U}(R)$ is a left ideal of R. One easily shows that $R \backslash \mathrm{U}(R)$ is a left ideal if and only if it is a two-sided ideal of R (Verify!).
Proposition 12.2. Let R be a local ring. Then
(1) $R \backslash \mathrm{U}(R)$ is the Jacobson radical $\mathrm{J}(R)$ of R.
(2) $R / \mathrm{J}(R)$ is a division ring.
(3) there is a unique simple module (modulo isomorphisms) in R - $\operatorname{Mod}, S=R / \mathrm{J}(R)$. In particular $E(R / \mathrm{J}(R))$ is the minimal injective cogenerator of R-Mod.
(4) The unique idempotent elements in R are 0 and 1.

Proof. 1) Given a ring R, any left ideal of R is contained in $R \backslash \mathrm{U}(R)$. So, if R is local, $R \backslash \mathrm{U}(R)$ is the unique maximal ideal of ${ }_{R} R$. In particular $R \backslash \mathrm{U}(R)$ is the Jacobson radical $\mathrm{J}(R)$ of R.
2) is obvious, since every element in $R / \mathrm{J}(R)$ is invertible.
3) It follows since $\mathrm{J}(R)$ is the unique maximal ideal of R.
4) Let e an idempotent element in a ring R. Observe that from $e(1-e)=0$, if e is invertible one gets $e=1$. So, if R is local and e is a not invertible idempotent, then $e \in R \backslash \mathrm{U}(R)=\mathrm{J}(R)$ and so the idempotent $1-e \in \mathrm{U}(R)$ (otherwise we would have $1 \in J(R)$). Hence, $1-e=1$ and so $e=0$. We conclude that the only idempotents in R are the trivial ones, i.e. 0 and 1 .

Remark 12.3. If R is a local ring, then ${ }_{R} R$ is an indecomposable R-module, since the direct summands of ${ }_{R} R$ correspond to the idempotent elements of R (see Exercise 6.10).

If $M \in R$-Mod and $\operatorname{End}_{R}(M)$ is a local ring, then M is indecomposable. Indeed, to any decomposition $M=N \oplus L$, we can associate an idempotent element $\pi_{N} \in \operatorname{End}_{R}(M), \pi_{N}: M \rightarrow$ $M, n+l \mapsto n$. Thus $\pi_{N}=0$ or $\pi_{N}=\operatorname{id}_{M}$ in $\operatorname{End}_{R}(M)$, from which we get $N=0$ or $N=M$, respectively.

13. Finite length modules

Let $M \in R$-Mod. A sequence $0=N_{0} \leq N_{1} \leq \cdots \leq N_{s-1} \leq N_{s}=M$ of submodules of M is called a filtration of M, with factors $N_{i} / N_{i-1}, i=1, \cdots, s$. The length of the filtration is the number of non-zero factors.

Consider now a filtration $0=N_{0}^{\prime} \leq N_{1}^{\prime} \leq \cdots \leq N_{t-1}^{\prime} \leq N_{t}=M$; it is a refinement of the latter one if $\left\{N_{i} \mid 0 \leq i \leq s\right\} \subseteq\left\{N_{i}^{\prime} \mid 0 \leq i \leq t\right\}$.

Two filtrations of M are said equivalent if $s=t$ and there exists a permutation $\sigma:\{0,1, \cdots, s\} \rightarrow$ $\{0,1, \cdots, s\}$ such that $N_{i} / N_{i-1} \cong N_{\sigma(i)}^{\prime} / N_{\sigma(i-1)}^{\prime}$, for $i=1, \cdots, s$.

