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Abstract

Radial Basis Function Networks (RBFNs) are used primarily to solve curve-fitting

problems and for non-linear system modeling. Several algorithms are known for the

approximation of a non-linear curve from a sparse data set by means of RBFNs.

Regularization techniques allow to define constraints on the smoothness of the curve

by using the gradient of the function in the training. However, procedures that

permit to arbitrarily set the value of the derivatives for the data are rarely found in

the literature. In this paper, the Orthogonal Least Squares (OLS) algorithm for the

identification of RBFNs is modified to provide the approximation of a non-linear

single-input single-output map along with its derivatives, given a set of training data.

The interest in the derivatives of non-linear functions concerns many identification

and control tasks where the study of system stability and robustness is addressed.
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The effectiveness of the proposed algorithm is demonstrated with examples in the

field of data interpolation and control of non-linear dynamical systems.

Key words: Radial Basis Function Networks, OLS learning, curve fitting, iterated

map stability, chaotic oscillators.

1 Introduction

The Orthogonal Least Squares (OLS) algorithm [5] is one of the most popular

procedures for the training of Radial Basis Function Networks (RBFNs). An

RBFN is a two-layer neural network model especially suited for non-linear

function approximation and appreciated in the fields of signal processing

[10,11,8], non-linear system modeling, identification and control [1,4,14,13],

and time-series prediction [20,3]. With respect to other non-linear optimiza-

tion algorithms, such as gradient descent or conjugate gradients, the OLS

algorithm for RBFNs is characterized by a faster training and improved con-

vergence.

In function approximation and data interpolation by means of such universal

approximation schemes, the derivatives of the underlying function can play an

important role in the attempt to improve the model performance. Regulariza-

tion techniques, for example, allow to define constraints on the smoothness of

the curve by using the information on the gradient during the training phase.

Regularized networks are recognized to perform better than non-regularized
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networks in function learning and interpolation [16]. Moreover, in many appli-

cations the approximation of the mapping alone will not suffice, and learning

of the constraints on differential data becomes important as well as learning

input-output relations. For example, in the simulation of mechanical systems

or plants by physical modeling, the physical knowledge is given in the form of

partial differential equations (PDEs), or constraints on differential data [12].

In dynamical system modeling and control tasks the stability of the identi-

fied system depends on the gradient of the map [17,6], so that, exploiting the

derivatives, the modeling can be improved and the stabilization of desired

dynamical behaviors can be achieved.

Despite of the importance of learning differential data, the problem of effi-

ciently approximating a non-linear function along with its derivatives seems to

be rarely addressed. Some theoretical results as well as some application exam-

ples that apply to generic feedforward neural networks are found in [12,2,9].

More emphasis on the procedural aspects of differential data learning are found

in [15], where a back-propagation based algorithm for multilayer neural net-

work is proposed, and [19], where a RBFN with raised-cosine kernels is intro-

duced, that can fit up to first-order differential data.

In this paper, an extended version of the OLS algorithm for the training of

single-input single-output RBFNs is presented, which permits to approximate

an unknown function by specifying a set of data points along with its desired

higher-order derivatives.

The paper is organized as follows: in Section 2, the OLS algorithm is reviewed

and modified to add control over the derivative of the function to be approx-

imated. The extension to higher order derivatives is introduced in Section
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3. Application examples in the field of function interpolation and non-linear

dynamics are given in Section 4. In Section 5, the conclusions are presented.

2 Orthogonal Least Squares Learning Algorithm

The OLS learning algorithm is traditionally tied to the parametric identi-

fication of RBF networks, a special two-layer neural network model widely

used for the interpolation and modeling of data in multidimensional space. In

the following we will restrict the discussion to the single-input single-output

RBFN model, which is a mapping f : R → R of the form

f(x) = b +
H

∑

i=1

wiφ(x,qi), (1)

where x ∈ R is the input variable, φ(·) is a given non-linear function, b, wi and

qi, 1 ≤ i ≤ H, are the model parameters, and H is the number of radial units.

