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Karp reducibility
- A decision problem P1 is Karp reducible to a decision 

problem P2 (in short, P1 ≤K P2) if there exists a 
polynomial-time computable function R such that, for 
any x, x is a YES-instance of P1 if and only if R(x) is a 
YES-instance of P2

x∈I P1
R x∈I P2

A1 yes

no
A2



Karp reducibility
- A computational class C is closed with respect to 

Karp reducible if and only if, given two decision 
problem P1, P2

(P1 ≤K P2) ∧ (P2∈C) ⇒ P1∈ C

- ≤K is a reflexive, transitive, partial relation

- (C, ≤K) is a partial preorder
- In a partial preorder there can be maximum elements 

(unless of equivalence relation)

- P1 ≤K P2 and P2 is in P, then P1 is in P



Turing reducibility
- Let P1 a problem of computing a function

and  P2 a problem of computing a function

- P1 is Turing reducible to P2 if there exists a 
polynomial-time algorithm R solving P1 such that R
may access to an oracle algorithm solving P2

R g(x)

oracle 
for P2

yi ∈ IP2
y1,y2,... with 

x ∈ IP1

f(y1),f(y2),...

g : I P1
 S P1

f : I P1
 S P1



Turing reducibility
- A Turing reducibility is denoted by P1 ≤Τ P2

- A Karp-reducibility is just a particular case of Turin-
reducibility: P1 ≤K P2⇒P1 ≤Τ P2

- problems P1, P2 are decision problem, 

- the oracle for P2 can be queried just once, 

- and  R returns the same value answered by oracle



Turing reducibility
- A computational class C is closed with respect to 

Turing reducible if and only if, given two decision 
problem P1, P2

(P1 ≤Τ P2) ∧ (P2∈C) ⇒ P1∈ C

- ≤Τ is a reflexive, transitive, partial relation

- (C, ≤Τ) is a partial preorder
- In a partial preorder there can be maximum elements 

(unless of equivalence relation)



Complete problems
- For any complexity class C, a decision problem P ∈ C 

is said to be complete in C (C-complete) with respect 
to a reducibility ≤r if, for any other decision problem 
P1 ∈ C, P1 ≤r P
- Two problems P1 , P2 C-complete w.r.t. ≤r are equivalents 

P1≡r P2 

- Two classes C, C', closed, such that C'⊂C: a problem P1 C-
complete has to be in C-C'

- The best approach to study if C'⊆C are different is to study 
C-complete problems



NP-complete problems
- A decision problem P is NP-complete if P ∈ NP and, 

for any decision problem P1 ∈ NP, P1 ≤K P
- If P is NP-complete and P ∈ P, then P=NP

- NP-complete problems are the hardest in NP
- P versus NP question can be solved by focusing on an 

NP-complete problem

- Cook’s Theorem: SAT is NP-complete



Optimization problem
- Optimization problem P characterized by

- Set of instances I
- Function SOL that associates to any instance the set of 

feasible solutions
- Measure function m that, for any feasible solution of an 

instance, provides its positive integer value
- Goal, that is, either MAX or MIN

- An optimal solution is a feasible solution y* such that
m(x,y*) = Goal{m(x,y) | y ∈ SOL(x)}

- For any instance x, m*(x) denotes optimal measure



MINIMUM VERTEX COVER
- INSTANCE: Graph G=(V,E)

- SOLUTION: A subset U of V such that, for any edge 
(u,v), either u is in U or v is in U

- MEASURE: Cardinality of U

- The goal of the problem is usually given by the name 
of problem



Three problems in one
- Constructive problem (PC): given  an instance, 

compute an optimal solution and its value
- We will study these problems

- Evaluation problem (PE): given an instance, compute 
the optimal value

- Decision problem (PD): given  an instance and an 
integer k, decide whether the optimal value is at least 
(if Goal=MAX) or at most (if Goal=MIN) k



Class NPO
- Optimization problems such that

- I is recognizable in polynomial time
- Solutions are polynomially bounded and recognizable in 

polynomial time: y ∈ SOL(x) ⇒|y|≤ q(|x|), ∀y s.t. |y|≤ q(|x|), 
it is decidable in polynomial time if y ∈ SOL(x)

- m is computable in polynomial time
- Example: MINIMUM VERTEX COVER
- Theorem : If P is in NPO, then the corresponding 

decision problem is in NP



Class PO

- NPO problems solvable in polynomial time.
- There exists a polynomial-time computable algorithm A 

that, for any instance x∈ΙP, returns an optimal solution y ∈
SOL*(x), together with its value m*(x)

- Fact : If P is in PO, then the corresponding decision 
problem is in P



MINIMUM PATH
- INSTANCE: Graph G=(V,E), two nodes vs, vt∈V

- SOLUTION: A path (vs, vi1, vi2, ..., vt) from vs to vt.