Finally, a filtration $0=N_{0} \leq N_{1} \leq \cdots \leq N_{s-1} \leq N_{s}=M$ of M is a composition series of M if the factors $N_{i} / N_{i-1}, i=1, \cdots, s$, are simple modules. In such a case they are called composition factors of M.
Theorem 13.1. Any two filtrations of M admit equivalent refinements.
Proof. The proof follows from the following Lemma: Let $U_{1} \leq U_{2} \leq M$ and $V_{1} \leq V_{2} \leq M$. Then $\left(U_{1}+U_{2} \cap V_{2}\right) /\left(U_{1}+V_{1} \cap U_{2}\right) \cong\left(U_{2} \cap V_{2}\right) /\left(U_{1} \cap V_{2}\right)+\left(U_{2} \cap V_{1}\right) \cong\left(V_{1}+U_{2} \cap V_{2}\right) /\left(V_{1}+U_{1} \cap V_{2}\right)$ In our setting, consider $0=N_{0} \leq N_{1} \leq \cdots \leq N_{s-1} \leq N_{s}=M$ and $0=L_{0} \leq L_{1} \leq \cdots \leq L_{s-1} \leq$ $L_{t}=M$ two filtrations of M. For any $1 \leq i \leq s$ and $1 \leq j \leq t$ define $N_{i, j}=N_{i-1}+\left(L_{j} \cap N_{i}\right)$ and $L_{j, i}=L_{j-1}+\left(N_{j} \cap L_{i}\right)$. Then

$$
0=N_{1,0} \leq N_{1,1} \leq \cdots \leq N_{1, t} \leq N_{2,0} \leq \cdots \leq N_{2, t} \leq \ldots N_{s, t}=M
$$

is a refinement of the first filtration with factors $F_{i, j}=N_{i, j} / N_{i, j-1}$ and

$$
0=L_{1,0} \leq L_{1,1} \leq \cdots \leq L_{1, s} \leq L_{2,0} \leq \cdots \leq L_{2, s} \leq \ldots L_{t, s}=M
$$

is a refinement of the second filtration with factors $G_{j, i}=L_{j, i} / L_{j, i-1}$. Clearly the two refinements have the same length $s t$ and by the stated lemma $F_{i, j} \cong G_{j, i}$.

As a corollary of the previous Theorem, we get the following crucial result, known as JordanHölder Theorem:

Theorem 13.2 (Jordan-Hölder). Let $M \in R$-Mod be a module with a composition series of length l. Then
(1) Any filtration of M has length at most l and it can be refined in a composition series of M.
(2) All the composition series of M are equivalent and have length l.

Proof. The proof follows by the previous proposition, since a composition series does not admit any non trivial refinement.

This leads to the following definition:
Definition 13.3. A module $M \in R$-Mod is of finite length if it admits a composition series. The length l of any composition series of M is called the length of L, denoted by $l(M)$.
Example 13.4. (1) Any vector space of finite dimension over a field K is a K-module of finite length. Its length coincides with its dimension.
(2) The regular module $\mathbb{Z} \mathbb{Z}$ is not of finite length.

In the following proposition we collect some relevant properties of finite length modules: some of them are trivial, some of them need a short proof that we leave for exercise.
Proposition 13.5. Let $M \in R$-Mod be a finite length module. Then
(1) M is finitely generated
(2) for any $N \leq M, N$ and M / N are of finite length
(3) If $0 \rightarrow N \rightarrow M \rightarrow L \rightarrow 0$ is an exact sequence, then $l(M)=l(N)+l(L)$
(4) M is a direct sums of indecomposable submodules.
(5) $\operatorname{Soc}(M)$ is an essential submodule of M
(6) $M / \operatorname{Rad}(M)$ is semisimple (i.e. it is a direct sum of simple modules)
(7) M contains a finite number of simple modules

Proof. 4) If M is indecomposable the statement is trivially true. Otherwise we argue by induction on $l(M)$. If $M=V_{1} \oplus V_{2}$, by point 3) we get that $l\left(V_{1}\right)<l(M)$ and $l\left(V_{2}\right)<l(M)$, so V_{1} and V_{2} are direct sums of indecomposable submodules.
5) Any $L \leq M$ has a composition series, so it contains a simple submodule, which is of course also a simple submodule of M.
6) By induction on $l(M / \operatorname{Rad}(M))$
7) By construction $\operatorname{Soc}(M)=\sum S_{\lambda}$ where the S_{λ} are the simple submodules of M. Since $\operatorname{Soc}(M)$ is semisimple, we get $\operatorname{Soc}(M)=\oplus S_{\lambda}$. Since $\operatorname{Soc}(M)$ is finitely generated (by (1) and (2)), it has only a finite number of summands.