The RBFN can be viewed as a special case of the linear regression model

y(k) = b +
H

∑

i=1

wipi(k) + e(k), (2)

where y(k) is the desired k-th output sample, e(k) is the approximation error,

and pi(k) are the regressors, i.e. some fixed functions of x(k), where x(k) are

the input values corresponding to the desired output values y(k):

pi(k) = φ(x(k),qi). (3)

In its original version, the OLS algorithm is a procedure that iteratively se-

lects the best regressors (radial basis units) from a set of available regressors.

This set is composed of a number of regressors equal to the number of avail-

able data, and each regressor is a radial unit centered on a data point. The
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selection of radial unit centers is recognized to be the main problem in the

parametric identification of these models, while the choice of the non-linear

function for the radial units does not seem to be critical. Gaussian-shaped

functions, spline, multi-quadratic and cubic functions are some of the com-

monly preferred choices. Here, we will use the gaussian function φ(x,m, σ) =

exp(‖x − m‖/σ)2, where ‖ · ‖ denotes the euclidean norm, and m and σ de-

note respectively the center and width of the radial unit. In the following, we

assume that the width is unique for all units, and constant during training.

For simplicity of notations we thus refer to radial units as φ(x,m).

2.1 Classic OLS algorithm

Say {x(k), y(k)}, k = 1, 2, ..., N , is the data set given by N input-output data

pairs, which can be organized in two column vectors x = [x(1) · · · x(N)]T

and y = [y(1) · · · y(N)]T . The model parameters are given in vectors m =

[m1 · · ·mH ]T , w = [w1 · · ·wH ]T and b = [b], where H is the number of radial

units to be used. Arranging the problem in matrix form we have:

y =





P 1





















w

b

















+ e (4)

with
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P=





p1 · · · pH





=





























φ(x(1),m1) · · · φ(x(1),mH)

...
. . .

...

φ(x(N),m1) · · · φ(x(N),mH)





























, (5)

where pi = [φ(x(1),mi) . . . φ(x(N),mi)]
T are regressor vectors forming a set of

basis vectors, e = [e(1) · · · e(N)]T is the identification error, and 1 = [1 . . . 1]T

is a unit column vector of length N . The least squares solution of this problem

which satisfies the condition that

ỹ =





P 1





















w

b

















(6)

is the projection of y in a vector space spanned by the regressors. If the re-

gressors are not independent, the contribution of each regressor to the total

energy of the desired output vector is not clear. The OLS algorithm pro-

ceeds iteratively by selecting the next best regressor from a set by applying

a Gram-Schmidt orthogonalization, so that the contribution of each vector of

this new orthogonal base can be determined individually among the available

regressors. This greedy strategy is known to give non-maximally compact rep-

resentations when non-orthogonal basis, such as the Gaussian, are used [18].

Nevertheless, it proved to be useful and efficient in practice.
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2.2 Modified OLS algorithm

The classic algorithm selects a set of regressors from the ones available and

determines the output layer weights for the identification of the desired input-

output map, but does not explicitly control the derivative of the function. We

propose to modify this procedure so as to allow the assignment of a desired

value of the function derivative at each data point. The data set will then

be organized in three vectors x = [x(1) · · · x(N)]T , y = [y(1) · · · y(N)]T , and

y(1) = [y1(1) · · · y1(N)]T , x and y being the input-output pairs and y(1) being

the respective derivatives. It has to be noted that the original OLS algorithm

selects each radial unit from a set of units, each of which is centered on an

input data point. The maximum number of units is then limited to the number

of data points. When we add requirements on the derivative of the function,

a further constraint to the optimization problem is added, and the number of

units to be selected in order to reach the desired approximation may be higher

than the number of data points. A possible choice is to augment the input

vector with points chosen where there is no data available, e.g. a uniform grid

with Ne points covering the input interval, and to build a set of Ne regressors

centered over these points.

