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G. Essl and S. Zambon

“PDE we use are quite related to Quantum Mechanics” (Essl)

Bessel functions: Membrane oscillation.

ANALOGY

OPTOMECHANICAL OPTICS MECHANICS

Also... From Astronomy and Acoustics (Thompson) to Quantum Mechanics and DSP
Legendre functions to decompose Sphere modes

Laguerre Transform in order to obtain Frequency warping
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Adrien-Marie Legendre

(1752-1833, Paris)

Astronomer and mathematician

He published about celestial mechanics with papers such as “Recherches
sur la figure des planetes” (1784), which contains the Legendre
polynomials

An elliptic function 1s an analytic function from C to C which 1s doubly

periodic. That is, for two independent values of the complex number w,

the functions f(z) and f(w + z) are the same.

It can also be regarded as the inverse function to certain integrals (called
elliptic integrals) of the form,

dz
'[ R(z)

where R 1s a polynomial of degree 3 or 4.
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Edmond Nicolas Laguerre
(1834, 1886 Bar-le-Duc, France)

emathematician

— Laguerre polynomials which are solutions of the Laguerre
differential equations

— Laguerre Transform
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Friedrich Wilhelm Bessel

(1784 - 1846) German mathematician and astronomer

« Confined waves and modes of oscillation

e Linear w=kc= % kL=nz L stringlength

And thus music....

1 _na -
n + m a,b side length of a rectangle

« Bidimensional —=—; 5
A~ 4a 4p
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Friedrich Wilhelm Bessel

« Capacitor in an oscillating circuit.

E denotes the electric field between the two plates as a function of the
distance from the centre of the plate r.

By iterative approximations one obtains:
1 () 1 (or) 1 (o) wr
E=Ee |1~ — - Nz Eelg |
" { (1!)2(2c) +(2!)2(2cj (3!)2(%) ' } o J”(cj

« At high frequencies = Resonant cavity
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J.J. Thompson
(1856 - 1940)

* Also Thompson: from Astronomy and Acoustics to
Quantum Mechanics

* In 1897 he discovered the first subatomic particle, a
component of all atoms, the electron.
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Electrons play

* Acoustic waves » Probability waves

« Stationary wave equation e Hamiltonian equation ot the

stationary states
 Stationary oscillations .
modes (Bessel functions in
the case of circular
surfaces)

Atomic orbitals

The electron “hits” (interacts with) the atomic “volume” (atomic
force field) “generating” probability waves, representable as the
combination of “modes” (eigenfunctions) of the Energy-
Hamiltonian Equation.
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From the Hydrogen Atom
to the mp3 files

An introduction to 2" degree differential equations
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The crisis of the Classical Physics

« Radiations present particle-like behavior
(Photoelectric effect)

 Particles present wave-like behavior
(Diffraction)

» Nature 1s essentially discontinuous
(Energy levels of the atomic orbital)
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The crisis of the Classical Physics

Classical Mechanics Geometrical Optics
Material point  Wave packet
Tray ectory: o o Light ray:
Least Action Principle Fermat’s principle
e
Potential of the force field e Refraction index:
V(X,y,Z) yo, =p(x,y,z)
Energy W * Frequency v
Point velocity v(x,y,z, W) * Group velocity v,(x,y,z)
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The crisis of the Classical Physics

Geometrical Optics
Classical Mechanics

Fermat’s principle
Least Action Principle

The path of a ray of light

S=| Ldt= J' (T —-V)dt between two points 1s the
path path path that: minimizes the

travel time

The Principle of Least Action
demands that the action S be a

minimum for the path taken by Note: Hamilton did research in Optics. He

the particle. tried to see if the Fermat’s principle and
other aspects of Optics could be “shifted”
to mechanics and the result was the
Hamiltonian formalism.
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Schrodinger Equation

Problem: Which kind of relationship between energy/potential from
one side and mean-frequency/refraction-law from the other is
necessary, in order to make the motion of the material point coinciding
with the motion of the wave-group?