For modules of finite length the converse of Remark 12.3 holds.
Lemma 13.6. Let $M \in R$-Mod a module of finite length $l(M)=n$. Then, for any $f: M \rightarrow M$, one has $M=\operatorname{Im} f^{n} \oplus \operatorname{Ker} f^{n}$.
Proof. Consider the sequence of inclusions $\cdots \leq \operatorname{Im} f^{2} \leq \operatorname{Im} f \leq M$. Since M has finite length, the inclusions are trivial for almost every $i \in \mathbb{N}$. In particular, there exists m such that $\operatorname{Im} f^{m}=\operatorname{Im} f^{2 m}$ and we can assume $m=n$. Let now $x \in M$: hence $f^{n}(x)=f^{2 n}(y)$ for $y \in M$ and so $x=f^{n}(y)-\left(x-f^{n}(y)\right) \in \operatorname{Im} f^{n}+\operatorname{Ker} f^{n}$.

Moreover, from the sequence of inclusions $0 \leq \operatorname{Ker} f \leq \operatorname{Ker} f^{2} \leq \cdots \leq M$, arguing as before we can assume $\operatorname{Ker} f^{n}=\operatorname{Ker} f^{2 n}$. Consider now $x \in \operatorname{Im} f^{n} \cap \operatorname{Ker} f^{n}$. So $x=f^{n}(y)$ and $f^{n}(x)=f^{2 n}(y)=0$. Hence $y \in \operatorname{Ker} f^{n}$ and so $x=f^{n}(y)=0$.
Proposition 13.7. Let $M \in R$-Mod an indecomposable module of finite length. Then $\operatorname{End}_{R}(M)$ is a local ring

Proof. Let $f: M \rightarrow M$. Since M is indecomposable, by the previous lemma one easily conclude that f is a mono if and only if it is an epi if and only if it is an iso if and only if $f^{m} \neq 0$ for any $m \in \mathbb{N}$ (see Exercise 13.9).

Thus let $U=\left\{f \in \operatorname{End}_{R}(M) \mid f\right.$ is invertible $\}$. Let us show that $\operatorname{End}_{R}(M) \backslash U$ is an ideal of $\operatorname{End}_{R}(M)$. So let f, g in $\operatorname{End}_{R}(M) \backslash U$. The crucial point is to show that $f+g$ is not invertible (see Exercise 13.9). If $f+g$ would be invertible, there would exist $h \in U$ such that $(f+g) h=\operatorname{id}_{M}$. Since $g \notin U$, then $g h \notin U$, so $g h$ would be nilpotent. Let r such that $(g h)^{r}=0$: from $\left(\operatorname{id}_{M}-g h\right)\left(\operatorname{id}_{M}+g h+(g h)^{2}+\cdots+(g h)^{r-1}\right)=\operatorname{id}_{M}$ we would conclude $f h \in U$ and so $f \in U$.

Theorem 13.8 (Krull-Remak-Schimdt-Azumaya). Let $M \cong A_{1} \oplus A_{2} \oplus \cdots \oplus A_{m} \cong C_{1} \oplus C_{2} \oplus$ $\cdots \oplus C_{n}$ where $\operatorname{End}_{R}\left(A_{i}\right)$ is a local ring for any $i=1, \cdots, m$ and C_{j} is indecomposable for any $j=1, \cdots, n$. Then $n=m$ and there exists a bijection $\sigma:\{1, \cdots, n\} \rightarrow\{1, \cdots, n\}$ such that $A_{i} \cong C_{\sigma(i)}$ for any $i=1, \cdots, n$.

