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ABSTRACT

Many digital audio effects rely on transformations performed in
the Fourier-transformed (frequency) domain. However, other trans-
forms and domains exist and could be exploited. We propose to
use the Mellin transform for a class of sound transformations. We
present a fast implementation of the Mellin transform (more pre-
cisely a Fast Scale Transform), and we provide some examples on
how it could be used in digital audio effects.

1. INTRODUCTION

Fast realizations of the Discrete Fourier Transform are widely used
in order to produce audio signal transformations by operating in
the transformed (frequency) domain [1]. These realizations are
used as if they were approximations of an underlying continuous-
time Fourier Transform, and the transformations rely on properties
such as the magnitude invariance to time shifts, the relative audi-
tory unimportance of phase for stationary signals, and the interpre-
tation of spikes in the transformed domain as periodic components
in the time domain [2, 3].

Many other transforms with different properties have been de-
vised in order to make certain operations easier or certain features
more easily visible. Among these, the Mellin Transform, and its
restricted version called the Scale Transform, can represent a sig-
nal in terms ofscale. The scale can be interpreted, similarly to
frequency, as a physical attribute of signals [4]. Thus, we can con-
ceive digital audio effects that work by handling the signal in the
scale domain, with transformation of the magnitude and/or phase
of the Mellin image. This is technically feasible as long as fast and
accurate realizations of these transforms are available.

Other useful applications can be done using the Mellin trans-
form. For example Patterson and Irino [5] have proposed to use a
particular bidimensional version of this transform for vowel nor-
malization.

Digital audio effects, such as time/pitch scaling, using the Mellin
transform and the phase vocoder were previously proposed [6], but
the realization relied on non-uniform sampling or re-sampling, and
no considerations on the speed, accuracy, and feasibility of these
operations were given. In image processing, effects such as local-
ized denoising have been proposed as based on the scale (Mellin)
transform [7]. Since the Mellin transform can be interpreted as a
Fourier transform working on logarithmic time, it relies on warp-
ing the time axis. Effects based on time and frequency warping,
using the Fast Fourier Transform (FFT) or dispersive delay lines,
were presented in [8].

In Section 2 we briefly introduce the Mellin and scale trans-
forms, and we provide an interpretation of the transform and its
relation with the Fourier transform. Section 3 shows how a fast
discrete version of the scale transform is implemented, using expo-
nential resampling and theFFT algorithm. Section 4 presents some

digital audio effects obtained by transformations in the Mellin do-
main.

2. THE SCALE AND MELLIN TRANSFORMS

The Mellin transform of a functionf is defined as:

Mf (p) =

∫ ∞

0

f(t) tp−1 dt , (1)

wherep ∈ C is the Mellin parameter. The scale transform is a
particular restriction of the Mellin transform on the vertical line
p = −jc + 1

2
, with c ∈ R. Thus, the scale transform is defined as:

Df (c) =
1√
2π

∫ ∞

0

f(t) e(−jc− 1
2 ) ln t dt. (2)

The scale inverse transform is given by

f(t) =
1√
2π

∫ ∞

−∞
Df (c) e(jc− 1

2 ) ln t dc. (3)

The key property of the scale transform is the scale invariance.
This means that iff is a function andg is a scaled version off ,
the transform magnitude of both functions is the same. A scale
modification is a compression or expansion of the time axis of the
original function that preserves the signal energy. Thus, a function
g(t) can be obtained with a scale modification from a function
f(t), if g(t) =

√
αf(αt), with α ∈ R+. Whenα < 1 we get a

scale expansion, whenα > 1 we get a scale compression. Given
a scale modification with parameterα, the scale transforms of the
original and scaled signals are related by

Dg(c) = αjcDf (c). (4)

This property derives from a similar property of the Mellin trans-
form. In fact, ifh(t) = f(αt), then

Mh(p) = α−pMf (p). (5)

In both (4) and (5), scaling is reflected by a multiplicative factor
for the transforms, and for (4) such factor reduces to a pure phase
shift.

