Approximation Preserving Reductions

Summary

- Memo
- AP-reducibility
 - L-reduction technique
- Complete problems
- Examples: MAXIMUM CLIQUE, MAXIMUM INDEPENDENT SET, MAXIMUM 2-SAT, MAXIMUM NAE 3-SAT, MAXIMUM SAT(*B*)

Memo: Approximation classes inclusions

- It holds that

$PTAS _ APX _ log-APX _ poly-APX _ exp-APX _ NPO$ where

- log-APX={polynomial-time O(log n)-approximate problem}
- poly-APX={polynomial-time O(n^k)-approximate problem, for any k>0}
- exp-APX={polynomial-time O(2^{nk})-approximate problem, for any k>0}

Memo: Approximation classes inclusions

- Polynomial bound on m() implies that any NPO problem is h2^{nk}-approximable for some h and k...
 so every problem is in exp-APX?
- NO! There are problems for which it is even hard (NP-hard) to decide if any feasible solution exists.
 - Example: MIN {0,1}-linear programming
 - Given an integer matrix A and an integer vector b, deciding whether a binary vector x exists such that $Ax \ge b$ is NP-hard
- If P≠NP, then PTAS⊂APX⊂log-APX⊂poly-APX⊂exp-APX⊂NPO

Memo: Karp reducibility

- A decision problem P_1 is *Karp reducible* to a decision problem P_2 (in short, $P_1 \le P_2$) if there exists a polynomial-time computable function R such that, for any *x*, *x* is a YES-instance of P_1 if and only if R(x) is a YES-instance of P_2

- If $P_1 \le P_2$ and P_2 is in P, then P_1 is in P

A taxonomy

AP-reducibility (\leq_{AP})

- P_1 is AP-reducible to $P_2 (P_1 \leq_{AP} P_2)$ if two functions fand g and a constant $c \geq 1$ exist such that:
 - For any instance x of P_1 and for any r > 1, f(x, r) is an instance of P_2
 - For any instance x of P_1 , for any r > 1, and for any solution y of f(x,r), g(x,y,r) is a solution of x
 - For any fixed r>1, f and g are computable in polynomial time
 - For any instance x of P_1 , for any r > 1, and for any solution y of f(x,r), if $R_{P_2}(f(x,r), y) \le r$, then $R_{P_1}(x, g(x,y,r)) \le 1+c(r-1)$

Basic properties

- **Theorem:** If $P_1 \leq_{AP} P_2$ and $P_2 \in APX$, then $P_1 \in APX$
 - If **A** is an *r*-approximation algorithm for P_2 then $A_{P_1}(x) = g(x, A(f(x,r)), r)$

is a (1+c(r-1))-approximation algorithm for P_1

Basic properties

- **Theorem:** If $P_1 \leq_{AP} P_2$ and $P_2 \in PTAS$, then $P_1 \in PTAS$
 - If **A** is a polynomial-time approximation scheme for P₂ then $A_{P_1}(x, r) = g(x, \mathbf{A}(f(x, r'), r'), r')$

is a polynomial-time approximation scheme for P_1 , where r'=1+(r-1)/c

L-reducibility

- P_1 is L-reducible to P_2 ($P_1 \leq_L P_2$) if two functions *f* and *g* and two constants *a* and *b* exist such that:
 - For any instance x of P_1 , f(x) is an instance of P_2
 - For any instance x of P_1 , and for any solution y of f(x), g(x, y) is a solution of x
 - *f* and *g* are computable in polynomial time
 - For any instance x of P_1 , $m^*(f(x)) \le a m^*(x)$
 - For any instance x of P_1 and for any solution y of f(x), $|m^*(x) - m(x, g(x,y))| \le b |m^*(f(x)) - m(f(x), y)|$

Basic property of L-reductions

- **Theorem:** If $P_1 \leq_L P_2$ and $P_2 \in PTAS$, then $P_1 \in PTAS$
 - Relative error in P_1 is bounded by *a b* times the relative error in P_2

- However, in general, it is not true that if $P_1 \leq_L P_2$ and $P_2 \in APX$, then $P_1 \in APX \triangleleft NO!$
 - The problem is that the relation between *r* and *r*' may be non-invertible

Basic property of L-reductions

- Lemma: Let P_1 and P_2 be two NPO problems such that is $P_1 \leq_L P_2$.