Proof. By induction on m.
If $m=1$, then $M \cong A_{1}$ is indecomposable and so we conclude.
If $m>1$, consider the equalities

$$
\operatorname{id}_{A_{m}}=\pi_{A_{m}} i_{A_{m}}=\pi_{A_{m}}\left(\sum_{j=1}^{n} i_{C_{j}} \pi_{C_{j}}\right) i_{A_{m}}=\sum_{j=1}^{n} \pi_{A_{m}} i_{C_{j}} \pi_{C_{j}} i_{A_{m}}
$$

where the π 's and the i 's are the canonical projections and inclusions. Since $\operatorname{End}_{R}\left(A_{m}\right)$ is local, and in any local ring the sum of not invertible elements is not invertible, there exist \bar{j} such that $\alpha=\pi_{A_{m}} i_{C_{\bar{j}}} \pi_{C_{\bar{j}}} i_{A_{m}}$ is invertible. We can assume $\bar{j}=n$, and consider $\gamma=\alpha^{-1} \pi_{A_{m}} i_{C_{n}}: C_{n} \rightarrow$ A_{m}. Since $\gamma \pi_{C_{n}} i_{A_{m}}=\alpha^{-1}$, we get that γ is a split epimorphism. Since C_{n} is indecomposable, we conclude γ is an iso, and so $C_{n} \cong A_{m}$. Then apply induction to get the thesis.

The previous theorem says that if M is a module which is a direct sum of modules with local endomorphism rings, then any two direct sum decompositions of M into indecomposable direct summands are isomorphic. We conclude that the modules of finite length admits a unique (modulo isomorphisms) decomposition in indecomposable submodules

Exercises

Exercise 13.9. Let M an indecomposable R - module of finite length and $f \in \operatorname{End}_{R}(M)$. Show that the following are equivalent:
(1) f is a mono
(2) f is an epi
(3) f is an iso
(4) f is not nilpotent.

In particular, if f is not invertible, then $g f$ is not invertible for any $g \in \operatorname{End}_{R}(M)$. Which of the previous implications hold also if M is of finite length but not indecomposable?

Exercise 13.10. Let M be an R-module.
(1) Let $M_{1}, M_{2} \leq M$ such that $M_{1}+M_{2}=M$. Show that $M / M_{1} \cap M_{2} \cong M_{1} / M_{1} \cap M_{2} \oplus$ $M_{2} / M_{1} \cap M_{2}$.
(2) Suppose $\operatorname{Rad}(M)=M_{1} \cap M_{2}$, where M_{1} and M_{2} are maximal submodules of M. Show that $M / \operatorname{Rad}(M)=S_{1} \oplus S_{2}$ where S_{1} and S_{2} are simple R-modules.
(3) Let M be a finite length R-module. Show that $M / \operatorname{Rad}(M)$ is semisimple.

14. Finite dimensional K-algebras

Definition 14.1. Let K be a field. $A K$-algebra Λ is a ring with a map $K \times \Lambda \rightarrow \Lambda, k \mapsto k a$, such that Λ is a K-module and $k(a b)=a(k b)=(a b) k$ for any $k \in K$ and $a, b \in \Lambda . \Lambda$ is finite dimensional if $\operatorname{dim}_{K}(\Lambda)<\infty$.

In other words, a K-algebra is a ring with a further structure of K-vector space, compatible with the ring structure.
Remark 14.2. Any element $k \in K$ can be identify with an element of Λ by means of $K \times \Lambda \rightarrow \Lambda$, $k \mapsto k \cdot 1$. Thanks to this identification, we get that $K \leq \Lambda$ so any Λ-module is in particular a K-module.