The algorithm can be summarized as follows:

• First step, initialization: the set of regressors for selection is obtained by

centering the Ne radial units, and the error reduction ratio (err) for each

regressor vector is computed. Given the regressor vectors

pi = [φ(x(1), x(i)), ..., φ(x(N), x(i))]T , 1 ≤ i ≤ Ne, (7)
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and defined the first-iteration vectors

u1,i = pi, 1 ≤ i ≤ Ne. (8)

The error reduction ratio associated with the i-th vector is given by

err1,i = (uT
1,iy)2/((uT

1,iu1,i)(y
Ty)). (9)

In a similar way, the regressor vectors for the derivative of the map are

computed:

p
(1)
i = [

∂φ(x(1), x(i))

∂x
· · ·

∂φ(x(N), x(i))

∂x
]T , 1 ≤ i ≤ Ne, (10)

and the first-iteration vectors are defined:

l1,i = p
(1)
i , 1 ≤ i ≤ Ne. (11)

The error reduction ratio for the derivative is:

grad err1,i = (lT1,iy
(1))2/((lT1,il1,i)(y

(1)Ty(1))), 1 ≤ i ≤ Ne. (12)

The err1,i and grad err1,i represent the error reduction ratios caused respec-

tively by u1,i and l1,i, and the total error reduction ratio can be computed

by

tot err1,i = λ err1,i + (1 − λ) grad err1,i, (13)

where λ weights the importance of the map against its derivative. Usually,

λ = 0.5 is the preferred choice when the accuracy requirements for the map

and its derivative are the same. The index i1 is then found, so that:

tot err1,i1 = max
i

{tot err1,i, 1 ≤ i ≤ Ne}. (14)

The regressor pi1 giving the largest error reduction ratio is selected and

removed from the set of available regressors. The corresponding center is

8



added to the set of selected centers:

u1 = u1,i1 = pi1 ; (15)

l1 = l1,i1 = p
(1)
i1

; (16)

m1 = x(i1). (17)

• h-th iteration, for h = 1, ..., H and H ≤ Ne: the regressors selected in

the previous steps, having indexes i1, ..., ih−1, have been removed from the

set of available regressors. Before computing the error reduction ratio for

each regressor still available, the orthogonalization step is performed which

makes each regressor orthogonal with respect to those already selected:

uh,i = pi −
h−1
∑

j=1

uj(p
T
i uj)/(u

T
j uj), i 6= i1, i2, ..., ih−1; (18)

lh,i = p
(1)
i −

h−1
∑

j=1

lj(p
(1)
i

T
lj)/(l

T
j lj), i 6= i1, i2, ..., ih−1; (19)

errh,i = (uT
h,iy)2/((uT

h,iuh,i)(y
Ty)), i 6= i1, i2, ..., ih−1; (20)

grad errh,i = (lTh,iy
(1))2/((lTh,ilh,i)(y

(1)Ty(1))), (21)

i 6= i1, i2, ..., ih−1;

tot errh,i = λerrh,i + (1 − λ) grad errh,i, (22)

i 6= i1, i2, ..., ih−1.

As before, the regressor with maximum error reduction ratio is selected

and removed from the list of availability, and its center is added to the set

of selected centers:

tot errh,ih = max
i

{ tot errh,i, i 6= i1, i2, ..., ih−1} (23)

uh = uh,ih ; (24)
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lh = lh,ih ; (25)

mh = x(ih). (26)

• Final step, computation of output layer weights: once the H radial units

have been positioned, the remaining w and b parameters can be found

with a Moore-Penrose matrix inversion (pseudo-inversion): let us call PH =

[pi1pi2 · · ·piH ] and P
(1)
H = [p

(1)
i1

p
(1)
i2

· · ·p
(1)
iH

] the two sets of selected regres-

sors, and let 1 = [1 . . . 1]T and 0 = [0 . . . 0]T be two column vectors of length

N . Then we have
















y

y(1)

















=

















PH 1

P
(1)
H 0

































w

b

















+ eH (27)

whose solution is
















w

b

















=

































PH 1

P
(1)
H 0

































+ 















y

y(1)

















. (28)

Usually, it is convenient to stop the procedure before the maximum number of

radial units has been reached, as soon as the identification error is considered

to be acceptable. To this purpose, one can use equation (28) at iteration h to

compute the identification error eh in (27) 1 .

