
Design Techniques for
Approximation Algorithms
and Approximation Classes

Summary
- Local search technique
- Linear programming based algorithms

- Relaxation and rounding
- Primal-dual

Local search technique
- Local search technique consists in the improvement of

a initial solution (found using some other algorithm) by
moving to a better “neighbour” solution.

- It's suitable for problem where an initial feasible
solution can be determined in efficient way and where
the neighbourhood structure of a feasible solution is
known.

Local search technique
- Local search scheme

Input: Instance x;
begin

y = initial feasible solution;
while there exists a neighbour solution z of y better than y do

y = z;
end
Output: Locally optimal solution z

- For problem NP-hard, we do not expect to find
neighbourhood structure that allow us to find an optimal
solution in polynomial time (unless P=NP)

Local search technique
- The most famous local search algorithm is the Simplex

Method of Dantzig (1947) for LINEAR
PROGRAMMING problem.

- Other example of local search algorithm is the
Augmenting Path algorithm (and its variants) for MAX
FLOW problem.

MAXIMUM CUT
- INSTANCE: Graph G=(V,E)

- SOLUTION: Partition of V into disjoint sets V1 and V2

- MEASURE: Cardinality of the cut, i.e., the number of
edges with one endpoint in V1 and one endpoint in V2

Local search technique
- Initial solution: V1= ø, V2=V

- Neighbourhood structure N of (V1, V2) consists of ALL
partition (V1k, V2k) for k=1,...,|V| s.t.:

- If vk∈V1 then V1k=V1-{vk} and V2k=V2∪ٛ{vk}

- If vk∉V1 then V1k=V1∪{vk} and V2k=V2−ٛ{vk}

Local search technique
- Polynomial-time 2-approximation algorithm for

MAXIMUM CUT

begin
V1:=ø;

 repeat
if exchanging one node between V1 and V2 =V- V1 improves the cut then
perform the exchange;
until a local optimum is reached;
return f

end.

Local search technique
- Proof

- We prove that any local optimum contains at least half of
the m edges

- Notation:
- c= # of edges of the cut
- i= # of edges inside V1

- o= # of edges outside V1

- m=c+i+o, that is, i+o=m-c
- For any node v,

- i(v)= # of edges between v and a node in V1

- o(v)= # of edges between v and a node not in V1

Local search technique
- Proof (continued)

- V1 is a local optimum: for any v ∈ V1, i(v)-o(v) ≤ 0 and,for
any v not in V1,o(v)-i(v) ≤ 0

- Summing over all nodes in V1, we have
2i-c ≤ 0

- Summing over all nodes not in V1, we have
2o-c ≤ 0

- That is, i+o-c ≤ 0
- That is, m-2c ≤ 0
- That is, c ≥ m/2

Linear programming based algorithms
- A linear program can be solved in polynomial time
- We do not expect that NP-hard problem can be

formulated as a linear programming problem with
polynomial number of constrains

but
- some NP-hard problems can be formulated as

- INTEGER LINEAR PROGRAMMING problems or
- LINEAR PRGRAMMING problems with exponential

number of constrains

Linear programming based algorithms
- INTEGER LINEAR PROGRAMMING problems

- can be solved in approximate way rounding the solution of a
linear program

- LINEAR PRGRAMMING problems with exponential
number of constrains
- Can be solved in approximate way by primal-dual

algorithms

Relaxation and rounding technique
- Polynomial-time 2-approximation algorithm for

weighted version of MINIMUM VERTEX COVER
- formulate the problem as linear integer programming
- solve the relaxation
- select nodes that have been chosen enough

Relaxation and rounding technique

- IPL formulation

min∑
v i∈V

wi xi

xix j1 ∀v i , v j∈E
xi∈{0,1} ∀ v i∈V

- LP relaxation and rounding

- Final solution: U = {i : xi ≥ 0.5}

Relaxation and rounding technique

min∑
vi∈V

w i xi

xix j1 ∀vi , v j∈E
0xi1 ∀ v i∈V

Relaxation and rounding technique
- Proof

- The solution is feasible
- Otherwise, one edge (i,j) is not filled (that is, x(i)+x(j)<1)

