Approximation Preserving Reductions
Summary

- Memo
- AP-reducibility
 - L-reduction technique
- Complete problems
- Examples: MAXIMUM CLIQUE, MAXIMUM INDEPENDENT SET, MAXIMUM 2-SAT, MAXIMUM NAE 3-SAT, MAXIMUM SAT(B)
Memo: Approximation classes inclusions

- It holds that

\[\text{PTAS} \subseteq \text{APX} \subseteq \text{log-APX} \subseteq \text{poly-APX} \subseteq \text{exp-APX} \subseteq \text{NPO} \]

where

- \(\text{log-APX} = \{ \text{polynomial-time } O(\log n)\text{-approximate problem} \} \)
- \(\text{poly-APX} = \{ \text{polynomial-time } O(n^k)\text{-approximate problem, for any } k > 0 \} \)
- \(\text{exp-APX} = \{ \text{polynomial-time } O(2^{nk})\text{-approximate problem, for any } k > 0 \} \)
Memo: Approximation classes inclusions

- Polynomial bound on $m()$ implies that any NPO problem is $h2^{nk}$-approximable for some h and k... so every problem is in exp-APX?

- NO! There are problems for which it is even hard (NP-hard) to decide if any feasible solution exists.
 - Example: MIN $\{0,1\}$-linear programming
 - Given an integer matrix A and an integer vector b, deciding whether a binary vector x exists such that $Ax \geq b$ is NP-hard

- If $P \neq NP$, then $PTAS \subset APX \subset \log$-APX \subset poly-APX \subset exp-APX \subset NPO
Memo: Karp reducibility

- A decision problem P_1 is *Karp reducible* to a decision problem P_2 (in short, $P_1 \leq P_2$) if there exists a polynomial-time computable function R such that, for any x, x is a YES-instance of P_1 if and only if $R(x)$ is a YES-instance of P_2

- If $P_1 \leq P_2$ and P_2 is in P, then P_1 is in P
Reducibility and NPO problems

\[P_1 \quad \text{\textup{\textbackslash|}} \quad P_2 \]

\[x, r \quad \rightarrow \quad f(x), r' \]

\[r\text{-approximate solution of } x \quad \text{\textup{\textbackslash|}} \quad g(x, y) \quad \leftarrow \quad y \quad \text{\textup{\textbackslash|}} \quad r'\text{-approximate solution of } f(x) \]
A taxonomy

PTAS-reducibility → A-reducibility

P-reducibility → AP-reducibility

L-reducibility → E-reducibility → Continuous reducibility

Strict reducibility
AP-reducibility (\leq_{AP})

- P_1 is AP-reducible to P_2 ($P_1 \leq_{AP} P_2$) if two functions f and g and a constant $c \geq 1$ exist such that:
 - For any instance x of P_1 and for any $r > 1$, $f(x, r)$ is an instance of P_2
 - For any instance x of P_1, for any $r > 1$, and for any solution y of $f(x, r)$, $g(x, y, r)$ is a solution of x
 - For any fixed $r > 1$, f and g are computable in polynomial time
 - For any instance x of P_1, for any $r > 1$, and for any solution y of $f(x, r)$, if $R_{P_2}(f(x, r), y) \leq r$, then $R_{P_1}(x, g(x, y, r)) \leq 1 + c(r - 1)$
Basic properties

- **Theorem:** If $P_1 \leq_{AP} P_2$ and $P_2 \in \text{APX}$, then $P_1 \in \text{APX}$

- If A is an r-approximation algorithm for P_2 then
 \[A_{P_1}(x) = g(x, A(f(x,r)), r) \]

 is a $(1+c(r-1))$-approximation algorithm for P_1
Basic properties

- **Theorem:** If $P_1 \leq_{AP} P_2$ and $P_2 \in \text{PTAS}$, then $P_1 \in \text{PTAS}$

- If A is a polynomial-time approximation scheme for P_2 then

 $A_{P_1}(x, r) = g(x, A(f(x, r'), r'), r')$

is a polynomial-time approximation scheme for P_1, where

$r' = 1 + (r - 1)/c$
L-reducibility

- P_1 is L-reducible to P_2 ($P_1 \leq_L P_2$) if two functions f and g and two constants a and b exist such that:
 - For any instance x of P_1, $f(x)$ is an instance of P_2
 - For any instance x of P_1, and for any solution y of $f(x)$, $g(x, y)$ is a solution of x
 - f and g are computable in polynomial time
 - For any instance x of P_1, $m^*(f(x)) \leq a \cdot m^*(x)$
 - For any instance x of P_1 and for any solution y of $f(x)$, $|m^*(x) - m(x, g(x, y))| \leq b \cdot |m^*(f(x)) - m(f(x), y)|$
Basic property of L-reductions

- **Theorem:** If $P_1 \leq_L P_2$ and $P_2 \in \text{PTAS}$, then $P_1 \in \text{PTAS}$
 - Relative error in P_1 is bounded by $a \ b$ times the relative error in P_2

- However, in general, it is not true that
 if $P_1 \leq_L P_2$ and $P_2 \in \text{APX}$, then $P_1 \in \text{APX}$\hspace{1cm} \text{NO!}
 - The problem is that the relation between r and r' may be non-invertible
Basic property of L-reductions

- **Lemma:** Let P_1 and P_2 be two NPO problems such that $P_1 \leq_L P_2$.

