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Approximation Algorithms
and Approximation Classes



Summary
- Local search technique
- Linear programming based algorithms

- Relaxation and rounding
- Primal-dual



Local search technique
- Local search technique consists in the improvement of 

a initial solution (found using some other algorithm) by 
moving to a better “neighbour” solution.

- It's suitable for problem where an initial feasible 
solution can be determined in efficient way and where 
the neighbourhood structure of a feasible solution is 
known.



Local search technique
- Local search scheme

Input: Instance x;
begin

y = initial feasible solution;
while there exists a neighbour solution z of y better than y do

y = z;
end
Output: Locally optimal solution z

- For problem NP-hard, we do not expect to find 
neighbourhood structure that allow us to find an optimal 
solution in polynomial time (unless P=NP)



Local search technique
- The most famous local search algorithm is the Simplex 

Method of Dantzig (1947) for LINEAR 
PROGRAMMING problem.

- Other example of local search algorithm is the 
Augmenting Path algorithm (and its variants) for MAX 
FLOW problem.



MAXIMUM CUT
- INSTANCE: Graph G=(V,E)

- SOLUTION: Partition of V into disjoint sets V1 and V2

- MEASURE: Cardinality of the cut, i.e., the number of 
edges with one endpoint in V1 and one endpoint in V2



Local search technique
- Initial solution: V1= ø, V2=V

- Neighbourhood structure N of (V1, V2) consists of ALL 
partition (V1k, V2k) for k=1,...,|V| s.t.:

- If vk∈V1 then V1k=V1-{vk} and V2k=V2∪ٛ{vk} 

- If vk∉V1 then V1k=V1∪{vk} and V2k=V2−ٛ{vk} 



Local search technique
- Polynomial-time 2-approximation algorithm for 

MAXIMUM CUT

begin
V1:=ø;

    repeat
if exchanging one node between V1 and V2 =V- V1 improves the cut then
perform the exchange;
until a local optimum is reached;
return f

end.



Local search technique
- Proof

- We prove that any local optimum contains at least half of 
the m edges

- Notation:
- c= # of edges of the cut
- i= # of edges inside V1

- o= # of edges outside V1

- m=c+i+o, that is, i+o=m-c
- For any node v, 

- i(v)= # of edges between v and a node in V1

- o(v)= # of edges between v and a node not in V1



Local search technique
- Proof (continued)

- V1 is a local optimum: for any v ∈ V1, i(v)-o(v) ≤ 0 and,for 
any v not in V1,o(v)-i(v) ≤ 0

- Summing over all nodes in V1, we have  
2i-c ≤ 0

- Summing over all nodes not in V1, we have  
2o-c ≤ 0

- That is, i+o-c ≤ 0
- That is, m-2c ≤ 0
- That is, c ≥ m/2



Linear programming based algorithms
- A linear program can be solved in polynomial time
- We do not expect that NP-hard problem can be 

formulated  as a linear programming problem with 
polynomial number of constrains

but
- some NP-hard problems can be formulated as

- INTEGER LINEAR PROGRAMMING problems or
- LINEAR PRGRAMMING problems with exponential 

number of constrains



Linear programming based algorithms
- INTEGER LINEAR PROGRAMMING problems

- can be solved in approximate way rounding the solution of a 
linear program

- LINEAR PRGRAMMING problems with exponential 
number of constrains
- Can be solved in approximate way by primal-dual 

algorithms



Relaxation and rounding technique
- Polynomial-time 2-approximation algorithm for 

weighted version of MINIMUM VERTEX COVER
- formulate the problem as linear integer programming
- solve the relaxation
- select nodes that have been chosen enough



Relaxation and rounding technique

- IPL formulation

min∑
v i∈V

wi xi

xix j1 ∀v i , v j∈E
xi∈{0,1} ∀ v i∈V



- LP relaxation and rounding

- Final solution: U = {i : xi ≥ 0.5}

Relaxation and rounding technique

min∑
vi∈V

w i xi

xix j1 ∀vi , v j∈E
0xi1 ∀ v i∈V



Relaxation and rounding technique
- Proof

- The solution is feasible
- Otherwise, one edge (i,j) is not filled (that is, x(i)+x(j)<1)

