Jumping Problems for Fully Nonlinear Elliptic Variational Inequalities

Alessandro Groli

Dipartimento di Matematica,
Università di Pisa, Via F. Buonarroti 2, 56127 Pisa, Italy
groli@dm.unipi.it

Marco Squassina

Dipartimento di Matematica,
Università di Milano, Via C. Saldini 50, 20133 Milano, Italy
squassin@dmf.bs.unicatt.it

Received June 15, 2000
Revised manuscript received January 22, 2001

By means of nonsmooth critical point theory we prove existence of at least two solutions for a general class of variational inequalities when between the obstacle and the behavior at $+\infty$ there is a situation of jumping type.

Keywords: Jumping problems, variational inequalities, nonsmooth critical point theory

1991 Mathematics Subject Classification: 35D05, 58J05

1. Introduction

Starting from the pioneering paper of Ambrosetti and Prodi [1], jumping problems for semilinear elliptic equations of the type

$$
\begin{cases}
- \sum_{i,j=1}^{n} D_j(a_{ij}(x)D_i u) = g(x, u) & \text{in } \Omega \\
u = 0 & \text{on } \partial \Omega,
\end{cases}
$$

have been extensively treated (see e.g. [14, 18, 20, 21]).

Moreover, also the case of semilinear variational inequalities with a situation of jumping type has been discussed in [12, 19]. Very recently, quasilinear inequalities of the form:

$$
\begin{cases}
\int_{\Omega} \left\{ \sum_{i,j=1}^{n} a_{ij}(x,u)D_i u D_j (v - u) + \frac{1}{2} \sum_{i,j=1}^{n} D_s a_{ij}(x,u) D_i u D_j u (v - u) \right\} \, dx + \\
- \int_{\Omega} g(x,u)(v - u) \, dx \geq \langle \omega, v - u \rangle & \forall v \in \tilde{K}_{\vartheta},
\end{cases}
$$

where $K_{\vartheta} = \{ u \in H^1_0(\Omega) : u \geq \vartheta \ \text{a.e. in } \Omega \}$, $\tilde{K}_{\vartheta} = \{ v \in K_{\vartheta} : (v - u) \in L^\infty(\Omega) \}$ and $\vartheta \in H^1_0(\Omega)$, have been considered in [11].

When $\vartheta \equiv -\infty$, namely we have no obstacle and the variational inequality becomes an equation, the problem has been also studied in [5, 6] by A. Canino and has been extended in [13] by the authors to the case of fully nonlinear operators.
The purpose of this paper is to study the more general class of nonlinear variational inequalities of the type:

\[
\begin{aligned}
& \int_{\Omega} \left\{ \nabla_\xi L(x, u, \nabla u) \cdot \nabla (v - u) + D_s L(x, u, \nabla u) (v - u) \right\} \, dx + \\
& - \int_{\Omega} g(x, u) (v - u) \, dx \geq \langle \omega, v - u \rangle \quad \forall v \in \tilde{K}_\vartheta, \\
& u \in K_\vartheta.
\end{aligned}
\] (1)

In the main result we shall prove the existence of at least two solutions of (1). The framework is the same of [13], but technical difficulties arise, mainly in the verification of the Palais–Smale condition. This is due to the fact that such condition is proved in [13] using in a crucial way test functions of exponential type. Such test functions are not admissible for the variational inequality, so that a certain number of modifications is required in particular in the proofs of Theorem 4.4 and Theorem 5.2.

As in the previous papers dealing with quasilinear equations and inequalities (see e.g. [3, 5, 6, 7, 11, 22]) we will use variational methods based on the nonsmooth critical point theory of [9, 10]. Let us mention that similar abstract techniques have been developed independently in [15, 16].

2. The main result

In the following, \(\Omega \) will denote a bounded domain of \(\mathbb{R}^n \), \(1 < p < n \), \(\vartheta \in W^{1,p}_0(\Omega) \) with \(\vartheta^- \in L^\infty(\Omega) \), \(\omega \in W^{-1,p'}(\Omega) \) and

\[
L : \Omega \times \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}
\]

is measurable in \(x \) for all \((s, \xi) \in \mathbb{R} \times \mathbb{R}^n \) and of class \(C^1 \) in \((s, \xi) \) a. e. in \(\Omega \). We shall assume that \(L(x, s, \cdot) \) is strictly convex and for each \(t \in \mathbb{R} \)

\[
L(x, s, t\xi) = |t|^p L(x, s, \xi)
\] (2)

for a. e. \(x \in \Omega \) and for all \((s, \xi) \in \mathbb{R} \times \mathbb{R}^n \). Furthermore, we assume that:

(i) there exist \(\nu > 0 \) and \(b_1 \in \mathbb{R} \) such that

\[
\nu |\xi|^p \leq L(x, s, \xi) \leq b_1 |\xi|^p,
\] (3)

for a. e. \(x \in \Omega \) and for all \((s, \xi) \in \mathbb{R} \times \mathbb{R}^n \);

(ii) there exist \(b_2, b_3 \in \mathbb{R} \) such that

\[
|D_s L(x, s, \xi)| \leq b_2 |\xi|^p,
\] (4)

for a. e. \(x \in \Omega \) and for all \((s, \xi) \in \mathbb{R} \times \mathbb{R}^n \) and

\[
|\nabla_\xi L(x, s, \xi)| \leq b_3 |\xi|^{p-1},
\] (5)

for a. e. \(x \in \Omega \) and for all \((s, \xi) \in \mathbb{R} \times \mathbb{R}^n \).
(iii) there exist \(R > 0 \) and a bounded Lipschitzian function \(\psi : [R, +\infty[\to [0, +\infty[\) such that
\[
s \geq R \implies D_s L(x, s, \xi) \geq 0,
\]
\[
s \geq R \implies D_s L(x, s, \xi) \leq \psi'(s) \nabla \xi L(x, s, \xi) \cdot \xi,
\]
for a. e. \(x \in \Omega \) and for all \(\xi \in \mathbb{R}^n \). We denote by \(\overline{\psi} \) the limit of \(\psi(s) \) as \(s \to +\infty \).

(iv) \(g(x, s) \) is a Carathéodory function and \(G(x, s) = \int_0^s g(x, \tau) \, d\tau \). We assume that there exist \(a \in L^n_{p-1} (\Omega) \) and \(b \in L_\infty (\Omega) \) such that
\[
|g(x, s)| \leq a(x) + b(x)|s|^{p-1},
\]
for a. e. \(x \in \Omega \) and all \(s \in \mathbb{R} \). Moreover, there exists \(\alpha \in \mathbb{R} \) such that
\[
\lim_{s \to +\infty} \frac{g(x, s)}{s^{p-1}} = \alpha,
\]
for a. e. \(x \in \Omega \).

Set now:
\[
\lim_{s \to +\infty} L(x, s, \xi) = L_\infty (x, \xi)
\]
(this limit exists by (6)). We also assume that \(L_\infty (x, \cdot) \) is strictly convex for a. e. \(x \in \Omega \).

