Design Techniques for Approximation Algorithms and Approximation Classes

Summary

- Local search technique
- Linear programming based algorithms
 - Relaxation and rounding
 - Primal-dual

- Local search technique consists in the improvement of a initial solution (found using some other algorithm) by moving to a better "neighbour" solution.
- It's suitable for problem where an initial feasible solution can be determined in efficient way and where the neighbourhood structure of a feasible solution is known.

- Local search scheme

Input: Instance *x*;

begin

y = initial feasible solution;

while there exists a neighbour solution z of y better than y do

$$y=z;$$

end

Output: Locally optimal solution *z*

- For problem NP-hard, we do not expect to find neighbourhood structure that allow us to find an optimal solution in polynomial time (unless P=NP)

- The most famous local search algorithm is the Simplex Method of Dantzig (1947) for LINEAR PROGRAMMING problem.
- Other example of local search algorithm is the Augmenting Path algorithm (and its variants) for MAX FLOW problem.

MAXIMUM CUT

- INSTANCE: Graph G=(V,E)
- SOLUTION: Partition of V into disjoint sets V_1 and V_2

- MEASURE: Cardinality of the cut, i.e., the number of edges with one endpoint in V_1 and one endpoint in V_2

- Initial solution: $V_1 = \emptyset, V_2 = V$
- Neighbourhood structure N of (V_1, V_2) consists of ALL partition (V_{1k}, V_{2k}) for k=1,...,|V| s.t.:

- If
$$v_k \in V_1$$
 then $V_{1k} = V_1 - \{v_k\}$ and $V_{2k} = V_2 \cup \{v_k\}$

- If
$$v_k \notin V_1$$
 then $V_{1k} = V_1 \cup \{v_k\}$ and $V_{2k} = V_2 - \{v_k\}$

- Polynomial-time 2-approximation algorithm for MAXIMUM CUT

begin

```
V_1:=\phi;
```

repeat

if exchanging one node between V_1 and $V_2 = V - V_1$ improves the cut then perform the exchange; until a local optimum is reached; return f

end.

- Proof

- We prove that any local optimum contains at least half of the *m* edges
- Notation:
 - c = # of edges of the cut
 - i = # of edges inside V_1
 - o = # of edges outside V_1
 - m=c+i+o, that is, i+o=m-c
- For any node *v*,
 - i(v) = # of edges between v and a node in V_1
 - o(v) = # of edges between v and a node not in V_1

- Proof (continued)
 - V_1 is a local optimum: for any $v \in V_1$, i(v)- $o(v) \le 0$ and, for any v not in V_1 , o(v)- $i(v) \le 0$
 - Summing over all nodes in V_1 , we have

2*i*-*c* ≤ 0

- Summing over all nodes not in V_1 , we have

 $2o-c \leq 0$

- That is, $i+o-c \leq 0$
- That is, $m-2c \leq 0$
- That is, $c \ge m/2$

Linear programming based algorithms

- A linear program can be solved in polynomial time
- We do not expect that NP-hard problem can be formulated as a linear programming problem with polynomial number of constrains

but

- some NP-hard problems can be formulated as
 - INTEGER LINEAR PROGRAMMING problems or
 - LINEAR PRGRAMMING problems with exponential number of constrains

Linear programming based algorithms

- INTEGER LINEAR PROGRAMMING problems
 - can be solved in approximate way rounding the solution of a linear program
- LINEAR PRGRAMMING problems with exponential number of constrains
 - Can be solved in approximate way by primal-dual algorithms

- Polynomial-time 2-approximation algorithm for weighted version of MINIMUM VERTEX COVER
 - formulate the problem as linear integer programming
 - solve the relaxation
 - select nodes that have been chosen *enough*

- IPL formulation

$$\min \sum_{v_i \in V} w_i x_i$$
$$x_i + x_j \ge 1 \quad \forall (v_i, v_j) \in E$$
$$x_i \in \{0, 1\} \quad \forall v_i \in V$$

- LP relaxation and rounding

$$\min \sum_{v_i \in V} w_i x_i$$
$$x_i + x_j \ge 1 \quad \forall (v_i, v_j) \in E$$
$$0 \le x_i \le 1 \quad \forall v_i \in V$$

