
Isabella Mastroeni

Abstract Non-Interference -

An Abstract Interpretation-based

approach to

Secure Information Flow

Ph.D. Thesis

31 Marzo 2005

Università degli Studi di Verona

Dipartimento di Informatica

Advisor:
prof. Roberto Giacobazzi

Series N◦: TD-02-05

Università di Verona
Dipartimento di Informatica
Strada le Grazie 15, 37134 Verona
Italy

Summary

In this thesis, we show how the framework of abstract interpretation can be used
for certifying the security degree of programs. In particular, the idea consists in
observing that, if we model attackers as abstract domains, then by transforming
these domains, we can manipulate attackers, characterizing which is the most pow-
erful attacker for which a program is secure. Therefore, the central notions used
in this thesis are abstract domain transformers and secure information flows (also
called non-interference). First of all, we introduce an algebra defining a frame-
work where we can design, classify and compare abstract domain transformers.
In particular, we show that the standard Cousot and Cousot theory of abstract
interpretation, based on the so called adjoint-framework of Galois connections,
can be directly applied to reason about abstract domain transformers, yet pro-
viding formal methodologies for the systematic design of these transformers. The
key point is that most domain transformers can be viewed as suitable problems of
achieving precision with respect to some given semantic feature of the program-
ming language we want to analyze. This is exactly the philosophy that lead us to
the design of the transformer providing the most powerful harmless attacker that
cannot violate non-interference, i.e., the most powerful observer that is not able to
disclose any confidential information. Indeed, the main subject of this thesis is the
definition of the notion of abstract non-interference, obtained by parameterizing
standard non-interference relatively to what an attacker is able to observe. This
notion is what we need for characterizing the secrecy degree of programs in the
lattice of abstract interpretations, by deriving the most powerful harmless attacker
for any program. The definition of abstract non-interference is based on the seman-
tics of programs. This means that we can enrich this notion simply by enriching
the considered semantics. Note that, abstract non-interference is a weakening of
the standard notion of non-interference, but it is not the first work with this aim,
for this reason we compare abstract non-interference with two of the most related
works: the PER model [106] and robust declassification [118].
In order to make the abstract non-interference certification more practical, we
introduce a compositional proof system whose aim is to certify abstract non-

ii Summary

interference in programming languages, inductively on the syntax of the languages,
following an a la Hoare deduction of secrecy. At this point, we show that abstract
non-interference can be formalized as a completeness problem, in the standard
framework of abstract interpretation. This allows us to characterize the derivation
of the most concrete public observer, i.e., the harmless attacker, and the derivation
of the most abstract private observable of the program (related to declassification)
as adjoint domain transformers. This adjoint relation formalize the intuitive dual-
ism between these two approaches introduced for weakening non-interference.
We conclude this thesis by showing how we can further enrich abstract non-
interference by adding the observation of time, and by generalizing abstract non-
interference in order to model the confinement problem also for computational
systems that are not programming languages. Indeed, we introduce the notion
of timed abstract non-interference, providing the appropriate setting for studying
how properties, of private data, interfere during the execution of programs, with
properties of the elapsed time. In this way, we obtain a notion of abstract non-
interference that avoids timing channels, namely information transmissions due
to the capability of attackers of observing time. Finally, we prove that abstract
non-interference can be generalized in order to cope with many well known models
of secrecy in sequential, concurrent and real-time systems and languages. This is
achieved by factoring abstractions in order to identify sub-abstractions modeling
the different properties of the system on which the notions of non-interference
are based. In particular, an abstraction decides the model of the system used for
defining non-interference, e.g., denotational semantics. A further abstraction de-
cides which is the aspect of computation that is observable, e.g., the computations
where private actions are avoided. Finally, the last abstraction considered charac-
terizes which properties of the computation the attacker can observe. These three
abstractions are composed for obtaining generalized abstract non-interference, and
depending on how we choose them, we decide the notion of non-interference that
we want to enforce.

Acknowledgments

The first person that I have to thank is my advisor Roberto Giacobazzi, who, in
these years, has been a friend, but above all a precious guide, teaching me how to
be independent, developing my ideas, and making me grow up as part of a group
and as scientific researcher.
I have also to thank very much Alessandro Finezzo whose friendly help as system
administrator of my pc has been really precious. I cannot forget to thank Mau-
rizio Atzori, Debora Botturi, Giuseppe Di Modica, Andrea Girardi, Antoine Miné,
Enrico Oliosi, Elodie-Jane Sims, Andrea Tessari for their sincere friendship, but
also all my friends and colleagues who made more pleasant to spend my days in
the department, among all Alessio, Arnaud, Damiano, Fausto, Giovanni, Giuditta,
Luca, Mila, Rosalba, Roberto (Segala), Samir.
It would be impossible not to quote my PhD thesis referees Patrick Cousot and
Chris Hankin, but also Sebastian Hunt, Massimo Merro, Francesco Ranzato and
Dave Schmidt for their precious advices and comments about my studies.
Clearly, most of my greatest thanks go to my family and in particular to my
husband Federico, who tolerated my ups and downs while I was working on this
thesis.

Contents

Table of Contents . V

Preface . VII

1 Introduction . 1
1.1 Non-interference in language-based security . 1
1.2 The problem: Weakening non-interference . 3
1.3 The idea: Attackers as abstract interpretations 5
1.4 Abstract non-interference: A versatile notion . 8
1.5 Algebra of domain transformers . 9
1.6 Structure of thesis . 12

2 Basic Notions . 15
2.1 Mathematical background . 15

2.1.1 Sets . 15
2.1.2 Algebraic ordered structures . 20

2.2 Abstract Interpretation . 27
2.2.1 Abstract domains individually . 27
2.2.2 Abstract domains collectively . 30
2.2.3 Equivalence relations vs Closure operators 31
2.2.4 Abstract domain soundness and completeness 34

3 A Geometry of Abstract Domain Transformers 41
3.1 Abstract interpretation in higher types . 42
3.2 Reversible transformers . 45