 If $P_1 \in \text{APX}$, then $P_1 \leq_{AP} P_2$
Inapproximability of independent set

- **Theorem:** \(\text{MAX CLIQUE} \leq_{AP} \text{MAX INDEPENDENT SET} \)

 - \(G=(V, E), G^c=(V,V^2-E) \) is the complement graph
 - \(f(G) = G^c \)
 - \(g(G, U)=U \)
 - \(c=1 \)
 - Each clique in \(G \) is an independent set in \(G^c \)

- **Corollary:** \(\text{MAX INDEPENDENT SET} \notin \text{APX} \)
Complete problems

- AP-reduction is transitive

- AP-reduction induces a partial order among problems in the same approximation classes

- Given a class C of NPO problems, a problem P is C-hard (with respect to the AP-reduction) if, for any $P' \in C$, $P' \leq_{AP} P$. If $P \in C$, then P is C-complete (with respect to the AP-reduction).

- For any class $C \not\subset APX$ ($\not\subset PTAS$), if P is C-complete, then $P \not\in APX$ ($\not\in PTAS$), unless $P=NP$
MAXIMUM WEIGHTED SAT

- **INSTANCE:** CNF Boolean formula \(\varphi \) with variables \(x_1, x_2, \ldots, x_n \), with non-negative weights \(w_1, w_2, \ldots, w_n \)

- **SOLUTION:** A satisfied truth-assignment \(f \) to \(\varphi \)

- **MEASURE:** \(\max(1, \sum w_i f(x_i)) \), where \(f(x_i) = \text{true} \) is calculated as \(f(x_i) = 1 \) and \(f(x_i) = \text{false} \) as \(f(x_i) = 0 \)
NPO-complete problems

- Finding a feasible solution is as hard as SAT
 - MAX WEIGHTED SAT ∉ exp-APX
- MAX WEIGHTED SAT is NPO-complete
 - MAX WEIGHTED SAT ≤_AP MAX WEIGHTED 3-SAT
 - MAX WEIGHTED 3-SAT ≤_AP MIN WEIGHTED 3-SAT
 - MIN WEIGHTED 3-SAT ≤_AP MIN {0,1}-LINEAR PROGRAMMING
- MIN {0,1}-LINEAR PROGRAMMING is NPO-complete
APX-complete problems

- The PCP theorem permits to show that MAX 3-SAT is complete for the class of maximization problems in APX

- For any minimization problem P in APX, a maximization problem P' in APX exists such that $P \leq_{AP} P'$

- MAX 3-SAT is APX-complete
Inapproximability of 2-satisfiability

- **Theorem:** \(\text{MAX 3-SAT} \leq_L \text{MAX 2-SAT} \)

 - \(f \) transforms each clause \((x \text{ or } y \text{ or } z)\) into the following set of 10 clauses where \(i \) is a new variable:
 - \((x), (y), (z), (i), (\text{not } x \text{ or } \text{not } y), (\text{not } x \text{ or } \text{not } z), (\text{not } y \text{ or } \text{not } z), (x \text{ or } \text{not } i), (y \text{ or } \text{not } i), (z \text{ or } \text{not } i)\)

 - \(g(C,t) = \text{restriction of } t \) to original variables

 - \(a=13, \ b=1 \)

 - \(m^*(f(x))=6|C|+m^*(x) \leq 12m^*(x)+m^*(x)=13m^*(x) \)
 - \(m^*(f(x))-m(f(x),t) \leq m^*(x)-m(x,g(C,t)) \)

- **Corollary:** \(\text{MAX 2-SAT} \) is APX-complete
MAXIMUM NOT-ALL-EQUAL SAT

- INSTANCE: CNF Boolean formula, that is, set C of clauses over set of variables V

- SOLUTION: A truth-assignment f to V

- MEASURE: Number of clauses that contain both a false and a true literal
Inapproximability of NAE 3-SAT

- **Theorem:** MAX 2-SAT \leq_L MAX NAE 3-SAT
 - f transforms each clause $x \text{ or } y$ into new clause $x \text{ or } y \text{ or } z$ where z is a new global variable
 - $g(C,t)=$restriction of t to original variables
 - $a=1$, $b=1$
 - z may be assumed false
 - each new clause is not-all-equal satisfied iff the original clause is satisfied

- **Corollary:** MAX NAE 3-SAT is APX-complete
Other inapproximability results

- **Theorem:** MIN VERTEX COVER is APX-complete
 - Reduction from MAX 3-SAT(3)

- **Theorem:** MAX CUT is APX-complete
 - Reduction from MAX NAE 3-SAT

- **Theorem:** MIN GRAPH COLORING \notin APX
 - Reduction from variation of independent set
The NPO world if $P \neq NP$

<table>
<thead>
<tr>
<th>NPO</th>
<th>MINIMUM TSP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MAXIMUM INDEPENDENT SET</td>
</tr>
<tr>
<td></td>
<td>MAXIMUM CLIQUE</td>
</tr>
<tr>
<td></td>
<td>MINIMUM GRAPH COLORING</td>
</tr>
<tr>
<td>APX</td>
<td>MINIMUM BIN PACKING</td>
</tr>
<tr>
<td></td>
<td>MAXIMUM SATISFIABILITY</td>
</tr>
<tr>
<td></td>
<td>MINIMUM VERTEX COVER</td>
</tr>
<tr>
<td></td>
<td>MAXIMUM CUT</td>
</tr>
<tr>
<td>PTAS</td>
<td>MINIMUM PARTITION</td>
</tr>
<tr>
<td>PO</td>
<td>MINIMUM PATH</td>
</tr>
</tbody>
</table>