3 Higher order derivatives

The extension of the algorithm for the identification of a map and its deriva-

tives of order higher than one is straightforward. Given that φ is continuous

1 Note that in this case the length of vector w and the number of columns of

matrices P in equation (28) is h instead of H

10



and has continuous derivatives up to order r, the derivatives of order up to

r can be identified for the map f . The data set is organized in r + 1 vec-

tors x = [x(1) · · · x(N)]T , y = [y(1) · · · y(N)]T , y(1) = [y(1)(1) · · · y(1)(N)]T , ...,

y(r) = [y(r)(1) · · · y(r)(N)]T , where y(d)(k) is the desired d-th derivative for the

k-th data point. In the first step, a different set of regressors is computed for

each derivative order:

pi = [φ(x(1), x(i)), . . . , φ(x(N), x(i))]T , 1 ≤ i ≤ Ne; (29)

p
(d)
i = [

∂dφ(x(1), x(i))

∂xd
, · · · ,

∂dφ(x(N), x(i))

∂xd
]T ,

1 ≤ i ≤ Ne, 1 ≤ d ≤ r. (30)

If we now call uih−1
, l

(1)
ih−1

,· · · , l
(r)
ih−1

the orthogonalized regressor vectors se-

lected in the (h− 1)-th iteration, in the h-th iteration the corresponding r +1

error reduction ratios can be computed similarly to what was shown in equa-

tions (18–21), and the total error reduction ratio can then be computed as the

weighted sum of these terms:

uh,i = pi −
h−1
∑

j=1

uj(p
T
i uj)/(u

T
j uj), i 6= i1, i2, ..., ih−1; (31)

errh,i = (uT
h,iy)2/((uT

h,iuh,i)(y
Ty)), i 6= i1, i2, ..., ih−1; (32)

l
(d)
h,i = p

(d)
i −

h−1
∑

j=1

lj(p
(d)
i

T
lj)/(l

T
j lj), i 6= i1, i2, ..., ih−1; (33)

err
(d)
h,i = (l

(d)
h,i

T
y(d))2/((l

(d)
h,i

T
l
(d)
h,i)(y

(d)Ty(d))), i 6= i1, i2, ..., ih−1; (34)
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tot errh,i = λ0errh,i +
r

∑

d=1

λderr
(d)
h,i , i 6= i1, i2, ..., ih−1. (35)

A common choice is to uniformly weight the importance of the map and its

derivatives, i.e. λi = 1/(r +1), i = 0, 1, . . . , r. However, a non-uniform weight-

ing can be chosen to reflect non-uniform accuracy requirements.

The regressors with maximum error reduction ratio are selected and removed

from the list of availability, and the corresponding centers are added to the

set of selected centers:

tot errh,ih = max
i

{ tot errh,i, i 6= i1, i2, ..., ih−1}; (36)

uh = uh,ih ; (37)

l
(d)
h = l

(d)
h,ih

, 1 6 d 6 r; (38)

mh = x(ih). (39)

If we now let














































































PH = [pi1 · · ·piH ]

P
(1)
H = [p

(1)
i1

· · ·p
(1)
iH

]

...

P
(r)
H = [p

(r)
i1

· · ·p
(r)
iH

]

(40)
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be the final set of orthogonal regressors obtained from the selection procedure,

we can compute the output layer parameters by solving the matrix equation









































y

y(1)

...

y(r)









































=









































PH 1

P
(1)
H 0

...
...

P
(r)
H 0

























































w

b

















+ e. (41)

A discussion on the invertibility of the concatenated matrices in (27) and in

(41) is reported in the Appendix A.

4 Experimental results

In this section, some examples are presented that illustrate the performance

of the proposed algorithm. First, an interpolation experiment is proposed that

deals with data from a known function. It is shown how the use of differential

data can considerably improve the interpolation task. A second example shows

how the proposed algorithm can be used to control the dynamics of a simple

dynamical system described by a single-input single-output iterated map. To

this purpose, the control over fixed points and its derivatives is exploited to

drive the system through different dynamical behaviors ranging from stability

to chaos. In all the following examples, the grid of points over which the

RBFs are centered is not limited to the input data. Instead, a uniform grid

that covers the input interval with an opportune number of grid points is used.