- MEASURE: The number of edges in the path

- The problem is solvable in polynomial time by a 
breadth-first search algorithm, that finds all minimum 
paths from all nodes to vt



Classes NPO and PO
- PO ⊆ NPO
- Practically all interesting optimization problems belong 

to the class NPO
- Graphs problems (MINIMUM TRAVELLING 

SALESPERSON, MINIMUM GRAPH COLORING
- Packing & scheduling problems
- Integer & binary linear programming

- The question PO=NPO is strictly related to P=NP



NP-hard problem
- An optimization problem P is NP-hard if any decision 

problem in NP is Turing reducible to P:
∀P1 ∈ NP, P1 ≤T P

- Theorem: If the decision problem corresponding to a 
NPO problem P is NP-complete, then P is NP-hard
- Example: MINIMUM VERTEX COVER

- Corollary: If P ≠ NP then PO ≠ NPO



Evaluating versus constructing
- Decision problem is Turing reducible to evaluation 

problem
- Evaluation problem is Turing reducible to 

constructive problem
- Evaluation problem is Turing reducible to decision 

problem
- Binary search on space of possible measure values

- Is constructive problem Turing reducible to evaluation 
(decision) problem?



MAXIMUM SATISFIABILITY
- INSTANCE: CNF Boolean formula, that is, set C of 

clauses over set of variables V

- SOLUTION: A truth-assignment f to V

- MEASURE: Number of satisfied clauses



Evaluating versus constructing: MAX SAT
begin

for each variable v
 begin
   k := MAX SATeval(x);

xTRUE:= formula obtained by setting v  to TRUE in x;
xFALSE:= formula obtained by setting v  to FALSE in x;
if MAX SATeval(xTRUE) = k then
begin

f(v) := TRUE; x := xTRUE

end
else 
begin 

f(v) := FALSE; x := xFALSE

end;
return f

end



Evaluating versus constructing
Theorem: if the decision problem is NP-complete, 
then the constructive problem is Turing reducible to the 
decision problem
proof
Let P a maximization problem.
We derive a NPO problem P' s.t. PC ≤T P'D, since PD is 
NP-complete, P'D ≤T PD, we have the theorem.

P' is the same of P except for the measure definition mP'.



Evaluating versus constructing
Let p() a polynomial s.t. y ∈ SOLP(x) ⇒|y|≤ p(|x|),

Let λ(y) the rank of y in the lexicographic order.
For any instance x ∈ ΙP'=IP and for any y ∈ SOLP'(x)=SOLP(x)

let mP'(x, y) = 2p(|x)+1mP(x,y)+ λ(y)

Every solution y has a unique value mP'.

Therefore there exists a unique optimal solution y*P'(x) in SOL*P'(x).

y*P'(x)∈ SOL*P(x) too.

y*P'(x) can be derived polynomial time by means of oracle for P'E: the 
position of  y*P'(x) in the order can be derived by computing the 
remainder of division between m*P'(x) and 2p(|x)+1. 



Evaluating versus constructing
P'D can be used to simulate P'E in polynomial time.

Therefore the optimal solution of P can be derived in polynomial time 
using an oracle for P'D.

Since P'D ∈ NP, and PD is NP-complete, an oracle for PD can be used 
to simulate the oracle for P'D



Evaluating versus constructing
Open question: is there a NPO problem whose 
constructive version is harder than the evaluation 
version? 

A possible answer is in P. Crescenzi & R. Silvestri 
“Relative complexity of evaluating the optimum cost and 
constructing the optimum for maximization problems” 
IPL 33, pag. 221-226 (1990)



Exercise
1. Recall that a disjunctive normal formula is a collection of 

conjunctions and it is satisfied by a truth assignment if and only if at 
least one conjuction is satisfied. Show that the problem SAT of 
DNF is in co-NP.

2. Prove that VERTEX COVER is NP-complete.
3. Prove that 2-COLORING is in P.


