Non-Approximability Results (2nd part continued)

Summary

- The PCP theorem
 - Application: non-approximability of MAXIMUM CLIQUE
- Input-Dependent and Asymptotic Approximation
 - Approximation algorithm for graph colouring
 - Approximation algorithm for set cover
 - Asymptotic approximation scheme for edge colouring

MAXIMUM CLIQUE

- INSTANCE: Graph G=(V,E)

- SOLUTION: A subset U of V such that, for any two vertices u and v in U, (u,v) is in E

- MEASURE: Cardinality of *U*

Theorem: MAX CLIQUE ∉ PTAS unless P=NP

Proof:

- We show that it's possible to "reduce" MAX 3-SAT to MAX CLIQUE preserving the approximation for all r. Given that MAX 3-SAT \notin PTAS, the thesis follows.
- Let (U, C) an instance of MAX 3-SAT. U={variables} C= {clauses}
- Define the MAX 3-SAT instance as: G=(V, E)
 - $-V = \{ (1, c) \mid 1 \in c \land c \in C \}, E = \{ ((1_1, c_1), (1_2, c_2)) \mid 1_1 \neq \neg 1_2 \land c_1 \neq c_2 \}$
 - 1; are literals and c; are clauses

Proof (continued):

- For any clique V', let f the truth assignment as follows:
 - f(u) = true iff exists a clause c such that $(u, c) \in V'$.
- It's easy to show that f() is a consistent truth assignment.
- From E, f() can satisfies $\geq |V'|$ clauses: m((U, C), f) $\geq |V'|$
- It's easy to show that the max number of satisfiable clauses is equal to the size of the max clique in G.
 - Given a set of clauses $C' \subseteq C$, for any truth assignment f' for C' and for any $c \in C'$, let l_c any literal of c with $f'(l_c)$ =true. The set of nodes (l_c, c) is clearly a clique in G.

Proof (continued):

- Therefore, any polynomial-time approximation scheme for MAX CLIQUE can be transformed in a polynomial-time approximation scheme for MAX 3-SAT.
- But, unless P=NP, MAX 3-SAT ∉ PTAS, so the thesis.

- MAX CLIQUE has a particular property, *self-improvability*, that yields the following result
- Theorem: MAX CLIQUE ∉ APX unless P=NP
- Proof:
 - If there exists an polynomial-time r'-approximation algorithm A for MAX CLIQUE, given an instance G, we will transform G into another, larger, instance f(G) and apply A to f(G).
 - The approximate solution A(f(G)) can be used to find a better approximate solution to G... therefore A can be transformed to an approximation scheme.

- The self-improvability property: Product graphs
 - Given a graph G=(V,E), define $G^k(V^k,E^k)$ as $V^k = \{(v_1,v_2,...,v_k) \mid v_i \in V\} \text{ (k-th Cartesian product of V)}$ $E^k = \{(\boldsymbol{u},\boldsymbol{v}) \mid (u_i=v_i) \lor (u_i,v_i) \in E \text{ for all } i\}$
 - If C ⊆ V is a clique in G, it is easy to verify that {(v₁,v₂,...,vk) | vi ∈ C for every i} is a clique in f(G) of size |C|k
 m*(f(G)) ≥ (m*(G))k
 - If $C' \subseteq V^k$ is a clique in f(G) with m^k verticies, then at least a coordinate i of the vertices $(v_1, v_2, ..., v_k)$ where there are m different vertices v_i in C'. These vertices are a clique in G of size $|C'|^{1/k}$. Let g the procedure that builds this clique from $C'_{8/22}$

- With A we can determine that

$$m^*(G) / m(G, g(A(f(G)))) \le (m^*(f(G)) / m(f(G), A(f(G))))^{1/k}$$

 $\le r'^{1/k}$

- For any r>1, choosing $k \ge \log r'/\log r$, we obtain a polynomial-time approximation scheme for MAX CLIQUE.
- Last theorem states that it's impossible unless P=NP

The NPO world if P≠NP

NPO	MINIMUM TSP MAXIMUM CLIQUE
APX	MINIMUM BIN PACKING MAXIMUM SAT MINIMUM VERTEX COVER(♥?) MAXIMUM CUT(♥?)
PTAS	MINIMUM PARTITION
PO	MINIMUM PATH

MINIMUM GRAPH COLORING? Certainly not in PTAS

- A sequential algorithm for MINIMUM GRAPH COLORING

begin

sort V in decreasing order with respect to the degree;

for each node *v* **do**

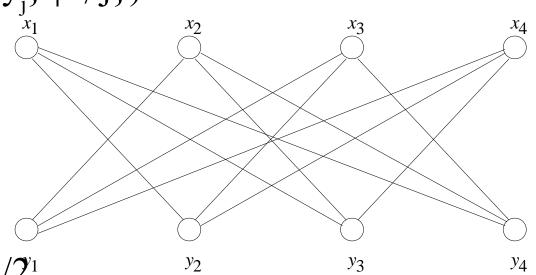
if there exists color not used by neighbors of v then assign this color to v else create new color and assign it to v

end.