Example 14.3. (1) The ring $M_{n}(K)$ is a finite dimensional K-algebra. with $\operatorname{dim}_{K}\left(M_{n}(K)\right)=$ n^{2}. Any element $k \in K$ is identified with the diagonal matrix with k on the diagonal elements.
(2) The ring $K[x]$ is a K-algebra, not finite dimensional.

Proposition 14.4. Let Λ be a finite dimensional K-algebra. Then $M \in \Lambda$-Mod is finitely generated if and only if $\operatorname{dim}_{K}(M)<\infty$.

Proof. Assume $\operatorname{dim}_{K}(\Lambda)=n$ and $\left\{a_{1}, \ldots, a_{n}\right\}$ a K-basis.
If $\left\{m_{1}, \ldots, m_{r}\right\}$ is a set of generator of M as Λ-module, then one verifies that $\left\{a_{i} m_{j}\right\}_{i=1, \ldots, n}^{j=1, \ldots, r}$ is a set of generators for M as K-module.

Conversely, if M is generated by $\left\{m_{1}, \ldots, m_{s}\right\}$ as K-module, since $K \leq \Lambda$, one gets that M is generated by $\left\{m_{1}, \ldots, m_{s}\right\}$ also as Λ-module.

In the following we denote by Λ-mod the full subcategory of Λ-Mod consisting on the finitely generated Λ-modules.
Corollary 14.5. Any finitely generated module $M \in \Lambda$ - mod is a finite length module, and $l(M) \leq \operatorname{dim}_{K}(M)$.

Proof. Since any $M \in \Lambda$-mod is a finite dimensional vector space, M admits a composition series in $K-\bmod$ of length n, where $\operatorname{dim}_{K}(M)=n$. So any filtration of M in Λ-Mod is at most of length n and any refinement is a refinement also in K-mod. Thus we conclude.
Proposition 14.6. Let $M, N \in \Lambda$-mod. Then $\operatorname{Hom}_{\Lambda}(M, N)$ is a finitely generated K-module. In particular, $\Gamma=\operatorname{End}_{\Lambda}(M)$ is a finite dimensional K-algebra and M_{Γ} is finitely generated.

Proof. The K-module $\operatorname{Hom}_{\Lambda}(M, N)$ is a K-submodule of $\operatorname{Hom}_{K}(M, N)$, and the latter is finitely generated by a well-known result of linear algebra. Thus $\operatorname{Hom}_{\Lambda}(M, N)$ is finitely generated as K-module. In particular, $\Gamma=\operatorname{Hom}_{\Lambda}(M, M)$ is a finite dimensional K-algebra. Since M has a natural structure of right Γ-module and it is a finitely generated K-module, it is also a finitely generated Γ-module.

In the sequel, let Λ be a finite dimensional K-algebra. We want to give a complete description of the simple, the indecomposable projective and the indecomposable injective modules in Λ-mod.

Since ${ }_{\Lambda} \Lambda$ is of finite length, it admits a unique decomposition in indecomposable submodules. The indecomposable summands of a ring are in correspondence with the idempotent elements, so there exists a set $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ of idempotents of Λ such that ${ }_{\Lambda} \Lambda=\Lambda e_{1} \oplus \ldots \Lambda e_{n}$. Moreover we can assume $1=e_{1}+\cdots+e_{n}$ and one easily shows that $e_{i} e_{j}=0$ for any $i \neq j$ (a set of idempotents with this property is called orthogonal). Finally since Λe_{i} are indecomposable, each idempototent e_{i} is primitive (i.e. it cannot be a sum of two non-zero orthogonal idempotents, see Exercise 14.7). Notice that $\Lambda_{\Lambda}=e_{1} \Lambda \oplus \cdots \oplus e_{n} \Lambda$ is a decomposition in indecomposable summands of the regular right module Λ_{Λ}. From this discussion it follows that, for $i=1, \ldots, n$, the $P_{i}=\Lambda e_{i}$ are indecomposable projective left Λ-modules and the $Q_{i}=e_{i} \Lambda$ are indecomposable projective right Λ-modules.