Let us remark that we are not assuming the strict convexity uniformly in \(x \) so that such \(L_\infty \) is pretty general. Moreover, assume that
\[
s_h \to +\infty, \quad \xi_h \to \xi \implies \nabla \xi L(x, s_h, \xi_h) \to \nabla \xi L_\infty (x, \xi),
\]
for a. e. \(x \in \Omega \). Let now
\[
\lambda_1 = \min \left\{ p \int_\Omega L_\infty (x, \nabla u) \, dx : u \in W_0^1 p (\Omega), \int_\Omega |u|^p \, dx = 1 \right\},
\]
be the first (nonlinear) eigenvalue of
\[
\left\{ u \mapsto -\text{div} (\nabla \xi L_\infty (x, \nabla u)) \right\}.
\]

Observe that by [2, Lemma 1.4] the first eigenfunction \(\phi_1 \) belongs to \(L_\infty (\Omega) \) and by [23, Theorem 1.1] is strictly positive.

Our purpose is to study (1) when \(\omega = -t^{p-1} \phi_1^{p-1} \), namely the family of problems
\[
(P_t)
\]
\[
\begin{cases}
\int_\Omega \left\{ \nabla \xi L(x, u, \nabla u) \cdot \nabla (v - u) + D_s L(x, u, \nabla u) (v - u) \right\} \, dx + \\
- \int_\Omega g(x, u)(v - u) \, dx + t^{p-1} \int_\Omega \phi_1^{p-1}(v - u) \, dx \geq 0 & \forall v \in \tilde{K}_\vartheta,
\end{cases}
\]

where
\[
K_\vartheta = \left\{ u \in W_0^1 p (\Omega) : u \geq \vartheta \text{ a. e. in } \Omega \right\}
\]
and \(\tilde{K}_\vartheta = \{ v \in K_\vartheta : (v - u) \in L_\infty (\Omega) \} \).

Under the previous assumptions, the following is our main result:

\[
(\text{iii})
\]

\[
(\text{iv})
\]

\[
(\text{vi})
\]

\[
(\text{vii})
\]
Theorem 2.1. Assume that $\alpha > \lambda_1$. Then there exists $\bar{t} \in \mathbb{R}$ such that for all $t \geq \bar{t}$ the problem (P_t) has at least two solutions.

This result extends [11, Theorem 2.1] dealing with Lagrangians of the type

$$L(x, s, \xi) = \frac{1}{2} \sum_{i,j=1}^{n} a_{ij}(x,s)\xi_i \xi_j - G(x,s)$$

for a. e. $x \in \Omega$ and for all $(s, \xi) \in \mathbb{R} \times \mathbb{R}^n$.

In this particular case, existence of at least three solutions has been proved in [6] for equations assuming $\alpha > \mu_2$ where μ_2 is the second eigenvalue of the operator

$$\{ u \mapsto - \sum_{i,j=1}^{n} D_j(A_{ij}D_i u) \}.$$

In our general setting, since L_{∞} is not quadratic with respect to ξ, we only have the existence of the first eigenvalue λ_1 and it is not clear how to define higher order eigenvalues $\lambda_2, \lambda_3, \ldots$. Therefore in our case the comparison of α with higher eigenvalues has no obvious formulation.

3. Recalls from nonsmooth critical point theory

Let (X, d) be a metric space and let $f : X \to \mathbb{R}$ be a function. We denote by $B_r(u)$ the open ball of center u and radius r and set $\text{epi}(f) = \{(u, \lambda) \in X \times \mathbb{R} : f(u) \leq \lambda \}$. In the following, the space $X \times \mathbb{R}$ will be endowed with the metric

$$d((u, \lambda), (v, \mu)) = (d(u,v))^2 + (\lambda - \mu)^2)^{\frac{1}{2}}$$

and $\text{epi}(f)$ with the induced metric. Finally, we set $D(f) = \{ u \in X : f(u) < +\infty \}$.

Definition 3.1. For every $u \in X$ with $f(u) \in \mathbb{R}$, we denote by $|df|(u)$ the supremum of the σ’s in $[0, +\infty]$ such that there exist $\delta > 0$ and a continuous map

$$\mathcal{H} : (B_\delta(u, f(u)) \cap \text{epi}(f)) \times [0, \delta] \to X$$

satisfying

$$d(\mathcal{H}((v, \mu), t), v) \leq t, \quad f(\mathcal{H}((v, \mu), t)) \leq \mu - \sigma t,$$

whenever $(v, \mu) \in B_\delta(u, f(u)) \cap \text{epi}(f)$ and $t \in [0, \delta]$. The extended real number $|df|(u)$ is called the weak slope of f at u.

The above notion has been introduced, in an equivalent way, independently in [10, 16], while a variant has been considered in [15]. The form mentioned here is taken from [4]. For further details see [11, Section 3].

Definition 3.2. An element $u \in X$ is said to be a (lower) critical point of f if $|df|(u) = 0$. A real number c is said to be a (lower) critical value of f if there exists a critical point $u \in X$ of f such that $f(u) = c$. Otherwise c is said to be a regular value of f.

We say that Theorem 4.2. if every (sequence at level Definition 4.1. sequence (\(\parallel \)).

It is sufficient to combine [10, Theorem 3.12] with [11, Proposition 3.4].

Proof. It is sufficient to combine [10, Theorem 3.12] with [11, Proposition 3.4].

4. The bounded Palais–Smale condition

In this section we shall consider the more general variational inequalities (1). To this aim let us now introduce the functional \(f : W^{1,p}_0(\Omega) \to \mathbb{R} \cup \{ +\infty \} \)

\[
f(u) = \begin{cases}
\int_{\Omega} L(x,u,\nabla u) \, dx - \int_{\Omega} G(x,u) \, dx - \langle \omega, u \rangle & u \in K_0 \\
+\infty & u \notin K_0.
\end{cases}
\]

Definition 4.1. Let \(c \in \mathbb{R} \). A sequence \((u_h)\) in \(K_0 \) is said to be a concrete Palais–Smale sequence at level \(c \), \((CPS)_{c}-sequence, for short) for \(f \), if \(f(u_h) \to c \) and there exists a sequence \((\varphi_h)\) in \(W^{-1,p'}(\Omega) \) such that \(\varphi_h \to 0 \) and

\[
\int_{\Omega} \nabla \xi L(x,u_h,\nabla u_h) \cdot \nabla (v-u_h) \, dx + \int_{\Omega} D_s L(x,u_h,\nabla u_h)(v-u_h) \, dx + \\
- \int_{\Omega} g(x,u_h)(v-u_h) \, dx - \langle \omega, v-u_h \rangle \geq \langle \varphi_h, v-u_h \rangle \quad \forall v \in \bar{K}_0.
\]

We say that \(f \) satisfies the concrete Palais–Smale condition at level \(c \), \((CPS)_{c}-sequence for \(f \) admits a strongly convergent subsequence in \(W^{1,p'}_0(\Omega) \).

Theorem 4.2. Let \(u \in K_0 \) be such that \(|df|(u) < +\infty \). Then there exists \(\varphi \) in \(W^{-1,p'}(\Omega) \) such that \(\| \varphi \|_{-1,p'} \leq |df|(u) \) and

\[
\int_{\Omega} \nabla \xi L(x,u,\nabla u) \cdot \nabla (v-u) \, dx + \int_{\Omega} D_s L(x,u,\nabla u)(v-u) \, dx + \\
- \int_{\Omega} g(x,u)(v-u) \, dx - \langle \omega, v-u \rangle \geq \langle \varphi, v-u \rangle \quad \forall v \in \bar{K}_0.
\]
Proof. Argue as in [11, Theorem 4.6].

