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G. Essl and S. Zambon

• “PDE we use are quite related to Quantum Mechanics” (Essl)

• Bessel functions: Membrane oscillation.

• ANALOGY

OPTOMECHANICAL OPTICS MECHANICS

• Also... From Astronomy and Acoustics (Thompson) to Quantum Mechanics and DSP

• Legendre functions to decompose Sphere modes

• Laguerre Transform in order to obtain Frequency warping
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Adrien-Marie Legendre
(1752-1833, Paris)

• Astronomer and mathematician

• He published about celestial mechanics with papers such as “Recherches
sur la figure des planètes” (1784), which contains the Legendre
polynomials

• An elliptic function is an analytic function from C to C which is doubly 
periodic. That is, for two independent values of the complex number w, 
the functions f(z) and f(w + z) are the same.
It can also be regarded as the inverse function to certain integrals (called 
elliptic integrals) of the form, 

where R is a polynomial of degree 3 or 4. 

∫ )(zR
dz
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Edmond Nicolas Laguerre
(1834, 1886  Bar-le-Duc, France)

•mathematician

– Laguerre polynomials which are solutions of the Laguerre
differential equations

– Laguerre Transform
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Friedrich Wilhelm Bessel
(1784 - 1846) German mathematician and astronomer

• Confined waves and modes of oscillation

• Linear

And thus music…. 
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Friedrich Wilhelm Bessel
• Capacitor in an oscillating circuit.

E denotes the electric field between the two plates as a function of the 
distance from the centre of the plate r. 

By iterative approximations one obtains:

• At high frequencies Resonant cavity
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J.J. Thompson
(1856 - 1940)

• Also Thompson: from Astronomy and Acoustics to
Quantum Mechanics

• In 1897 he discovered the first subatomic particle, a 
component of all atoms, the electron.
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Electrons play

• Acoustic waves
• Stationary wave equation

• Stationary oscillations
modes (Bessel functions in 
the case of circular
surfaces)

• Probability waves
• Hamiltonian equation ot the 

stationary states
• Atomic orbitals

The electron “hits” (interacts with) the atomic “volume” (atomic 
force field) “generating” probability waves, representable as the 
combination of “modes” (eigenfunctions) of the Energy-
Hamiltonian Equation.
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From the Hydrogen Atom 
to the mp3 files

An introduction to 2nd degree differential equations
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The crisis of the Classical Physics

• Radiations present particle-like behavior 
(Photoelectric effect)

• Particles present wave-like behavior 
(Diffraction)

• Nature is essentially discontinuous 
(Energy levels of the atomic orbital)
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The crisis of the Classical Physics

Classical Mechanics

• Material point

• Trajectory: 
Least Action Principle

• Potential of the force field 
V(x,y,z) 

• Energy W

• Point velocity v(x,y,z,W)

Geometrical Optics

• Wave packet

• Light ray: 
Fermat’s principle

• Refraction index: 
ρ =ρ(x,y,z)

• Frequency ν

• Group velocity vg(x,y,z)
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The crisis of the Classical Physics
Geometrical Optics

Fermat’s principle

The path of a ray of light 
between two points is the 
path that: minimizes the 
travel time

Note: Hamilton did research in Optics. He 
tried to see if the Fermat’s principle and 
other aspects of Optics could be “shifted”
to mechanics and the result was the 
Hamiltonian formalism.

Classical Mechanics

Least Action Principle

The Principle of Least Action 
demands that the action S be a 
minimum for the path taken by 
the particle.

∫∫ −==
pathpath

dtVTLdtS )(   
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Schrödinger Equation

• Problem: Which kind of relationship between energy/potential from 
one side and mean-frequency/refraction-law from the other is 
necessary, in order to make the motion of the material point coinciding 
with the motion of the wave-group?  

• Material point of mass m in a force field with potential energy V.
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Schrödinger Equation

• By means of a separation of variables:  

• Eigenvalue equation (Wn)

• Solution                                                        

• un eigenvector (stationary waves).
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Schrödinger Equation

• One can show that

• Thus from the condition

it follows:

• |cn|2 is interpreted as the probability of finding the value 
Wn when measuring the energy of the system.
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Schrödinger Equation: The Operator 
Mechanics

• Let’s consider the Hamiltonian:

• Let’s “postulate” the correspondences

• We obtain an equality between 
two differential operators

• Multiplying by                   we obtain the Schroedinger Equation
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Building the Schroedinger Equation 
from the classical Hamiltonian 
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• The Quantum Hamiltonian is an equation between operators that act 
on L2 functions of the qi ‘s and the time t.