Moreover, if $P \in \Lambda$-mod is an indecomposable projective, then P is a direct summand of Λ^{m} for a suitable $m>0$ (See Exercise 8.11). Since Λ^{m} is of finite length, the unique decomposition of Λ^{m} in indecomposable summands is $\Lambda^{m}=P_{1}^{m} \oplus \ldots P_{n}^{m}$, so we conclude that P is isomorphic to P_{j} for a suitable $j \in\{1, \ldots, n\}$

Consider now the functor $D: \Lambda-\bmod \rightarrow \bmod -\Lambda, M \mapsto D(M)=\operatorname{Hom}_{K}\left({ }_{\Lambda} M, K\right)$. Notice that the functor D is well-defined, since $\operatorname{Hom}_{K}\left({ }_{\Lambda} M, K\right)$ is a right Λ module and it is finitely generated since $\operatorname{dim}_{K}\left(\operatorname{Hom}_{K}\left({ }_{\Lambda} M, K\right)\right)<\infty$. For simplicity, we denote by D the analogous functor $D: \bmod -\Lambda \rightarrow \Lambda-\bmod , N \mapsto D(N)=\operatorname{Hom}_{K}\left(N_{\Lambda}, K\right)$. For any $M \in \Lambda-\bmod$ define the evaluation morphism $\delta_{M}: M \rightarrow D^{2}(M), x \mapsto \delta_{M}(x)$, where $\delta_{M}(x): D(M) \rightarrow K, \varphi \mapsto \varphi(x)$. One easily verify that δ_{M} is an isomorphism for any $M \in \Lambda$-mod. Similarly one define δ_{N} for any $N \in \bmod -\Lambda$, which is an iso for any N.

It turns out that $\delta: 1 \rightarrow D^{2}$ is a natural transformation (see Definition 7.10) which defines a duality between Λ-mod and mod- Λ. Thanks to the properties of dualities described at the end of Section 7, we get in particular that P is indecomposable projective in Λ-mod if and only if $D(P)$ is indecomposable injective in mod- Λ; dually, E is indecomposable injective in Λ-mod if and only if $D(E)$ is indecomposable injective in mod- Λ. Moreover S is simple in Λ-mod if and only if $D(S)$ is simple in mod- Λ.

Notice the dual concepts of cover and generator are the concepts of envelope and cogenerator, respectively. So, thanks to the duality (D, D), we conclude that $D\left(\Lambda_{\Lambda}\right)$ is the minimal injective cogenerator of $\Lambda-\bmod$ and the $E_{i}=D\left(Q_{i}\right)$ are the unique indecomposable injective modules in Λ-mod. Observe that if S and T are non isomorphic simple modules in Λ-mod, then their injective envelopes $E(S)$ and $E(T)$ are non isomorphic indecomposable injective modules; moreover any indecomposable injective module E is the injective envelope of its simple socle (see Exercises 11.19 and 11.20). We conclude that in Λ-mod there are exactly n non-isomorphic simple modules, which are the socle of each indecomposable injective E_{i}, for $i=1, \ldots, n$.

One can easily verify that, given any $M \in \Lambda-\bmod , P(M)$ is a projective cover of M if and only if $D(P(M))$ is an injective envelope of $D(M)$. Hence, since in mod- Λ there exist injective envelopes, thanks to the duality, we get that any module in Λ-mod has a projective cover (i.e., Λ is a semiperfect ring, see Section 8) Let us see how to compute injective envelopes and projective covers.