3.2.1 Shell vs core . 46
3.2.2 Complete shell vs core . 47
3.2.3 Expander vs compressor . 48
3.2.4 Complete expansion vs compression . 50

3.3 Making domain transformers right reversible . 63
3.4 The 3D geometry of completeness transformers 66

VI Contents

3.5 Discussion: The 3D scenario . 68

4 Computational Systems and Semantics . 71
4.1 Semantics . 72

4.1.1 Transition systems . 72
4.1.2 Cousot’s semantics hierarchy . 73

4.2 Computational systems . 78
4.2.1 A simple imperative language . 78
4.2.2 A process algebra: Spa . 81
4.2.3 Timed Automata . 82

5 Non-Interference in Language-based Security 85
5.1 Background: Defining non-interference . 86

5.1.1 Cohen’s strong and selective dependency 88
5.1.2 Goguen-Meseguer non-interference . 89
5.1.3 Semantic-based security models . 90

5.2 Background: Enforcing non-interference . 92
5.2.1 Standard security mechanism . 93
5.2.2 Denning and Denning Information flow static analysis 94
5.2.3 Security type systems . 95
5.2.4 The axiomatic approach . 97

5.3 Non-interference for different computational systems 98
5.3.1 Deterministic systems: Imperative languages 98
5.3.2 Non-deterministic and thread-concurrent systems 99
5.3.3 Communicating systems: Process algebras 101
5.3.4 Real-time systems: Timed automata . 104

5.4 Covert Channels . 105
5.4.1 Termination channels . 106
5.4.2 Timing channels . 106
5.4.3 Probabilistic channels . 107

5.5 Weakening non-interference . 107
5.5.1 Characterizing released information . 108
5.5.2 Constraining attackers . 111

6 Abstract Non-Interference: Imperative languages 113
6.1 Defining abstract non-interference . 115
6.2 Checking abstract non-interference . 121
6.3 Deriving attackers . 122

6.3.1 Characterizing secret kernels . 123
6.3.2 Deriving secret kernels . 126
6.3.3 Approximating the secret kernel . 133
6.3.4 Canonical attackers . 136

6.4 Abstract declassification . 140
6.5 Enriching the semantics . 144

Contents VII

6.5.1 Abstract non-interference on traces . 144
6.5.2 Abstract non-interference for non-deterministic languages . . . 146

6.6 Related works . 148
6.6.1 Abstract non-interference vs PER model 148
6.6.2 Abstract non-interference vs robust declassification 149

6.7 Discussion . 151

7 Proving Abstract Non-Interference . 153
7.1 Axiomatic abstract non-interference . 154

7.1.1 Proof system for invariants . 154
7.1.2 Proof system for Narrow non-interference 157
7.1.3 Proof system for Abstract non-interference 162

7.2 Non-deterministic case . 169
7.3 Discussion . 171

8 Abstract Non-Interference: A completeness problem 173
8.1 Abstract Non-Interference as Completeness . 174
8.2 The most concrete observer as completeness core 180
8.3 The most abstract observable as completeness shell 182
8.4 Adjoining observer and observable properties 185
8.5 Discussion . 187

9 Timed Abstract Non-Interference . 189
9.1 The timed semantics for a deterministic language 190
9.2 Timed abstract non-interference on traces . 191
9.3 Timed abstract non-interference in sequential systems 194
9.4 Discussion . 205

10 Generalized Abstract Non-Interference . 207
10.1 Generalized Abstract Non-Interference . 209

10.1.1 Deriving GANI attackers . 210
10.1.2 Abstract non-interference as GANI . 213
10.1.3 Timed abstract non-interference as GANI 216

10.2 GANI in concurrency . 217
10.3 GANI in real-time systems. 219
10.4 Discussion . 220

11 Conclusions . 221

List of Figures . 225

List of Tables . 227

References . 229

VIII Contents

Sommario . 237

Index . 239

Preface

The present thesis is composed by 11 chapters. Each chapter is provided with a
brief introduction explaining its contents, and all the chapters about original work
end with a discussion about the problems addressed in the chapter and the relations
with existing works. Much of the contents of this thesis have been published. In
particular, the Chapters 6,7,8,9 and 10 and the compression method provided in
Chapter 3 have been developed together with Roberto Giacobazzi. While Chapter 3
is based on works developed also together with Francesco Ranzato.
Given the number of joint works, I will opt for the academic “we” instead of “I”.
Finally, I would like to add some comments on the contents of this thesis. In
particular, I think that the presence of Chapter 3, with a lot of results that are
not used in the rest of the thesis, needs some explanations. Indeed, the work for
my PhD thesis started studying an algebra for abstract domain transformers. This
work lead us to the theoretical results explained in the chapter, but these results
needed a field of application. This has been one of the reasons that convinced us
to work on an old idea: to model security policies by abstract interpretation. So,
we started working on security, and in particular on non-interference in language-
based security. The definition of abstract non-interference has been the first result
of these studies, and represented for us, in the beginning, a very good application
for our algebra since it is based on an abstract domain transformer. But our work
has continued in this direction, and while on one side, abstract non-interference
well fit in the algebra of domain transformers, since it models two well known
problems in language-based security as adjoint transformers of abstract domains,
on the other side it showed us new fields of research and new ideas, new questions
have continued to arise in our mind, leading us to obtain the amount of work
presented in this thesis and with central subject abstract non-interference. For
these reasons the study of the algebra for abstract domain transformers is not
the main subject of this thesis. But these are also the reasons that convinced
us to present anyway the (unfortunately incomplete) algebra among the results
of the thesis. Therefore, a reader interested only in understanding abstract non-
interference and the domain transformers defined for characterizing attackers and

X Preface

observables, is not obliged to read the whole chapter. In particular, he/she can
read Chapter 3 only until page 47. All the other results presented, concern the
study of the algebra for abstract domain transformers and are not directly used
in the development of abstract non-interference.

Verona, March 31, 2005

1

Introduction

Fatti non foste a viver come bruti, ma per seguir virtute e canoscenza.