If $P_1 \in APX$, then $P_1 \leq_{AP} P_2$

Inapproximability of independent set

- Theorem: MAX CLIQUE≤_{AP} MAX INDEPENDENT
 SET
 - $G=(V, E), G^{c}=(V, V^{2}-E)$ is the complement graph
 - $f(G) = G^{c}$
 - g(G, U) = U
 - *c*=1
 - Each clique in G is an independent set in G^c
- Corollary: MAX INDEPENDENT SET \notin APX

Complete problems

- AP-reduction is transitive
- AP-reduction induces a partial order among problems in the same approximation classes
- Given a class *C* of NPO problems, a problem *P* is *C*-hard (with respect to the AP-reduction) if, for any $P' \in C, P' \leq_{AP} P$. If $P \in C$, then *P* is *C*-complete (with respect to the AP-reduction).
 - For any class $C \not\subset APX$ ($\not\subset PTAS$), if *P* is *C*-complete, then $P \notin APX$ ($\notin PTAS$), unless P=NP

MAXIMUM WEIGHTED SAT

- INSTANCE: CNF Boolean formula φ with variables x_1, x_2, \dots, x_n , with non negative weights w_1, w_2, \dots, w_n
- SOLUTION: A satisfied truth-assignment f to φ
- MEASURE: max(1, $\Sigma w_i f(x_i)$), where $f(x_i)$ =true is calculated as $f(x_i)=1$ and $f(x_i)$ =false as $f(x_i)=0$

NPO-complete problems

- Finding a feasible solution is as hard as SAT
 - MAX WEIGHTED SAT ∉ exp-APX

PROGRAMMING

- MAX WEIGHTED SAT is NPO-complete
 - MAX WEIGHTED SAT \leq_{AP} MAX WEIGHTED 3-SAT
 - MAX WEIGHTED 3-SAT \leq_{AP} MIN WEIGHTED 3-SAT

- MIN {0,1}-LINEAR PROGRAMMING is NPO-complete

- MIN WEIGHTED 3-SAT \leq_{AP} MIN {0,1}-LINEAR

APX-complete problems

- The PCP theorem permits to show that MAX 3-SAT is complete for the class of maximization problems in APX
- For any minimization problem *P* in APX, a maximization problem *P'* in APX exists such that $P \leq_{AP} P'$
- MAX 3-SAT is APX-complete

Inapproximability of 2-satisfiability

- Theorem: MAX 3-SAT \leq_{L} MAX 2-SAT
 - *f* transforms each clause (*x* or *y* or *z*) into the following set of 10 clauses where *i* is a new variable:
 - (x), (y), (z), (i), (not x or not y), (not x or not z), (not y or not z), (x or not i), (y or not i), (z or not i)
 - g(C,t)=restriction of *t* to original variables
 - *a*=13, *b*=1
 - $m^{*}(f(x)) = 6|C| + m^{*}(x) \le 12m^{*}(x) + m^{*}(x) = 13m^{*}(x)$
 - $m^{*}(f(x)) m(f(x), t) \le m^{*}(x) m(x, g(C, t))$
- Corollary: MAX 2-SAT is APX-complete

MAXIMUM NOT-ALL-EQUAL SAT

- INSTANCE: CNF Boolean formula, that is, set *C* of clauses over set of variables *V*
- SOLUTION: A truth-assignment f to V
- MEASURE: Number of clauses that contain both a false and a true literal

Inapproximability of NAE 3-SAT

- Theorem: MAX 2-SAT \leq_{L} MAX NAE 3-SAT
 - *f* transforms each clause *x* **or** *y* into new clause *x* **or** *y* **or** *z* where *z* is a new global variable
 - g(C,t)=restriction of *t* to original variables
 - *a*=1, *b*=1
 - *z* may be assumed false
 - each new clause is not-all-equal satisfied iff the original clause is satisfied
- Corollary: MAX NAE 3-SAT is APX-complete

Other inapproximability results

- Theorem: MIN VERTEX COVER is APX-complete
 - Reduction from MAX 3-SAT(3)
- Theorem: MAX CUT is APX-complete
 - Reduction from MAX NAE 3-SAT
- **Theorem:** MIN GRAPH COLORING \notin APX
 - Reduction from variation of independent set

The NPO world if $P \neq NP$

