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- NP-hard optimization problems



Karp reducibility

- A decision prob.

em P, is Karp reducible to a decision

problem P, (in s

hort, P, < P,) if there exists a

polynomial-time computable function R such that, for

any x, x is a YES-instance of P, if and only if R(x) is a
YES-instance of P,
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Karp reducibility

A computational class C 1s closed with respect to
Karp reducible 1f and only 1if, given two decision

problem P,, P,
(P, P)OP,oC)O PC
< 1s aretlexive, transitive, partial relation

(C, <) 1s a partial preorder

- In a partial preorder there can be maximum elements
(unless of equivalence relation)

P,< P,andP,isin P, then P, is in P




Turing reducibility

- Let P, a problem of computing a function g:1,-S,

and P, a problem of computing a function f:1,-S,

- P, is Turing reducible to P, if there exists a

polynomial-time algorithm R solving P, such that R

may access to an oracle algoritﬂam solving P,

XDlp )

Y1.Y2,..-withy; O lp_
f(yp,1(y2), -

oracle
for P2

>» g(¥)



Turing reducibility
P,

- A Karp-reducibility 1s just a particular case of Turin-
reducibility: P, < P,00P,<_P,

- A Turing reducibility is denoted by P, <

l_T

- problems P, P, are decision problem,
- the oracle for P, can be queried just once,

- and R returns the same value answered by oracle



Turing reducibility

- A computational class C 1s closed with respect to
Turing reducible 1f and only 1f, given two decision

problem P,, P,
(P,<.P)OP,0C) 0 PoC
- <_1s aretlexive, transitive, partial relation

- (C, <) 18 a partial preorder
- In a partial preorder there can be maximum elements

(unless of equivalence relation)



Complete problems

- For any complexity class C, a decision problem P 0 C
1s said to be complete 1n C (C-complete) with respect
to a reducibility <_1f, for any other decision problem

P, 0C,P,<P

- Two problems P,, P, C-complete w.r.t. < are equivalents
PIEr P2
- Two classes C, C', closed, such that C'IC: a problem P, C-

complete has to be in C-C'

- The best approach to study if C'LIC are different is to study
C-complete problems



NP-complete problems

- A decision problem P is NP-complete if P 0 NP and,
for any decision problem P, o0 NP, P, < P

- If P is NP-complete and P O P, then P=NP

- NP-complete problems are the hardest in NP
- P versus NP question can be solved by focusing on an
NP-complete problem

- Cook’s Theorem: SAT 1s NP-complete



Optimization problem

- Optimization problem P characterized by

- Set of instances /

- Function SOL that associates to any instance the set of
feasible solutions

Measure function m that, for any feasible solution of an
instance, provides its positive integer value

- Goal, that 1s, either MAX or MIN

- An optimal solution 1s a feasible solution y* such that
m(x,y*) = Goal{m(x,y) | y 0 SOL(x)}

- For any 1nstance x, m *(x) denotes optimal measure



MINIMUM VERTEX COVER
- INSTANCE: Graph G=(V,E)

- SOLUTION: A subset U of V' such that, for any edge
(u,v), eitheruismm Uor visin U

- MEASURE: Cardinality of U

- The goal of the problem 1s usually given by the name
of problem



Three problems 1n one

- Constructive problem (P): given an instance,

compute an optimal solution and 1its value
- We will study these problems

- Evaluation problem (PE): given an instance, compute
the optimal value

- Decision problem (P,): given an instance and an

integer k, decide whether the optimal value 1s at least
(if Goal=MAX) or at most (if Goal=MIN) &



Class NPO

- Optimization problems such that
- [ 1s recognizable in polynomial time

- Solutions are polynomially bounded and recognizable in
polynomial time: y 0 SOL(x) LI |y|< q(|x]), Uy s.2. [y|< q(|x]),
it 1s decidable in polynomial time if y 0 SOL(x)

- m 1s computable 1n polynomial time

- Example: MINIMUM VERTEX COVER

- Theorem : If P is in NPO, then the corresponding
decision problem 1s in NP



Class PO

- NPO problems solvable in polynomial time.