• The same procedure can be applied for any classical physical 
observable
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General Structure of the Quantum Mechanics

1. Given a physical observable G the only possible results of a measure of G are 
the eigenvalues g of the equation

2. System preparation: If one measures  G at  t=0  and finds gl then, immediately 
after the measure the wave function of the system is:

3. The system evolution is given by the solution of the equation
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General Structure of the Quantum Mechanics 

4.      Future measure forecast are PROBABILISTIC. When considering the generic 
physical observable

It is a property of the ξi that for any ψi it is possible to write: 

Then the            are the probabilities that in a measure of Ω at time t one can 
obtain the result ωn.

iii ξωξ =Ω
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Uncertainty Principle (Werner Heisenberg, 1925)

• Classical Physics admit, at least in principle, the 
possibility of measuring simultaneously any couple of 
physical variable.

• As Achilles and the turtle, the more precise the measure 
instruments the more precise the measure, with non 
infinitesimal limitation

• BUT Reality is different

hpq ii ≥∆∆
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Linear Harmonic Oscillator
• Steady state equation (classical Hamiltonian)

• Confluent Hypergeometric. 

• Considering the asymptotic behavior of the solution, one finds that the 
solution include as a factor Hermit polynomial  and from this follows that 
the energy must be:
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Towards the Hydrogen Atom

[ ] 0 )(
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=−−∇− urVEu
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• Schroedinger equation for 
steady states

• Central force field

• Variable Separation: 
Radial and Angular 
components

)()( rVrV =

( ) ( ) ( ) ( )ϕθϕθ ΦΘ= rRru ,,
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Towards the Hydrogen Atom

• Variable Separation: Radial and Angular component 
equations:
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Angular Momentum
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It is an hypergeometric equation with fuchsian points:   z = -1, 1, ∞

The solutions are:

With m and l parameters of the hypergeometric and Pl and Ql are Legendre functions
of the 1st and 2nd kind, respectively.

Note: By studying the asymptotic behavior one finds the eigenvalues: c= l(l+1) 
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Legendre polynomials
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Angular Solution

The global angular solutions are:

These are the Spherical Functions of order l and grade m 
and they satisfy the orthogonality condition:
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Radial Solution

The equation is now:

It can be reduced to an hypergeometric equation and by studying the behavior
at the infinity, the solution beomes:

Associated Laguerre functions
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Global Solution
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Global Solution

The energy eigenvalues are:

They depend only on n. This happens only for the spherical symmetry case (1 
electron)

l=0 orbitali s
l=1 orbitali p
l=2 orbitali d
l=3 orbitali f
l=4 orbitali g

   
2 2

42

2 n
eZmE n −=



Pietro Polotti

Bessel function for free particle 

The radial component of the solution of the Schroedinger equation for 
a free particle 

is,

where the  Jl+1/2(ρ)   are the cylindrical Bessel functions 
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Bessel functions

• Bessel in the modes of a circular membrane

• Bessel in the FM

• Bessel in the Ambisonics
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From the Hydrogen Atom 
to the mp3 files

An Electrodynamic digression: Resonant cavities  
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Hilbert space 

• Linear (Vector) space over a numeric set.  The sum of two elements of 
the space and the product by a number of the set  belong to the linear 
space. 

• Operators,

• Operator algebra (N.B. in general NON-commutative, thus NON-
COMMUTATIVE PHYSICS), 

• Linear operators

• Euclideian space = linear space with a hermitian scalar product

ST ∈= φφ '
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Hilbert space 

• Hermitian scalar product

S x S C       a function with some properties:

a

b

c

• Norm

• Distance
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Hilbert space

Hilbert Space:= Linear Euclideian space, which is also complete and separable

Definition: S is complete if any Cauchy sequence converges to an element of S

Definition: S is separable if there exists a numerable set of elements everywhere dense in S.
Equivalent to: for any ε>0, there exists a sequence φn such that ||φ- φn ||<ε.

Orthonormal set {φk}:

Complete set

{φ}:= linear variety spanned by {φk}.

( )  , ,nmnm δφφ =

( ) ωφφφ =⇒=        every for    0, kk
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Hilbert Spaces

Two operators T and T+ are said to be adjoin, if they have the same domain and 

Definition: if  T = T+, T is Hermitian.  

( ) ( )ψφψφ += TT ,,
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Hilbert Space

• Eigenvalue Equation

• The values hr for which the equation has solution form the Discrete 
Spectrum of H.