2mV 2m oy

+ j——=0
2 LT

Vzw —

Material point of mass m in a force field with potential energy V.
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Schrodinger Equation

« By means of a separation of variables: v (x,y,z,t) =u(x, y,z)p(t)

2mV : :
[Vz e }u Wu Stationary state equation

—= Temporal evolution
Gt h
* Eigenvalue equation (W)
* Solution w(x,y,z,t)= chun (x, y,z)e (t)

* U, eigenvector (stationary waves).
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Schrodinger Equation

One can show that

j u u, dxdydz = 5(m-n)

Thus from the condition Hl/f\zdxdydz =1

1t follows:
2

=1

2

n

lc |* is interpreted as the probability of finding the value
W_ when measuring the energy of the system.
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Schrodinger Equation: The Operator
Mechanics

2
Pi
Let’s consider the Hamiltonian: H=F = Z +V(x,y,z)=FE

2m
E h g
Let’s “postulate” the correspondences —J ot
0
- —>—jh—
P> he
. . nts e
We obtain an equality between ——V +V(x,y,z)= jh—
two differential operators 2m Ot

Multiplying by —2m/k#*> we obtain the Schroedinger Equation
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Building the Schroedinger Equation
from the classical Hamiltonian

0q ;
E - ih2
Ot
HQ“P(qi,t) =ih alpézi,t)

The Quantum Hamiltonian 1s an equation between operators that act
on L? functions of the ¢; ‘s and the time ¢.

The same procedure can be applied for any classical physical
observable
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General Structure of the Quantum Mechanics

1. Given a physical observable G the only possible results of a measure of G are
the eigenvalues g of the equation

Go, =g,

2. System preparation: If one measures G at =0 and finds g, then, immediately
after the measure the wave function of the system is:

v (x,0) = ¢,(X)

3.  The system evolution is given by the solution of the equation

Hy(%.0) = ih ‘9"”;”)
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General Structure of the Quantum Mechanics

4.  Future measure forecast are PROBABILISTIC. When considering the generic
physical observable

Q¢ = ¢,
It is a property of the & that for any . it is possible to write:

p(E) =Y e (05D

2 .y . .
Then the ‘cn (l‘)l are the probabilities that in a measure of (2 at time ¢ one can
obtain the result @,
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Uncertainty Principle (Werner Heisenberg, 1925)

Classical Physics admit, at least in principle, the
possibility of measuring simultaneously any couple of
physical variable.

As Achilles and the turtle, the more precise the measure
instruments the more precise the measure, with non
infinitesimal limitation

BUT Reality is different

Aq,Ap, = h
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[Linear Harmonic Oscillator

« Steady state equation (classical Hamiltonian)

2
2 :
cciz’xzt + h}? (E —2mmulx’ )u =0 x = displacement,
u = energy eigenfunctions
V(x)=2mmuo;x’

.. 1 |x

chracteristic frequency Vg =—+|—

27 \'m

« Confluent Hypergeometric.

* Considering the asymptotic behavior of the solution, one finds that the
solution include as a factor Hermit polynomial and from this follows that

the energy must be:
E =h Uo(n + lj
2
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Towards the Hydrogen Atom

+ Schroedinger equation for ~_ " Viu—[E-V()]u=0

steady states 2m

e C(Central force field V(i) =V(r)

* Variable Separation: u(r,0,0)=R(r)O(6
Radial and Angular (r.0.0)=Rir)o(e)0lp)

components
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Towards the Hydrogen Atom

* Variable Separation: Radial and Angular component
equations:

1d 2 dR) 2m
R dr dr h°

L _d (sin(ﬁ)a@j—zm{(?— Vir) }®=0

sin(0) d6 do) | sin(0)

[E — V(r)]r2 =C
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Angular Momentum

1 d . d®
9)do (sm(@)

| )‘M{C‘ V(r) }620
sin do

h’ sin(6’)2

It i1s an hypergeometric equation with fuchsian points: z=-1, 1, «©

The solutions are:

®,,(0)= AP"(0)+BQO;' (6)

With m and [ parameters of the hypergeometric and P, and Q, are Legendre functions
of the 15t and 2" kind, respectively.