Proposition 4.3. Let \(c \in \mathbb{R} \) and assume that \(f \) satisfies the \((CPS)_c\) condition. Then \(f \) satisfies the \((PS)_c\) condition.

Proof. It is an easy consequence of Theorem 4.2.

Let us note that by combining (3) with the convexity of \(L(x, s, \cdot) \), we get
\[
\nabla_{\xi} L(x, s, \xi) \cdot \xi \geq \nu|\xi|^p
\]
for a. e. \(x \in \Omega \) and for all \((s, \xi) \in \mathbb{R} \times \mathbb{R}^n \). Moreover, there exists \(M > 0 \) such that
\[
|D_s L(x, s, \xi)| \leq M \nabla_{\xi} L(x, s, \xi) \cdot \xi
\]
for a. e. \(x \in \Omega \) and for all \((s, \xi) \in \mathbb{R} \times \mathbb{R}^n \).

Suppose now that \(\vartheta(x) > -R \) for a. e. \(x \in \Omega \), where \(R > 0 \) is as in \((iii)\) and define
\[
\tilde{L}(x, s, \xi) = \begin{cases} L(x, s, \xi) & s > -R \\ L(x, -R, \xi) & s \leq -R. \end{cases}
\]
Such \(\tilde{L} \) satisfy our assumptions. On the other hand, if \(u \) satisfies
\[
(\tilde{P}_t) \quad \left\{ \begin{array}{l} \int_{\Omega} \left\{ \nabla_{\xi} \tilde{L}(x, u, \nabla u) \cdot \nabla (v - u) + D_s \tilde{L}(x, u, \nabla u)(v - u) \right\} dx + \\ -\int_{\Omega} g(x, u)(v - u) dx + t^{p-1} \int_{\Omega} \phi_1^{p-1}(v - u) dx \geq 0 \quad \forall v \in \tilde{K}_\vartheta, \\ u \in K_\vartheta, \end{array} \right.
\]
then \(u \) satisfies \((P_t) \). Therefore, up to substituting \(L \) with \(\tilde{L} \), we can assume that \(L \) satisfies (6) for any \(s \in \mathbb{R} \) with \(|s| > R \). (Actually \(\tilde{L} \) is only locally Lipschitz in \(s \) but one might always define \(\tilde{L}(x, s, \xi) = L(x, \sigma(s), \xi) \) for a suitable smooth function \(\sigma \).

Now, we want to provide in Theorem 4.5 a very useful criterion for the verification of \((CPS)_c\) condition. Let us first prove a local compactness property for \((CPS)_c\) sequences.

Theorem 4.4. Let \((u_h)\) be a sequence in \(K_\vartheta \) and \((\varphi_h)\) a sequence in \(W^{-1,p'}(\Omega) \) such that \((u_h)\) is bounded in \(W_0^{1,p}(\Omega) \), \(\varphi_h \rightharpoonup \varphi \) and
\[
\int_{\Omega} \nabla_{\xi} L(x, u_h, \nabla u_h) \cdot \nabla (v - u_h) dx + \int_{\Omega} D_s L(x, u_h, \nabla u_h)(v - u_h) dx \geq \langle \varphi_h, v - u_h \rangle \quad \forall v \in \tilde{K}_\vartheta.
\]
Then it is possible to extract a subsequence \((u_{h_k})\) strongly convergent in \(W_0^{1,p}(\Omega) \).

Proof. Up to a subsequence, \((u_h)\) converges to some \(u \) weakly in \(W_0^{1,p}(\Omega) \), strongly in \(L^p(\Omega) \) and a. e. in \(\Omega \). Moreover, arguing as in step I of [11, Theorem 4.18] it follows that
\[
\nabla u_h(x) \rightharpoonup \nabla u(x) \quad \text{for a. e. } x \in \Omega.
\]
We divide the proof into several steps.

I) Let us prove that

\[
\limsup_h \int_\Omega \nabla \xi L(x, u_h, \nabla u_h) \cdot \nabla (-u_h^-) \exp \{-M(u_h - R^-)\} \, dx \leq \int_\Omega \nabla \xi L(x, u, \nabla u) \cdot \nabla (-u^-) \exp \{-M(u - R^-)\} \, dx
\]

where \(M > 0\) is defined in (13) and \(R > 0\) has been introduced in hypothesis (6).

Consider the test functions

\[
v = u_h + \zeta \exp \{-M(u_h + R^+)\}
\]

in (14) where \(\zeta \in W_0^{1,p}(\Omega) \cap L^\infty(\Omega)\) and \(\zeta \geq 0\). Then

\[
\int_\Omega \nabla \xi L(x, u_h, \nabla u_h) \cdot \nabla \zeta \exp \{-M(u_h + R^+)\} \, dx +
\]

\[
+ \int_\Omega [D_x L(x, u_h, \nabla u_h) - M\nabla \xi L(x, u_h, \nabla u_h) \cdot \nabla (u_h + R^+)] \zeta \exp \{-M(u_h + R^+)\} \, dx
\]

\[
\geq \langle \varphi, \zeta \exp \{-M(u_h + R^+)\} \rangle.
\]

From (6) and (13) we deduce that

\[
[D_x L(x, u_h, \nabla u_h) - M\nabla \xi L(x, u_h, \nabla u_h) \cdot \nabla (u_h + R^+)] \zeta \exp \{-M(u_h + R^+)\} \leq 0,
\]

so that by the Fatou’s Lemma we get

\[
\int_\Omega \nabla \xi L(x, u, \nabla u) \cdot \nabla \zeta \exp \{-M(u + R^+)\} \, dx +
\]

\[
+ \int_\Omega [D_x L(x, u, \nabla u) - M\nabla \xi L(x, u, \nabla u) \cdot \nabla (u + R^+)] \zeta \exp \{-M(u + R^+)\} \, dx \geq
\]

\[
\geq \langle \varphi, \zeta \exp \{-M(u + R^+)\} \rangle \quad \forall \zeta \in W_0^{1,p}(\Omega) \cap L^\infty(\Omega), \zeta \geq 0.
\] (16)

Now, let us consider the functions

\[
\eta_k = \eta \exp \{M(u + R^+)\} \vartheta_k(u),
\]

where \(\eta \in W_0^{1,p}(\Omega) \cap L^\infty(\Omega)\) with \(\eta \geq 0\) and \(\vartheta_k \in C^\infty(\mathbb{R})\) is such that \(0 \leq \vartheta_k(s) \leq 1\), \(\vartheta_k = 1\) on \([-k, k]\), \(\vartheta_k = 0\) outside \([-2k, 2k]\) and \(|\vartheta_k'| \leq c/k\) for some \(c > 0\).

