Non-Approximability Results (2nd part)

Summary

- The PCP theorem
 - Application: Non-approximability of MAXIMUM
 3-SAT

Non deterministic TM

- A TM where it is possible to associate more than one next configurations to the current one.
- Given an input, more than one computations are possible.
- A string is *accepted* if at least one such computation halts in accepting state
- A string is *rejected* if all computations halts in rejecting state

Oracle TM

- An oracle TM has
 - 1. an associated oracle languages A
 - 2. an oracle tape
 - 3. Three new states: q_0, q_Y, q_N
- Any time it enters in state q_Q , the next step it enters in state q_Y if the current string in the oracle tape is in A, q_N otherwise
- The query costs 1 step

Oracle TM

- Changing *A* may imply that also the language recognised changes
- For any complexity class C and any language A, let C⁴ be the set of languages recognised with complexity C by an oracle TM with oracle language A.
 - Turing reducibility is given in terms of oracle TM
 - A common representation: NP \subseteq P^{SAT}

Probabilistic TM

- An probabilistic TM has
 - 1. A read only tape: random tape
 - 2. A new states: q_r .
- Any time it enters in state q_r , the next step it enters in a state in according to the current symbol of random tape and advances the random tape head by one cell to the right.
- For any input, the computation depends on the random string initially contained in the random tape

Probabilistic TM

- A PTM is *r(n)-restricted* if, for any input *x* of length *n*, it enters at most *r(n)* times in state q_r.
- Class RP (Random polynomial) = { L | there exists a polynomial-time PTM such that for any input *x*,
 - If $x \in L$, then x is accepted with probability $\geq \frac{1}{2}$
 - If $x \notin L$, then x is rejected with probability 1
 - r(n) has to be polynomial in |x| at most.

Verifier

- A *verifier* is a polynomial-time oracle probabilistic TM which uses the oracle to access a proof on a random access basis: when the oracle is given a position (address), it returns the value of the corresponding bit
 - Given a proof π , the corresponding oracle language X_{π} is the set of addresses corresponding to 1-bits
- The computation consists of 2 phases:
 - 1. The verifier uses the random tape to determine which bits in the proof will be probed.
 - 2. The verifier deterministically reads these bits and, finally, accepts or rejects depending on their values.

Deterministically checkable proofs

Probabilistically checkable proofs

PCP[r,q]

- A decision problem P belongs to PCP[*r*,*q*] if it admits a polynomial-time verifier **A** such that:
 - For any input of length n, A uses r(n) random bits
 - For any input of length n, A queries q(n) bits of the proof
 - For any YES-instance *x*, there exists a proof such that **A** answers Yes with probability 1
 - For any NO-instance *x*, for any proof **A** answers Yes with probability less than $\frac{1}{2}$

(the probability is taken over all random binary strings of length r(|x|), uniformly chosen)

The PCP theorem

- Given a class F of functions, PCP(r, F) is the union of PCP[r,q], for all $q \in F$
- By definition, NP=PCP(0, **poly**) where **poly** is the set of polynomials

Theorem: NP=PCP(*O*(log),*O*(1))

- Proving that NP includes $PCP(O(\log), O(1))$ is easy
- Proving that NP is included in PCP(*O*(log), *O*(1)) is hard (complete proof is more than 50 pages, involving sophisticated techniques from the theory of error-correcting code and the algebra of polynomials in finite fields)

- Gap technique
 - Intuitive motivation: gap in acceptance probability corresponds to gap in measure
- Reduction *f* from SAT such that
 - If x is satisfiable, m*(f(x))=c(x) where c(x) is the number of clauses in f(x)
 - If x is not satisfiable, $m*(f(x)) \le c(x)/(1+g)$ with $g \ge 0$
 - Gap: g not explicitly computed
- **Theorem:** MAXIMUM SAT is not polynomial-time *r*-approximable for *r*<1+*g*

- The proof is shown for MAX 3-SAT problem
 - Let L the 3-SAT NP-complete problem
 - There exists a polynomial-time (r(n), q) verifier for L
 - $r(n) = O(\log n), n = \text{dimension of } \varphi$
 - q is constant. We assume q > 2
 - w.l.o.g., we assume that the verifier asks exactly q bits of the proof
 - Given x, we will construct in polynomial-time an instance C of MAX 3-SAT s.t. if x ∈ L, then C is satisfiable, otherwise there is a constant ε > 0 such that at least a fraction ε of clauses in C cannot be satisfied.

- Consider a possible proof string π
 - For each bit of π we introduce a boolean variable
 - We do not need to consider proofs longer than $q2^{r(n)}$
 - $r(n) \le c \log n$, for some constant c
 - The number of new boolean variables is bounded by $q n^c$
 - *v*-th variable stands for the statement "the *v*-th bit in π is 1"
- Consider a possible random string ρ
 - Let $v_{\rho[1]}, v_{\rho[2]}, v_{\rho[3]}, ..., v_{\rho[q]}$, be the *q* variables that correspond to the *q* bits that verifier will read given the random string ρ

- In general, for some q-tuples of values, the verifier will accept and, for some other tuples, it will reject.

- Let A_{ρ} be the set of q-tuples for which the verifier rejects. For each tuple $(a_1,...,a_q) \in A_{\rho}$, build a clause of q literals which is true iff the prof bits do no take the values $(a_1,...,a_q)$

 $(v_{\rho[1]} \lor v_{\rho[2]} \lor v_{\rho[3]}), (v_{\rho[1]} \lor \neg v_{\rho[2]} \lor \neg v_{\rho[3]}), (\neg v_{\rho[1]} \lor v_{\rho[2]} \lor v_{\rho[3]}), (\neg v_{\rho[1]} \lor \neg v_{\rho[2]} \lor \neg v_{\rho[3]})$

- Let C_R the set of this clauses. $|C_R| \le 2^q 2^{r(n)} \le 2^q n^c$
- If x is in L, there exists a proof π(x) such that the verifier will accept for all random strings ρ. If we set the variables as π(x) shows, then every clause in C_R will be satisfied
- If x is not in L, we know that regardless of the proof π , there will be at least $2^{r(n)}/2$ of the random string ρ for which the verifier will reject. Hence,

 $(2^{r(n)}/2)/(q-2)2^q 2^{r(n)} \le (2^{r(n)}/2)/2^q 2^{r(n)} = 2^{-(q+1)}$ clauses are unstatisfiable, the gap!

The NPO world if P≠NP

NPO	MINIMUM TSP
APX	MINIMUM BIN PACKING MAXIMUM SAT MINIMUM VERTEX COVER(
PTAS	MINIMUM PARTITION
РО	MINIMUM PATH

MINIMUM GRAPH COLORING? Certainly not in PTAS