Note: By studying the asymptotic behavior one finds the eigenvalues: c= /(/+1)
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Angular Solution

Legendre polynomials

@)= -2 )
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Angular Solution

The global angular solutions are:

miemr2 | 20 +1 (l—m)! . \m d‘m‘P(cosﬁ) -
Y (@ — _‘ [+m/2 (9‘ | [ Jme
I’M( ’gp) &) \/ 4r (l+m)!(Sln ) d(cosé?)‘m‘ ¢

These are the Spherical Functions of order / and grade m
and they satisfy the orthogonality condition:

2 V4
j d(DJ. Sin 06!’9 }fl,m (9’ (0 l:k,m' (09 ¢) — 5I,Z'§m,m
0 0
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Radial Solution

The equation is now:

1d (rz de— 2’? E—Zi r=1(1+1) where /(/+1)1* is the angular momentum
R dr dr) h r

Z nucleus charge

It can be reduced to an hypergeometric equation and by studying the behavior
at the infinity, the solution beomes:

Rn,l(r') _ I:(}fazj (n—l—l);]e A vl Li1+5+1 (l” )

2nl(n+1)!

in”l (r") Associated Laguerre functions
n+l g

Pietro Polotti



Global Solution
U, 1m (I/', 0, (0) = Y;m (6), (0)Rn,l (r)=

— ACD((D)PZ""‘ (COS(Q))xlengl“ (r)

[+n

Orthonormality:
jun,l,m (7", 9’ (D)M O '(7', g’ gﬂ)dV — 5n,n'5l,l'5m,m'
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(GGlobal Solution

The energy eigenvalues are:

They depend only on n. This happens only for the spherical symmetry case (1
electron)

1=0 orbitali s
=1 orbitali p
1=2 orbitali d
1=3 orbitali f
1=4 orbitali g
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Bessel function for free particle

The radial component of the solution of the Schroedinger equation for
a free particle

18,

where the J,,,(p) are the cylindrical Bessel functions
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Bessel functions

e Bessel in the modes of a circular membrane

 Bessel in the FM

e Bessel in the Ambisonics
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From the Hydrogen Atom
to the mp3 files

An Electrodynamic digression: Resonant cavities
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Hilbert space

Linear (Vector) space over a numeric set. The sum of two elements of
the space and the product by a number of the set belong to the linear
space.

Operators, ¢' — T¢ cS

Operator algebra (N.B. in general NON-commutative, thus NON-
COMMUTATIVE PHYSICS),

Linear operators

Euclideian space = linear space with a hermitian scalar product
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Hilbert space

e Hermitian scalar product (W , (D)

Sx§=>C a function with some properties:

a (‘//aa¢1 +b¢2): a('//a¢1)+b('>”»¢z)
b w.e)=(pw)

¢ (p,p)20 "="iff p=w
e Norm
vl =1 vl
 Distance dm[/ _ H¢_l//H
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Hilbert space

Hilbert Space:= Linear Euclideian space, which is also complete and separable

Definition: S is complete if any Cauchy sequence converges to an element of S

Definition: S is separable if there exists a numerable set of elements everywhere dense in S.
Equivalent to: for any £>0, there exists a sequence ¢, such that ||¢- ¢, ||<e.

Orthonormal set {4, }: (@ ,0,)= S,
Complete set (¢, o, ) =0 foreveryk = ¢d=w

{ ¢} := linear variety spanned by {¢,}.
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Hilbert Spaces

Two operators 7'and 7™ are said to be adjoin, if they have the same domain and

(To.w)=(0.T"v)

Definition: if 7=7", T is Hermitian.
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Hilbert Space

Eigenvalue Equation

He. =h.9,

The values 4, for which the equation has solution form the Discrete
Spectrum of H.