This choice is adopted for both the proposed and the classic OLS algorithms,
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when the two are compared.

4.1 Data interpolation

In this experiment, we compare the traditional and the proposed OLS algo-

rithms for the interpolation of data from a known function. To apply the pro-

posed algorithm we make the assumption that information on the derivative

is available for each data point. Assume that the function and its derivative

are

f(x) = sin(cos(x)) (42)

and

∂f(x)

∂x
= − cos(cos(x)) sin(x), (43)

with x ∈ [−3, 3]. The input interval [−3, 3] is made discrete using a resolution

step T = 0.03, that gives a set of 201 points {xi}
201
i=1. Equation (42) is used

to compute the corresponding output, and the training set for the traditional

OLS algorithm is generated by randomly selecting Np = 6 points from this set

of input-output pairs. A uniform grid of 61 points spaced with step 0.1 is used

to center the available regressors over the input interval [−3, 3]. The width

parameter σ of the gaussian radial basis functions was set to one. Figure

1 shows the result of the training procedure by plotting the output of the

trained RBFN over the interval [−3, 3]. The algorithm reached the required

data approximation error, set to 10E − 5, after 4 iterations (i.e., the selected

number of RBF units was 4). The distance from the target function and its

derivative over the interval [−3, 3] is evaluated through the summed-square

error (SSE) function. It can be seen how the trained RBFN correctly fits the

input-output data but fails to accurately represent the underlying function
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in some regions. This is due to the insufficient amount of data. It is common

practice to solve this problem by collecting more data and considering a larger

training set.

Assume instead that the value of the first derivative of the function is avail-

able at the selected Np data points. The training set for the extended OLS

algorithm is generated by adding the value of the derivative to each of the Np

input-output pairs in the original training set (in our example, these values

are computed with equation (43)). The grid over which the regressors are cen-

tered and the width of the gaussian functions are the same as before. Figure 2

shows the result of the training procedure. The algorithm reached the required

data approximation error after 9 iterations, with the parameter λ set to 0.5. It

can be seen that the trained RBFN correctly fits the extended data and that

the representation of the underlying function along with its first derivative is

improved, as confirmed by the reduced values of SSE.

−3 −2 −1 0 1 2 3
−1.5

−1

−0.5

0

0.5

1

1.5

x

f(x
), 

df
(x

)/d
x

function approximation SSE =2.91672

derivative approximation SSE =22.00595

target function                       
derivative of target function         
training data                         
function and derivative interpolations

Fig. 1. Interpolation of the function f(x) = sin(cos(x)) from 5 data points. The

RBFN was trained only with the input-output pairs using the standard OLS algo-

rithm, and resulted in a 4-radial basis network.
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−3 −2 −1 0 1 2 3
−1.5

−1

−0.5

0

0.5

1

1.5

x

f(x
), 

df
(x

)/d
x

function approximation SSE =0.04674

derivative approximation SSE =0.48613

target function                       
derivative of target function         
training data                         
function and derivative interpolations

Fig. 2. Interpolation of the function f(x) = sin(cos(x)) from 5 data points. The

RBFN was trained adding the values of the function derivative to the training set

and using the proposed algorithm (9 radial basis units where selected).

4.2 Control of fixed point stability in iterated maps

Iterated maps are a common way to describe the discrete-time evolution of

dynamical systems [7]. A discrete-time evolution is governed by

t(k + 1) = f(t(k)) (44)

where t(k) represents the n-dimensional state of the system at discrete-time k

and f is an R
n → R

n map that transforms the current state in the subsequent

state.

In this example we show how to design a single-input single-output map f that

can be used to reach different dynamical behaviors, ranging from equilibrium

to chaotic motion, by controlling the derivative of the map at a fixed point.