Putting them in (16), for each \(k \geq 1\) we obtain

\[
\int_\Omega \nabla \xi L(x, u, \nabla u) \cdot \nabla (\eta \vartheta_k(u)) \, dx + \int_\Omega D_x L(x, u, \nabla u) \eta \vartheta_k(u) \, dx \geq
\]

\[
\geq \langle \varphi, \eta \vartheta_k(u) \rangle \quad \forall \eta \in W_0^{1,p}(\Omega) \cap L^\infty(\Omega), \eta \geq 0.
\]
Passing to the limit as \(k \to +\infty \) we obtain

\[
\int_\Omega \nabla \xi L(x, u, \nabla u) \cdot \nabla \eta \, dx + \int_\Omega D_s L(x, u, \nabla u) \eta \, dx \geq \langle \varphi, \eta \rangle \quad \forall \eta \in W_0^{1,p}(\Omega) \cap L^\infty(\Omega), \eta \geq 0. \tag{17}
\]

Taking \(\eta = (\vartheta^- - u^-) \exp \{-M(u - R)^-\} \in W_0^{1,p}(\Omega) \cap L^\infty(\Omega) \) in (17) we get

\[
\int_\Omega \nabla \xi L(x, u, \nabla u) \cdot \nabla (\vartheta^- - u^-) \exp \{-M(u - R)^-\} \, dx \geq - \int_\Omega [D_s L(x, u, \nabla u) - M \nabla \xi L(x, u, \nabla u) \cdot \nabla (u - R)^-] (\vartheta^- - u^-) \exp \{-M(u - R)^-\} \, dx + \langle \varphi, (\vartheta^- - u^-) \exp \{-M(u - R)^-\} \rangle. \tag{18}
\]

On the other hand, taking

\[
v = u_h - (\vartheta^- - u_h^-) \exp \{-M(u_h - R)^-\} \geq u_h - (\vartheta^- - u_h^-) = u_h^+ - \vartheta^-
\]
in (14) we obtain

\[
\int_\Omega \nabla \xi L(x, u_h, \nabla u_h) \cdot \nabla (\vartheta^- - u_h^-) \exp \{-M(u_h - R)^-\} \, dx + \\
\int_\Omega [D_s L(x, u_h, \nabla u_h) - M \nabla \xi L(x, u_h, \nabla u_h) \cdot \nabla (u_h - R)^-] (\vartheta^- - u_h^-) \exp \{-M(u_h - R)^-\} \, dx \leq \langle \varphi_h, (\vartheta^- - u_h^-) \exp \{-M(u_h - R)^-\} \rangle. \tag{19}
\]

From (6) and (13) we deduce that

\[
D_s L(x, u_h, \nabla u_h) - M \nabla \xi L(x, u_h, \nabla u_h) \cdot \nabla (u_h - R)^- \geq 0.
\]

From (19), using Fatou’s Lemma and (18) we obtain

\[
\limsup_{h} \int_\Omega \nabla \xi L(x, u_h, \nabla u_h) \cdot \nabla (\vartheta^- - u_h^-) \exp \{-M(u_h - R)^-\} \, dx \leq \\
\int_\Omega \nabla \xi L(x, u, \nabla u) \cdot \nabla (\vartheta^- - u^-) \exp \{-M(u - R)^-\} \, dx. \tag{20}
\]

Since

\[
\lim_{h} \int_\Omega \nabla \xi L(x, u_h, \nabla u_h) \cdot \nabla \vartheta^- \exp \{-M(u_h - R)^-\} \, dx = \\
= \int_\Omega \nabla \xi L(x, u, \nabla u) \cdot \nabla \vartheta^- \exp \{-M(u - R)^-\} \, dx,
\]
then from (20) we deduce (15).
II) Let us now prove that

\[
\limsup_h \int_{\Omega} \nabla \xi L(x, u_h, \nabla u_h) \cdot \nabla u_h^+ \exp \{ -M(u_h - R)^- \} \, dx \leq 1.
\]

We consider the test functions

\[
v = u_h - \left[(u_h^+ - \vartheta^+) \land k \right] \exp \{ -M(u_h - R)^- \} \geq \vartheta + (\vartheta^- - u_h^-)
\]

in (14). By Fatou’s Lemma, we get

\[
\int_{\Omega} \nabla \xi L(x, u_h, \nabla u_h) \cdot \nabla (u_h^+ - \vartheta^+) \exp \{ -M(u_h - R)^- \} \, dx + \\
\int_{\Omega} \left[D_s L(x, u_h, \nabla u_h) - M \nabla \xi L(x, u_h, \nabla u_h) \cdot \nabla (u_h - R)^- \right] (u_h^+ - \vartheta^+) \exp \{ -M(u_h - R)^- \} \, dx
\]

from which we deduce that

\[
\left[D_s L(x, u_h, \nabla u_h) - M \nabla \xi L(x, u_h, \nabla u_h) \cdot \nabla (u_h - R)^- \right] (u_h^+ - \vartheta^+) \exp \{ -M(u_h - R)^- \}
\]

belongs to \(L^1(\Omega) \). Using Fatou’s Lemma in (22) we obtain

\[
\limsup_h \int_{\Omega} \nabla \xi L(x, u_h, \nabla u_h) \cdot \nabla (u_h^+ - \vartheta^+) \exp \{ -M(u_h - R)^- \} \, dx \leq \\
\leq - \int_{\Omega} \int [D_s L(x, u, \nabla u) - M \nabla \xi L(x, u, \nabla u) \cdot \nabla (u - R)^-] \\
(u^+ - \vartheta^+) \exp \{ -M(u - R)^- \} \, dx + \langle \varphi, (u^+ - \vartheta^+) \exp \{ -M(u - R)^- \} \rangle,
\]

from which we also deduce that

\[
\left[D_s L(x, u, \nabla u) - M \nabla \xi L(x, u, \nabla u) \cdot \nabla (u - R)^- \right] (u^+ - \vartheta^+) \exp \{ -M(u - R)^- \}
\]

belongs to \(L^1(\Omega) \). Now, taking \(\eta_k = [(u^+ - \vartheta^+) \land k] \exp \{ -M(u - R)^- \} \) in (17), we have

\[
\int_{\Omega} \nabla \xi L(x, u, \nabla u) \cdot \nabla \left[(u^+ - \vartheta^+) \land k \right] \exp \{ -M(u - R)^- \} \, dx + \\
\int_{\Omega} \left[D_s L(x, u, \nabla u) - M \nabla \xi L(x, u, \nabla u) \cdot \nabla (u - R)^- \right] \left[(u^+ - \vartheta^+) \land k \right] \exp \{ -M(u - R)^- \} \, dx
\]

\[
\geq \langle \varphi, \left[(u^+ - \vartheta^+) \land k \right] \exp \{ -M(u - R)^- \} \rangle.
\]

Using (24) and passing to the limit as \(k \to +\infty \) in (25), it results

\[
\int_{\Omega} \nabla \xi L(x, u, \nabla u) \cdot \nabla (u^+ - \vartheta^+) \exp \{ -M(u - R)^- \} \, dx + \\
\int_{\Omega} \left[D_s L(x, u, \nabla u) - M \nabla \xi L(x, u, \nabla u) \cdot \nabla (u - R)^- \right] (u^+ - \vartheta^+) \exp \{ -M(u - R)^- \} \, dx
\]

\[
\geq \langle \varphi, (u^+ - \vartheta^+) \exp \{ -M(u - R)^- \} \rangle.
\]
Combining (26) with (23) we obtain

\[
\limsup_h \int_{\Omega} \nabla \xi L(x, u_h, \nabla u_h) \cdot \nabla (u_h^+ - \vartheta^+) \exp \{-M(u_h - R)\} \, dx \leq \\
\leq \int_{\Omega} \nabla \xi L(x, u, \nabla u) \cdot \nabla (u^+ - \vartheta^+) \exp \{-M(u - R)\} \, dx
\]

(27)

Since

\[
\lim_h \int_{\Omega} \nabla \xi L(x, u_h, \nabla u_h) \cdot \nabla \vartheta^+ \exp \{-M(u_h - R)\} \, dx = \\
= \int_{\Omega} \nabla \xi L(x, u, \nabla u) \cdot \nabla \vartheta^+ \exp \{-M(u - R)\} \, dx
\]

from (27) we deduce (21).