- Performance of sequential algorithm

-
$$G=(\{x_1,...x_n, y_1,...y_n\}, \{\{x_i,y_j\} \mid i\neq j\})$$

- $d(x_i)=d(y_j)=n-1$
- The order $(x_1, y_1...x_n, y_n)$ requires n colours
- The optimal value is 2
- The performance ratio is $n/2^{n}$
- Generalizing, the performance ratio is $\Delta+1$ where Δ is the highest degree of nodes in G



- Polynomial-time *n*/log *n*-approximation algorithm for MINIMUM GRAPH COLORING

```
begin
           i:=0: U:=V:
          while U \neq \emptyset do
          begin
                     i:=i+1;V[i]:=\emptyset;W:=U;H:=graph induced by W;
                     while W \neq \emptyset do
                     begin
                                v=node of minimum degree in H;
                                insert v in V[i];
                                delete v and its neighbours from W;
                                U:=U-V[i]
                     end
          end
end.
```

We first prove that, if G is k-colorable, then the algorithm uses at most $3|V|/\log_k|V|$ colours

- At any iteration of the inner loop, *H* is *k*-colorable
- Hence, it contains an independent set of at least |W|/k nodes of degree at most |W|(k-1)/k
- Minimum degree in H is at most |W|(k-1)/k
- At least |W|-|W|(k-1)/k = |W|/k nodes will be in W at the next iteration (after remove the |W|/k IS)
- Inner loop ends when W is empty
 - At least $\log_k |W|$ iterations are necessary

- At the end of inner loop
 - $|\{v \mid v \text{ in } W \text{ and } V[v] = i\}| \ge \log_k |W|$
- For each colour i, the number of vertices coloured with i is at least $\log_k |U|$, where U is the set of uncoloured nodes before the color i is used
- Before the first outer loop, if $|U| \ge |V|/\log_k |V|$, $\log_k |U| \ge \log_k (|V|/\log_k |V|) \ge \frac{1}{2} \log_k |V|$
 - U size decrease by at least $\frac{1}{2} \log_k |V|$ at each iteration
 - The first time |U| becomes smaller than $|V|/\log_k |V|$, the algorithm has used no more than $2|V|/\log_k |V|$ colours

- if $|U| < |V|/\log_k |V|$, to colour the remaining nodes $|V|/\log_k |V|$ colours suffice
- That is, the algorithm uses at most $3|V|/\log_k|V|$ colours
- The algorithm uses at most $3|V|/\log_{m^*(G)}|V|$, that is, at most $3n\log(m^*(G))/\log n$ colours
- The performance ratio is at most $(3n \log(m*(G))/\log n) / m*(G) = O(n / \log n)$

MINIMUM SET COVER

- INSTANCE: Collection C of subsets of a finite set S

- SOLUTION: A set cover for *S*, i.e., a subset *C* of *C* such that every element in *S* belongs to at least one member of *C*

- MEASURE: |C'|

- Johnson's algorithm
 - Polynomial-time logarithmic approximation algorithm for MINIMUM SET COVER

```
begin U:=S;
for any set c_i in C do c'_i:=c_i;
C':=\emptyset;
repeat i:=\operatorname{index} \text{ of } c' \text{ with maximum cardinality;}
\operatorname{insert} c_i \text{ in } C';
U:=U-\{\operatorname{elements} \text{ of } c'_i\};
\operatorname{delete} \text{ all elements} \text{ of } c_i \text{ from all } c';
\operatorname{until} U:=\emptyset
end.
```

- It is possible to show that Johnson's algorithm is a (ln n + 1)-approximate algorithm for the MINIMUM SET COVER, where n is the number of elements of S

Class F-APX

- Let F be a class of functions

- The class F -APX contains all NPO problems P that admit a polynomial-time algorithm A such that, for any instance x of P , $R(x, \mathsf{A}(x)) \leq f(|x|)$, for a given function $f \in \mathsf{F}$

- P is said to be f(n)-approximable
- \mathbf{A} is said to be an f(n)-approximation algorithm

Class APTAS

- The class APTAS contains all NPO problems P that admit a polynomial-time algorithm A and a constant k such that, for any instance x of P and for any rational r, $R(x, \mathbf{A}(x,r)) \le r + k/m *(x)$

- The time complexity of \boldsymbol{A} is polynomial in |x| but not necessarily in 1/(r-1)
- A is said to be an asymptotic approximation scheme
 - A is clearly a (r+k)-approximation algorithm

The NPO world

NPO	
O(n)-APX	MINIMUM GRAPH COLORING
$O(\log n)$ -APX	MINIMUM SET COVER
APX	MAXIMUM SAT MINIMUM VERTEX COVER MAXIMUM CUT
APTAS	MINIMUM EDGE COLORING
PTAS	MINIMUM PARTITION
РО	MINIMUM PATH