Theorem : The Discrete Spectrum of a linear Hermitian
transformation is a set of points on the real axis empty, finite or
infinite enumerable. Eigenvectors corresponding to different
eigenvalues are orthogonal

(Furthermore the condition of Hermitianity implies real eigenvalues)
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Quantum Mechanics Hilbert Spaces

L®(0) is the Euclideian space, whose elements are the complex functions of
real variables, for which the following holds:

J‘....ﬂf(ql,....,qk)(z < o0

It 1s possible to make the space a vector (linear) space and an Euclideian
space, by defining:

f+g=7(qq)+8(q55q,)
af:af(%s """ 9Qk)

(f,g)z jjf *(ql,....,qk )g(ql,....,qk )dql....qu

[t 1s possible to show that the space is also complete and separable, thus it 1s

a Hilbert space.
Pietro Polotti



DSP Hilbert Spaces

1®)(0) is the Euclideian space, whose elements are the sequences a={a,}
of complex numbers, and the following holds:

Z‘ak‘z <0
k

It 1s possible to show that the space is also complete and separable, thus it is a
Hilbert space.

Theorem: Any co—dimensional Hilbert space is isomorphic to 1?)(0).

(a,b) = Zk:akbk

Pietro Polotti



Completeness

« Completeness conditions

VoeH 9= (p.0k+[dAp,.0),

vy eH  (po)=2 (.0 0)+ | dA(y.0, N0, 0)

« Complete Hermitian operators are called Hypermaximal operators
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Dirac Notation

v)=dla)+b|p)
Antilinear correspondence
W|=a(a|+b (f]

Scalar product

W¢)
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Dirac Notation

Eigenvalues equation

Orthogonality condition

Operator:
Projector onto the span of the o,

Completeness condition

A‘a>:a‘a>

as > = 5r,s

(@,
P=;\%><ak\

2 e e =1
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Quantum Mechanics General Postulates

Physical variable = Hypermaximal operator.
The only possible values of a measure are the eigenvalues.

Immediately after a measure the system falls into the state
corresponding to an eigenvector.

The system evolves according to the Schroedinger
equation.

Future measures are predictable in terms of the
probabilities |c,|*, where the c, are the eigenvalues of a
certain physical variable.
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Quantum Mechanics General Postulates

* We say that the measure projects the system onto
one of the possible stationary state of the physical
variable.

* Quantum Mechanics 1s the Physics of the
Projection Operators, 1.e. of the orthogonal
expansion!
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General Structure of the Quantum
Mechanics
addendum

* We say that the measure projects the system onto
one of the possible stationary state of the physical
variable.

* Quantum Mechanics 1s the Physics of the
Projection Operators, 1.c. of the orthogonal
expansion!

Pietro Polotti



Electrons play

Acoustics / Electrodynamics / Quantum Mechanics

Applets
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http://www.falstad.com/mathphysics.html

The Point

« DUE TO QUANTUM MECHANICS AND THE
CENTRALITY OF THE STEADY STATE EQUATION,
THE SOLUTION OF EIGENVALUE EQUATIONS
AND THE EXPANSION OF THEIR SOLUTIONS ON
THE EIGENVECTOR BASIS BECOME A CENTRAL
PROBLEM.

 THIS FORMALISM FIND EQUIVALENCIES WITH
AND CAN BE TRASPOSED TO MANY OTHER
FIELDS OF PHYSICS AND OTHER SCIENTIFIC
CONTEXTS.