Dante Alighieri

Suppose that some source S sends you a program, whose task is that of im-
proving your financial investments. Suppose that you store all the information
about your investments on a data base on your personal computer and that this
software is free, under the condition that it can automatically send a log-file, con-
taining a summary of the usage you made of the software, to the developers of
the program. You could wonder if this program is secure [106]. The problem is
that this program can access to private information about financial investment,
and can send (public) information to S. You could wonder how one can be sure
that S is not catching private information (about financial investments) through
the observation of public information (log files). This is a clear example where it
is necessary to check if a program has only secure information flows of informa-
tion. This is a typical problem in language-based security and it is often called
non-interference. Non-interference, previously referred as confidential problem or
strong dependency, requires that no information about confidential data can be
disclosed by observing public information, while data are processed by programs.

1.1 Non-interference in language-based security

In the last decades, an important task of language based security is to protect
confidentiality of data manipulated by computational systems. Namely, it is im-
portant to guarantee that no information, about confidential/private data, can be
caught by an external viewer. In many fields, where protection of confidentiality is
a critical problem, the standard way used to protect private data is access control:
special privileges are required in order to read confidential data. Unfortunately,
these methods allow to restrict accesses to data but cannot control propagation

2 1 Introduction

of information. Namely, once the information is released from its container, it can
be improperly transmitted without any further control. This means that the se-
curity mechanisms, such as signature, verification, and antivirus scanning, do not
provide assurance that confidentiality is maintained during the whole execution
of the checked program. This implies that, to ensure that confidentiality policies
are satisfied, it becomes necessary to analyze how information flows within the
executed program. In particular, if a user wishes to keep some data confidential,
he might state a policy stipulating that no data visible to other users is affected
by modifying confidential information. This policy allows programs to manipulate
and modify private data, as long as visible outputs of those programs do not reveal
information about these data. A policy of this sort is called non-interference policy
[68], since it states that confidential data may not interfere with public data. Non-
interference is also referred as secrecy [111], since confidential data are considered
private, while all other data are public [39]. The difficulty of preventing a program
P from leaking private information depends greatly on what kind of observations
of P are possible [109]. If we can make external observations of P ’s running time,
memory usage, and so on, then preventing leaks becomes very difficult. For exam-
ple, P could modulate its running time in order to encode the private information.
Furthermore, these modulations might depend on low level implementation de-
tails, such as caching behaviours. But this means that it is insufficient to prove
confinement with respect to an abstract semantics, every implementation detail,
that affects running time, must be addressed in the proof of confinement. If, in-
stead, we can only make internal observations of P ’s behaviour, the confinement
problem become more tractable [109]. Internal observations include the values of
program variables, and everything is observable internally, e.g. time in real-time
systems.

In order to understand how this problem can be formalized, we have to go back
to the seminal paper [80], where the notion of confinement problem is introduced.
Consider a customer program and a service (host) program, the customer would
like to ensure that the service cannot access (read or modify) any of his data, ex-
cept those information to which he explicitly grants access (said public). In other
words, the confinement problem consists in preventing the results of the computa-
tion from leaking even partial information about confidential inputs. Clearly, if the
public data depends, in some way, on the private ones, then confinement becomes
a problem. This strict relation between the confinement problem and the depen-
dencies among data allows to describe the confinement problem as a problem of
non-interference [68] by using the notion of strong dependency introduced in [19].
In the latter, the transmission of information is defined by saying that information
is transmitted over a channel when variety is conveyed from the source to the des-
tination. Clearly, if we substitute source with private and destination with public,
then we obtain the definition of insecure information flow. More formally speak-
ing, Cohen in [19] says that information can be transmitted from a to b during the
execution of a system S, if by suitably varying the initial value of a (exploring the

1.2 The problem: Weakening non-interference 3

variety in a), the resulting value in b after S’s execution will also vary (showing the
variety is conveyed to b). The absence of strong dependency has been interpreted
as non-interference in [68], where non-interference is defined as:

“One group of users [...] is noninterfering with another group of users if
what the first group does [...] has no effect on what the second group of
users can see”.

Therefore, we have that security, defined as presence of only secure information
flows, is non-interference, which is absence of strong dependencies. These defi-
nitions are general and can be applied to different kind of computational sys-
tems. In general, the notion of non-interference is used to stipulate policies of
non-interference whenever a user wishes to keep some data confidential.

1.2 The problem: Weakening non-interference

The limitation of the notion of non-interference described so far is that it is an ex-
tremely restrictive policy. Indeed, non-interference policies require that any change
upon confidential data has not to be revealed through the observation of public
data. There are at least two problems with this approach. On one side, many real
systems are intended to leak some kind of information. On the other side, even if
a system satisfies non-interference, some kind of tests could reject it as insecure.
These observations address the problem of weakening the notion of non-interference
both characterizing the information that is allowed to flow, and considering weaker
attackers that cannot observe any property of public data.

Characterizing released information.

Real systems often intentionally leak confidential information, therefore it seems
sensible to try to measure this leakage as best as possible. The first work on this
direction is [19], where the notion of selective dependency is introduced, which
consists in a weaker notion of dependency, and therefore of non-interference, that
identifies what flows during the execution of programs. More recently, in literature
we can find other works that attack this problem from different points of view.

In [17], Shannon’s information theory is used to quantify the amount of in-
formation a program may leak and to analyze the way in which this depends on
the distribution of inputs. In particular, the authors are interested in analysing
how much an attacker may learn (about confidential information) by observing the
input/output behaviour of a program. The basic idea is the all information in the
output of a deterministic program has to come from the input, and what it is not
provided by the low input has to be provided by the high input. Therefore, this
work wants to investigate how much of the information carried by the high inputs
to a program can be learned by observing of the low outputs, assuming that the
low inputs are known.

4 1 Introduction

Shannon’s information theory is not the only approach, existing in literature,
for quantifying information flow. Indeed in [84] the capacity of covert channels,
i.e., the information flow quantity, is measured in terms of the number of high level
behaviours that can be accurately distinguished from the low level point of view.
The idea is that if there are N such distinguishable behaviours, then the high level
user can use the system to encode an arbitrary number in the range 0, . . . , N − 1
to send it to the low level user, in other words log2N bits of information are passed.