III) Let us finally prove that \(u_h \to u \) strongly in \(W^{1,p}_0(\Omega) \). We claim that

\[
\limsup_h \int_{\Omega} \nabla \xi L(x, u_h, \nabla u_h) \cdot \nabla u_h \exp \{-M(u_h - R)\} \, dx \leq \\
\leq \int_{\Omega} \nabla \xi L(x, u, \nabla u) \cdot \nabla u \exp \{-M(u - R)\} \, dx
\]

In fact using (15) and (21) we get

\[
\limsup_h \int_{\Omega} \nabla \xi L(x, u_h, \nabla u_h) \cdot \nabla u_h \exp \{-M(u_h - R)\} \, dx \leq \\
\leq \limsup_h \int_{\Omega \cap \{u_h > 0\}} \nabla \xi L(x, u_h, \nabla u_h) \cdot \nabla u_h^+ \exp \{-M(u_h - R)\} \, dx + \\
+ \limsup_h \int_{\Omega \cap \{u_h \leq 0\}} \nabla \xi L(x, u_h, \nabla u_h) \cdot \nabla (-u_h^-) \exp \{-M(u_h - R)\} \, dx \leq \\
\leq \int_{\Omega} \nabla \xi L(x, u, \nabla u) \cdot \nabla u \exp \{-M(u - R)\} \, dx
\]

(28)

From (28) using the Fatou Lemma we get

\[
\lim_h \int_{\Omega} \nabla \xi L(x, u_h, \nabla u_h) \cdot \nabla u_h \exp \{-M(u_h - R)\} \, dx = \\
= \int_{\Omega} \nabla \xi L(x, u, \nabla u) \cdot \nabla u \exp \{-M(u - R)\} \, dx.
\]

Therefore, since by (12) we have

\[
\nu \exp \{-M(R + \|\vartheta^-\|_\infty\)} \|\nabla u_h\|^p \leq \nabla \xi L(x, u_h, \nabla u_h) \cdot \nabla u_h \exp \{-M(u_h - R)\},
\]

it follows that

\[
\lim_h \int_{\Omega} |\nabla u_h|^p \, dx = \int_{\Omega} |\nabla u|^p \, dx,
\]

namely the strong convergence of \((u_h)\) to \(u \) in \(W^{1,p}_0(\Omega) \).
In view of Theorem 4.2, any critical point of x

Lemma 5.1.

Of course, the sequence $\{u_n\}$ is bounded in $W_0^{1,p}(\Omega)$.

Proof. Since the map $\{u \mapsto g(x, u)\}$ is completely continuous from $W_0^{1,p}(\Omega)$ to $L^{np'}(\Omega)$, the proof goes like [11, Theorem 4.37].

5. The Palais–Smale condition

Let us now set

$$g_0(x, s) = g(x, s) - \alpha(s^+)^{p-1}, \quad G_0(x, s) = \int_0^s g_0(x, t)\,dt.$$

Of course, g_0 is a Carathéodory function satisfying

$$\lim_{s \to +\infty} \frac{g_0(x, s)}{s^{p-1}} = 0, \quad |g_0(x, s)| \leq a(x) + b(x)|s|^{p-1},$$

for a. e. $x \in \Omega$ and all $s \in \mathbb{R}$ where $a \in L^{\frac{np}{n(p-1)+p}}(\Omega)$ and $b \in L^\frac{n}{p}(\Omega)$. Then (P$_1$) is equivalent to finding $u \in K_\vartheta$ such that

$$\int_{\Omega} \nabla \xi \cdot (L(x, u, \nabla u)(v-u) + \int_{\Omega} D_s L(x, u, \nabla u)(v-u)\,dx +$$

$$- \alpha \int_{\Omega} (u^+)^{p-1}(v-u)\,dx - \int_{\Omega} g_0(x, u)(v-u)\,dx + \int_{\Omega} \phi_1^{p-1}(v-u)\,dx \geq 0 \quad \forall v \in K_\vartheta.\]

Let us define the functional $f : W_0^{1,p}(\Omega) \to \mathbb{R} \cup \{+\infty\}$ by setting

$$f(u) = \begin{cases}
\int_{\Omega} L(x, u, \nabla u)\,dx - \frac{a}{p} \int_{\Omega} (u^+)^p\,dx - \int_{\Omega} G_0(x, u)\,dx + t^{p-1} \int_{\Omega} \phi_1^{p-1} u\,dx & \text{if } u \in K_\vartheta \\
+\infty & \text{if } u \notin K_\vartheta.
\end{cases}$$

In view of Theorem 4.2, any critical point of f is a weak solutions of (P$_1$). Let us introduce a new functional $f_t : W_0^{1,p}(\Omega) \to \mathbb{R} \cup \{+\infty\}$ by setting for each $t > 0$

$$f_t(u) = \begin{cases}
\int_{\Omega} L(x, tu, \nabla u)\,dx - \frac{a}{p} \int_{\Omega} (u^+)^p\,dx - \frac{1}{p} \int_{\Omega} G_0(x, tu)\,dx + \int_{\Omega} \phi_1^{p-1} u\,dx & \text{if } u \in K_t \\
+\infty & \text{if } u \notin K_t.
\end{cases}$$

where we have set

$$K_t = \{ u \in W_0^{1,p}(\Omega) : tu \geq \vartheta \text{ a. e. in } \Omega \}.$$

From Theorem 4.2 it follows that if u is a critical point of f_t then tu satisfies (P$_1$).

Lemma 5.1. Let (u_n) a sequence in $W_0^{1,p}(\Omega)$ and $\theta_n \in [0, +\infty]$ with $\theta_n \to +\infty$. Assume that the sequence $\left(\frac{u_n}{\theta_n}\right)$ is bounded in $W_0^{1,p}(\Omega)$. Then

$$\frac{g_0(x, u_n)}{\theta_n^{p-1}} \to 0 \quad \text{in} \quad L^{\frac{np'}{n(p-1)+p}}(\Omega), \quad \frac{G_0(x, u_n)}{\theta_n^p} \to 0 \quad \text{in} \quad L^1(\Omega).$$
Consider the test functions

We firstly prove that we shall divide the proof into several steps.

\[s \geq -N \implies D_s L(x, s, \xi) \leq \psi'(s)\nabla_x L(x, s, \xi) \cdot \xi. \]

(29)

Theorem 5.2. Let \(\alpha > \lambda_1, c \in \mathbb{R} \) and let \((u_h)\) in \(K_\vartheta \) be a \((CPS)_c\) sequence for \(f \). Then \((u_h)\) is bounded in \(W_0^{1,p}(\Omega) \).

