The Complexity of Optimization Problems

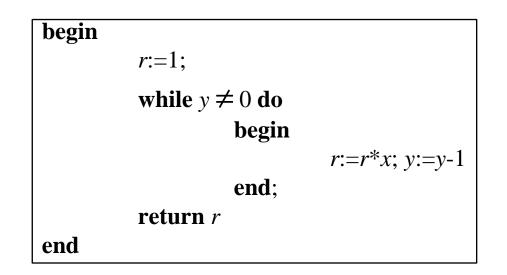
Summary Lecture 1

- Complexity of algorithms and problems
- Complexity classes: P and NP
- Reducibility
 - Karp reducibility
 - Turing reducibility

Uniform and logarithmic cost

- *Uniform cost*: the overall number of instructions executed by the algorithm before halting
- *Logarithmic cost*:each instruction has a cost depending on the number of bits of the operands
 - E.g. product of two *n*-bit integer costs *O*(*n*log*n*)
- Same for space measure (but we will talk only of time measure)

Example: x^{y}



- Uniform cost: 2+3y
- Logarithmic cost: *ay*log*y*+*by*²log*x*(log*y*+loglog*x*)+*c*

Worst case analysis

- Instances of the same size may result in different execution costs (e.g. sorting)
- Cost of applying the algorithm on the worst case instance of a given size
 - Gives certainty that the algorithm will perform its task within the established time bound
 - It is easier to determine

Input size

- Size of input: number of bits needed to present the specific input
- Existence of encoding scheme which is used to describe any problem instance
 - For any pair of *natural* encoding schemes and for any instance *x*, the resulting strings are polynomially related

- I.e., $|e_i(x)| \le p_{i,j}(|e_j(x)|)$ and $|e_j(x)| \le p_{i,j}(|e_i(x)|)$

- Avoid unary base encoding

Asymptotic Analysis

- Let t(x) be the running time of algorithm A on input x.
 The worst case running time of A is given by t(n)=max(t(x) | x such that |x| ≤ n)
- Upper bound: A has complexity O(f(n)) if t(n) is
 O(f(n)) (that is, we ignore constants)
- *Lower bound*: **A** has complexity $\Omega(f(n))$ if t(n) is $\Omega(f(n))$

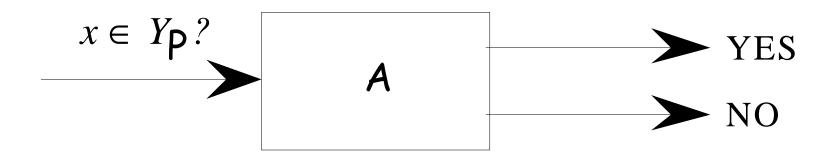
Complexity of a problem

- A problem P

- has a *complexity lower bound* Ω(*f*(*n*)) if any algorithm for P has complexity Ω(*f*(*n*))
- has a *complexity upper bound O(f(n))* if an algorithm for P exists with complexity *O(f(n))*

Decision problems

- Set of instances partitioned into a YES-subset and a NO-subset
 - Given an instance *x*, decide which subset *x* belongs to
- A decision problem P is solved by an algorithm A if, for every instance, A halts and returns YES if and only if the instance belongs to the YES-subset



Complexity Classes

- For any function f(n), TIME(f(n)) is the set of decision problems which can be solved with a time complexity O(f(n))
 - P = the union of $TIME(n^k)$ for all k
 - EXPTIME = the union of TIME (2^{nk}) for all k
 - P is contained in EXPTIME
- It is possible to prove (by diagonalization) that EXPTIME is not contained in P

