Approximation Classes and Non-Approximability Results (1st part)

Summary

- Randomized algorithms
- Approximation classes
 - The NPO world
- Non-Approximability Results
 - Gap technique
 - Examples: MINIMUM GRAPH COLORING, MINIMUM TSP, MINIMUM BIN PACKING

- A randomized algorithm is an algorithm that during some of its steps perform random choices
 - Executing the algorithm several times with the same input it is possible to find different solutions.
- For many application, a randomized algorithm is either simpler or faster than a deterministic one.
 - For combinatorial problem, a randomized algorithm can be seen as a randomized approximation algorithm and the solution found as a random variable
 - The expected value of this random variable is an estimation of the behaviour of the algorithm

- A very simple randomized algorithm for MAX SAT

```
Input: A CNF boolean expression φ on a set V of variables
begin
    for each v∈ V do
        f(v) = TRUE with probability ½;
    end for
    return f;
end
```

- A very simple randomized algorithm for MAX SAT
 - $m_{RS}(x)$ = value of the solution found on input x (random variable).
 - Suppose all *c* clauses have at least *k* literals.
 - Theorem: $E[m_{RS}(x)] \ge (1-(1/2)^k) c$
 - The probability that any clause with *k* literals is not satisfied by the truth assignment found is 2^{-k}
 - The expected contribution of a clause with at least *k* literals to $m_{RS}(x)$ is at least 1-2^{-k}
 - By summing over all clauses, we obtain the inequality

- A very simple randomized algorithm for MAX SAT
 - The optimal value $m^*(x) \le c$
 - The expected performance ratio is

 $m^*(x)/\mathrm{E}[m_{RS}(x)] \le 2$

Approaches to the approximation

- There are several approaches
 - Performance guarantee -
 - For all instances the performance ratio is bounded (possibly by a constant)
 - We are interested to determine the algorithm with the minimum performance ratio
 - Be careful to take the worst case analysis as sole reference
 - Randomized algorithm
 - Probabilistic analysis
 - The behaviour of an algorithm is analysed with respect to the "average input" of the problem
 - Heuristics

Approximation classes

- Class APX
 - NPO problems that admit a polynomial-time *r*-approximation algorithm, for given constant $r \ge 1$
 - $P \in APX$ is said to be *r*-approximable
 - Examples:
 - MIN BIN PACKING, (sequential 2-approximation a.)
 - MAX SAT, (greedy 2-approximation a.)
 - MAX CUT, (local search 2-approximation a.)
 - MINI VERTEX COVER, (sequential 2-approximation a.)

Approximation classes

- Class PTAS
 - NPO problems that admit a polynomial-time *r*-approximation algorithm, for any r > 1
 - Time must be polynomial in the length of the instance but not necessarily in 1/(r-1)
 - Time complexity $O(n^{1/(r-1)})$ or $O(2^{1/(r-1)}n^3)$
 - $P \in PTAS$ is said to admit a polynomial-time approximation scheme
 - Example:
 - MINIMUM PARTITION (dynamic r-approximation algorithm)

The NPO world

The Gap Technique

- P₁: NPO minimization problem (same for maximization)
- P₂: NP-hard decision problem (NP-complete problem)
- Function *f* that maps instances x of P_2 into instances f(x) of P_1
- Function *c* that maps instances x of P_2 into N^+
- And a constant *gap* g>0 such that:
 - If x is a YES-instance, then $m^*(f(x))=c(x)$
 - If x is a NO-instance, then $m^*(f(x)) \ge c(x)(1+g)$

The Gap Technique

- **Theorem:** No polynomial-time *r*-approximation algorithm for P_1 with r < (1+g) can exist, unless P=NP. **Proof:**
- **A**: *r*-approximation algorithm with r < (1+g)
- If x is a YES-instance, then $m^*(f(x))=c(x)$.
 - Hence, $m(f(x), A(f(x))) \le rm^*(f(x)) = rc(x) \le c(x)(1+g)$
- If x is a NO-instance, then $m^*(f(x)) \ge c(x)(1+g)$. Hence, $m(f(x), \mathbf{A}(f(x))) \ge c(x)(1+g)$
- **A** allows to decide P_2 in polynomial time

Non-Approximability Results

- Inapproximability of graph coloring
- 3-COLORING is NP-complete
 - Any planar graph is 4-colorable
- f(G)=G where G is a planar graph
 - If G is 3-colorable, then $m^*(f(G))=3$
 - If *G* is not 3-colorable, then $m^*(f(G)) = 4 = 3(1+1/3)$
 - Gap: g=1/3

Theorem: MINIMUM GRAPH COLORING has no polinomial time *r*-approximation algorithm with *r*<4/3 (unless P=NP)

Non-Approximability Results

- Inapproximability of bin packing
- NP-hard to decide whether a set of integers *I* can be partitioned into two equal sets
- f(I)=(I,B) where *B* is equal to half the total sum
 - If *I* is a YES-instance, then $m^*(f(I))=2$
 - If G is a NO-instance, then $m^*(f(G)) \ge 3=2(1+1/2)$
 - Gap: *g*=1/2

Theorem: MINIMUM BIN PACKING has no polynomial-time *r*-approximation algorithm with *r*<3/2 (unless P=NP)

MINIMUM TSP

- INSTANCE: Complete graph G=(V,E), weight function on *E*

- SOLUTION: A tour of all vertices, that is, a permutation π of *V*

- MEASURE: Cost of the tour, i.e., $\sum_{1 \le k \le |V|-1} w(v_{\pi[k]}, v_{\pi[k+1]}) + w(v_{\pi[|V|]}, v_{\pi[1]})$

Non-Approximability Results

- Inapproximability of TSP
- NP-hard to decide whether a graph contains an Hamiltonian circuit
- For any g > 0, $f(G = (V, E)) = (G' = (V, V^2), w)$ where w(u, v) = 1 if (u, v) is in *E*, otherwise w(u, v) = 1 + |V|g
 - If G has an Hamiltonian circuit, then $m^*(f(G)) = |V|$
 - If G has no Hamiltonian circuit, then

 $m^*(f(G)) \ge |V| - 1 + 1 + |V|g = |V|(1 + g)$

- Gap: any *g*>0

Theorem: MINIMUM TSP has no polynomial-time *r*-approximation algorithm with r>1 (unless P=NP)

The NPO world (unless P=NP)

NPO	MIN TSP MIN GRAPH COLORING (了?) (Certainly not in PTAS)
APX	MIN BIN PACKING
	MAX SAT (,?)
	MIN VERTEX COVER $(\bigcirc ?)$
	MAX CUT(\bigcirc ?)
PTAS	MIN PARTITION
РО	MIN PATH