In the sequel denote by $J=J(\Lambda)=\operatorname{Rad}\left({ }_{\Lambda} \Lambda\right)$ the Jacobson radical of Λ. First observe that, by Lemma 11.14 and since J is a two-sided ideal, we get $J \Lambda e_{i}=J e_{i} \leq \operatorname{Rad}\left(\Lambda e_{i}\right)$ for any $i=1, \ldots, n$. Moreover recall that $J=\operatorname{Rad}\left({ }_{\Lambda} \Lambda\right)=\operatorname{Rad}\left(\Lambda e_{1}\right) \oplus \cdots \oplus \operatorname{Rad}\left(\Lambda e_{n}\right)$ (see Proposition 11.11). Hence, since the sum of the $\operatorname{Rad}\left(\Lambda e_{i}\right)$ is direct and $J e_{i} \leq \operatorname{Rad}\left(\Lambda e_{i}\right)$, we get also $J=J 1=J\left(e_{1}+\right.$ $\left.\ldots e_{n}\right)=J e_{1} \oplus \ldots J e_{n}$. Thus, $\operatorname{dim}_{K}(J)=\operatorname{dim}_{K}\left(J e_{1}\right)+\cdots \operatorname{dim}_{K}\left(J e_{n}\right) \leq \operatorname{dim}_{K}\left(\operatorname{Rad}\left(\Lambda e_{1}\right)\right)+$ $\cdots+\operatorname{dim}_{K}\left(\operatorname{Rad}\left(\Lambda e_{n}\right)\right)=\operatorname{dim}_{K}(\operatorname{Rad}(\Lambda))$, from which we get $\operatorname{dim}_{K}\left(J e_{i}\right)=\operatorname{dim}_{K}\left(\operatorname{Rad}\left(\Lambda e_{i}\right)\right)$ for any $i=1, \ldots, n$. We conclude that $J e_{i}=\operatorname{Rad}\left(\Lambda e_{i}\right)$ for any $i=1, \ldots, n$.

It can be proved that the same holds for any $M \in \Lambda$ - \bmod, that is $J M=\operatorname{Rad}(M)$ for any $M \in \Lambda$-mod.

After this discussion, by Proposition 11.11 we get that $\mathrm{J} e_{1}$ is superfluous in Λe_{i}, so Λe_{i} is the projective cover of $\Lambda e_{i} / \mathrm{J} e_{i}$ (see Theorem 8.8). Moreover, by Proposition 13.5, $\Lambda e_{i} / \mathrm{J} e_{i}$ is semisimple so, since Λe_{i} is indecomposable, we get that $\Lambda e_{i} / \mathrm{J} e_{i}$ is a simple module (see Exercise 14.9). Notice that, since $\Lambda e_{i} \neq \Lambda e_{j}$ for $i \neq j$, we get $\Lambda e_{i} / \mathrm{J} e_{i} \not \approx \Lambda e_{j} / \mathrm{J} e_{j}$ for $i \neq j$. Then the $S_{i}=\Lambda e_{i} / \mathrm{J} e_{i}, i=1, \ldots n$ are non-isomorphic simple modules in Λ-mod. Since we already know that there are exactly n non-isomorphic simple modules, we conclude that S_{1}, \cdots, S_{n} is a complete list of the non-isomorphic simple modules in Λ-mod. Similarly, $T_{i}=e_{i} \Lambda / e_{i} \mathrm{~J}$ is a complete list of the simple modules in mod- Λ.

Arguing on the annihilators of the simple modules, it is not difficult to show that the action of the functor D on the simple modules respect the idempotents, that is $S_{i}=D\left(T_{i}\right)$ for any $i=1, \cdots, n$. Since we already know that Q_{i} is the projective cover of T_{i}, we get that $E_{i}=D\left(Q_{i}\right)$ is the injective envelope of S_{i} for any $i=1, \cdots, n$.