• Theorem : The Discrete Spectrum of a linear Hermitian
transformation is a set of points on the real axis empty, finite or 
infinite enumerable. Eigenvectors corresponding to different 
eigenvalues are orthogonal

(Furthermore the condition of Hermitianity implies real eigenvalues)

rrr hH φφ =



Pietro Polotti

Quantum Mechanics Hilbert Spaces

L(2)(∞) is the Euclideian space, whose elements are the complex functions of 
real variables, for which the following holds:

It is possible to make the space a vector (linear) space and an Euclideian
space, by defining:

It is possible to show that the space is also complete and separable, thus it is 
a Hilbert space.

( ) ∞<∫ ∫
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DSP Hilbert Spaces

l(2)(∞) is the Euclideian space, whose elements are the sequences a={ak}
of complex numbers, and the following holds:

It is possible to show that the space is also complete and separable, thus it is a 
Hilbert space.

Theorem: Any ∞–dimensional Hilbert space is isomorphic to l(2)(∞). 

∞<∑ 2
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Completeness

• Completeness conditions

• Complete Hermitian operators are called Hypermaximal operators

( ) ( ) λλλφ φ,φφdφ,φφφH k
k
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Dirac Notation 

βαψ ba +=

βαψ ** ba +=

Antilinear correspondence

Scalar product

φψ
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Dirac Notation 

αα aA =Eigenvalues equation

Orthogonality condition

Operator:
Projector onto the span of the αk

Completeness condition

srsr ,δαα =

∑=
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Quantum Mechanics General Postulates 

• Physical variable Hypermaximal operator. 

• The only possible values of a measure are the eigenvalues.

• Immediately after a measure the system falls into the state 
corresponding to an eigenvector.

• The system evolves according to the Schroedinger
equation.

• Future measures are predictable  in terms of the 
probabilities |ck|2 , where the ck are the eigenvalues of a 
certain physical variable. 
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Quantum Mechanics General Postulates

• We say that the measure projects the system onto 
one of the possible stationary state of the physical 
variable.

• Quantum Mechanics is the Physics of the 
Projection Operators, i.e. of the orthogonal 
expansion!
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General Structure of the Quantum 
Mechanics
addendum

• We say that the measure projects the system onto 
one of the possible stationary state of the physical 
variable.

• Quantum Mechanics is the Physics of the 
Projection Operators, i.e. of the orthogonal 
expansion!
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Electrons play

Acoustics / Electrodynamics / Quantum Mechanics

Applets

http://www.falstad.com/mathphysics.html

http://www.falstad.com/mathphysics.html
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The Point

• DUE TO QUANTUM MECHANICS AND THE 
CENTRALITY OF THE STEADY STATE EQUATION, 
THE SOLUTION OF EIGENVALUE EQUATIONS
AND THE EXPANSION OF THEIR SOLUTIONS ON 
THE EIGENVECTOR BASIS BECOME A CENTRAL 
PROBLEM.

• THIS FORMALISM FIND EQUIVALENCIES WITH 
AND CAN BE TRASPOSED TO MANY OTHER 
FIELDS OF PHYSICS AND OTHER SCIENTIFIC 
CONTEXTS. 
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The Point: QM “reminiscences” in DSP 

Atomic Orbitals ↔ Subband-Coding

Position/Momentum Uncertainty
↨

Time/Frequency Uncertainty
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l2 : the “DSP Hilbert Space”

• Expansion

• Transform coefficients

• Orthonormality

• Energy conservation (Parseval)
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l2 : the “DSP Hilbert Space”

Theorem: Given an orthonormal set {x1, x2,…} in a Hilbert space H, 
the following are equivalent:

• The set of vectors {x1, x2,…} forms an orthonormal basis for H.
• If  <xi,y>=0  for i=1,2,…. then y=0
• The span of {x1, x2,…} is dense in H, that is, every vector in H is 

a limit of a sequence of vectors in the span of {x1, x2,…} 

• Parseval’s equality: For every y in H:
22 ,∑=

i
i yxy
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l2 : the “DSP Hilbert Space”

Given a Hilbert space H and a closed subspace V0, such that:

H= V0⊕W0, 

where W0 is said to be the orthogonal complement of V0 in H, then,if u ∈H

u=v+w ,
where v ∈ V0 and w ∈ W0

Definition: An operator P is called a projection operator onto V0 if

P(u)= P(v+w)=v

An operator is a projection operator iff it is
Idempotent:  P2=P
Self adjoint:  P*=P
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l2 : the “DSP Hilbert Space”

