The Complexity of Optimization Problems

Summary Lecture 02

- Reducibility
 - Karp reducibility & Turing reducibility
 - NP-complete problems
- Complexity of optimization problems
 - Classes PO and NPO
 - NP-hard optimization problems

Karp reducibility

- A decision problem P_1 is *Karp reducible* to a decision problem P_2 (in short, $P_1 \leq_K P_2$) if there exists a polynomial-time computable function **R** such that, for any *x*, *x* is a YES-instance of P_1 if and only if **R**(*x*) is a YES-instance of P_2

Karp reducibility

- A computational class C is *closed* with respect to *Karp reducible* if and only if, given two decision problem P_1, P_2

$$(\mathsf{P}_1 \leq_{\mathsf{K}} \mathsf{P}_2) \land (\mathsf{P}_2 \in \mathsf{C}) \Longrightarrow \mathsf{P}_1 \in \mathsf{C}$$

- \leq_{K} is a reflexive, transitive, partial relation
- (C, \leq_{K}) is a partial preorder
 - In a partial preorder there can be maximum elements (unless of equivalence relation)
- $P_1 \leq_{K} P_2$ and P_2 is in P, then P_1 is in P

Turing reducibility

- Let P_1 a problem of computing a function $g: I_{P_1} \to S_{P_1}$ and P_2 a problem of computing a function $f: I_{P_1} \to S_{P_1}$
- P₁ is *Turing reducible* to P₂ if there exists a polynomial-time algorithm R solving P₁ such that R may access to an *oracle* algorithm solving P₂

Turing reducibility

- A Turing reducibility is denoted by $P_1 \leq_T P_2$
- A Karp-reducibility is just a particular case of Turinreducibility: $P_1 \leq_K P_2 \Longrightarrow P_1 \leq_T P_2$
 - problems P_{1} , P_{2} are decision problem,
 - the oracle for P_2 can be queried just once,
 - and **R** returns the same value answered by oracle

Turing reducibility

- A computational class C is *closed* with respect to *Turing reducible* if and only if, given two decision problem P_1, P_2

$$(\mathsf{P}_1 \leq_{\mathrm{T}} \mathsf{P}_2) \land (\mathsf{P}_2 \in \mathbf{C}) \Longrightarrow \mathsf{P}_1 \in \mathbf{C}$$

- \leq_{T} is a reflexive, transitive, partial relation
- (C, \leq_{T}) is a partial preorder
 - In a partial preorder there can be maximum elements (unless of equivalence relation)

Complete problems

- For any complexity class C, a decision problem $P \in C$ is said to be *complete* in C (*C-complete*) with respect to a reducibility \leq_r if, for any other decision problem $P_1 \in C, P_1 \leq_r P$
 - Two problems P_1 , P_2 C-complete w.r.t. \leq_r are equivalents $P_1 \equiv_r P_2$
 - Two classes C, C', closed, such that C' \subset C: a problem P₁ Ccomplete has to be in C-C'
 - The best approach to study if C'⊆C are different is to study C-complete problems

NP-complete problems

- A decision problem P is *NP-complete* if $P \in NP$ and, for any decision problem $P_1 \in NP, P_1 \leq_K P$
- If P is NP-complete and $P \in P$, then P=NP
 - NP-complete problems are the hardest in NP
 - P versus NP question can be solved by focusing on an NP-complete problem
- Cook's Theorem: SAT is NP-complete

Optimization problem

- Optimization problem P characterized by
 - Set of instances I
 - Function SOL that associates to any instance the set of feasible solutions
 - Measure function *m* that, for any feasible solution of an instance, provides its positive integer value
 - Goal, that is, either MAX or MIN
- An optimal solution is a feasible solution y^* such that $m(x,y^*) = \text{Goal}\{m(x,y) \mid y \in \text{SOL}(x)\}$
- For any instance $x, m^*(x)$ denotes optimal measure

MINIMUM VERTEX COVER

- INSTANCE: Graph G=(V,E)
- SOLUTION: A subset *U* of *V* such that, for any edge (*u*,*v*), either *u* is in *U* or *v* is in *U*
- MEASURE: Cardinality of *U*
- The goal of the problem is usually given by the name of problem

Three problems in one

- Constructive problem (P_c): given an instance, compute an optimal solution and its value
 - We will study these problems
- Evaluation problem (P_E): given an instance, compute the optimal value
- Decision problem (P_{D}): given an instance and an integer k, decide whether the optimal value is at least (if Goal=MAX) or at most (if Goal=MIN) k

