
The Complexity
of

Optimization Problems

Summary Lecture 02
- Reducibility

- Karp reducibility & Turing reducibility
- NP-complete problems

- Complexity of optimization problems
- Classes PO and NPO
- NP-hard optimization problems

Karp reducibility
- A decision problem P1 is Karp reducible to a decision

problem P2 (in short, P1 ≤K P2) if there exists a
polynomial-time computable function R such that, for
any x, x is a YES-instance of P1 if and only if R(x) is a
YES-instance of P2

x∈I P1
R x∈I P2

A1 yes

no
A2

Karp reducibility
- A computational class C is closed with respect to

Karp reducible if and only if, given two decision
problem P1, P2

(P1 ≤K P2) ∧ (P2∈C) ⇒ P1∈ C

- ≤K is a reflexive, transitive, partial relation

- (C, ≤K) is a partial preorder
- In a partial preorder there can be maximum elements

(unless of equivalence relation)

- P1 ≤K P2 and P2 is in P, then P1 is in P

Turing reducibility
- Let P1 a problem of computing a function

and P2 a problem of computing a function

- P1 is Turing reducible to P2 if there exists a
polynomial-time algorithm R solving P1 such that R
may access to an oracle algorithm solving P2

R g(x)

oracle
for P2

yi ∈ IP2
y1,y2,... with

x ∈ IP1

f(y1),f(y2),...

g : I P1
 S P1

f : I P1
 S P1

Turing reducibility
- A Turing reducibility is denoted by P1 ≤Τ P2

- A Karp-reducibility is just a particular case of Turin-
reducibility: P1 ≤K P2⇒P1 ≤Τ P2

- problems P1, P2 are decision problem,

- the oracle for P2 can be queried just once,

- and R returns the same value answered by oracle

Turing reducibility
- A computational class C is closed with respect to

Turing reducible if and only if, given two decision
problem P1, P2

(P1 ≤Τ P2) ∧ (P2∈C) ⇒ P1∈ C

- ≤Τ is a reflexive, transitive, partial relation

- (C, ≤Τ) is a partial preorder
- In a partial preorder there can be maximum elements

(unless of equivalence relation)

Complete problems
- For any complexity class C, a decision problem P ∈ C

is said to be complete in C (C-complete) with respect
to a reducibility ≤r if, for any other decision problem
P1 ∈ C, P1 ≤r P
- Two problems P1 , P2 C-complete w.r.t. ≤r are equivalents

P1≡r P2

- Two classes C, C', closed, such that C'⊂C: a problem P1 C-
complete has to be in C-C'

- The best approach to study if C'⊆C are different is to study
C-complete problems

NP-complete problems
- A decision problem P is NP-complete if P ∈ NP and,

for any decision problem P1 ∈ NP, P1 ≤K P
- If P is NP-complete and P ∈ P, then P=NP

- NP-complete problems are the hardest in NP
- P versus NP question can be solved by focusing on an

NP-complete problem

- Cook’s Theorem: SAT is NP-complete

Optimization problem
- Optimization problem P characterized by

- Set of instances I
- Function SOL that associates to any instance the set of

feasible solutions
- Measure function m that, for any feasible solution of an

instance, provides its positive integer value
- Goal, that is, either MAX or MIN

- An optimal solution is a feasible solution y* such that
m(x,y*) = Goal{m(x,y) | y ∈ SOL(x)}

- For any instance x, m*(x) denotes optimal measure

MINIMUM VERTEX COVER
- INSTANCE: Graph G=(V,E)

- SOLUTION: A subset U of V such that, for any edge
(u,v), either u is in U or v is in U

- MEASURE: Cardinality of U

- The goal of the problem is usually given by the name
of problem

Three problems in one
- Constructive problem (PC): given an instance,

compute an optimal solution and its value
- We will study these problems

- Evaluation problem (PE): given an instance, compute
the optimal value

- Decision problem (PD): given an instance and an
integer k, decide whether the optimal value is at least
(if Goal=MAX) or at most (if Goal=MIN) k

Class NPO
- Optimization problems such that

- I is recognizable in polynomial time
- Solutions are polynomially bounded and recognizable in

polynomial time: y ∈ SOL(x) ⇒|y|≤ q(|x|), ∀y s.t. |y|≤ q(|x|),
it is decidable in polynomial time if y ∈ SOL(x)

- m is computable in polynomial time
- Example: MINIMUM VERTEX COVER
- Theorem : If P is in NPO, then the corresponding

decision problem is in NP

Class PO

- NPO problems solvable in polynomial time.
- There exists a polynomial-time computable algorithm A

that, for any instance x∈ΙP, returns an optimal solution y ∈
SOL*(x), together with its value m*(x)

- Fact : If P is in PO, then the corresponding decision
problem is in P

MINIMUM PATH
- INSTANCE: Graph G=(V,E), two nodes vs, vt∈V

- SOLUTION: A path (vs, vi1, vi2, ..., vt) from vs to vt.