- The solution has measure at most twice the optimum of LP 
relaxation

- m*LP(G) ≤ m*IPL(G)

- w(U) ≤ 2 m*LP(G) ≤ 2 m*IPL(G)

- The set of feasible solutions is larger



Primal-dual technique
- Classical approach for solving exactly combinatorial 

optimization problems
- Weighted combinatorial problems are reduced to purely 

combinatorial, unweighted problems
- Examples: Dijkstra (shortest path), Ford and 

Fulkerson (maximum flow), Edmonds (maximum 
matching)

- Polynomial-time 2-approximation algorithm for 
weighted version of MINIMUM VERTEX COVER



Primal-dual technique

      minimize w(i)x(i)
i∈V
∑

subject to x(i)+x( j)≥1    (i, j)∈E

                0≤x(i)≤1       i∈V

- LP formulation



Primal-dual technique
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where N(i) denotes the neighborhood of i

- Dual problem



begin
y=0; U=Ø;
while a not covered edge (i,j) exists

increase y(i,j) until either i or j is filled
if i (resp. j) is filled then put i (resp. j) in U 

end.

Primal-dual technique
- 2-approximation algorithm

- Simultaneously maintains a (possibly unfeasible) integer 
solution of LP formulation and a (not necessarily optimal) 
feasible solution of dual problem

- At each step integer solution becomes more feasible and dual 
solution has better measure

- Ends when integer solution becomes feasible



Primal-dual technique
- Proof

- Feasibility: trivial
- Performance ratio:

- For any i ∈ U, the ith constraint is tight.
- Sum C of the weights of the nodes in U is equal to the sum P of 

the profit of the incident edges
- P is at most twice the sum of the profit of all edges which is at 

most equal to the maximum profit
- By duality, maximum profit is equal to minimum weight

- Time complexity:
- At most n iterations, where n is the number of nodes



Dynamic programming technique
- It is an algorithm technique that can make possible to 

reduce the size of the search space
- It can be applied to all combinatorial problems where 

optimal solution can be derived by composing optimal 
solutions of a limited set of subproblems (not always 
disjoints)



Dynamic programming technique
- For efficiency reasons, it is implemented in a bottom-

up way
- Subproblems are defined with just a few indices (usually 

2,3) 
- Subsolutions are optimally extended by means of iterations 

over this indices
- Subolutions are stored in a matrix



MINIMUM PARTITION
- INSTANCE: Finite set X of items, for each xi ∈ X  a 

positive integer weight  ai

- SOLUTION: A partition of X into 2 disjoint sets Y1,Y2

- MEASURE: Maximum between the sum of the 
weights of elements in V1 and the sum of the weights 
of elements in V2



Dynamic programming technique
- Pseudo-polynomial time algorithm for MINIMUM 

PARTITION:
- T: n x b-matrix (b=sum of the weights of all n elements)
- T(i,j)=TRUE if a subset of {a1,...,ai} exists whose sum is j

- Construction of T: T(i+1,j)=T(i,j) or T(i,j-ai+1)
- Final answer to the evaluation problem:

- select true element of nth row of T that minimizes max(j,b-j)

- Complexity: O(nb)=O(n2amax), where amax is the 
maximum weight
- Can be modified to obtain a feasible solution



Dynamic programming technique
- The approximation algorithm

- Ignore the last t digits of the numbers
- Apply the pseudo-polynomial time algorithm
- Return the corresponding solution in the original instance



Dynamic programming technique
- Performance ratio: 

- m(x, y*(x’))-m*(x) ≤ 10tn 
where y*(x’) denotes an optimal solution for scaled instance x’

- Performance ratio is at most 1+10tn/m*(x)
- amax ≤ m*(x) ≤ n amax (amax = max value of items)

- m*(x) ≤ amax /(amax -n 10t) m(x, y*(x’))

- For any r, if we choose t=log10(amax(r-1) /r n), then the 
performance ratio is at most r

- Time complexity:
- O(n2a’max) = O(rn3/(r-1))