Proof. By Definition 4.1, there exists a sequence \((\varphi_h)\) in \(W^{-1,p'}(\Omega) \) with \(\varphi_h \to 0 \) and

\[
\int_{\Omega} \nabla_x L(x, u_h, \nabla u_h) \cdot \nabla (v - u_h) \, dx + \int_{\Omega} D_s L(x, u_h, \nabla u_h) (v - u_h) \, dx +
- \alpha \int_{\Omega} (u_h^+)_{p-1} (v - u_h) \, dx - \int_{\Omega} g_0(x, u_h) (v - u_h) \, dx + t^{p-1} \int_{\Omega} \varphi_h^{p-1} (v - u_h) \, dx \geq
\geq \langle \varphi_h, v - u_h \rangle \quad \forall v \in K_\vartheta : (v - u_h) \in L^\infty(\Omega).
\]

(30)

We set now \(g_h = \|u_h\|_{1,p} \), and suppose by contradiction that \(g_h \to +\infty \). If we set \(z_h = g_h^{-1} u_h \), up to a subsequence, \(z_h \) converges to some \(z \) weakly in \(W_0^{1,p}(\Omega) \), strongly in \(L^p(\Omega) \) and a.e. in \(\Omega \). Note that \(z \geq 0 \) a.e. in \(\Omega \).

We shall divide the proof into several steps.

I) We firstly prove that

\[
\int_{\Omega} \nabla_x L_\infty(x, \nabla z) \cdot \nabla z \, dx \geq \alpha \int_{\Omega} z^p \, dx.
\]

(31)

Consider the test functions \(v = u_h + (z \wedge k) \exp \{-\psi(u_h)\} \), where \(\psi \) is the function defined in (7). Putting such \(v \) in (30) and dividing by \(g_h^{p-1} \), we obtain

\[
\int_{\Omega} \nabla_x L(x, u_h, \nabla z_h) \cdot \nabla (z \wedge k) \exp \{-\psi(u_h)\} \, dx +
+ \frac{1}{g_h^{p-1}} \int_{\Omega} [D_s L(x, u_h, \nabla u_h) - \psi'(u_h) \nabla_x L(x, u_h, \nabla u_h) \cdot \nabla u_h] (z \wedge k) \exp \{-\psi(u_h)\} \, dx \geq
\geq \alpha \int_{\Omega} (z_h^+)_{p-1} (z \wedge k) \exp \{-\psi(u_h)\} \, dx + \int_{\Omega} g_0(x, u_h) (z \wedge k) \exp \{-\psi(u_h)\} \, dx +
- t^{p-1} \int_{\Omega} \varphi_h^{p-1} (z \wedge k) \exp \{-\psi(u_h)\} \, dx + \frac{1}{g_h^{p-1}} (\varphi_h, (z \wedge k) \exp \{-\psi(u_h)\}).
\]

Observe now that the first term

\[
\int_{\Omega} \nabla_x L(x, u_h, \nabla z_h) \cdot \nabla (z \wedge k) \exp \{-\psi(u_h)\} \, dx
\]

passes to the limit, yielding

\[
\int_{\Omega} \nabla_x L_\infty(x, \nabla z) \cdot \nabla (z \wedge k) \exp \{-\overline{\psi}\} \, dx.
\]
Indeed, by taking into account assumptions (10) and (5), we may apply [8, Theorem 5] and deduce that, up to a subsequence,

\[a \text{ e. in } \Omega \setminus \{ z = 0 \}: \nabla z_h(x) \to \nabla z(x). \]

Since of course, being \(u_h(x) \to +\infty \) a. e. in \(\Omega \setminus \{ z = 0 \} \), again recalling (10), we have

\[a \text{ e. in } \Omega \setminus \{ z = 0 \}: \nabla \xi L(x, u_h(x), \nabla z_h(x)) \to \nabla \xi L_\infty(x, \nabla z(x)). \]

Since by (5) the sequence \((\nabla \xi L(x, u_h(x), \nabla z_h(x))) \) is bounded in \(L^p(\Omega) \), the assertion follows. Note also that the term

\[\frac{1}{\varrho_h} \langle \varphi_h, (z \wedge k) \exp \{-\psi(u_h)\} \rangle, \]

goes to 0 even if \(1 < p < 2 \). Indeed, in this case, one could use the Cerami–Palais–Smale condition, which yields \(\varrho_h \varphi_h \to 0 \) in \(W_0^{-1,p'}(\Omega) \).

Now, by (29) we have

\[D_s L(x, u_h, \nabla u_h) - \psi'(u_h) \nabla \xi L(x, u_h, \nabla u_h) \cdot \nabla u_h \leq 0, \]

then, passing to the limit as \(h \to +\infty \), we get

\[\int_{\Omega} \nabla \xi L_\infty(x, \nabla z) \cdot \nabla (z \wedge k) \exp \{-\tilde{\psi}\} \, dx \geq \alpha \int_{\Omega} z^{p-1}(z \wedge k) \exp \{-\tilde{\psi}\} \, dx. \]

Passing to the limit as \(k \to +\infty \), we obtain (31).

II) Let us prove that \(z_h \to z \) strongly in \(W_0^{1,p}(\Omega) \), so that of course \(\|z\|_{1,p} = 1 \). Consider the function \(\zeta : [-R, +\infty[\to \mathbb{R} \) defined by

\[\zeta(s) = \begin{cases} MR & \text{if } s \geq R, \\ Ms & \text{if } |s| < R. \end{cases} \]

(32)

where \(M \in \mathbb{R} \) is such that for a. e. \(x \in \Omega \), each \(s \in \mathbb{R} \) and \(\xi \in \mathbb{R}^n \)

\[|D_s L(x, s, \xi)| \leq M \nabla \xi L(x, s, \xi) \cdot \xi. \]

If we choose the test functions

\[v = u_h - \frac{u_h - \vartheta}{\exp(MR) \exp(\zeta(u_h))} \]

in (30), we have

\[\int_{\Omega} \nabla L(x, u_h, \nabla u_h) \cdot \nabla (u_h - \vartheta) \exp\{\zeta(u_h)\} \, dx + \int_{\Omega} [D_s L(x, u_h, \nabla u_h) + \zeta'(u_h) \nabla \xi L(x, u_h, \nabla u_h) \cdot \nabla u_h] \exp\{\zeta(u_h)\} \, dx \leq \]
\begin{align*}
\leq & \alpha \int_{\Omega} (u_h^*)^{p-1} (u_h - \vartheta) \exp\{\zeta(u_h)\} \, dx + \int_{\Omega} g_0(x, u_h) (u_h - \vartheta) \exp\{\zeta(u_h)\} \, dx + \\
& \quad - t^{p-1} \int_{\Omega} \phi_{\vartheta}^{p-1} (u_h - \vartheta) \exp\{\zeta(u_h)\} \, dx + \langle \varphi_h , (u_h - \vartheta) \exp\{\zeta(u_h)\} \rangle.
\end{align*}