We will discuss this example by referring to the properties of the well-known

logistic map, defined by the equation y = f(a, x) = ax(1 − x), for all a ≥ 0
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[7]. For 0 ≤ a ≤ 4 this equation represents a convex function which intersects

the x-axis at 0 and at 1, and maps the interval [0, 1] into itself (refer to

figure 3). The intersections of the function with the line y = x are called fixed

points. A fixed point (xf , yf ) is said to be asymptotically stable if |f ′(xf )| < 1,

which intuitively means that if the initial solution is sufficiently close to the

fixed point then the solution remains close to the fixed point thereafter. For

0 ≤ a ≤ 1 the fixed point at the origin x = 0 is unique and stable. If the value

of a is gradually raised over one, the iterated system exhibits an extremely

rich spectrum of dynamical behaviours. For 1 < a ≤ 3 the fixed point at the

origin becomes unstable, and a second fixed point appears at x = (a − 1)/a,

which is conversely stable. The iterated system state then diverges from the

origin and approaches the stable fixed point as k → ∞.

If 3 < a < 3.449 the fixed point become unstable and a flip bifurcation with

period doubling occurs. The appearance of a periodic motion of period two

reflects the fact that the second-generation map of f , defined as f 2(a, x) =

f(a, f(a, x)), cuts the line y = x at the origin and three other points, the

middle of which is a fixed point of f and the rest of which are the two-

cycle of f . Let say x1 and x2 these two other points. A two-cycle of f is

asymptotically stable if the value of k2 = f ′(x1)f
′(x2) is less then one in

magnitude. In general, a period-P orbit [x1, x2, . . . , xP ] is asymptotically stable

if kP = f ′(x1)f
′(x2) · · · f

′(xP ) has magnitude less than one.

As the parameter a is further increased, a variety of stable periodic motions

(with period greater than two) and chaotic behaviors succeed, depending on

whether the periodic solutions are stable or not.

The qualitative behavior of the logistic map is shared by all smooth and con-
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Fig. 3. The logistic map (continuous line) and second-generation map (dashed line)

for different values of the parameter.

vex functions f(x) such that f(0) = 0, f(b) = 0 for some b > 0, and f(x) > 0

for 0 < x < b. We take b = 1 in our example, and we proceed in the design

of a map that exhibits the desired dynamical behavior among stable, peri-

odic and chaotic motion. From the discussion on the logistic map we observe

that some of its features, e.g. the derivative at the origin, the fixed point xf

and its derivative, and the fixed points of the second-generation map play a

central role in the determination of the dynamic behavior. We focus on these

features to design the function, and rely on the relations between derivatives

and stability to determine the desired motion.

First, we choose a fixed point within the interval (0, 1), i.e. yf = xf = 0.6.

Next, we can choose the derivative of the function f(x) at x = 0, x = 1, and

x = xf . In order to obtain a convex function, we select a pair of derivatives,

e.g. f ′(0) = 1.7 and f ′(1) = −1.3, which are compatible with the selected fixed

point (xf , yf ). The derivative at the origin is taken greater than one in magni-

tude since we want to obtain a motion divergent from the origin and evolving
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around the value yf as k → ∞. Finally, we use the derivative at (xf , yf ) to

control the qualitative behavior of the evolution. To this aim, we rely on the

fact that, for a derivative less than one in magnitude, an asymptotically stable

motion arises. Conversely, for a derivative greater than one in magnitude, ei-

ther a periodic or a chaotic motion can arise, depending on the stability of the

fixed points of the higher-order-generation maps. Unfortunately, there is no

straightforward way to control such feature with the proposed method, thus

we restrict the control to the first derivatives of the first-generation map f . To

show the different qualitative behavior of the iterated system, we choose the

following three values for the derivative of the map, f ′(xf ) = {−.95,−1.2,−2}.

To summarize, the training set for the three cases is

x(1) = 0 y(1) = 0 y(1)(1) = 1.7

x(2) = 0.6 y(2) = 0.6 y(1)(2) = {−0.95,−1.2,−2.0}

x(3) = 1 y(3) = 0 y(1)(3) = −1.3

The proposed algorithm is then used to design the map given the selected

points and derivatives. A uniform grid of 31 points spaced with step 0.1 is used

to center the available regressors over the interval [−1, 2]. The width parameter

σ of the gaussian radial basis functions was set to 0.5. These parameters are

kept the same throughout this example. Figures 4,5, and 6 show the results of

the map design and the dynamical behavior of the iterated map in the three

cases. The first case corresponds to an asymptotically stable fixed point at

x = 0.6, with derivative magnitude less than one. The second case reflects the

need for a period-two dynamic motion when the fixed point (0.6, 0.6) remains
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Fig. 4. Upper figure: the map (continuous line) resulting by the training with

f ′(0.6) = −0.95, which gives an asymptotically stable fixed point (0.6, 0.6). The

second-generation map (dot-dashed line) is also plotted. Lower figure: autonomous

evolution of the dynamical system described by the iterated map (200 iterations).