- MEASURE: The number of edges in the path

- The problem is solvable in polynomial time by a
breadth-first search algorithm, that finds all minimum
paths from all nodes to vt

Classes NPO and PO
- PO ⊆ NPO
- Practically all interesting optimization problems belong

to the class NPO
- Graphs problems (MINIMUM TRAVELLING

SALESPERSON, MINIMUM GRAPH COLORING
- Packing & scheduling problems
- Integer & binary linear programming

- The question PO=NPO is strictly related to P=NP

NP-hard problem
- An optimization problem P is NP-hard if any decision

problem in NP is Turing reducible to P:
∀P1 ∈ NP, P1 ≤T P

- Theorem: If the decision problem corresponding to a
NPO problem P is NP-complete, then P is NP-hard
- Example: MINIMUM VERTEX COVER

- Corollary: If P ≠ NP then PO ≠ NPO

Evaluating versus constructing
- Decision problem is Turing reducible to evaluation

problem
- Evaluation problem is Turing reducible to

constructive problem
- Evaluation problem is Turing reducible to decision

problem
- Binary search on space of possible measure values

- Is constructive problem Turing reducible to evaluation
(decision) problem?

MAXIMUM SATISFIABILITY
- INSTANCE: CNF Boolean formula, that is, set C of

clauses over set of variables V

- SOLUTION: A truth-assignment f to V

- MEASURE: Number of satisfied clauses

Evaluating versus constructing: MAX SAT
begin

for each variable v
 begin
 k := MAX SATeval(x);

xTRUE:= formula obtained by setting v to TRUE in x;
xFALSE:= formula obtained by setting v to FALSE in x;
if MAX SATeval(xTRUE) = k then
begin

f(v) := TRUE; x := xTRUE

end
else
begin

f(v) := FALSE; x := xFALSE

end;
return f

end

Evaluating versus constructing
Theorem: if the decision problem is NP-complete,
then the constructive problem is Turing reducible to the
decision problem
proof
Let P a maximization problem.
We derive a NPO problem P' s.t. PC ≤T P'D, since PD is
NP-complete, P'D ≤T PD, we have the theorem.

P' is the same of P except for the measure definition mP'.

Evaluating versus constructing
Let p() a polynomial s.t. y ∈ SOLP(x) ⇒|y|≤ p(|x|),

Let λ(y) the rank of y in the lexicographic order.
For any instance x ∈ ΙP'=IP and for any y ∈ SOLP'(x)=SOLP(x)

let mP'(x, y) = 2p(|x)+1mP(x,y)+ λ(y)

Every solution y has a unique value mP'.

Therefore there exists a unique optimal solution y*P'(x) in SOL*P'(x).

y*P'(x)∈ SOL*P(x) too.

y*P'(x) can be derived polynomial time by means of oracle for P'E: the
position of y*P'(x) in the order can be derived by computing the
remainder of division between m*P'(x) and 2p(|x)+1.

Evaluating versus constructing
P'D can be used to simulate P'E in polynomial time.

Therefore the optimal solution of P can be derived in polynomial time
using an oracle for P'D.

Since P'D ∈ NP, and PD is NP-complete, an oracle for PD can be used
to simulate the oracle for P'D

Evaluating versus constructing
Open question: is there a NPO problem whose
constructive version is harder than the evaluation
version?

A possible answer is in P. Crescenzi & R. Silvestri
“Relative complexity of evaluating the optimum cost and
constructing the optimum for maximization problems”
IPL 33, pag. 221-226 (1990)

Exercise
1. Recall that a disjunctive normal formula is a collection of

conjunctions and it is satisfied by a truth assignment if and only if at
least one conjuction is satisfied. Show that the problem SAT of
DNF is in co-NP.

2. Prove that VERTEX COVER is NP-complete.
3. Prove that 2-COLORING is in P.