- There exists a polynomial-time computable algorithm A4
that, for any instance x0l,, returns an optimal solution y O

SOL*(x), together with 1ts value m™(x)

- Fact : If P is in PO, then the corresponding decision
problem 1s in P



MINIMUM PATH

- INSTANCE: Graph G=(V,E), two nodes v, v.OV
- SOLUTION: A path (v,v., v, ..., v,) fromv_to v,
- MEASURE: The number of edges in the path

- The problem 1s solvable in polynomial time by a
breadth-first search algorithm, that finds all minimum
paths from all nodes to v,



Classes NPO and PO

- PO O NPO
- Practically all interesting optimization problems belong
to the class NPO

- Graphs problems (MINIMUM TRAVELLING
SALESPERSON, MINIMUM GRAPH COLORING

- Packing & scheduling problems
- Integer & binary linear programming

- The question PO=NPO is strictly related to P=NP



NP-hard problem

- An optimization problem P is NP-hard if any decision
problem in NP is Turing reducible to P:

P, oNP,P,<_P

- Theorem: If the decision problem corresponding to a
NPO problem P is NP-complete, then P is NP-hard
- Example: MINIMUM VERTEX COVER

- Corollary: If P # NP then PO # NPO



Evaluating versus constructing

Decision problem 1s Turing reducible to evaluation
problem

Evaluation problem 1s Turing reducible to
constructive problem

Evaluation problem 1s Turing reducible to decision
problem

- Binary search on space of possible measure values

Is constructive problem Turing reducible to evaluation
(decision) problem?






Evaluating versus constructing: MAX SAT

begin
for each variable v
begin
k:=MAX SAT, ,(X);
X:rue-= formula obtained by setting v to TRUE in x;
Xca o= formula obtained by setting v to FALSE in x;
If MAX SAT,,,(Xrue) = Kthen
begin
f(v) ;== TRUE; X 1= X;ge
end
else
begin
f(v) ;= FALSE; X 1= Xcp o
end;
return f
end




Evaluating versus constructing
Theorem: 1f the decision problem 1s NP-complete,

then the constructive problem 1s Turing reducible to the
decision problem

proof
Let P a maximization problem.

We derive a NPO problem P's.t. P < P’ , since P is
NP-complete, P' <_P_, we have the theorem.

DT D

P’ is the same of P except for the measure definition m,,



Evaluating versus constructing
Let p() a polynomial s.t. y U SOL (x) U |y|< p(|x]),
Let N(y) the rank of y in the lexicographic order.
For any instance x U | ,=I, and for any y U SOL ,(x)=SOL (x)

let m,(x,y) = 22" m (x,y)+ A(y)

Every solution y has a unique value m,,,
Therefore there exists a unique optimal solution y*,(x) in SOL* (x).
y*,(x)U SOL* (x) too.

y*,(x) can be derived polynomial time by means of oracle for P'_: the

position of y*,(x) in the order can be derived by computing the

remainder of division between m* ,(x) and 20",



Evaluating versus constructing

P’ can be used to simulate P'_in polynomial time.

Therefore the optimal solution of P can be derived in polynomial time

using an oracle for P’

Since P' L1 NP, and P is NP-complete, an oracle for P can be used

to simulate the oracle for P’



Evaluating versus constructing

Open question: 1s there a NPO problem whose
constructive version 1s harder than the evaluation
version?

A possible answer 1s in P. Crescenzi & R. Silvestri
“Relative complexity of evaluating the optimum cost and

constructing the optimum for maximization problems”
IPL 33, pag. 221-226 (1990)



Exercise

1. Recall that a disjunctive normal formula 1s a collection of
conjunctions and it 1s satisfied by a truth assignment 1f and only 1f at

least one conjuction is satisfied. Show that the problem SAT of
DNF 1s in co-NP.

2. Prove that VERTEX COVER 1s NP-complete.
3. Prove that 2-COLORING i1s in P.