In literature, there exists another important, more qualitative, approach whose
aim is to discover which is the information that flows in order to declassify it for
guaranteeing non-interference. Declassifying information means downgrading the
sensitivity of data in order to accommodate with (intentional) information leak-
age1. Robust declassification has been introduced in [118] as a systematic method
to drive declassification by characterizing what information flows from confidential
to public variables. In particular, the observational attacker’s capability is modeled
by using equivalence relations, and declassification of private data is obtained by
manipulating these relations in a semantic-driven way.

Constraining attackers.

The standard notion of non-interference is based on the assumption that an at-
tacker is able to observe public data, without any observational or complexity
restriction. The idea is to characterize, in some way, which has to be the power of
the attacker that can disclose certain confidential properties from a given program.
From this point of view, one of the first approaches that offers a way for weakening
the observational capability is the PER model, where the power of the attacker
is modeled by equivalence relations [106]. However, some recent papers treat the
problem of weakening the power of the attacker in a more specific way.

The notion of non-interference is based on the concept of indistinguishability
of behaviours: In order to establish that there is no information flow between two
objects A and B, it is sufficient to establish that, for any pair of behaviours of the
system that differ only in A’s object, B’s observations cannot distinguish these two
behaviours. This observation suggests that it is possible to weaken non-interference
by approximating this indistinguishability relation [41]. In this paper, the authors
replace the notion of indistinguishability by the notion of similarity. Therefore,
two behaviours, though distinguishable, might still be considered as effectively
non-interfering, provided that they are similar, i.e., their difference is below a
threshold ε. A similarity relation can be defined by means of an appropriate notion
of distance and provides information on how much two behaviours differ from each
other. The power of the attacker is then measured since this quantitative measure
of the difference between behaviours is related with the number of statistical tests
needed to distinguish the two behaviours.

1 Note that this is similar to the Cohen’s notion of selective dependency [19].

1.3 The idea: Attackers as abstract interpretations 5

As noted above, the standard notion of non-interference requires that the public
output of the program do not contain any information (in the information-theoretic
sense) about the confidential inputs. This corresponds to an all-powerful attacker
who, in his quest to obtain confidential information, has no bounds on the resources
(time and space) that it can use. Furthermore, in these definitions an “attacker” is
represented by an arbitrary function, which does not even have to be a computable
function; the attacker is permitted essentially arbitrary power [82]. The observation
made in [82] is that, instead, realistic adversaries are bounded in the resources they
can use. For this reason, the author provides a definition of secure information
flow that corresponds to an adversary working in probabilistic polynomial time,
together with a program analysis that allows to certify this kind of information
flows.

1.3 The idea: Attackers as abstract interpretations

It is clear that, all the cited papers and works, can weaken non-interference only
for some aspects: either by allowing some information flow, or constraining attack-
ers. Our idea is to define a general framework where the notion of non-interference
can be weakened both allowing declassification and weakening the power of the
attacker, in the same model. First of all, we have to find a way for characterizing
how much an attacker may learn from a program. The idea is to consider attackers
as static program analyzers, that can (statically) analyze the input/output behav-
ior of programs by “observing” properties of data. The goal is to automatically
generate, from security polices, a certificate specifying that the given program has
only secure information flows. This is statically achieved to provide programs with
their appropriate certificates, characterizing the degree of secrecy of a program
relatively to what an attacker can analyze about the input/output information
flow.

In order to better understand how we mean to weaken the power of the attacker,
consider the following program, written in a simple imperative language, where the
while-statement iterates until x1 is 0. Suppose x1 is a secret variable and x2 is a
public variable:

while x1 do x2 := x2 + 2; x1 := x1 − 1 endw

Clearly, in the standard sense of non-interference, there is a flow of information
from x1 to x2, since, due to the while-statement, x2 changes depending on the
initial value of x1. This represents the case where no restriction is considered on
the power of the attacker. However, suppose that the attacker can observe only the
parity of values (0 is even). It is worth noting that if x2 is initially even, then it is
still even independently from the execution of the while, and therefore from the
initial value of x1. Similarly if x2 is initially odd then it remains odd independently
from the execution of the while, i.e., from the value of x1. This means that there’s

6 1 Introduction

no information flow concerning parity. In order to model these situations we need
to weaken standard non-interference relatively to what an attacker can observe
about program information flows. In this way, we are weakening the power of the
attacker since we model attackers that can observe properties of values, instead of
the values of public variables.
We said above that, in the same model, we want also to characterize the private
information that flows in programs, due to the semantics and to the attacker’s
observational capability. In order to understand how we can characterize what
flows, consider the following program fragment:

l := l ∗ h2

Suppose that the attacker can only observe the parity of the public variable l, then
it is clear that if we are interested only in keeping private the sign of h, then the
program is secure, since the only information disclosed, in this case, is its parity. In
this expression, it is the semantics of the program that puts a firewall that hides
the sign of h. Therefore, given the model of the attacker, we can characterize, not
only if there is an information flow, but also what is flowing, when it turns out
that the program is insecure.

Therefore, we exploit the notion of abstract non-interference by parameterizing
standard non-interference relatively to what an attacker can observe, and to what
the program’s semantics should not release about confidential data. The idea is to
consider attackers as static program analyzers whose task is to disclose properties
of private data by statically analyzing public resources. In particular, this idea
allows us to introduce a notion of non-interference which is relative to the attacker’s
observation of program execution. Hence, a program ensures secrecy with respect
to a given property, which can be statically analyzed by the attacker, if that
property on confidential data cannot be disclosed by analyzing public data. For
instance, in the first example above, any attacker looking at parity is unable to
disclose secrets about confidential data. In this sense the program is secret for
parity, while it is not secret relatively to stronger attackers, able to observe more
concrete properties of data such as how much a variable grows (e.g. by interval
analysis [28]). Since static program analysis can be fully specified as the abstract
interpretation of the semantics of the program [28], we can model attackers as
abstract interpretations.

