Design Techniques for
Approximation Algorithms
and Approximation Classes

Summary

- Local search technique
- Linear programming based algorithms

- Relaxation and rounding

- Primal-dual

Local search technique

- Local search technique consists in the improvement of
a 1nitial solution (found using some other algorithm) by
moving to a better “neighbour” solution.

- It's suitable for problem where an 1nitial feasible
solution can be determined 1n efficient way and where
the neighbourhood structure of a feasible solution 1s
known.

Local search technique

- Local search scheme

Input: Instance x;

begin
y = 1nitial feasible solution;
while there exists a neighbour solution z of y better than y do
Yy =2z
end

Output: Locally optimal solution z

- For problem NP-hard, we do not expect to find
neighbourhood structure that allow us to find an optimal
solution 1n polynomial time (unless P=NP)

Local search technique

- The most famous local search algorithm 1s the Simplex
Method of Dantzig (1947) for LINEAR

PROGRAMMING problem.

- Other example of local search algorithm 1s the
Augmenting Path algorithm (and its variants) for MAX
FLOW problem.

Local search technique
- Imtial solution: V =g, V_ =V

- Neighbourhood structure N of (V,, V) consists of ALL
partition (V, , V_) for k=1,...,|V| s.t..

- Iftv IV then V., =V -{v fand V_ =V LI{v |
- Ifv IV then V, =V [{v tand V=V —{v }

Local search technique

- Polynomial-time 2-approximation algorithm for
MAXIMUM CUT

begin

end.

V=g

repeat

If exchanging one node between V, and V, =V- V, improves the cut then
perform the exchange;

until alocal optimum is reached;
return f

Local search technique
- Proof

- We prove that any local optimum contains at least half of
the m edges

- Notation:
- ¢=# of edges of the cut
- i=# of edges inside V,
- o= # of edges outside V,
- m=c+ti+to, that 1s, ito=m-c
- For any node v,
- i(v)=# of edges between v and a node in V,

- o(v)= # of edges between v and a node not in V,

Local search technique

- Proof (continued)
- ¥V, 1s a local optimum: for any v U V', i(v)-o(v) < 0 and,for
any v not in V' ,o(v)-i(v) <0
- Summing over all nodes in V|, we have
2i-c<0
- Summing over all nodes not in V', we have
20-c<0
- That 1s, ito-c <0

- That 1s, m-2¢ <0

- That 1s, c =2 m/2

Linear programming based algorithms

- A linear program can be solved in polynomial time

- We do not expect that NP-hard problem can be
formulated as a linear programming problem with
polynomial number of constrains

but

- some NP-hard problems can be formulated as
- INTEGER LINEAR PROGRAMMING problems or

- LINEAR PRGRAMMING problems with exponential
number of constrains

Linear programming based algorithms
- INTEGER LINEAR PROGRAMMING problems

- can be solved 1n approximate way rounding the solution of a
linear program

- LINEAR PRGRAMMING problems with exponential
number of constrains

- Can be solved 1n approximate way by primal-dual
algorithms

Relaxation and rounding technique

- Polynomial-time 2-approximation algorithm for
weighted version of MINIMUM VERTEX COVER

- formulate the problem as linear integer programming
- solve the relaxation
- select nodes that have been chosen enough

Relaxation and rounding technique

- IPL formulation

min Z WX,

xtx >l V(v,v)EE
x€0,1] Vver

Relaxation and rounding technique

- LP relaxation and rounding

min Z WX,

vEV
xtx >l Vv,v|EE
0<x <l Vvelr

- Final solution: U= {i : x.2 0.5}

Relaxation and rounding technique
- Proof

- The solution 1s feasible
- Otherwise, one edge (i) 1s not filled (that 1s, x(i)+x(j)<1)

- The solution has measure at most twice the optimum of LP
relaxation

- m*LP(G) = m*IPL(G)
- w(U) <2m* (G)<2m*_ (G)