2.1. The scale transform interpretation

A parallel can be drawn between the properties of the Fourier and
scale transforms. In particular, we can define ascale periodicityas
follows: a functionf(t) is said to be scale periodic with periodτ
if it satisfiesf(t) =

√τ f(tτ ), whereτ = b/a, with a andb
period starting point and period ending point respectively (seeFig-
ure 1).C0 = 2π/ lnτ is the “fundamental scale” associated with
the periodic function. By analogy with the Fourier theory, we can
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define a “scale series” and Parseval theorem. Very important is the
“exponential sampling theorem” [9] that, like the Shannon theo-
rem, allows a perfect reconstruction of a scale-band limited signal
from its samples. These samples must be distributed exponentially
in time according topk = τ k

s , with k ∈ Z, τs = eπ/Cm , and
Cm the signal maximum scale.

Figure 1:Scale-periodic extension of a base signal defined betweena = 1s
andb = 4s

2.2. Relation with the Fourier transform

From its definition and interpretation, the Mellin transform pro-
vides a tight correspondence with the Fourier transform. More
precisely, the Mellin transform with the parameterp = −jc can be
interpreted as a logarithmic-time Fourier transform. Similarly, we
can define the scale transform of a functionf(t) using the Fourier
transform of a functiong(t), with g(t) obtained fromf(t) by time-
warpingf and multiplying the result by an exponential function.
This result can be generalized for anyp defined asp = −jc + β,
with β ∈ R.

3. THE FAST MELLIN TRANSFORM

Practical modifications of signals in the Mellin domain can be
achieved only if an accurate and fast discrete realization of the
Mellin transform is available. In [10], an algorithm based on the
extraction of the analytic signal was proposed, and it is now avail-
able for bothmatlab andscilab 1. However, such realization
requires the specification of a lower and upper frequency bounds,
its complexity appears to be quadratic in the number of samples,
and it displays strong side lobes in the scale domain (seeFigure 4).

We realized a Fast Mellin Transform (FMT) by exploiting the
analogy between the Mellin and Fourier transforms, as a sequence
of exponential time-warping, multiplication by an exponential, and
Fast Fourier Transform, as represented inFigure 2.

The Mellin transform with parameterp = −jc + β (with β ∈
R) of f(t) is identical to the Fourier transform ofetβf(et) :

D[f(t)] = F [etβf(et)], (6)

1http://www.inrialpes.fr/is2/people/pgoncalv/

Figure 2:Implementation of the Fast Mellin Transform

whereF [·] andD[·] refer to the Fourier transform and scale trans-
form, respectively. The Fourier transform is commonly computed
in timeO(N log N) on N samples, by means of theFFT. While
the multiplication by an exponential is trivially done inO(N),
we must find an algorithm for performing the exponential time-
warping. This last problem can be seen as an exponential sampling
of the continuous time signal. Generally we have only a uniformly
(Shannon) sampled signal, thus the problem can be seen as re-
sampling a discrete-time sequence, and this can be solved using
interpolation. In theory, we should use asinc interpolator (based
on Shannon sampling theory), but the overall complexity turns out
to be too high. However, we can approximate this interpolator
by means of a natural cubic spline, and have the linear complex-
ity associated with resolution of a tridiagonal matrix. Using this
interpolator we can resample the original function obtaining an
exponentially-sampled version.

The parameters needed by the resampling process are the ex-
ponential sampling stepτs and the number of exponential samples
Nexp. If the original signal has been uniformly sampled by taking
n samples with time stepTs starting2 at timeTs, we can show that
τs = 1 + 1/n andNexp ' n ln n. Figure 3 shows an example
of distribution of exponential samples derived from a sequence of
uniform samples.

The algorithm has an asymptotic complexity that depends only
on the FFT, as this is the most (computationally) complex part
of the entire process (the spline interpolation block is linear in
Nexp and the exponential multiplication block is also linear). The
asymptotic complexity of the entire process isO(Nexp ln Nexp)
or, in terms of the numbern of uniform samples,O(n ln2 n).

The accuracy of the Fast Mellin Transform in providing an
approximation to the continuous-time Mellin transform is good.