- The solution has measure at most twice the optimum of LP
relaxation

- m*LP(G) ≤ m*IPL(G)

- w(U) ≤ 2 m*LP(G) ≤ 2 m*IPL(G)

- The set of feasible solutions is larger

Primal-dual technique
- Classical approach for solving exactly combinatorial

optimization problems
- Weighted combinatorial problems are reduced to purely

combinatorial, unweighted problems
- Examples: Dijkstra (shortest path), Ford and

Fulkerson (maximum flow), Edmonds (maximum
matching)

- Polynomial-time 2-approximation algorithm for
weighted version of MINIMUM VERTEX COVER

Primal-dual technique

 minimize w(i)x(i)
i∈V
∑

subject to x(i)+x(j)≥1 (i, j)∈E

 0≤x(i)≤1 i∈V

- LP formulation

Primal-dual technique

Eeey

Vijiy

ey

iw
iNj

Ee

∈≥

∈≤∑

∑

∈

∈

 0)(

),(subject to

)(maximize

)(
)(

where N(i) denotes the neighborhood of i

- Dual problem

begin
y=0; U=Ø;
while a not covered edge (i,j) exists

increase y(i,j) until either i or j is filled
if i (resp. j) is filled then put i (resp. j) in U

end.

Primal-dual technique
- 2-approximation algorithm

- Simultaneously maintains a (possibly unfeasible) integer
solution of LP formulation and a (not necessarily optimal)
feasible solution of dual problem

- At each step integer solution becomes more feasible and dual
solution has better measure

- Ends when integer solution becomes feasible

Primal-dual technique
- Proof

- Feasibility: trivial
- Performance ratio:

- For any i ∈ U, the ith constraint is tight.
- Sum C of the weights of the nodes in U is equal to the sum P of

the profit of the incident edges
- P is at most twice the sum of the profit of all edges which is at

most equal to the maximum profit
- By duality, maximum profit is equal to minimum weight

- Time complexity:
- At most n iterations, where n is the number of nodes

Dynamic programming technique
- It is an algorithm technique that can make possible to

reduce the size of the search space
- It can be applied to all combinatorial problems where

optimal solution can be derived by composing optimal
solutions of a limited set of subproblems (not always
disjoints)

Dynamic programming technique
- For efficiency reasons, it is implemented in a bottom-

up way
- Subproblems are defined with just a few indices (usually

2,3)
- Subsolutions are optimally extended by means of iterations

over this indices
- Subolutions are stored in a matrix

MINIMUM PARTITION
- INSTANCE: Finite set X of items, for each xi ∈ X a

positive integer weight ai

- SOLUTION: A partition of X into 2 disjoint sets Y1,Y2

- MEASURE: Maximum between the sum of the
weights of elements in V1 and the sum of the weights
of elements in V2

Dynamic programming technique
- Pseudo-polynomial time algorithm for MINIMUM

PARTITION:
- T: n x b-matrix (b=sum of the weights of all n elements)
- T(i,j)=TRUE if a subset of {a1,...,ai} exists whose sum is j

- Construction of T: T(i+1,j)=T(i,j) or T(i,j-ai+1)
- Final answer to the evaluation problem:

- select true element of nth row of T that minimizes max(j,b-j)

- Complexity: O(nb)=O(n2amax), where amax is the
maximum weight
- Can be modified to obtain a feasible solution

Dynamic programming technique
- The approximation algorithm

- Ignore the last t digits of the numbers
- Apply the pseudo-polynomial time algorithm
- Return the corresponding solution in the original instance

Dynamic programming technique
- Performance ratio:

- m(x, y*(x’))-m*(x) ≤ 10tn
where y*(x’) denotes an optimal solution for scaled instance x’

- Performance ratio is at most 1+10tn/m*(x)
- amax ≤ m*(x) ≤ n amax (amax = max value of items)

- m*(x) ≤ amax /(amax -n 10t) m(x, y*(x’))

- For any r, if we choose t=log10(amax(r-1) /r n), then the
performance ratio is at most r

- Time complexity:
- O(n2a’max) = O(rn3/(r-1))