- The set of feasible solutions is larger

Primal-dual technique

- Classical approach for solving exactly combinatorial
optimization problems

- Weighted combinatorial problems are reduced to purely
combinatorial, unweighted problems

- Examples: Dijkstra (shortest path), Ford and
Fulkerson (maximum flow), Edmonds (maximum
matching)

- Polynomial-time 2-approximation algorithm for
weighted version of MINIMUM VERTEX COVER

Primal-dual technique

- LP formulation

minimize 5 w(i)x()

subject to x()+x(j)=1 (i,j)E

o<x()<l iDV

Primal-dual technique

- Dual problem

maximize egEy(e)

subject to E%y(i, DEWGE) iV
JUN()

y(e)=20 ellE

where N(i) denotes the neighborhood of i

Primal-dual technique

- 2-approximation algorithm

- Simultaneously maintains a (possibly unfeasible) integer
solution of LP formulation and a (not necessarily optimal)
feasible solution of dual problem

- At each step integer solution becomes more feasible and dual
solution has better measure

- Ends when integer solution becomes feasible

begin
y=0; U=0;
while a not covered edge (i,j) exists
increase y(i,j) until either i or j isfilled
ifi (resp.j) isfilled then puti (resp.j) inU
end.

Primal-dual technique
- Proof

- Feasibility: trivial
- Performance ratio:

- For any i [U, the ith constraint is tight.

- Sum C of the weights of the nodes 1n U 1s equal to the sum P of
the profit of the incident edges

- P 1s at most twice the sum of the profit of all edges which 1s at
most equal to the maximum profit

- By duality, maximum profit 1s equal to minimum weight
- Time complexity:

- At most # iterations, where #n 1s the number of nodes

Dynamic programming technique

- It 1s an algorithm technique that can make possible to
reduce the size of the search space

- It can be applied to all combinatorial problems where
optimal solution can be derived by composing optimal
solutions of a limited set of subproblems (not always
disjoints)

Dynamic programming technique

- For efficiency reasons, 1t 1s implemented in a bottom-
up way
- Subproblems are defined with just a few indices (usually
2,3)

- Subsolutions are optimally extended by means of iterations
over this indices

- Subolutions are stored in a matrix

MINIMUM PARTITION

- INSTANCE: Finite set X of items, for each x; LI X a
positive integer weight a,

- SOLUTION: A partition of X into 2 disjoint sets Y,,Y,

- MEASURE: Maximum between the sum of the
weights of elements in 7, and the sum of the weights

of elements 1n V,

Dynamic programming technique

- Pseudo-polynomial time algorithm for MINIMUM
PARTITION:

- T: n x b-matrix (b=sum of the weights of all n elements)
- 1(i,j))=TRUE i1f a subset of {a,,...,a;} exists whose sum 1s j
- Construction of 7: 7(i+1,/)=1(i,j) or 1(i,j-a+1)

- Final answer to the evaluation problem:
- select true element of nth row of 7' that minimizes max(j,b-j)

- Complexity: O(nb)=0(n*a
maximum weight

), where a__1s the

max

- Can be modified to obtain a feasible solution

Dynamic programming technique

- The approximation algorithm
- Ignore the last ¢ digits of the numbers
- Apply the pseudo-polynomial time algorithm

- Return the corresponding solution in the original instance

Dynamic programming technique

- Performance ratio:

- m(x, y*(x’))-m*(x) £ 10'n
where y*(x’) denotes an optimal solution for scaled instance x’
- Performance ratio 1s at most /+10'n/m *(x)

-a, <m*x)<na = max value of 1tems)

< max (Brma
- MHX) = a0 /(@1 1O) M, yH(X)

- For any r, if we choose =log,,(a . (r-1) /tr n), then the

max

performance ratio is at most »
- Time complexity:
- O(n*a’_.)= 0(rn’/(r-1))

max