2If the signal starts at an arbitrary pointa > 0 we can “scale-shift” the
signal using the equationf(t) = σβf(σt), wherea is the original starting
point,σ = a/Ts andf(t) is the scale-shifted signal.

DAFX-2

Proc. of the 7 th Int. Conference on Digital Audio Effects (DAFx'04), Naples, Italy, October 5-8, 2004

— DAFx'04 Proceedings —66 66

http://www.inrialpes.fr/is2/people/pgoncalv/


Proc. of the 7th Int. Conference on Digital Audio Effects (DAFx’04), Naples, Italy, October 5-8, 2004

Figure 3:Uniform sampling and (critical) exponential resampling

For example, Figure 4 provides a comparison of the magnitude
of the FMT with the theoretical continuous-time Mellin transform
and with the realization proposed in [10]. In this example we’ve
worked with a step function signal created using128 samples, a
sampling frequency of8000Hz and setting the firsts50 samples
to 1 and the others to0.

Figure 4: Scale transform (magnitude) of a step function: continuous-
time transform (solid) and its approximations with the realizations by [10]
(dashed) and by the authors (dashdotted)

4. DIGITAL AUDIO EFFECTS IN MELLIN (SCALE)
DOMAIN

In this Section we show how to realize some digital audio effects
using the scale domain.

4.1. Time scaling in Mellin domain

A straightforward yet useful effect is time compression or expan-
sion with signal energy preservation. For two signals that are one

the scaled copy (with factorα) of the other, the scale transforms
have the same magnitude, and a difference in the phase. Letf(t)
andg(t) be those two signals, withg(t) =

√
αf(αt) andα ∈ R+.

Using the fact thatDg(c) = αjcDf (c) we can obtaing(t) from
f(t) by applying the scale transform tof(t), adding the linear
contributionc ln α to the the phase, and anti-transforming the re-
sult. Some care has to be taken in the choice ofα: if it is too high
the signal that we get from scale-compression will have frequency
components that can cause aliasing. Conversely, ifα is too low,
we may end up cropping the signal in time.

Figure 5 shows a signal and its time-compressed version, ob-
tained by adding a linear offset to the phase of the scale trans-
form (6).  What is depicted in Figure 5 is essentially a resampling.

Figure 5:Original audio signal and a scaled version (Scaled factorα = 2)
obtained using theFMT.

Figure 6:Signal phase and modified signal phase.   

       If the added phase contribution is not linear, then we can
achieve simultaneous resampling and time warping. As compared
to other resampling methods, such as the windowed-sinc interpo-
lation [11] implemented inoctave or matlab , using the scale
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transform does not introduce any benefit neither in accuracy nor in
efficiency. However, the possibility to work directly in the phase
domain adding contributions to the nominal phase gives the pos-
sibility to “sculpt” the temporal behavior of the signal in just the
same way as audio practitioners sculpt the frequency behavior with
softwares such asaudiosculpt 3.

4.2. Signal reconstruction using only magnitude or phase

In order to better understand the respective roles of magnitude and
phase in the Mellin transform, we can transform a signal and re-
construct it using only the phase or only the magnitude. Figure 7
shows the sonogram of a test signal. Figure 8 reports the sonogram
of the signal reconstructed by replacing the magnitude response
with a constant (top) or by replacing the phase response. We

Figure 7:Original signal sonogram.

Figure 8:Signal reconstructed with phase only (top) and with magnitude
only (bottom).

n 3http://www.ircam.fr

location of the main events that remain well visible (and audible).
This is similar to the highlighting of edges in images reconstructed
from their (phase-only) Mellin transform [7].

4.3. Low-pass and high-pass filtering

In this Section we show what a low-pass filter or a high-pass filter
do (in the Mellin domain). To low-pass filter, we simply set to zero
all magnitude components that are found between a cutoff scale
and the the signal maximum scale. Observing the results from a
classical Fourier-based viewpoint (see Figure 9, top), we can inter-
pret this filter like a time-varying low-pass filter. The filter cut-
off frequency exponentially approaches zero in time. The speed
of convergence depends on the cutoff scale. The high-pass filter
behaves symmetrically, gradually moving the cutoff frequency to-
ward zero (see Figure 9, bottom).