Note that it results

\[[D_s L(x, u_h, \nabla u_h) + \zeta'(u_h) \nabla \xi L(x, u_h, \nabla u_h) \cdot \nabla u_h] (u_h - \vartheta) \geq 0. \]

Therefore, after division by \(\vartheta_h \) we get

\[\int_{\Omega} \nabla \xi L(x, u_h, \nabla z_h) \cdot \nabla \left(z_h - \frac{\vartheta}{\vartheta_h} \right) \exp\{\zeta(u_h)\} \, dx \leq \]

\[\leq \alpha \int_{\Omega} (z_h^*)^{p-1} \left(z_h - \frac{\vartheta}{\vartheta_h} \right) \exp\{\zeta(u_h)\} \, dx + \frac{1}{\vartheta_h^{p-1}} \int_{\Omega} g_0(x, u_h) \left(z_h - \frac{\vartheta}{\vartheta_h} \right) \exp\{\zeta(u_h)\} \, dx + \\
& \quad - \frac{t^{p-1}}{\vartheta_h^{p-1}} \int_{\Omega} \phi_{\vartheta_h}^{p-1} \left(z_h - \frac{\vartheta}{\vartheta_h} \right) \exp\{\zeta(u_h)\} \, dx + \frac{1}{\vartheta_h^{p-1}} \langle \varphi_h , \left(z_h - \frac{\vartheta}{\vartheta_h} \right) \exp\{\zeta(u_h)\} \rangle,
\]

which yields

\[\limsup_{h} \int_{\Omega} \nabla \xi L(x, u_h, \nabla z_h) \cdot \nabla z_h \exp\{\zeta(u_h)\} \, dx \leq \alpha \exp\{MR\} \int_{\Omega} z^p \, dx. \quad (33) \]

By combining (33) with (31) we get

\[\limsup_{h} \int_{\Omega} \nabla \xi L(x, u_h, \nabla z_h) \cdot \nabla z_h \exp\{\zeta(u_h)\} \, dx \leq \exp\{MR\} \int_{\Omega} \nabla \xi L_{\infty}(x, \nabla z) \cdot \nabla z \, dx. \]

In particular, by Fatou’s Lemma, it results

\[\exp\{MR\} \int_{\Omega} \nabla \xi L_{\infty}(x, \nabla z) \cdot \nabla z \, dx \leq \]

\[\leq \liminf_{h} \int_{\Omega} \nabla \xi L(x, u_h, \nabla z_h) \cdot \nabla z_h \exp\{\zeta(u_h)\} \, dx \leq \]

\[\leq \limsup_{h} \int_{\Omega} \nabla \xi L(x, u_h, \nabla z_h) \cdot \nabla z_h \exp\{\zeta(u_h)\} \, dx \leq \]

\[\leq \exp\{MR\} \int_{\Omega} \nabla \xi L_{\infty}(x, \nabla z) \cdot \nabla z \, dx, \]

namely, we get

\[\int_{\Omega} \nabla \xi L(x, u_h, \nabla z_h) \cdot \nabla z_h \exp\{\zeta(u_h)\} \, dx \rightarrow \int_{\Omega} \exp\{MR\} \nabla \xi L_{\infty}(x, \nabla z) \cdot \nabla z \, dx. \]

Therefore, since

\[\nu \exp\{-MR\} |\nabla z_h|^p \leq \nabla \xi L(x, u_h, \nabla z_h) \cdot \nabla z_h \exp\{\zeta(u_h)\}, \]

thanks to the generalized Lebesgue’s theorem, we conclude that

\[\lim_{h} \int_{\Omega} |\nabla z_h|^p \, dx = \int_{\Omega} |\nabla z|^p \, dx, \]
and z_h converges to z in $W_0^{1,p}(\Omega)$.

III) Let us consider the test functions $v = u_h + \varphi \exp \{-\psi(u_h)\}$ with $\varphi \in W_0^{1,p} \cap L^\infty(\Omega)$ and $\varphi \geq 0$. Taking such v in (30) and dividing by ϱ_h^{p-1} we obtain

$$\int_{\Omega} \nabla \xi L(x, u_h, \nabla z_h) \cdot \nabla \varphi \exp \{-\psi(u_h)\} \, dx + \frac{1}{\varrho_h^{p-1}} \int_{\Omega} [D_s L(x, u_h, \nabla u_h) - \psi'(u_h) \nabla \xi L(x, u_h, \nabla u_h) \cdot \nabla u_h] \varphi \exp \{-\psi(u_h)\} \, dx \geq$$

$$\geq \alpha \int_{\Omega} (z_h)^{p-1} \varphi \exp \{-\psi(u_h)\} \, dx + \int_{\Omega} \frac{g_0(x, u_h)}{\varrho_h^{p-1}} \varphi \exp \{-\psi(u_h)\} \, dx + \frac{1}{\varrho_h^{p-1}} (\varphi_h, \varphi \exp \{-\psi(u_h)\}).$$

Note that, since by step II we have $z_h \to z$ in $W_0^{1,p}(\Omega)$, the term

$$\int_{\Omega} \nabla \xi L(x, u_h, \nabla z_h) \cdot \nabla \varphi \exp \{-\psi(u_h)\} \, dx$$

passes to the limit, yielding

$$\int_{\Omega} \nabla \xi L(x, \nabla z) \cdot \nabla \varphi \exp \{-\psi\} \, dx.$$

By means of (29), we have

$$D_s L(x, u_h, \nabla u_h) - \psi'(u_h) \nabla \xi L(x, u_h, \nabla u_h) \cdot \nabla u_h \leq 0,$$

then passing to the limit as $h \to +\infty$, we obtain

$$\int_{\Omega} \nabla \xi L(x, \nabla z) \cdot \nabla \varphi \exp \{-\psi\} \, dx - \alpha \int_{\Omega} z^{p-1} \varphi \exp \{-\psi\} \, dx \geq 0,$$

for each $\varphi \in W_0^{1,p} \cap L^\infty(\Omega)$ with $\varphi \geq 0$ which yields

$$\int_{\Omega} \nabla \xi L(x, \nabla z) \cdot \nabla \varphi \, dx \geq \alpha \int_{\Omega} z^{p-1} \varphi \, dx \tag{34}$$

for each $\varphi \in W_0^{1,p}(\Omega)$ with $\varphi \geq 0$.