In this thesis, we apply standard techniques, used in abstract interpretation,
in order to define a notion of non-interference, in language-based security, that
weakens attackers and allows intentional release of confidential information. In
particular, the attacker is modeled by two properties representing what it can
observe about public input, and what it can observe about public output. Both
these properties are abstract domains, since we suppose that the attacker’s obser-
vation consists in a static analysis of public data, inputs and outputs. By using
these properties, we can do a first weakening of non-interference, similar to what
have been done with partial equivalence relations [106], where the public observa-

1.3 The idea: Attackers as abstract interpretations 7

tions were modeled by equivalence relations. However, we note that we can further
weaken this notion by allowing intentional releases of confidential information. For
this reason we consider also a property on private data, modeling what, at least,
has to be kept private in order to guarantee non-interference. Therefore, abstract
non-interference is obtained by a step by step weakening of the standard notion
of non-interference. The important aspect of modeling attackers as static program
analyzers is that, in this way, we can inherit the whole theory of abstract inter-
pretation for manipulating attackers. In other words, we have that, in abstract
non-interference, by transforming abstract domains, we are transforming attack-
ers. This suggested us to use the existing theory on abstract domain transformers
for deriving attackers. In particular, the idea is to compare the security degree of
programs in the lattice of abstract interpretations. This can be obtained by associ-
ating harmless attackers with programs, namely by associating each program with
the most concrete observation of public outputs that cannot disclose any confiden-
tial property. Hence, we provide a systematic method for extracting, when possible,
the most precise (viz. most concrete) attacker for which a program ensures secrecy.
This is achieved by a fixpoint construction which simplifies abstract domains to-
wards the most concrete domain for which the program is secret as regards the
corresponding property. This “canonical” attacker represents, in the lattice of ab-
stract interpretations, the relative security degree of a program: Any other strictly
stronger attacker will violate secrecy. As we said above, abstract non-interference
can be also used for modeling the intentional release of confidential information.
In particular, we can derive a domain transformer that, given an attacker’s model,
characterizes which is the maximal amount of information that does flow during
the execution of a program. This is important in declassification. Declassifying
information means downgrading the sensitivity of data in order to accommodate
with intentional information leakage. Indeed, if we know the maximal amount of
information that flows, then we know which properties can be declassified in order
to be sure that non-interference cannot be violated. In particular, if we declassify
any more abstract property, then we cannot avoid confidential information leak-
ages. Moreover, the algebra of domain transformers allows us to prove that these
two transformations, providing the most concrete harmless attacker and the max-
imal amount of confidential information leaked, are adjoint functions, formalizing
the intuitive dualism existing between these two notions.

Abstract non-interference is defined by using denotational semantics, which
can be not very useful in practice. For this reason, we introduce a compositional
proof-system for certifying abstract non-interference in programming languages, in
a syntax-directed way. Certifying abstract non-interference means proving that the
program satisfies an abstract non-interference constraint relatively to some given
abstraction of its input/output, and we derive this certification inductively on the
program’s syntax, by defining a proof system. Assertions in the proof-system have
the form of Hoare triples: (η)P (ρ) where P is a program fragment and η and ρ

8 1 Introduction

are abstractions of program’s data. However, the interpretation of abstract non-
interference assertions is rather different from partial correctness assertions (see
[9]): (η)P (ρ) means that P is unable to disclose secrets if input and output values
of public variables are approximated respectively in η and ρ. Hence, abstract non-
interference assertions specify the secrecy of a program relatively to a given model
of an attacker and the proof-system specifies how these assertions can be composed
in a syntax-directed a la Hoare deduction of secrecy. The proof-system provides a
deeper insight in abstract non-interference, by specifying how assertions concerning
secrecy compose with each other. This is essential for any static semantics for
secrecy devoted to derive certificates specifying the secrecy degree of programs.

1.4 Abstract non-interference: A versatile notion

The semantic approach to non interference is interesting since it makes non-
interference a problem of the semantics chosen. In other words, the kind of non-
interference that we want to enforce depends on the semantics chosen for modeling
a computational system. This observation has been the key point in order to make
abstract non-interference a general notion. Indeed we noticed that, simply by con-
sidering the trace semantics instead of the denotational one, we are able to model
non-interference in presence of attackers able to observe the public memory of the
system during the whole computation, observing all the variations of the public
memory. On the other hand, if we consider a non deterministic denotational se-
mantics, then we can model the possibilistic non-interference for non-deterministic
systems, without changing the definition of abstract non-interference. While, if we
consider denotational semantics, modeling non termination of programs, then we
obtain notion of non-interference avoiding termination channels, namely that guar-
antee the soundness of the definition even in presence of attackers able to observe
non termination of programs. Finally, we observed that by considering a semantics
measuring also the time elapsed during the computation, and by considering this
time value as a public variable, then we model abstract non-interference that avoids
timing channels, namely that guarantees the soundness of abstract non-interference
even if attackers are able to observe the time elapsed during computations.

Anyway, we noticed that changing the semantics was not sufficient in order
to cover notions of non-interference defined on systems different from imperative
languages, such as process algebras and timed automata. This also because the
given notion of non-interference is based on the notion of variable, that is sig-
nificant only in programming languages, and uses denotational semantics, that
cannot model all the computational systems. Moreover, in literature, there exist
different notions of non-interference that better model the confinement problem
in systems based on finite state automata. In particular, while when considering
the semantics, we allow the private to interfere with the public as long as this
interference is not visible observing the output, in process algebras, for example,

1.5 Algebra of domain transformers 9

non-interference is not violated whenever private actions do not interfere with the
sequence of public actions at all. For this reason we start considering computational
systems modeled by their computational trees, embodying both their branching
and linear nature. At this point, we define generalized abstract non-interference by
using three abstractions: the first decides the semantic model on which we define
non-interference, e.g, denotational semantics or finite state automata, the second
decides what should be the maximal information observable by an attacker, e.g.,
all the computations with a fixed private input or all the computations where
private actions are not executed, finally the third characterizes the observational
capability of the attacker. This last abstraction is the one that we can transform
in order to guarantee non-interference, and which can be used for characterizing
the most concrete harmless attacker for the given notion of non-interference, in
the given computational system.