- Final solution: $U = \{i : x_i \ge 0.5\}$

- Proof
 - The solution is feasible
 - Otherwise, one edge (i,j) is not filled (that is, $x(i)+x(j) \le 1$)
 - The solution has measure at most twice the optimum of LP relaxation
 - $m^*_{LP}(G) \le m^*_{IPL}(G)$
 - $w(U) \le 2 m^*_{LP}(G) \le 2 m^*_{IPL}(G)$
 - The set of feasible solutions is larger

- Classical approach for solving exactly combinatorial optimization problems
 - Weighted combinatorial problems are reduced to purely combinatorial, unweighted problems
- Examples: Dijkstra (shortest path), Ford and Fulkerson (maximum flow), Edmonds (maximum matching)
- Polynomial-time 2-approximation algorithm for weighted version of MINIMUM VERTEX COVER

- LP formulation

subject to $x(i)+x(j) \ge 1$ $(i,j) \in E$ $0 \le x(i) \le 1$ $i \in V$

- Dual problem

maximize
$$\sum_{e \in E} y(e)$$

subject to
$$\sum_{j \in N(i)} y(i, j) \le w(i)$$
 $i \in V$

 $y(e) \ge 0 \qquad e \in E$

where N(i) denotes the neighborhood of i

- 2-approximation algorithm
 - Simultaneously maintains a (possibly unfeasible) integer solution of LP formulation and a (not necessarily optimal) feasible solution of dual problem
 - At each step integer solution becomes *more* feasible and dual solution has better measure
 - Ends when integer solution becomes feasible

```
begin

y=0; U=\emptyset;

while a not covered edge (i,j) exists

increase y(i,j) until either i or j is filled

if i (resp. j) is filled then put i (resp. j) in U

end.
```

- Proof
 - Feasibility: trivial
 - Performance ratio:
 - For any $i \in U$, the *i*th constraint is tight.
 - Sum *C* of the weights of the nodes in *U* is equal to the sum *P* of the profit of the incident edges
 - *P* is at most twice the sum of the profit of all edges which is at most equal to the maximum profit
 - By duality, maximum profit is equal to minimum weight
- Time complexity:
 - At most *n* iterations, where *n* is the number of nodes

- It is an algorithm technique that can make possible to reduce the size of the search space
- It can be applied to all combinatorial problems where optimal solution can be derived by composing optimal solutions of a limited set of subproblems (not always disjoints)

- For efficiency reasons, it is implemented in a bottomup way
 - Subproblems are defined with just a few indices (usually 2,3)
 - Subsolutions are optimally extended by means of iterations over this indices
 - Subolutions are stored in a matrix

MINIMUM PARTITION

- INSTANCE: Finite set X of items, for each $x_i \in X$ a positive integer weight a_i

- SOLUTION: A partition of X into 2 disjoint sets Y_1, Y_2

- MEASURE: Maximum between the sum of the weights of elements in V_1 and the sum of the weights of elements in V_2

- Pseudo-polynomial time algorithm for MINIMUM PARTITION:
 - *T*: *n* x *b*-matrix (*b*=sum of the weights of all *n* elements)
 - T(i,j)=TRUE if a subset of $\{a_1,...,a_i\}$ exists whose sum is j
 - Construction of T: T(i+1,j)=T(i,j) or $T(i,j-a_i+1)$
 - Final answer to the evaluation problem:
 - select true element of *n*th row of *T* that minimizes max(j,b-j)
- Complexity: $O(nb)=O(n^2a_{max})$, where a_{max} is the maximum weight
 - Can be modified to obtain a feasible solution

- The approximation algorithm
 - Ignore the last *t* digits of the numbers
 - Apply the pseudo-polynomial time algorithm
 - Return the corresponding solution in the original instance

- Performance ratio:
 - $m(x, y^*(x')) m^*(x) \le 10^t n$ where $y^*(x')$ denotes an optimal solution for scaled instance x'
 - Performance ratio is at most $1+10^t n/m^*(x)$
 - $a_{max} \le m^*(x) \le n a_{max} (a_{max} = max value of items)$
 - $m^{*}(x) \le a_{max}/(a_{max} n \ 10^{t}) \ m(x, \ y^{*}(x'))$
 - For any *r*, if we choose $t = \log_{10}(a_{\max}(r-1)/r n)$, then the performance ratio is at most *r*
- Time complexity:
 - $O(n^2 a'_{\text{max}}) = O(rn^3/(r-1))$