Initial value of the state is t(0) = 0.01

the same, although unstable. Note the difference with the simple logistic map

case: if we desire a period-two orbit, we can choose 3 < a < 3.449. However,

the fixed point of the map would change depending on a, as it is yf = xf =

(a−1)/a. The periodic motion of the iterated system reflects the fact that the

second-generation map of figure 5 now intersects the line y = x in two more

points at x = x1 = 0.4607 and x = x2 = 0.6976 other than x = xf = 0.6 and

the origin. The third case (figure 6) demonstrate the effect of raising the value

of |f ′(0.6)| so that k2 = f ′(x1)f
′(x2) is no longer less than one in magnitude,

thus producing an unstable period-two orbit. Since chaotic motion arises in

this case, we can deduce that no other P -generation map, with P > 2, has
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any fixed point [x1, x2, . . . , xP ] with |kP | = |f ′(x1)f
′(x2) · · · f

′(xP )| < 1.
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Fig. 5. Upper figure: the map (continuous line) resulting from the training with

f ′(xf ) = −1.2, which makes the fixed point (0.6, 0.6) unstable. From the sec-

ond-generation map (dot-dashed line) it can be seen how a period-two bifurcation

arises, due to the two intersection points of the dot-dashed line with the line y = x

(which are stable fixed points of the second-generation map), other than the point

(0.6, 0.6) and the origin. The stability of the periodic orbit is due to the stability of

the two new second-generation map fixed points. Lower figure: autonomous evolu-

tion of the dynamical system described by the iterated map (200 iterations). Initial

value of the state is t(0) = 0.01

Finally, we may want to stabilize the two fixed points at x1 = 0.4607 and

x2 = 0.6976 of the second-generation map in figure 6, with the aim of obtaining

a period-two stable orbit with dynamic range |x2 − x1|. From the previous

discussion, we deduce that it is sufficient to put further constraints on the

derivatives of the function f so to have |k2| = |f ′(x1)f
′(x2)| < 1. We choose, for
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Fig. 6. Upper figure: the map (continuous line) resulting from the training with

f ′(xf ) = −2, which makes the fixed point (0.6, 0.6) unstable for the map. Moreover,

this value makes the other two fixed points of the second-generation map unstable

as well. No periodic orbit is observable anymore, and a chaotic motion arises. Lower

figure: autonomous evolution of the dynamical system described by the iterated

map (200 iterations). Initial value of the state is t(0) = 0.01

example, f ′(x1) = 0.9 and f ′(x2) = −1.05, which gives k = −0.945. Moreover,

the derivatives of the function at x = 0 and x = 1 were respectively changed to

5 and −4 to keep the function convex. These values were found heuristically.

Figure 7 shows the resulting map and the iterated system solution, which

asymptotically reaches the desired periodic solution.
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Fig. 7. Upper figure: the map (continuous line) resulting from the training with

further constraints f ′(x1) = 0.9 and f ′(x2) = −1.05. These values make stable the

two fixed points of the second-generation map (dashed line) at x = x1 and x = x2,

thus allowing a stable period-two orbit. Lower figure: autonomous evolution of the

dynamical system described by the iterated map (200 iterations). Initial value of

the state is t(0) = 0.01

5 Conclusions

The use of the Orthogonal Least Squares algorithm to approximate a non-

linear map and its derivatives with radial basis function networks has been

investigated. A modified version of the classic OLS algorithm formulation has

been proposed, which uses the same orthogonalization approach for both the

regressors of the map and the regressors of its derivatives. The usefulness of the

method has been illustrated on application examples from the field of function

approximation and non-linear system dynamics, and we have stressed the
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importance of derivatives of the non-linear map to control important features,

such as stability and dynamical motion’s qualitative behavior.