1.5 Algebra of domain transformers

The most important aspect of defining non-interference by using abstract inter-
pretation, is the possibility of systematically characterizing the secrecy degree of
programs, and in general of computational systems, by transforming abstract do-
mains, those abstract domains used for modeling the attackers. For this reason,
is important to introduce the theory of abstract domain transformers, and the
theory of how they can be designed. Standard abstract interpretation provides
advanced methods for the calculational design of static analyzers (see [26] for a
fully detailed example) from a formally defined semantics of the programming
language and from some given specification of how semantics has to be approx-
imated. However, no such methodologies, neither for deriving nor for classifying
abstract domain transformers, are known to provide an analogous calculational
design of domain operations. For this reason, in this thesis we study also an al-
gebra of abstract domain transformers. This algebra provides us with the right
tools and notions for defining and classifying abstract domain transformers. The
interest in such an algebra is, clearly, not limited to the field of abstract non-
interference treated in this thesis. It allows to lift abstract interpretation of one
level up, from denotations to domains and therefore it is a general characteriza-
tion that can be applied in many field of theoretical computer science. In recent
years we observed a growing interest in systematic design methods for program
analysis frameworks. This is mainly justified by the fact that the most successful
static analyzers are parametric with respect to the property of interest, in order to
easily handle the variety of possible analyses which can be designed and studied
for programs. Moreover, automatic methods for tuning these analyses in accuracy
and costs are needed in order to avoid reimplementation of analyses when these
are modified.

Indeed one of the most fundamental facts of abstract interpretation is that
most of its properties in approximating semantics, like precision, completeness,

10 1 Introduction

and compositionality, which may involve complex operators, fixpoints etc., all de-
pend upon the notion of abstraction, which is precisely and uniquely specified by
the chosen domain of properties [31]. Central in the construction of an abstract
interpretation is therefore the notion of domain. This is the case for instance in pro-
gram analysis, in type inference and in comparative semantics, where the various
abstract (approximate) semantics all correspond to suitable abstractions, namely
domains. In the literature, most of well known operations for refining and sim-
plifying domains are the result of either solutions to specific problems in refining
or simplifying domains (viz. disjunctive completion [31, 34], complete refinements
and kernels [65], reduced power [31] and Heyting completion [66]) or inherited
directly from the basic structure of the lattice of abstract interpretations (viz. re-
duced product [31], complementation [23]). Therefore, we would like to study a
general framework for the calculational design of abstract domain operations, in
such a way that systematic modification methodologies can be designed to modify
generic abstract interpreters, and moreover this framework would be the perfect
context for defining and classifying new abstract domain transformers. The main
idea to solve the problem of systematically design domain transformers is to use
the same abstract interpretation framework but now lifted one level up: the ob-
ject of discourse are domains instead of program state descriptions. The use of
abstract interpretation in higher types, later called higher-order abstract interpre-
tation2 will show the potential of abstract interpretation methods for reasoning
about abstract domain transformers.

We can show that the standard Cousot and Cousot theory of abstract inter-
pretation, based on the so called adjoint-framework of Galois connections, can be
directly applied to reason about abstract domain operations, yet providing formal
methodologies for the systematic design of abstract domain transformers. In par-
ticular, most domain transformers can be viewed as suitable problems of achieving
precision with respect to some given semantic feature of the programming language
we want to analyze. This observation has indeed an intuitive justification: the goal
of refining a domain is always that of improving precision with respect to some ba-
sic semantic operation (e.g., arithmetic operations, unification in logic programs,
data structure operations in simple and higher-order types). Analogously, simpli-
fying domains corresponds to the dual operation of reducing precision with respect
to analogous semantic operations. What turns out, is that most well known op-
erations for transforming domains can be interpreted in this way and that the
relation between refinement and simplification on domains is indeed an instance
of the same abstract interpretation framework lifted to higher types, i.e., where
the objects of abstraction/concretization are abstract domains. In particular, we
study how we can reverse abstract domain transformers, seen as closure operators.
We show that there exists two ways for reversing domain transformers: either con-

2 There is a fundamental distinction between this use of the term higher-order and the

one used in [34]. In [34] abstract interpretation theory was in fact applied to higher-

order programming languages.

1.5 Algebra of domain transformers 11

sidering their right adjoint functions, or considering their left adjoint functions,
when one or both of them exist. Depending on which inversion we can do, we can
interpret the domain transformer in different but precise ways. In particular, if a
refinement admits the left adjoint, then we call the refinement shell , in the sense
that it adds elements in order to guarantee a given property, and its adjoint core,
which erases elements in order to guarantee that the same property holds, exactly
as it happens for the completeness transformers [65]. While, if a refinement admits
the right adjoint then we call it an expander, and its inverse is a compressor , since
it finds the most abstract domain with the same refinement. We show that it is
always possible to make a transformer right reversible, while, even if we can char-
acterize left reversible refinements, we don’t have a method for making refinements
left-reversible.
Moreover, in the context of abstract domain completeness, we show a systematic
method for checking if an abstract domain completeness refinement admits the
corresponding compressor. All these studies provide an algebra of abstract do-
main transformers, that for completeness transformers is even more specified and
complex. Completeness transformers are considered specifically, since the domain
transformers used in the following of the thesis are completeness ones, but also be-
cause, in a more general setting, it is possible to show that most of the well known
domain transformers are indeed abstract domain completeness transformers.

State of the art.

Any formal method to compare or transform abstract interpretations is inherently
based on corresponding methods to compare and transform abstract domains. A
domain, at any level of abstraction, is a set of mathematical objects which represent
the properties of interest about a dynamic system, partially ordered with respect
to their relative degree of precision. In program analysis, for instance, the design
of analyzers corresponds to study a particular abstract domain, and modifying
domains corresponds to modify analyses. As recently proved (e.g., see [107] for
a reconstruction of groundness analysis in logic programming), the design of a
complex abstract domain is the result of a number of steps which can be in some
cases ingegnerized by applying suitable domain transformers to simpler domains
for the property of interest.