• Space decomposition V0⊥W0 ⇒ V0⊕W0=V-1

• Design of orthogonal FIR filter banks
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Sampling Theorem

The set sinc(t-l), l ∈ Z forms an othonormal basis for the set of 
functions f(t) bandlimited to (-π,π), where

• Even the most simple coding technique (PCM) is done by 
means of an expansion onto an othonormal set of functions

πt
πtt )sin()sinc( =
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Sampling Representations

In fact,

( ) ( )sinc( ) ( ),sinc( )f n f t t n dt f n
+∞

−∞

= − = • • −∫
On a time-frequency plane we have

ω

+π

t

−π

This is a single-band time-frequency representation
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Multirate DSP
Orthogonal Filter Banks

• Orthogonal projection onto the subspace V

where

and

g (n)h(n)

2 2

[ ] [ ] [ ] [ ] [ ]ngnhkkngng −==−         2 δ

[ ]{ }  2spanV Zk∈−= kng



• Orthogonal projection onto the subspace V and W

[ ] [ ] [ ]kkngng ii δ=− 2

[ ]{ }  2spanV Zk0 ∈−= kng

Multirate DSP
Orthogonal Filter Banks

g0(n)h0(n)
2 2

g1(n)h1(n)
2 2

[ ] [ ]ngnhlingng iili −=−=                          ][][],[ δ

H= V⊕W

[ ]{ }  2spanW Zk1 ∈−= kng

H= V⊕W

Pietro Polotti
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Multirate DSP
Orthogonal Filter Banks

In the z-domain

Perfect Reconstruction

Orthogonal system

with

g0(n)h0(n)
2 2

g1(n)h1(n)
2 2

H= V⊕WH= V⊕W
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Orthogonal Filter Design in l2

• Aliasing cancelation

In order to cancel the contribution of X(-z), for example: 

Es. QMF (Esteban Galant 1976)
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Orthogonal Filter Design in l2

In general in order to have Perfect Reconstruction 
(also biorthogonal):

[ ] [ ] 2)()()()( 1100 =+ zGzHzGzH

[ ] [ ] 0)()()()( 1100 =−+− zHzGzHzG
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Orthogonal Filter Design in l2

• Haar the simplest wavelet: 

– orthogonal

– linear phase

– FIR
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Haar

• Haar the simplest wavelet:

• Scaling function

• Help the construction of the wavelet since

• And satisfies a two-scale equation:
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Discrete Haar

[ ]
⎪
⎪

⎩

⎪
⎪

⎨

⎧

+=−

=

=+

     otherwise               0

12for         
2

1

2for           
2

1

12 kn

kn

nkϕ[ ]
⎪⎩

⎪
⎨
⎧ +==

otherwise                  0

12,2for        
2

1
2

kknnkϕ

φ0(n)φ0(-n)
2 2

φ1(n)φ1(-n)
2 2



Pietro Polotti

Time vs. Frequency Representations
For the frequency representation the orthogonal set 
elements are complex sinusoids with 

2 ( )j t FTe πδ ωΩ ⎯⎯→ − Ω

On a time-frequency plane we have:

2πδ(ω-Ω)
infinitely good in frequency,
infinitely bad in time

t

ω

δ(t-τ)
infinitely good in time,
infinitely bad in frequency
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Uncertainty Principle (Heisenberg, 1925)
Time and frequency are not independent variables

One cannot achieve infinite resolution simultaneously in time and frequency:

1
2t ω∆ × ∆ ≥

Where (second central moments):

( )
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Time-Frequency Representations
By properly scaling, translating and modulating the sinc basis 
one can construct an arbitrary tiling of the time-frequency plane

ω ωUniform resolution Non-uniform resolution

t t

However, the sinc function has good frequency localization but 
bad time localization (uncertainty product is infinite)
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Short-Time Fourier Transform
Uniform (Gabor’s) expansion is realized by means of the STFT

2

21

0

For discrete-time signals

             ( , ) ( ) ( )           (analysis)

1             ( ) ( , ) ( )    (synthesis)

             
with ( ) finite-length 
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Computation of STFT
Computation may be performed by means of windowed FFTs
or by filter bank structure:

The same filter bank structure is shared by other related 
transforms (e.g., MDCT)
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Dyadic Wavelets Time-Frequency 
Tessellation

ω
Time-frequency tessellation

1 2 3 4 5 6 7 8 9 10 τ

Octave band frequency resolution

Frequency resolution is good at low frequencies and 
poorer at high frequencies (constant Q)