Class NPO

- Optimization problems such that
 - *I* is recognizable in polynomial time
 - Solutions are polynomially bounded and recognizable in polynomial time: $y \in SOL(x) \Rightarrow |y| \le q(|x|), \forall y \ s.t. \ |y| \le q(|x|),$ it is decidable in polynomial time if $y \in SOL(x)$
 - *m* is computable in polynomial time
- Example: MINIMUM VERTEX COVER
- **Theorem** : If **P** is in NPO, then the corresponding decision problem is in NP

Class PO

- NPO problems solvable in polynomial time.
 - There exists a polynomial-time computable algorithm *A* that, for any instance $x \in I_p$, returns an optimal solution $y \in SOL^*(x)$, together with its value $m^*(x)$
- Fact : If P is in PO, then the corresponding decision problem is in P

MINIMUM PATH

- INSTANCE: Graph G=(V,E), two nodes $v_s, v_t \in V$ - SOLUTION: A path $(v_s, v_{i1}, v_{i2}, ..., v_t)$ from v_s to v_t
- MEASURE: The number of edges in the path
- The problem is solvable in polynomial time by a breadth-first search algorithm, that finds all minimum paths from all nodes to v_t

Classes NPO and PO

- $PO \subseteq NPO$
- Practically all interesting optimization problems belong to the class NPO
 - Graphs problems (MINIMUM TRAVELLING SALESPERSON, MINIMUM GRAPH COLORING
 - Packing & scheduling problems
 - Integer & binary linear programming
- The question PO=NPO is strictly related to P=NP

NP-hard problem

- An optimization problem P is NP-hard if any decision problem in NP is Turing reducible to P:

 $\forall \mathsf{P}_1 \in \mathsf{NP}, \mathsf{P}_1 \leq_{\mathrm{T}} \mathsf{P}$

- Theorem: If the decision problem corresponding to a NPO problem P is NP-complete, then P is NP-hard
 Example: MINIMUM VERTEX COVER
- **Corollary**: If $P \neq NP$ then $PO \neq NPO$

Evaluating versus constructing

- Decision problem is Turing reducible to evaluation problem
- Evaluation problem is Turing reducible to constructive problem
- Evaluation problem is Turing reducible to decision problem
 - Binary search on space of possible measure values
- Is constructive problem Turing reducible to evaluation (decision) problem?

MAXIMUM SATISFIABILITY

- INSTANCE: CNF Boolean formula, that is, set *C* of clauses over set of variables *V*
- SOLUTION: A truth-assignment f to V
- MEASURE: Number of satisfied clauses

Evaluating versus constructing: MAX SAT

Evaluating versus constructing **Theorem**: if the decision problem is NP-complete, then the constructive problem is Turing reducible to the decision problem

proof

Let P a maximization problem.

We derive a NPO problem P's.t. $P_C \leq_T P'_D$, since P_D is NP-complete, $P'_D \leq_T P_D$, we have the theorem. P' is the same of P except for the measure definition $m_{P'}$

Evaluating versus constructing

Let p() a polynomial s.t. $y \in SOL_p(x) \Rightarrow |y| \le p(|x|)$,

Let $\lambda(y)$ the rank of y in the lexicographic order.

For any instance $x \in I_{p'}=I_p$ and for any $y \in SOL_{p'}(x)=SOL_p(x)$

let
$$m_{p'}(x, y) = 2^{p(|x)+1}m_p(x, y) + \lambda(y)$$

Every solution y has a unique value $m_{P'}$

Therefore there exists a unique optimal solution $y_{P'}^{*}(x)$ in $SOL_{P'}^{*}(x)$.

 $y_{P'}^{*}(x) \in SOL_{P}^{*}(x)$ too.

 $y_{P'}^{*}(x)$ can be derived polynomial time by means of oracle for P'_{E} : the position of $y_{P'}^{*}(x)$ in the order can be derived by computing the remainder of division between $m_{P'}^{*}(x)$ and $2^{p(|x)+1}$.

Evaluating versus constructing

 P'_{D} can be used to simulate P'_{E} in polynomial time.

Therefore the optimal solution of P can be derived in polynomial time using an oracle for P'_{D} .

Since $P'_{D} \in NP$, and P_{D} is NP-complete, an oracle for P_{D} can be used to simulate the oracle for P'_{D}

Evaluating versus constructing Open question: is there a NPO problem whose constructive version is harder than the evaluation version?

A possible answer is in P. Crescenzi & R. Silvestri "*Relative complexity of evaluating the optimum cost and constructing the optimum for maximization problems*" *IPL 33, pag. 221-226 (1990)*

Exercise

- 1. Recall that a disjunctive normal formula is a collection of conjunctions and it is satisfied by a truth assignment if and only if at least one conjuction is satisfied. Show that the problem SAT of DNF is in co-NP.
- 2. Prove that VERTEX COVER is NP-complete.
- 3. Prove that 2-COLORING is in P.