The foundation for a theory of abstract domains was fixed by Cousot and
Cousot in [31]. In that work the authors gave the main structure of abstract do-
mains enjoying Galois connections and some fundamental operators for systemat-
ically composing domains in order to achieve attribute independent and relational
analyses (respectively the reduced product and power operations). Since then, a
number of papers developed new domain operations and studied the impact of
these operations in the design of abstract interpreters for specific program analy-
sis and languages. These include Cousot and Cousot’s reduced product , disjunctive
completion and reduced cardinal power [31, 32, 34]; Nielson’s tensor product [98];
Giacobazzi et al. dependencies, dual-Moore-set completion, complete kernels and

12 1 Introduction

shells, Heyting completion, and least disjunctive basis in [62, 65, 66]; and Cortesi
et al. open product , pattern completion, and complementation [23,24]. The notion
of domain refinement and domain simplification, introduced in [44, 61], provided
the very first generalization of these ideas. Intuitively a refinement is any operator
performing an action of refinement with respect to the standard ordering of preci-
sion, e.g. by adding information to domains; while simplifications and compressors
perform the dual action of “weeding out” information from domains.

1.6 Structure of thesis

This thesis is structured as follows. In Chapter 2 we introduce the basic algebraic
notions that we are going to use in the following of this thesis. In Chapter 3, we
introduce the study of the algebra for abstract domain transformers. In particular,
we show that the standard Cousot and Cousot theory of abstract interpretation,
based on the so called adjoint-framework of Galois connections, can be directly ap-
plied to reason about abstract domain transformers, yet providing formal method-
ologies for the systematic design of these domain transformers. The key point in
this chapter is that most domain transformers can be viewed as suitable problems
of achieving precision with respect to some given semantic feature of the program-
ming language we want to analyze. This is exactly the philosophy that leads us to
the design of the transformer providing the most powerful harmless attacker in ab-
stract non-interference. In Chapter 4 we introduce the computational systems that
are considered in the following of this thesis and the possible semantics that can
be used for modelling them. In Chapter 5, we provide an excursus on the different
notions of non-interference, in different computer science fields, and we describe
the main approaches studied (see [104] for a survey). In particular, we first provide
a brief background about the notion of non-interference, and then we provide a
background about the existing techniques used for enforcing non-interference. We
conclude the chapter by describing some possible weakenings of the notion of non
interference, existing in literature.
In Chapter 6, we introduce the notion of abstract non-interference by parameteriz-
ing standard non-interference relatively to what an attacker is able to observe. We
use this notion, for characterizing the secrecy degree of programs in the lattice of
abstract interpretations, by deriving the most powerful harmless attacker for any
program. Moreover, we model in abstract non-interference also the intentional re-
lease of information and we derive an abstract domain transformers, characterizing
the maximal amount of information that flows. We conclude the chapter by show-
ing how we can enrich the notion simply by enriching the considered semantics,
and by comparing abstract non-interference with two of the most related works:
the PER model [106] and robust declassification [118]. In Chapter 7, we introduce
a compositional proof system whose aim is to certify abstract non-interference in
programming languages, inductively on the syntax of the languages, following an

1.6 Structure of thesis 13

a la Hoare deduction of secrecy.
In Chapter 8, we show that abstract non-interference can be formalized as a com-
pleteness problem, in the standard framework of abstract interpretation. This al-
lows us to characterize the derivation of the most concrete public observer, i.e.,
harmless attacker (defined in Chapter 6), and the derivation of the most abstract
private observable of the program (related to declassification) as adjoint domain
transformers. This adjoint relation formalize the intuitive dualism between these
two approaches for weakening non-interference.
In Chapter 9, we introduce the notion of timed abstract non-interference, provid-
ing the appropriate setting for studying how properties, of private data, interfere,
during the execution of programs, with properties of the elapsed time. In this way
we obtain an abstract non-interference that avoids timing channels, namely infor-
mation transmissions due to the capability of attackers of observing time.
Finally, in Chapter 10, we prove that abstract non-interference introduced in Chap-
ter 6 can be generalized in order to cope with many well-known models of secrecy
in sequential, concurrent and real-time systems and languages. This is achieved by
factoring abstractions in order to identify sub-abstractions modeling the different
properties of the system on which the notions of non-interference are based.
The thesis ends with Chapter 11, where we sum up the work done and we briefly
describe all the new ideas that we would like to exploit.

2

Basic Notions

I am ignorant of absolute truth. But I am humble before my ignorance,

and therein lies my honour and my reward.

Khalil Gibran

In this chapter, we introduce the basic algebraic notions that we are going
to use in this thesis. In particular, we describe the mathematical background,
recalling the notions of sets, relations and functions [79]. Afterwards, we also give
a brief description of the Scott hierarchy of ordered structures [67]. Moreover,
we recall the notion of fixpoint together with its constructive characterization
[110,30]. We introduce abstract interpretation [28,31], providing the fundamental
characterizations of abstract domain existing in literature. We describe the notions
of sound and complete abstractions, and we define the domain transformers that
make abstract domains complete [65].

2.1 Mathematical background

2.1.1 Sets

A set is a collection of objects (or elements). Typical examples of sets are natural
numbers N, integer numbers Z, and rational numbers Q. The notation x ∈ A,
where A is a set, denotes that the object x is an element of A, namely we say that
x belongs to A. The notation A ⊆ B means that A is subset of B, namely that
each element of A belongs also to B. For example, we write that N ⊆ Z. If A and
B are two sets, we say that they are equal, i.e., A = B, if A is subset of B and
viceversa, i.e., if A ⊆ B and B ⊆ A. We denote A ⊂ B (or A (B) the relation
of properly contained, namely A ⊆ B, but there exists an element in B that is
not in A. For example, we have that N (Z. In general, given two sets A and B,
if it exists an element in A [in B] such that it is not in B [in A] then we write

16 2 Basic Notions

A 6= B. The empty set, ∅, is the set without any element. This means that for
each element x we have x /∈ ∅, and for each set A we have ∅ ⊆ A.
Let A and B be two sets. The set A ∪ B (union) is the set of all the objects
belonging to A or to B: A ∪B def=

{
x
∣∣x ∈ A ∨ x ∈ B

}
.