In a similar fashion, considering in (30) the admissible test functions

$$v = u_h - \left(\varphi \wedge \frac{z_h - \partial / \varrho_h}{\exp(\psi)} \right) \exp(\psi(u_h))$$

with $\varphi \in W_0^{1,p} \cap L^\infty(\Omega)$ and $\varphi \geq 0$ and dividing by ϱ_h^{p-1}, recalling that $z_h \to z$ strongly, we get

$$\int_{\Omega} \nabla \xi L(x, \nabla z) \cdot \nabla \left[\varphi \wedge \frac{z}{\exp(\psi)} \right] \, dx \leq \alpha \int_{\Omega} z^{p-1} \left[\varphi \wedge \frac{z}{\exp(\psi)} \right] \, dx,$$
for each \(\varphi \in W_0^{1,p} \cap L^\infty(\Omega) \) with \(\varphi \geq 0 \). Actually this holds for any \(\varphi \in W_0^{1,p}(\Omega) \) with \(\varphi \geq 0 \). By substituting \(\varphi \) with \(t\varphi \) with \(t > 0 \) we obtain
\[
\int_\Omega \nabla \xi L_\infty(x, \nabla z) \cdot \nabla \left[\varphi \wedge \frac{z}{t \exp \psi} \right] dx \leq \alpha \int_\Omega z^{p-1} \left[\varphi \wedge \frac{z}{t \exp \psi} \right] dx.
\]
Letting \(t \to +\infty \), and taking into account (34), it results
\[
\int_\Omega \nabla \xi L_\infty(x, \nabla z) \cdot \nabla \varphi dx = \alpha \int_\Omega z^{p-1} \varphi dx \tag{35}
\]
for each \(\varphi \in W_0^{1,p}(\Omega) \) with \(\varphi \geq 0 \). Clearly (35) holds for any \(\varphi \in W_0^{1,p}(\Omega) \), so that \(z \) is a positive eigenfunction related to \(\alpha \). This is a contradiction by [17, Remark 1, pp. 161].

Theorem 5.3. Let \(c \in \mathbb{R}, \alpha > \lambda_1 \) and \(t > 0 \). Then \(f_t \) satisfies the \((PS)_c\) condition.

Proof. Since \(f_t(u) = \frac{f(u)}{t^p} \), it is sufficient to combine Theorem 5.2, Theorem 4.5 and Proposition 4.3.

6. **Min–Max estimates**

Let us first introduce the “asymptotic functional” \(f_\infty : W_0^{1,p}(\Omega) \to \mathbb{R} \cup \{+\infty\} \) by setting
\[
f_\infty(u) = \begin{cases} \int_\Omega L_\infty(x, \nabla u) dx - \frac{a}{p} \int_\Omega u^p dx + \int_\Omega \phi_1^{p-1} u dx & \text{if } u \in K_\infty \\ +\infty & \text{if } u \notin K_\infty \end{cases}
\]
where
\[K_\infty = \{ u \in W_0^{1,p}(\Omega) : u \geq 0 \text{ a. e. in } \Omega \}.
\]

Proposition 6.1. There exist \(r > 0, \sigma > 0 \) such that
(a) for every \(u \in W_0^{1,p}(\Omega) \) with \(0 < \|u\|_{1,p} \leq r \) then \(f_\infty(u) > 0 \);
(b) for every \(u \in W_0^{1,p}(\Omega) \) with \(\|u\|_{1,p} = r \) then \(f_\infty(u) \geq \sigma > 0 \).

Proof. Let us consider the weakly closed set
\[K^* = \left\{ u \in K_\infty : \int_\Omega L_\infty(x, \nabla u) dx - \frac{a}{p} \int_\Omega u^p dx \leq \frac{1}{2} \int_\Omega L_\infty(x, \nabla u) dx \right\}.
\]
In \(K_\infty \setminus K^* \) the statements are evident. On the other hand, it is easy to see that
\[
\inf \left\{ \int_\Omega v \phi_1^{p-1} dx : v \in K^*, \|v\|_{1,p} = 1 \right\} = \varepsilon > 0
\]
arguing by contradiction. Therefore for each \(u \in K^* \) we have
\[
f_\infty(u) = \int_\Omega L_\infty(x, \nabla u) dx - \frac{a}{p} \int_\Omega u^p dx + \int_\Omega \phi_1^{p-1} u dx \geq c\|u\|_{1,p}^p + \varepsilon\|u\|_{1,p}
\]
where \(c \in \mathbb{R} \) is a suitable constant. Thus the statements follow. \(\square \)
Proposition 6.2. Let $r > 0$ be as in the Proposition 6.1. Then there exist $\bar{t} > 0$, $\sigma' > 0$ such that for every $t \geq \bar{t}$ and for every $u \in W_0^{1,p}(\Omega)$ with $\|u\|_{1,p} = r$, then $f_t(u) \geq \sigma'$.

Proof. By contradiction, we can find two sequences $(t_h) \subseteq \mathbb{R}$ and $(u_h) \subseteq W_0^{1,p}(\Omega)$ such that $t_h \geq h$ for each $h \in \mathbb{N}$, $\|u_h\|_{1,p} = r$ and $f_{t_h}(u_h) < \frac{1}{h}$. Up to a subsequence, (u_h) weakly converges in $W_0^{1,p}(\Omega)$ to some $u \in K_\infty$. Using (b) of [13, Theorem 5], it follows that $f_\infty(u) \leq \liminf_h f_{t_h}(u_h) \leq 0$.

By (a) of Proposition 6.1, we have $u = 0$. On the other hand, since

$$\limsup_h f_{t_h}(u_h) \leq 0 = f_\infty(u),$$

using (c) of [13, Theorem 5] we deduce that (u_h) strongly converges to u in $W_0^{1,p}(\Omega)$, namely $\|u\|_{1,p} = r$. This is impossible. □

Proposition 6.3. Let σ', \bar{t} as in Proposition 6.2. Then there exists $\tilde{t} \geq \bar{t}$ such that for every $t \geq \tilde{t}$ there exist $v_t, w_t \in W_0^{1,p}(\Omega)$ such that $\|v_t\|_{1,p} < r$, $\|w_t\|_{1,p} > r$, $f_t(v_t) \leq \frac{\sigma'}{2}$ and $f_t(w_t) \leq \frac{\sigma'}{2}$. Moreover we have

$$\sup \left\{ f_t((1-s)v_t + sw_t) : 0 \leq s \leq 1 \right\} < +\infty.$$

Proof. We argue by contradiction. We set $\tilde{t} = \bar{t} + h$ and suppose that there exists (t_h) such that $t_h \geq h + \bar{t}$ and such that for every v_{t_h}, w_{t_h} in $W_0^{1,p}(\Omega)$ with $\|v_{t_h}\|_{1,p} < r$, $\|w_{t_h}\|_{1,p} > r$ it results $f_{t_h}(v_{t_h}) > \frac{\sigma'}{2}$ and $f_{t_h}(w_{t_h}) > \frac{\sigma'}{2}$. It is easy to prove that there exists a sequence (u_h) in K_{t_h} which strongly converges to 0 in $W_0^{1,p}(\Omega)$ and therefore $\|u_h\|_{1,p} < r$ and $f_{t_h}(u_{t_h}) \leq \frac{\sigma'}{2}$ eventually as $h \to +\infty$. This contradicts our assumptions. In a similar way one can prove the statement for w_t, while the last statement is straightforward. □

7. Proof of the main result

Proof of Theorem 2.1. By combining Theorem 5.3, Propositions 6.2 and 6.3 we can apply Theorem 3.4 and deduce the assertion. □

Acknowledgements. The authors wish to thank the referee for some very useful remarks on our paper. Moreover, the authors warmly thank M. Degiovanni for providing some helpful discussions.

References