Pietro Polotti



The Point: QM “reminiscences” in DSP

Atomic Orbitals <« Subband-Coding

Position/Momentum Uncertainty

{

Time/Frequency Uncertainty

Pietro Polotti



[? : the “DSP Hilbert Space”

Expansion xn]=D (o [nl,x[n]p [n]=D X[k]g,[n]
k k

Transform coefficients X[k1={p,[1],x[n]) = Z¢k [[]x[1]

Orthonormality (@[], ¢,[n]) = STk —1]

Energy conservation (Parseval) Hx[n]Hz = HX [k]H2
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[? : the “DSP Hilbert Space”

Theorem: Given an orthonormal set {x,, x,,...} in a Hilbert space H,
the following are equivalent:

* The set of vectors {x,, x,,...} forms an orthonormal basis for /.
o If <x,)>=0 fori=1,2,.... then y=0

e The span of {x, x,,...} 1s dense in H, that is, every vector in H 1s
a limit of a sequence of vectors in the span of {x;, x,,...}

« Parseval’s equality: For every y in H: Hsz = Z‘<xiﬂy>‘2

Pietro Polotti



[> : the “DSP Hilbert Space”

Given a Hilbert space H and a closed subspace V, such that:
H=V,®&W,
where W, 1s said to be the orthogonal complement of V, in H, then,if u eH

u=vtw,
where v e Vijand w € W,

Definition: An operator P is called a projection operator onto V, if
P(u)=P(v+w)=v

An operator is a projection operator iff it is
Idempotent: P>=P
Self adjoint. P*=P

Pietro Polotti



[? : the “DSP Hilbert Space”

* Space decomposition VLW, = V,@W =V,

* Design of orthogonal FIR filter banks

Pietro Polotti



Sampling Theorem

The set sinc(z-/), [ € Z forms an othonormal basis for the set of
functions f(¥) bandlimited to (-mt,7), where

sin(zt)

sinc(t) =
y14

* Even the most simple coding technique (PCM) is done by
means of an expansion onto an othonormal set of functions

Pietro Polotti



Sampling Representations

In fact,

f(n) = j f(#)sinc(t —n)dt =( f(#),sinc(e —n))

On a time-frequency plane we have

Wy

+7T

This 1s a single-band time-frequency representation
Pietro Polotti



Multirate DSP
Orthogonal Filter Banks

* Orthogonal projection onto the subspace V

o——

h(n)

where

g(n)

———e

(glnl| gln—2k]) = 5k ]

and V = span{g [n -2k ]}keZ

hln]= g|-n]
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Multirate DSP
Orthogonal Filter Banks

* Orthogonal projection onto the subspace V and W

. hy(n) Hi—tH gn) . B
H=V®W S H=VOW
hl(n) —1 f— g ](”)
2 2
(g.[n], g,[n]) = Si 1] hn]=g,[-n]

(g[n]| g [n—2k]) = 5[k]
V= span{go [n - Zk]}kez W = Span{& [n — 2k]}kez
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Multirate DSP
Orthogonal Filter Banks

In the z-domain

. h(n) L

T g=vew

o g](”)

H= VOW

h(n) H

N ] o [
N [P N [P

Perfect Reconstruction G,(w)H,(»)+G,(0)H,(w)=1
Orthogonal system H, (2)H,(2)+H, (2)H,(z) =1

with  G,(2)=H,(2)
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Orthogonal Filter Design in /2

« Aliasing cancelation

H,(2) Hd—ﬂ{ X(z) }

1
Y(z)=—=|G,(2),G,(z
(z) 2[ (2) <>]{H1(z) H (-2 | x(2)

In order to cancel the contribution of X(-z), for example:

[Gy(2),G\(2)]=[H,(~2), ~H\(~2)]
Es. QMF (Esteban Galant 1976)
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Orthogonal Filter Design in /2

In general 1n order to have Perfect Reconstruction
(also biorthogonal):

|H,(2)G,(2)]+|H,(2)G\(2)]=2

[Go (z)H, (_Z)]+ [Gl (2)H, (_Z)] =0
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Orthogonal Filter Design in /2

* Haar the simplest wavelet:

— orthogonal
— linear phase

— FIR

Pietro Polotti



Haar

Haar the simplest wavelet:

1 0<t<l

Scaling function o(t) = -
0 else

L

Help the construction of the wavelet since

w(t)=p2t)—p2t-1)

And satisfies a two-scale equation:
o(t) = p(2t) + (2t —1)

