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Summary Lecture 1
- Complexity of algorithms and problems
- Complexity classes: P and NP
- Reducibility

- Karp reducibility
- Turing reducibility



Uniform and logarithmic cost
- Uniform cost: the overall number of instructions 

executed by the algorithm before halting

- Logarithmic cost:each instruction has a cost 
depending on the number of bits of the operands
- E.g. product of two n-bit integer costs O(nlogn)

- Same for space measure (but we will talk only of time 
measure)



Example: xy

- Uniform cost: 2+3y
- Logarithmic cost: aylogy+by2logx(logy+loglogx)+c

begin
    r:=1;

   while y ≠ 0 do
begin

r:=r*x; y:=y-1
end;

return r
end



Worst case analysis
- Instances of the same size may result in different 

execution costs (e.g. sorting)

- Cost of applying the algorithm on the worst case 
instance of a given size

- Gives certainty that the algorithm will perform its task 
within the established time bound

- It is easier to determine



Input size
- Size of input: number of bits needed to present the 

specific input
- Existence of encoding scheme which is used to 

describe any problem instance
- For any pair of natural encoding schemes and for any 

instance x, the resulting strings are polynomially related
- I.e., |ei(x)| ≤ pi,j(|ej(x)|) and |ej(x)| ≤ pi,j(|ei(x)|) 

- Avoid unary base encoding



Asymptotic Analysis
- Let t(x) be the running time of algorithm A on input x. 

The worst case running time of A is given by 
t(n)=max(t(x) | x such that |x| ≤ n)

- Upper bound: A has complexity O(f(n)) if t(n) is 
O(f(n)) (that is, we ignore constants)

- Lower bound: A has complexity Ω(f(n)) if t(n) is 
Ω(f(n))



Complexity of a problem
- A problem P

- has a complexity lower bound Ω(f(n)) if any algorithm for P 
has complexity Ω(f(n))

- has a complexity upper bound O(f(n)) if an algorithm for P 
exists with complexity O(f(n))
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Decision problems
- Set of instances partitioned into a YES-subset and a 

NO-subset
- Given an instance x, decide which subset x belongs to

- A decision problem P is solved by an algorithm A if, 
for every instance, A halts and returns YES if and 
only if the instance belongs to the YES-subset



Complexity Classes
- For any function f(n), TIME(f(n)) is the set of decision 

problems which can be solved with a time complexity 
O(f(n))
- P = the union of TIME(nk) for all k
- EXPTIME = the union of TIME (2nk) for all k

- P is contained in EXPTIME

- It is possible to prove (by diagonalization) that 
EXPTIME is not contained in P



Examples
- SATISFYING TRUTH ASSIGNMENT: given a CNF 

formula F and a truth assignment f, does f satisfy F?
- SATISFYING TRUTH ASSIGNMENT is in P

- SATISFIABILITY (simply, SAT): given a CNF 
formula F, is F satisfiable?
- SAT is in EXPTIME.

- Open problem: SAT is in P?



Class NP
- A problem P is in class NP if there exist a polynomial 

p and a polynomial-time algorithm A such that, for 
any instance x, x is a YES-instance if and only if there 
exists a string y with |y| ≤ p(|x|) such that A(x,y) 
returns YES
- y is said to be a certificate
- Example: SAT is in NP (the certificate is a truth assignment 

that satisfies the formula)
- P is contained in NP (the certificate is the computation 

of the polynomial-time algorithm)



Non-deterministic algorithms: SAT
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begin
    for each variable v

guess Boolean value f(v);

if f satisfies F then return YES
else return NO

end.



Non-deterministic algorithms and NP

Every problem in NP admits a
polynomial-time non-deterministic
algorithm

begin
    guess string y  with |y| ≤ p(|x|);

if A(x,y) returns YES then return YES
else return NO

end.

YES NO YES YES YES YES YESNO

Each computation path, which returns 
YES, is a certificate of polynomial length 
that can be checked in polynomial time

Every problem that admits a polynomial-
time non-deterministic algorithm is in 
NP



Karp reducibility
- A decision problem P1 is Karp reducible to a decision 

problem P2 (in short, P1 ≤ P2) if there exists a 
polynomial-time computable function R such that, for 
any x, x is a YES-instance of P1 if and only if R(x) is a 
YES-instance of P2

- If P1 ≤ P2 and P2 is in P, then P1 is in P
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Example: {0,1}-Linear programming
- SAT ≤{0,1}-LINEAR PROGRAMMING

- For each Boolean variable v of a CNF Boolean formula F, we 
introduce a {0,1}-valued variable z

- For each clause l1 or l2 or … or lk of F, we introduce the inequality 
ζ1+ ζ2 + … + ζk ≥ 1, where 

ζi= z if li= v and ζi= (1-z) if li= not v
- E.g. (v1 or v2 or (not v3)) and ((not v1) or (not v2) or v3) is transformed 

into the following two inequalities: 
z1+z2+(1-z3) ≥ 1 and (1-z1)+(1-z2) +z3 ≥ 1

- If f is a truth assignment, let g be the natural corresponding {0,1}-
value assignment (0=FALSE,1=TRUE)

- f satisfies F if and only g satisfies all inequalities



Turing reducibility
- A decision problem P1 is Turing reducible to a 

decision problem P2 if there exists a polynomial-time 
algorithm R solving P1 such that R may access to an 
oracle algorithm solving P2

R g(x)

oracle 
for P2

yi ∈ IP2
y1,y2,... with 

x ∈ IP1

f(y1),f(y2),...

- If P1 ≤ P2 then P1 is Turing reducible to P2



Example: Equivalent formulas
- SAT is Turing reducible to EQUIVALENT 

FORMULAS
- Given a CNF Boolean formula F, query the oracle with 

input F and x and (not x)

- If the oracle answers YES, then F is not satisfiable, 
otherwise F is satisfiable

- It is not known whether SAT is Karp reducible to 
EQUIVALENT FORMULAS


