
The Complexity
of

Optimization Problems

Summary Lecture 1
- Complexity of algorithms and problems
- Complexity classes: P and NP
- Reducibility

- Karp reducibility
- Turing reducibility

Uniform and logarithmic cost
- Uniform cost: the overall number of instructions

executed by the algorithm before halting

- Logarithmic cost:each instruction has a cost
depending on the number of bits of the operands
- E.g. product of two n-bit integer costs O(nlogn)

- Same for space measure (but we will talk only of time
measure)

Example: xy

- Uniform cost: 2+3y
- Logarithmic cost: aylogy+by2logx(logy+loglogx)+c

begin
 r:=1;

 while y ≠ 0 do
begin

r:=r*x; y:=y-1
end;

return r
end

Worst case analysis
- Instances of the same size may result in different

execution costs (e.g. sorting)

- Cost of applying the algorithm on the worst case
instance of a given size

- Gives certainty that the algorithm will perform its task
within the established time bound

- It is easier to determine

Input size
- Size of input: number of bits needed to present the

specific input
- Existence of encoding scheme which is used to

describe any problem instance
- For any pair of natural encoding schemes and for any

instance x, the resulting strings are polynomially related
- I.e., |ei(x)| ≤ pi,j(|ej(x)|) and |ej(x)| ≤ pi,j(|ei(x)|)

- Avoid unary base encoding

Asymptotic Analysis
- Let t(x) be the running time of algorithm A on input x.

The worst case running time of A is given by
t(n)=max(t(x) | x such that |x| ≤ n)

- Upper bound: A has complexity O(f(n)) if t(n) is
O(f(n)) (that is, we ignore constants)

- Lower bound: A has complexity Ω(f(n)) if t(n) is
Ω(f(n))

Complexity of a problem
- A problem P

- has a complexity lower bound Ω(f(n)) if any algorithm for P
has complexity Ω(f(n))

- has a complexity upper bound O(f(n)) if an algorithm for P
exists with complexity O(f(n))

x ∈ YP?
A

YES

NO

Decision problems
- Set of instances partitioned into a YES-subset and a

NO-subset
- Given an instance x, decide which subset x belongs to

- A decision problem P is solved by an algorithm A if,
for every instance, A halts and returns YES if and
only if the instance belongs to the YES-subset

Complexity Classes
- For any function f(n), TIME(f(n)) is the set of decision

problems which can be solved with a time complexity
O(f(n))
- P = the union of TIME(nk) for all k
- EXPTIME = the union of TIME (2nk) for all k

- P is contained in EXPTIME

- It is possible to prove (by diagonalization) that
EXPTIME is not contained in P

Examples
- SATISFYING TRUTH ASSIGNMENT: given a CNF

formula F and a truth assignment f, does f satisfy F?
- SATISFYING TRUTH ASSIGNMENT is in P

- SATISFIABILITY (simply, SAT): given a CNF
formula F, is F satisfiable?
- SAT is in EXPTIME.

- Open problem: SAT is in P?

Class NP
- A problem P is in class NP if there exist a polynomial

p and a polynomial-time algorithm A such that, for
any instance x, x is a YES-instance if and only if there
exists a string y with |y| ≤ p(|x|) such that A(x,y)
returns YES
- y is said to be a certificate
- Example: SAT is in NP (the certificate is a truth assignment

that satisfies the formula)
- P is contained in NP (the certificate is the computation

of the polynomial-time algorithm)

Non-deterministic algorithms: SAT

TRUE FALSE

v3

TRUE FALSE TRUE FALSETRUE FALSETRUE FALSE

FALSETRUE

f1

YES NO YES YES YES YES YESNO

v3 v3 v3

v2 v2

v1

f2 f3 f4 f5 f6 f7 f8

FALSETRUE(v1 or v2 or (not v3))
and

((not v1) or (not v2) or v3)

begin
 for each variable v

guess Boolean value f(v);

if f satisfies F then return YES
else return NO

end.

Non-deterministic algorithms and NP

Every problem in NP admits a
polynomial-time non-deterministic
algorithm

begin
 guess string y with |y| ≤ p(|x|);

if A(x,y) returns YES then return YES
else return NO

end.

YES NO YES YES YES YES YESNO

Each computation path, which returns
YES, is a certificate of polynomial length
that can be checked in polynomial time

Every problem that admits a polynomial-
time non-deterministic algorithm is in
NP

Karp reducibility
- A decision problem P1 is Karp reducible to a decision

problem P2 (in short, P1 ≤ P2) if there exists a
polynomial-time computable function R such that, for
any x, x is a YES-instance of P1 if and only if R(x) is a
YES-instance of P2

- If P1 ≤ P2 and P2 is in P, then P1 is in P

x ∈ IP

R

y ∈ IP

A2

answer

1

2

Example: {0,1}-Linear programming
- SAT ≤{0,1}-LINEAR PROGRAMMING

- For each Boolean variable v of a CNF Boolean formula F, we
introduce a {0,1}-valued variable z

- For each clause l1 or l2 or … or lk of F, we introduce the inequality
ζ1+ ζ2 + … + ζk ≥ 1, where

ζi= z if li= v and ζi= (1-z) if li= not v
- E.g. (v1 or v2 or (not v3)) and ((not v1) or (not v2) or v3) is transformed

into the following two inequalities:
z1+z2+(1-z3) ≥ 1 and (1-z1)+(1-z2) +z3 ≥ 1

- If f is a truth assignment, let g be the natural corresponding {0,1}-
value assignment (0=FALSE,1=TRUE)

- f satisfies F if and only g satisfies all inequalities

Turing reducibility
- A decision problem P1 is Turing reducible to a

decision problem P2 if there exists a polynomial-time
algorithm R solving P1 such that R may access to an
oracle algorithm solving P2

R g(x)

oracle
for P2

yi ∈ IP2
y1,y2,... with

x ∈ IP1

f(y1),f(y2),...

- If P1 ≤ P2 then P1 is Turing reducible to P2

Example: Equivalent formulas
- SAT is Turing reducible to EQUIVALENT

FORMULAS
- Given a CNF Boolean formula F, query the oracle with

input F and x and (not x)

- If the oracle answers YES, then F is not satisfiable,
otherwise F is satisfiable

- It is not known whether SAT is Karp reducible to
EQUIVALENT FORMULAS

