The Complexity
of
Optimization Problems

Summary Lecture 1

- Complexity of algorithms and problems
- Complexity classes: P and NP
- Reducibility

- Karp reducibility

- Turing reducibility

Uniform and logarithmic cost

- Uniform cost: the overall number of instructions
executed by the algorithm before halting

- Logarithmic cost.each instruction has a cost
depending on the number of bits of the operands

- E.g. product of two n-bit integer costs O(nlogn)

- Same for space measure (but we will talk only of time
measure)

Example: x

begin
r:=1;
whiley Z 0do
begin
r=r<x; y:=y-1
end,;
returnr
end

- Uniform cost: 2+3y
- Logarithmic cost: aylogy+by*logx(logy+loglogx)+c

Worst case analysis

- Instances of the same size may result in different
execution costs (e.g. sorting)

- Cost of applying the algorithm on the worst case
instance of a given size

- (G1ves certainty that the algorithm will perform its task
within the established time bound

- It 1s easier to determine

Input size

- Size of input: number of bits needed to present the
specific mput

- Existence of encoding scheme which 1s used to
describe any problem instance

- For any pair of natural encoding schemes and for any
instance x, the resulting strings are polynomially related

- Le., le(x)| = p,(le(x)]) and [e(x)[= p, (le(x)])
- Avoid unary base encoding

Asymptotic Analysis

- Let #(x) be the running time of algorithm A on input x.

The worst case running time of A is given by
t(n)=max(#(x) | x such that |x| < n)

- Upper bound: A has complexity O(f(n)) if #(n) is
O(f(n)) (that 1s, we 1gnore constants)

- Lower bound: A has complexity Q(f(n)) if t(n) is
Q(f(n))

Complexity of a problem
- A problem P

- has a complexity lower bound Q(f(n)) if any algorithm for P
has complexity Q(f(n))

- has a complexity upper bound O(f(n)) if an algorithm for P
exists with complexity O(f(n))

Decision problems

- Set of 1nstances partitioned into a YES-subset and a
NO-subset

- (G1ven an 1nstance x, decide which subset x belongs to

- A decision problem P is solved by an algorithm A if,

for every instance, A halts and returns YES if and
only 1f the instance belongs to the YES-subset

XDYP?)) » YES
>» NO

Complexity Classes

- For any function f(n), TIME(f(n)) 1s the set of decision
problems which can be solved with a time complexity

O(f(n))
- P = the union of TIME(#*) for all £

- EXPTIME = the union of TIME (2") for all &
- P 1s contained in EXPTIME

- It 1s possible to prove (by diagonalization) that
EXPTIME is not contained in P

Examples

- SATISFYING TRUTH ASSIGNMENT: given a CNF

formula F and a truth assignment f, does f'satisfy F?
- SATISFYING TRUTH ASSIGNMENT 1s in P

- SATISFIABILITY (simply, SAT): given a CNF

formula F, is F satisfiable?
- SAT 1s in EXPTIME.

- Open problem: SAT 1s in P?

Class NP

- A problem P is in class NP if there exist a polynomial

p and a polynomial-time algorithm A such that, for
any instance x, x i1s a YES-instance 1f and only 1f there

exists a string y with |y| < p(|x|) such that A(x,))
returns YES
- y 1s said to be a certificate

- Example: SAT 1s in NP (the certificate 1s a truth assignment
that satisfies the formula)

- P 1s contained 1n NP (the certificate 1s the computation
of the polynomial-time algorithm)

Non-deterministic algorithms: SAT

begin
for each variable v
guess Boolean value f(Vv);
if f satisfies F then return YES
elsereturn NO
end.

(v, or v, or (not v,))
and
((not v,) or (not v,) or v,)

V3

Vi

V3

V3

% o se TRU% FALSETRL% oL se TRL% aLse
Ly ¢ $ i ¢ $

YES

Non-deterministic algorithms and NP

begin

end.

guessstringy with |y] < p(|x]);

Every problem in NP admits a

if A(xy) returns YESthen return YES| polynomial-time non-deterministic

elsereturn NO

algorithm

BEEREEERE

YES

NO

YES YES YES YES NO YES

Each computation path, which returns
YES, is a certificate of polynomial length
that can be checked in polynomial time

Every problem that admits a polynomial-
time non-deterministic algorithm 1s 1n

NP

Karp reducibility

- A decision problem P, is Karp reducible to a decision
problem P, (in short, P, < P,) if there exists a

polynomial-time computable function R such that, for

any x, x is a YES-instance of P, if and only if R(x) is a

YES-instance of P, v
v
- If P,<P,and P, is in P, then P, is in P v

Example: {0,1}-Linear programming
- SAT <{0,1}-LINEAR PROGRAMMING

- For each Boolean variable v of a CNF Boolean formula F, we
introduce a {0,1}-valued variable z
- For each clause /, or [, or ... or [, of F, we introduce the inequality
(+(+...+(=1,where
(=zifl=v and (= (l-z)ifl=notv
- E.g. (v, or v, or (not v,)) and ((not v,) or (not v,) or v,) 1s transformed

into the following two inequalities:
ztz,H(1-z) 2 1 and (1-z)+(1-z) +z,;2 1

- If f1s a truth assignment, let g be the natural corresponding {0,1 }-
value assignment (0=FALSE,1=TRUE)

- fsatisfies F if and only g satisfies all inequalities

Turing reducibility

- A decision problem P, is Turing reducible to a
decision problem P, if there exists a polynomial-time

algorithm R solving P, such that R may access to an

oracle algorithm solving P

xHlp, > > g(X)
Y1.Y2,..-withy; U lp_
f(yp.f(yo), ..
orad e
for P2

- If P, <P, then P, is Turing reducible to P,

Example: Equivalent formulas

- SAT 1s Turing reducible to EQUIVALENT
FORMULAS

- Given a CNF Boolean formula F, query the oracle with

input F and x and (not x)

- If the oracle answers YES, then F is not satisfiable,
otherwise F is satisfiable

- It 1s not known whether SAT 1s Karp reducible to
EQUIVALENT FORMULAS