Pietro Polotti



Discrete Haar

forn=2k2k +1

otherwise
. Py(-n)
¢1('”)

o e [

D41 [n] =

@,(n)

N [ o [

¢1(")

forn =2k

forn=2k+1

otherwise
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Time vs. Frequency Representations

For the frequency representation the orthogonal set
elements are complex sinusoids with

e’ —L 3275(w - Q)

On a time-frequency plane we have:

, / -

t

¥
Pietro Polotti




Uncertainty Principle (Heisenberg, 1925)

Time and frequency are not independent variables

One cannot achieve infinite resolution simultaneously in time and frequency:

AtxAw 2 5

Where (second central moments):

+00 +00

[@=t)|f @) de [(@-0,y|F() do
(At) ==— (Aw) ==—
[|r@f [|F(@)f do
[drofa [o|F(@)] do  Center
t, == time w, = frequency
[1r@f ar [|F@) do

Note: Gaussian shaped signals have minimum uncertainty product Dictro Polot
1€tro rolotu



Time-Frequency Representations

By properly scaling, translating and modulating the sinc basis
one can construct an arbitrary tiling of the time-frequency plane

Uniform resolution

a) A

Non-uniform resolution

However, the sinc function has good frequency localization but
bad time localization (uncertainty product 1s infinite)
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Short-Time Fourier Transform

Uniform (Gabor’s) expansion is realized by means of the STFT

For discrete-time signals

272
_J_

F(n,m) = Z () wk —nM)e (analysis)
f(n)= ;N N Z F(r,m)w(n—rM) (synthesis)

with w(n) finite-length N window and w(n) satisfying

Z wn—rMwn—-rM)=1 VneZ

V' =—00

This is the overlap-add method for the product of the
windows w(n)w(n)




Computation of STFT

Computation may be performed by means of windowed FFTs
or by filter bank structure:

Analysis Synthesis
(k) g,(n) ~I T~ hy(n) e—> (k)
MM
L g, (1) I 'T’ h(n) |
M M
L 2,0 —I =f- hy(n) |
: M M
Ll g () B i
M M

The same filter bank structure 1s shared by other related
transforms (e.g., MDCT) Pietro Polotti



Dyadic Wavelets Time-Frequency
Tessellation

Time-frequency tessellation

=

12 3 4 5 6 71 8 9 10

Octave band frequency resolution

Frequency resolution is good at low frequencies and
poorer at high frequencies (constant Q)

Time resolution 1s good at high frequencies and poorer at

lower frequencies pictro Polotti



WT Computation

—fm{ ------------ "y

2

— g, (n) {—r |4 g, (n)
)

8
=
ARE
||
] v

==

ho(n) J --------- >
h, (n) o

ho (n) ]—‘ gj( n)
h, (n)

Pietro Polotti
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Discrete Cosine Transform (DCT)
PR uniform-band filter banks

DCT T type Vo
¥ Clk] = Z;) f[n]cos(%k(n %D
o] 2 z 1 ) )
fIn]= T NZ}C[k]cosiNk(nJr 2)) for n=0,..,N—1
DCT IV type N1
Clk] = Z,) f[n]cos(%(k +%)(n %D




Modified Discrete Cosine Transform (MDCT)

By means of DCT-I or DCT-IV one can build PR and
orthogonal uniform-band cosine modulated filter banks

MDCT from DCT IV type

h,[n] = W[n]\/% cos(%(k + %j(n + M; ID length 2M

example W{n]=sin—-/| n+—

Wi nl+Wn+M]=1 V4 ( 1]
where
{ WI2M —1—n]=W|[n] 2M 2

- Ck+Drm
2M

@, center frequencies of the filters




MR DSP
MDCT completeness and orthogonality
conditions

« Completeness

1&<T . 2+ 5 2q+1 0 5 _
Pr;o ;W(l rPW({'—rP) COS( 4P (27-rP P+1)7rjcos( 4P (2r—+P P+1)7zj O