How to compute injective envelopes and projective covers for any $M \in \Lambda$-mod? Since M is of finite length, $M / \operatorname{Rad}(M)$ and $\operatorname{Soc}(M)$ are semisimple. Let $M / \operatorname{Rad}(M)=S_{1} \oplus \cdots \oplus S_{r}$ (eventually with a certain multiplicity). Then $P(M)=P\left(S_{1}\right) \oplus \cdots \oplus P\left(S_{r}\right)$. Similarly, if $\operatorname{Soc}(M)=S_{1} \oplus \cdots \oplus S_{m}$, then $E(M)=E\left(S_{1}\right) \oplus \cdots \oplus E\left(S_{m}\right)$. (see Exercises 14.10 and 14.11).

To conclude: in Λ-mod the simples are the $S_{i}=\Lambda e_{i} / \mathrm{J} e_{i}$, the indecomposable projectives are the $P_{i}=\Lambda e_{i}$, the indecomposable injectives are the $E_{i}=D\left(e_{i} \Lambda\right)$, for $i=1, \ldots, n$. The regular module ${ }_{\Lambda} \Lambda$ is the minimal projetive generator of $\Lambda-\bmod$ and $D\left(\Lambda_{\Lambda}\right)$ is the minimal injective cogenerator of Λ-mod. Moreover P_{i} is the projective cover of S_{i} and E_{i} is the injective envelope of S_{i}.

In mod- Λ the simples are the $T_{i}=\Lambda e_{i} / \mathrm{J} e_{i}=D\left(S_{i}\right)$, the indecomposable projectives are the $Q_{i}=e_{i} \Lambda$, the indecomposable injectives are the $F_{i}=D\left(\Lambda e_{i}\right)$. The regular module Λ_{Λ} is the minimal projetive generator of mod- Λ and $D\left({ }_{\Lambda} \Lambda\right)$ is the minimal injective cogenerator of mod- Λ. Moreover Q_{i} is the projective cover of T_{i} and F_{i} is the injective envelope of T_{i}.

Exercises

Exercise 14.7. A idempotent element $e \in \Lambda$ is called primitive if it is not a sum of two non zero orthogonal idempotents. Show that Λe is indecomposable if and only if e is primitive.

Exercise 14.8. Find the decomposition in indecomposable summands of the \mathbb{C}-algebras:
(1) $M_{2}(\mathbb{C})=$ the ring of 2×2 matrices with coefficients in \mathbb{C}
(2) $R=$ the ring of the 2×2 upper triangular matrices with coefficients in \mathbb{C}

Exercise 14.9. Let Λ a finite dimensional algebra. Let $M=N_{1} \oplus N_{2}$ and assume that P_{1} and P_{2} are projective covers of N_{1} and N_{2}, respectively. Show that $P_{1} \oplus P_{2}$ is the projective cover of M. Similarly, assume that E_{1} and E_{2} are the injective envelopes of N_{1} and N_{2}, respectively, then $E_{1} \oplus E_{2}$ is the injective envelope of M.
Exercise 14.10. Let $M \in \Lambda-\bmod$ and $\operatorname{Soc}(M)=S_{1} \oplus \ldots S_{r}$. Show that there exists an essential monomorphism $0 \rightarrow M \rightarrow E\left(S_{1}\right) \oplus \cdots \oplus E\left(S_{r}\right)$ and conclude that $E(M)=E(\operatorname{Soc}(M))=$ $E\left(S_{1}\right) \oplus \cdots \oplus E\left(S_{r}\right)$.(Hint: $\operatorname{Soc}(M)$ is essential in M, so...)
Exercise 14.11. Let $M \in \Lambda-\bmod$ and $M / \operatorname{Rad}(M)=S_{1} \oplus \ldots S_{r}$. Show that there exists a superfluous epimorphism $P\left(S_{1}\right) \oplus \cdots \oplus P\left(S_{r}\right) \rightarrow M \rightarrow 0$ and conclude that $P(M)=P(M / \operatorname{Rad}(M))=$ $P\left(S_{1}\right) \oplus \cdots \oplus P\left(S_{r}\right)$. (Hint: $\operatorname{Rad}(M)$ is superfluous in M, so...)

