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Non-Approximability Results 
(2nd part continued)
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Summary
- The PCP theorem

- Application: non-approximability of MAXIMUM 
CLIQUE

- Input-Dependent and Asymptotic Approximation
- Approximation algorithm for graph colouring
- Approximation algorithm for set cover
- Asymptotic approximation scheme for edge 

colouring
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MAXIMUM CLIQUE
- INSTANCE: Graph G=(V,E)

- SOLUTION: A subset U of V such that, for any two 
vertices u and v in U, (u,v) is in E 

- MEASURE: Cardinality of U
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Inapproximability of clique
Theorem: MAX CLIQUE ∉PTAS unless P=NP
Proof:

- We show that it's possible to “reduce” MAX 3-SAT to MAX 
CLIQUE preserving the approximation for all r. Given that 
MAX 3-SAT ∉PTAS, the thesis follows.

- Let (U, C) an instance of MAX 3-SAT. U={variables} C=
{clauses}

- Define the MAX 3-SAT instance as: G=(V, E)
- V = { (l, c) | l∈c ∧ c∈C}, E={( (l1, c1), (l2, c2) ) | l1 ≠ ¬l2 ∧ c1≠ c2}

- li are literals and ci are clauses
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Inapproximability of clique
Proof (continued):

- V = { (l, c) | l∈c ∧ c∈C}, E={( (l1, c1), (l2, c2) ) | l1 ≠ ¬l2 ∧ c1≠ c2}

- For any clique V', let f the truth assignment as follows:
- f(u) = true iff exists a clause c such that (u, c) ∈ V'.

- It's easy to show that f() is a consistent truth assignment.
- From E, f() can satisfies ≥|V'| clauses: m((U, C), f) ≥|V'| 
- It's easy to show that the max number of satisfiable clauses 

is equal to the size of the max clique in G. 
- Given a set of clauses C'⊆ C, for any truth assignment f' for C' and 

for any c∈C', let lc any literal of c with f'(lc)=true. The set of nodes 
(lc, c) is clearly a clique in G.
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Inapproximability of clique
Proof (continued):

- Therefore, any polynomial-time approximation scheme for 
MAX CLIQUE can be transformed in a polynomial-time 
approximation scheme for MAX 3-SAT.

- But, unless P=NP, MAX 3-SAT ∉PTAS, so the thesis.
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Inapproximability of clique
- MAX CLIQUE has a particular property, self-

improvability, that yields the following result
- Theorem: MAX CLIQUE ∉APX unless P=NP
-  Proof:

- If there exists an polynomial-time r'-approximation 
algorithm A for MAX CLIQUE, given an instance G, we 
will transform G into another, larger, instance f(G) and apply 
A to f(G).

- The approximate solution A(f(G)) can be used to find a 
better approximate solution to G... therefore A can be 
transformed to an approximation scheme.
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Inapproximability of clique
- The self-improvability property: Product graphs

- Given a graph G=(V,E), define Gk(Vk,Ek) as
Vk={(v1,v2,...,vk) | vi ∈ V}  (k-th Cartesian product of V)
Ek={(u,v) | (ui=vi) ∨ (ui,vi)∈E for all i}

- If C ⊆ V is a clique in G, it is easy to verify that
{(v1,v2,...,vk) | vi ∈ C for every i} is a clique in f(G) of size |C|k

- m*(f(G)) ≥ (m*(G))k 
- If C'⊆Vk is a clique in f(G) with mk verticies, then at least a 

coordinate i of the vertices (v1,v2,...,vk) where there are m 
different vertices vi in C'. These vertices are a clique in G of 
size |C'|1/k. . Let g the procedure that builds this clique from C'
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Inapproximability of clique
- With A we can determine that

m*(G) / m(G, g(A(f(G)))) ≤ ( m*(f(G)) / m(f(G), A(f(G))) )1/k

≤ r'1/k

- For any r>1, choosing k ≥ log r'/log r, we obtain a 
polynomial-time approximation scheme for MAX 
CLIQUE.

- Last theorem states that it's impossible unless P=NP
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The NPO world if P≠NP
NPO

APX
MAXIMUM SAT
MINIMUM VERTEX COVER(      ?)
MAXIMUM CUT(      ?)