Time resolution is good at high frequencies and poorer at 
lower frequencies
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WT Computation
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Discrete Cosine Transform (DCT) 
PR uniform-band filter banks

DCT I type

1

1
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Modified Discrete Cosine Transform (MDCT) 
By means of DCT-I or DCT-IV one can build PR and 

orthogonal uniform-band cosine modulated filter banks

MDCT from DCT IV type

2 1 1[ ] [ ] cos     length 2
2 2

π⎛ + ⎞⎛ ⎞⎛ ⎞= + +⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠

k
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M M
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2 2
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− − =⎩

W n W n M
W M n W n
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MR DSP 
MDCT completeness and orthogonality

conditions

• Completeness

• Orthogonality
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Compression Methods

Lossy compression:

1) MDCT subband decomposition  

2) STFT in order to estimate the psychoacoustic model 
parameters 

3) Dynamic bit allocation according to the 
psychoacustic param. 
(signal-to-mask ratio SMR)

4) Quantization and entropy coding of subband
signals

5) Multiplex and frame packing
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MPEG1-layer 3    (*.mp3)

• MPEG (Motion Picture Experts Group): gruppo di scienziati che 
studiano codifiche standard per la compressione video e audio

• MPEG1 (layer 1, 2, 3)

• L’orecchio non è in grado di percepire frequenze “deboli” adiacenti 
a frequenze “forti”, che mascherano le prime. 

• Le informazioni inerenti le frequenze più deboli vengono eliminate 
dall’MPEG durante la fase di compressione. 
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1) Absolute Threshold

Non uniform hearing capabilities along the frequency range

( ) ( ) ( ) ( ) SPL) (dB   100010561000643 433310006080 2

fe.-f.fAbsTh -.-f.-. ⋅+⋅⋅= −
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2) Basilar Membrane and Critical Bands

• The cochlear “continuos passband filters”
are of non-uniform bandwidth

• Discrete version: Critical Bands → Bark subdivision of FD

(Hz) ])1000/(4.11[7525)( 69.02ffBWc ++=
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Critical Band Subdivision

Representing the ear as a passband filter bank with non-uniform bandwidth
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Critical Band Partition 
of a Trumpet Spectrum 

Non uniform distribution of the partials in the Bark subdivision
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Critical Band Partition 
of a Trumpet Spectrum: a Detail
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Masking

One sound is made inaudible due to the “simultaneous”
presence of another sound

The presence of a strong noise or tone masker creates a 
sufficient excitation of the basilar membrane at the critical 
band location to block detection of a weaker signal

Tone Masking Noise

dB

SPL

Noise Masking Tone

ν
Critical 

BW

Noise masker

Masked tone
4 dB

dB

SPL

Noise Masking Tone

ν
Critical 

BW

Noise masker

Masked tone
4 dB

Threshold
24 dB

dB

SPL

ν
Critical 

BW

Tone masker

Masked noise
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3) Tone–Masking-Noise (TMN)

Signal-to-Mask Ratio (SMR) = 24 dB for TMN case

SMR

Asymmetric Spread of Masking Threshold

Absolute Threshold
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Spread of Masking Threshold through CBs

Approximately triangular function

( ) ( )215.81 7.5 ( 0.474) 17.5 1 0.474   (dB)M b b b= + ⋅ + − ⋅ + +

Asymmetric and NL Spread of Masking Threshold
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Real case: 1 TMN
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Real case: 2 TMN
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All Maskers
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Global Mask

Global masking threshold = Just Noticeable Distortion (JND)
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Short-Time Thresholds Evaluation
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MPEG1 – layer 1
1) Subdivision of the frequency range by means of a 32-channel MDCT

(Subband coding)

2) An STFT is performed in parallel, providing a higher frequency resolution 
for PSD estimation. Window length = 512. Hop size =384 (12*32, i.e. every 
12 samples bit allocation is updated). 

3) Signal-to-Mask Ratio computation: For each subband, one considers the 
maximum of the PSD coefficient max{X(k)} corresponding to that 
subband. SMR’s are set according to this max and mask spreading 
throughout the critical bands is considered.

4) Mask spreading: Only masking components that lie in the range –8 / +3 
Bark are considered

5) Global masking threshold: sum of all contributing masking components. 

6) Bit allocation is carried out in each of the 32 subbands using the SMR.
- Determine the number of bits for each individual subband so that 
transparent perception is possible.

- This number (simplifying things) corresponds to the difference 
between the max{X(k)} and the Total Mask Level.
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MPEG1 – layer 1

Compression algorithm Scheme
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