Figure 9: Low pass (top) and high pass (bottom) filtered signal sonogram.

4.4. Phase with random deviations

In this experiment we introduce a random deviation to the phase.
This deviation grows linear by the scale and adds up to the un-
wrapped phase. In this example the deviation doesn’t exceed the
0.04% of the phase, and this is enough to destroy the fine temporal
structure without loosing the most important events (seeFigure 10).

5. CONCLUSION

We presented a new implementation and some audio applications
of the discrete Mellin transform. Theoctave /matlab code will
be made publicly available. In the future, more sophisticated in-
terpolation schemes will be tried in order to improve the accuracy,
and the extension to a sliced-time framework (a kind of Short-Time
Mellin Transform) will be attempted.
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Figure 10:Phase with growing random deviation.

[2] J. O. Smith, Mathematics of the Discrete Fourier Trans-
form (DFT), W3K Publishing, http://www.w3k.org
/books/ .

[3] D. Rocchesso, Introduction to Sound Processing, Edi-
zioni di Mondo Estremo, Firenze, 2003,http://www
.mondo-estremo.com/ .

[4] L. Cohen, “The scale representation,”IEEE Trans. on Signal
Processing, vol. 41, no. 12, pp. 3275–3291, December 1993.

[5] T. Irino and R. D. Patterson, “Segregating information about
the size and the shape of the vocal tract using a time-domain
auditory model: The stabilised wavelet-Mellin transform,”
Speech Communication, vol. 36, no. 3, pp. 181–203, March
2002.

[6] J. Garas and P. C. W. Sommen, “Warped linear time invariant
systems and their application in audio signal processing,” in
Proc. IEEE Int. Conf. on Acoustics, Speech, and Sig. Proc.,
Phoenix, AZ, March 1999.

[7] G. Crist́obal and L. Cohen, “Scale in images,” inProc. SPIE
Int. Symposium on Optical Sc., Eng. and Instr., Denver, CO,
1996.

[8] G. Evangelista, “Time and frequency warping musical sig-
nals,” inDigital Audio Effects, U. Zölzer, Ed., pp. 439–447.
John Wiley and Sons, Ltd., Chichester, Sussex, UK, 2002.

[9] H. Sundaram, S. D. Joshi, and R. K. P. Bhatt, “Scale peri-
odicity and its sampling theorem,”IEEE Trans. on Signal
Processing, vol. 45, no. 7, pp. 1862–1864, July 1997.

[10] J. Bertrand, P. Bertrand, and J. P. Ovarlez, “Computation
of affine time-frequency distributions using the fast mellin
transform,” inProc. IEEE Int. Conf. on Acoustics, Speech,
and Sig. Proc., 1992, pp. 117–120.

[11] J. O. Smith and P. Gossett, “A flexible sampling-rate con-
version method,” inProc. Int. Conf. Acoustics, Speech and
Signal Processing, 1984, pp. 19.4.1–19.4.2.

DAFX-5

Proc. of the 7 th Int. Conference on Digital Audio Effects (DAFx'04), Naples, Italy, October 5-8, 2004

— DAFx'04 Proceedings —69 69

http://www.w3k.org/books/
http://www.w3k.org/books/
http://www.mondo-estremo.com/
http://www.mondo-estremo.com/

	P_065.pdf
	A FAST MELLIN TRANSFORM WITH APPLICATIONS IN DAFX
	1  Introduction
	2  The Scale and Mellin Transforms
	2.1  The scale transform interpretation
	2.2  Relation with the Fourier transform

	3  The Fast Mellin Transform
	4  Digital audio effects in Mellin (scale) domain
	4.1  Time scaling in Mellin domain
	4.2  Signal reconstruction using only magnitude or phase
	4.3  Low-pass and high-pass filtering
	4.4  Phase with random deviations

	5  Conclusion
	6  References

	De Sena
	Rocchesso