PTAS MINIMUM PARTITION

PO
MINIMUM PATH

MINIMUM TSP
MAXIMUM CLIQUE
MINIMUM BIN PACKING

MINIMUM GRAPH COLORING? Certainly not in PTAS
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Input-Dependent Approximation
- A sequential algorithm for MINIMUM GRAPH 

COLORING

begin
    sort V in decreasing order with respect to the degree; 

for each node v do
if there exists color not used by neighbors of v then assign this color to v
else create new color and assign it to v

end.
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Input-Dependent Approximation
- Performance of sequential algorithm

- G=({x1,...xn, y1,...yn}, {{xi,yj} | i≠j})

- d(xi)=d(yj)=n-1

- The order (x1,y1...xn,yn)
 requires n colours

- The optimal value is 2
- The performance ratio is n/2
- Generalizing, the performance ratio is Δ+1 

where Δ is the highest degree of nodes in G

x1 x2 x3 x4

y1 y2 y3 y4



13/22

begin
 i:=0; U:=V;

while U ≠ ø do
begin

i:=i+1;V[i]:=ø;W:=U;H:=graph induced by W;

while W ≠ ø do
begin

v=node of minimum degree in H; 
insert v in V[i];
delete v and its neighbours from W;
U:=U-V[i]

end
end

end.

Input-Dependent Approximation
- Polynomial-time n/log n-approximation algorithm for 

MINIMUM GRAPH COLORING
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Input-Dependent Approximation
We first prove that, if G is k-colorable, then the 

algorithm uses at most 3|V|/logk|V| colours 
- At any iteration of the inner loop, H is k-colorable
- Hence, it contains an independent set of at least 

|W|/k nodes of degree at most |W|(k-1)/k
- Minimum degree in H is at most |W|(k-1)/k 
- At least |W|-|W|(k-1)/k = |W|/k nodes will be in W at 

the next iteration (after remove the |W|/k IS)
- Inner loop ends when W is empty

- At least logk|W| iterations are necessary
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Input-Dependent Approximation
- At the end of inner loop

- |{v | v in W and V[v] = i}| ≥ logk|W|

- For each colour i , the number of vertices coloured 
with i is at least logk|U|, where U  is the set of 
uncoloured nodes before the color i is used

- Before the first outer loop, if |U| ≥ |V|/logk|V|, 
logk|U| ≥ logk(|V|/logk|V|) ≥ ½ logk|V|
- U size decrease by at least ½ logk|V| at each iteration

- The first time |U| becomes smaller than |V|/logk|V|, the 
algorithm has used no more than 2 |V|/logk|V| colours
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Input-Dependent Approximation
- if |U| < |V|/logk|V|, to colour the remaining nodes

|V|/logk|V| colours suffice

- That is, the algorithm uses at most 3|V|/logk|V| 
colours

- The algorithm uses at most 3|V|/logm*(G)|V|, that is, 
at most 3n log(m*(G))/log n colours

- The performance ratio is at most
 (3n log(m*(G))/log n) / m*(G) = O(n / log n)
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MINIMUM SET COVER
- INSTANCE: Collection C  of subsets of a finite set S 

- SOLUTION: A set cover for S, i.e., a subset C’ of C 
such that every element in S belongs to at least one 
member of C’

- MEASURE: |C’|
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begin
U:=S; 
for any set ci in C do c’i := ci ;
C’:=ø;
repeat

i:=index of c’with maximum cardinality;
insert ci in C’; 
U := U-{elements of c’i };
delete all elements of ci from all c’;

until U:=ø
end.

Input-Dependent Approximation
- Johnson’s algorithm

- Polynomial-time logarithmic approximation 
algorithm for MINIMUM SET COVER
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Input-Dependent Approximation
- It is possible to show that Johnson's algorithm is a 

(ln n + 1)-approximate algorithm for the MINIMUM 
SET COVER, where n is the number of elements of S
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Class F-APX
- Let F be a class of functions

- The class F -APX contains all NPO problems P that 
admit a polynomial-time algorithm A such that, for 
any instance x of P, R(x, A(x))) ≤ f(|x|), for a given 
function f ∈ F

- P is said to be f(n)-approximable
- A is said to be an f(n)-approximation algorithm
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Class APTAS
- The class APTAS contains all NPO problems P that 

admit a polynomial-time algorithm A and a constant k
such that, for any instance x of P and for any rational 
r, R(x, A(x,r))) ≤ r+k/m*(x)

- The time complexity of A is polynomial in |x| but not 
necessarily in 1/(r-1)

- A is said to be an asymptotic approximation scheme
- A is clearly a (r+k)-approximation algorithm
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The NPO world
NPO

APX MAXIMUM SAT
MINIMUM VERTEX COVER
MAXIMUM CUT

PO MINIMUM PATH

O(n)-APX

O(log n)-APX

MINIMUM GRAPH COLORING

MINIMUM SET COVER

PTAS MINIMUM PARTITION

APTAS MINIMUM EDGE COLORING