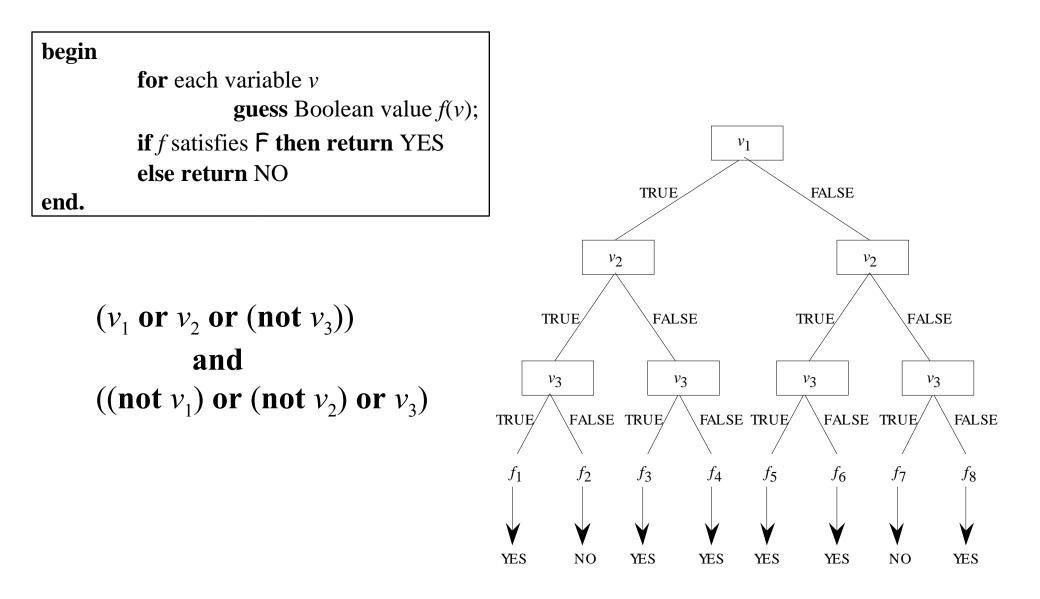
Examples

- SATISFYING TRUTH ASSIGNMENT: given a CNF formula **F** and a truth assignment *f*, does *f* satisfy **F**?
 - SATISFYING TRUTH ASSIGNMENT is in P
- SATISFIABILITY (simply, SAT): given a CNF formula F, is F satisfiable?
 - SAT is in EXPTIME.
- Open problem: SAT is in P?

Class NP

- A problem P is in *class NP* if there exist a polynomial p and a polynomial-time algorithm A such that, for any instance x, x is a YES-instance if and only if there exists a string y with $|y| \le p(|x|)$ such that A(x,y) returns YES
 - *y* is said to be a certificate
 - Example: SAT is in NP (the certificate is a truth assignment that satisfies the formula)
- P is contained in NP (the certificate is the computation of the polynomial-time algorithm)

Non-deterministic algorithms: SAT



Non-deterministic algorithms and NP

begin

end.

guess string y with $|y| \le p(|x|)$; **if** A(x,y) returns YES **then return** YES **else return** NO Every problem in NP admits a polynomial-time non-deterministic algorithm

YES NO YES YES YES NO YES

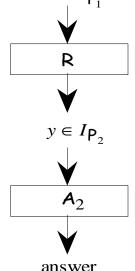
Each computation path, which returns YES, is a certificate of polynomial length that can be checked in polynomial time

Every problem that admits a polynomialtime non-deterministic algorithm is in NP

Karp reducibility

- A decision problem P_1 is *Karp reducible* to a decision problem P_2 (in short, $P_1 \le P_2$) if there exists a polynomial-time computable function R such that, for any *x*, *x* is a YES-instance of P_1 if and only if R(x) is a YES-instance of P_2

- If $P_1 \le P_2$ and P_2 is in P, then P_1 is in P



Example: {0,1}-Linear programming

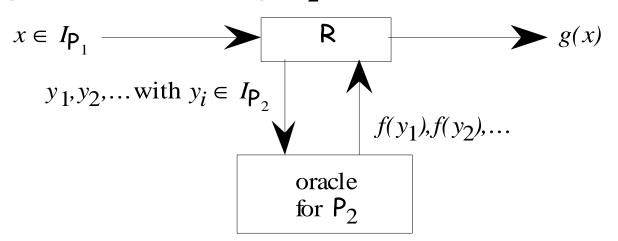
- SAT $\leq \{0,1\}$ -LINEAR PROGRAMMING
 - For each Boolean variable v of a CNF Boolean formula F, we introduce a {0,1}-valued variable z
 - For each clause l_1 or l_2 or ... or l_k of **F**, we introduce the inequality $\zeta_1 + \zeta_2 + \ldots + \zeta_k \ge 1$, where $\zeta_i = z$ if $l_i = v$ and $\zeta_i = (1-z)$ if $l_i = \text{not } v$
 - E.g. (v₁ or v₂ or (not v₃)) and ((not v₁) or (not v₂) or v₃) is transformed into the following two inequalities:

 $z_1 + z_2 + (1 - z_3) \ge 1$ and $(1 - z_1) + (1 - z_2) + z_3 \ge 1$

- If *f* is a truth assignment, let *g* be the natural corresponding {0,1}-value assignment (0=FALSE,1=TRUE)
 - f satisfies F if and only g satisfies all inequalities

Turing reducibility

A decision problem P₁ is *Turing reducible* to a decision problem P₂ if there exists a polynomial-time algorithm R solving P₁ such that R may access to an *oracle* algorithm solving P₂



- If $P_1 \le P_2$ then P_1 is Turing reducible to P_2

Example: Equivalent formulas

- SAT is Turing reducible to EQUIVALENT FORMULAS
 - Given a CNF Boolean formula F, query the oracle with input F and x and (not x)
 - If the oracle answers YES, then F is not satisfiable,
 otherwise F is satisfiable
 - It is not known whether SAT is Karp reducible to EQUIVALENT FORMULAS