A Pseudo-invertibility of the regressor matrices

A rectangular matrix M is pseudo-invertible if the square matrix MTM is

invertible, since is M+ = (MTM)−1MT . Let us recall now the initial prob-

lem in (4) (we have omitted the additive parameter for simplicity, and used

PH instead of P to emphasize that the columns in the matrix are regressors

selected according to the Gram-Schmidt orthogonalization procedure):

y = PHw + e. (A.1)

The regression matrix PH can be decomposed into

PH = OHA, (A.2)

where OH = [u1, . . . ,uH ] is a rectangular matrix with orthogonal columns,

and A is a triangular matrix with 1’s on the diagonal [5]. The problem thus

becomes

y = OHv + e. (A.3)

The triangular matrix A satisfies the following condition:

Aw = v. (A.4)

We can now compute w by:

w = P+
Hy = A−1O+

Hy = A−1v, (A.5)

where we used the properties of the pseudo-inverse (see, for example, [21]). In

this case, the pseudo-invertibility of OH is granted by the fact that OT
HOH

24



is a diagonal square matrix, and the pseudo-invertibility of PH is granted

by the pseudo-invertibility of OH and by the invertibility of A. When the

algorithm is extended to the derivatives of the map, the following matrix has

to be pseudo-inverted:

O =
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, (A.6)

where O
(d)
H = [l

(d)
1 , . . . , l

(d)
H ] is the orthogonal regressor set for the dth deriva-

tive, for which is P
(d)
H = O

(d)
H A(d). The pseudo-invertibility in this case is

granted by the fact that

OTO =
[

OT
H O

(1)
H

T
· · ·O
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H
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= OT
HOH + · · · + O

(r)
H

T
O

(r)
H (A.7)

is a sum of diagonal square matrices. As a result, for the concatenated matrix

(A.6) to be pseudo-invertible, it is sufficient that the matrices OH ,O
(1)
H ,...O

(r)
H

be orthogonal, as it happens to be due to the orthogonalization process. Note

that mutual orthogonality among sets of bases related to different order of

derivatives is not necessary. The last step is to compute the network output

weights w:
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(A.8)

where the matrix containing the (upper) triangular blocks A(i) is invertible,

being a square matrix with all zeros below the diagonal. We can conclude that

the output weights can be computed from the inversion and pseudo-inversion

of the two matrices in the last part of (A.8) or, equivalently, from the pseudo-

inversion of the matrix containing the blocks P
(i)
H .
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map (200 iterations). Initial value of the state is t(0) = 0.01 20
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5 Upper figure: the map (continuous line) resulting from

the training with f ′(xf ) = −1.2, which makes the fixed

point (0.6, 0.6) unstable. From the second-generation map

(dot-dashed line) it can be seen how a period-two bifurcation

arises, due to the two intersection points of the dot-dashed

line with the line y = x (which are stable fixed points of the

second-generation map), other than the point (0.6, 0.6) and

the origin. The stability of the periodic orbit is due to the

stability of the two new second-generation map fixed points.

Lower figure: autonomous evolution of the dynamical system

described by the iterated map (200 iterations). Initial value of

the state is t(0) = 0.01 21

6 Upper figure: the map (continuous line) resulting from the

training with f ′(xf ) = −2, which makes the fixed point

(0.6, 0.6) unstable for the map. Moreover, this value makes

the other two fixed points of the second-generation map

unstable as well. No periodic orbit is observable anymore, and

a chaotic motion arises. Lower figure: autonomous evolution

of the dynamical system described by the iterated map (200

iterations). Initial value of the state is t(0) = 0.01 22
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7 Upper figure: the map (continuous line) resulting from

the training with further constraints f ′(x1) = 0.9 and

f ′(x2) = −1.05. These values make stable the two fixed points

of the second-generation map (dashed line) at x = x1 and

x = x2, thus allowing a stable period-two orbit. Lower figure:

autonomous evolution of the dynamical system described by

the iterated map (200 iterations). Initial value of the state is

t(0) = 0.01 23
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