* Orthogonality

' '
q.q9 " r,r

J Ry L 2q+1 0 2410 o _
PZW(I rPW(I rP)cos( P (2(1-rP) P+l)ﬂjcos[ P (21— P) P+1)7z] 0, .0

[=
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Compression Methods

Lossy compression:
1) MDCT subband decomposition

2) STFT 1n order to estimate the psychoacoustic model
parameters

3) Dynamic bit allocation according to the
psychoacustic param.
(signal-to-mask ratio SMR)

4) Quantization and entropy coding of subband
signals

5) Multiplex and frame packing

Pietro Polotti



MPEGI1-layer 3 (*.mp3)

MPEG (Motion Picture Experts Group): gruppo di scienziati che
studiano codifiche standard per la compressione video e audio

MPEGI (layer 1, 2, 3)

L’orecchio non ¢ in grado di percepire frequenze “deboli” adiacenti
a frequenze “fort1”, che mascherano le prime.

Le informazioni inerenti le frequenze piu deboli vengono eliminate
dall’MPEG durante la fase di compressione.

Pietro Polotti



1) Absolute Threshold

Non uniform hearing capabilities along the frequency range

120 1

100 1

80

&0 [

40 H

20H

1 1 1 1 1 1 1 1l
0 /8 T4 AT/E T2 STi8 in/4 TIi8 T

AbsTh(f)=364-(f/1000)*%-6.5. 60100337 L 103 (£/1000)" (dBSPL)
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2) Basilar Membrane and Critical Bands

The cochlear "continuos passband filters"
are of non-uniform bandwidth

BW.(f)=25+75[1+1.4(f/1000)*1*” (Hz)

Discrete version: Critical Bands — Bark subdivision of FD

B(f)=|13-arctan(0.00076- 1)+ 3.5-arctanﬂ75]:) oj H(Bark)
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Critical Band Subdivision
Representing the ear as a passband filter bank with non-uniform bandwidth
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Critical Band Partition
of a Trumpet Spectrum

Non uniform distribution of the partials in the Bark subdivision
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Critical Band Partition
of a Trumpet Spectrum: a Detail
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Masking

One sound 1s made 1naudible due to the “simultaneous”
presence of another sound

The presence of a strong noise or tone masker creates a
sufficient excitation of the basilar membrane at the critical
band location to block detection of a weaker signal

Noise Masking Tone
dB a l
SPL Noise masker
4 dB
. ° Masked tone
v
Critical

BW

dB 4

Tone Masking Noise

A

° Tone masker

SPL

24 dB

Masked noise

N v
Critical

BW
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3) Tone—Masking-Noise (TMN)

Signal-to-Mask Ratio (SMR) = 24 dB for TMN case
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Spread of Masking Threshold through CBs

Approximately ftriangular function

M(b)=15.81+7.5-(b+0.474)~17.5[1+ (b +0.474)° (dB)
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Real case: 1 TMN
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Real case: 2 TMN
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All Maskers
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Global Mask
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Global masking threshold = Just Noticeable Distortion (JND)
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Short-Time Thresholds Evaluation
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MPEGI]1 — layer 1

1) Subdivision of the frequency range by means of a 32-channel MDCT
(Subband coding)

2) An STFT 1s performed 1n parallel, providing a higher frequency resolution
for PSD estimation. Window length = 512. Hop size =384 (12*32, 1.e. every
12 samples bit allocation 1s updated).

3) Signal-to-Mask Ratio computation: For each subband, one considers the
maximum of the PSD coefficient max{X(k)} corresponding to that
subband. SMR’s are set according to this max and mask spreading
throughout the critical bands is considered.

4) Mask spreading: Only masking components that lie in the range —8 / +3
Bark are considered

5) Global masking threshold: sum of all contributing masking components.

6) Bit allocation 1s carried out in each of the 32 subbands using the SMR.
- Determine the number of bits for each individual subband so that
transparent perception is possible.
- This number (simplifying things) corresponds to the difference
between the max {X(k)} and the Total Mask Level.



MPEGI — layer 1

ISO-MPEG
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