The set A∩B (intersection) is the set of all the objects belonging both to A and to
B: A ∩B def=

{
x
∣∣x ∈ A ∧ x ∈ B

}
. The set ArB is the set of all the elements

of A that are not in B: ArB
def=
{
x
∣∣x ∈ A ∧ x /∈ B

}
. We say that two sets are

disjoint if their intersection is the empty set. Let A be a set, we define the powerset
of A, i.e., ℘(A), as the collection of all the subsets of A: ℘(A) def=

{
X
∣∣X ⊆ A }.

Relations

Let us see how it is possible to relate elements of sets. Let X be any set, and
consider two elements a, b ∈ X, we call ordered pair the element 〈a, b〉 such
that 〈a, b〉 6= 〈b, a〉. For each n ≥ 2 we define the ordered n-tuple of n objects
a0, a1, . . . , an−1 by 〈. . . 〈〈a0, a1〉, a2〉, . . .〉, denoted by 〈a0, a1, . . . , an〉.

Definition 2.1 (Cartesian product). Let {Ai}i<n be n sets. We define the
cartesian product of the n sets Ai as the set

A0 ×A1 × . . . An
def=
{
〈a0, a1, . . . , an〉

∣∣∀i < n. ai ∈ Ai

}
For any set S and for each n ∈ N, n ≥ 1, Sn denotes the n-th cartesian self product
of S. A generic tuple in Sn is denoted by σ, σi denotes its i-th component, and
σ[y/i] denotes the tuple obtained from σ by replacing σi with y. In general, a
relation between the elements of a set A and the elements of a set B is a subset
of the cartesian product A × B. In the particular case when A = B, a subset of
A×A is said binary relation on A. Let us see the possible properties of a relation,
and the main kinds of relation existing.

Definition 2.2 (Equivalence relation). We say that a binary relation R on A

is an equivalence relation on A if the following conditions on R hold:

(i) ∀x ∈ A . 〈x, x〉 ∈ R (reflexivity);
(ii) ∀x, y ∈ A . 〈x, y〉 ∈ R ⇒ 〈y, x〉 ∈ R (symmetry);
(iii) ∀x, y, z ∈ A . 〈x, y〉 ∈ R ∧ 〈y, z〉 ∈ R ⇒ 〈x, z〉 ∈ R (transitivity).

In the following, whenever 〈x, y〉 ∈ R we will also write xRy. If R fails the reflexive
condition then it is said partial equivalence relation (PER).
If A is a set with an equivalence relation R, we consider, for each x ∈ A, the subset
Ax of A containing all the elements y ∈ A such that yRx. These sets are called
equivalence classes of A as regards the relation R, and usually they are denoted
by [x]R, with x ∈ A.

Definition 2.3 (Partition). Let X be any set. P ⊆ ℘(X) is a partition of X if

•
⋃

P∈P P = X;

2.1 Mathematical background 17

• For all P1, P2 ∈ P either P1 = P2 or P1 ∩ P2 = ∅.

An equivalence relation induces a partition of the set on which it is defined, and
the elements of the partition are its equivalence classes. Each element of an equiv-
alence class can be used for uniquely representing the class. For this reason, in the
following, we sometimes identify partitions with equivalence relations.
Another important kind of relation is the order relation. It allows to order the
objects of a set in different ways.

Definition 2.4 (Partial order). Let P be a set. A partial order on P is a binary
relation ≤ such that, ∀x, y, z ∈ P :

(i) x ≤ x (reflexivity),
(ii) x ≤ y ∧ y ≤ x ⇒ x = y (antisymmetry),
(iii) x ≤ y ∧ y ≤ z ⇒ x ≤ z (transitivity).

An order relation R on P is said to be strict if it is irreflexive, i.e., ∀x ∈ P we
have 〈x, x〉 /∈ R. Clearly a non reflexive relation is not necessarily irreflexive. An
order relation on X is said linear order relation if every two elements of X are
comparable in the relation.

Definition 2.5 (Wellfounded relation). Let R be a binary relation on a set X.
We say that R is well-founded, if for every nonempty set Y ⊆ X there exists z ∈ Y
such that 〈y, z〉 /∈ R for any y ∈ Y r {z}. The relation R is strictly well-founded
if it is well-founded and irreflexive.

A linear, well-founded partial order is called well-order. In particular, a partial
order relation ≤ on a set X is well-founded if for every nonempty Y ⊆ X, the
poset 〈Y,≤〉 has a minimal element.

Functions

We now introduce a particular class of relations on sets. Let A and B be two sets.
A function (or map) f from A to B is a relation between A and B satisfying
the following condition: for each a ∈ A there exists exactly one b ∈ B such that
〈a, b〉 ∈ f , in this case we write b = f(a). Usually, such a function is denoted as
f : A→ B where A is called the domain of the function and B co-domain of f . We
will denote by a 7→ f(a) the fact that f associates with a the value f(a). If there
exists an element a ∈ A such that f(a) is not defined, then we say that f is partial,
otherwise f is said to be total. The set f(X) def=

{
f(x)

∣∣x ∈ X }
, is the image of

X ⊆ A under f . The image of the whole domain is called range of f . Instead, the
set f−1(X) def=

{
y ∈ A

∣∣ f(y) ∈ X
}

is the the inverse image of X ⊆ B under f .
Let us see some fundamental properties of functions.

Definition 2.6. Let f : A → B be a function. We say that f is one-to-one or
injective if for each a1, a2 ∈ A we have that f(a1) = f(a2) implies a1 = a2. We
say that f is onto or surjective if f(A) = B.

18 2 Basic Notions

Hence, a one-to-one function maps distinct elements in distinct elements, while an
onto function takes all the elements of the co-domain.
In general, if between two sets there exists a function that is both one-to-one and
onto, then the function is called bijection, and the two sets are isomorphic. Fi-
nally, a particular kind of function is the identity map, i.e., ιA : A → A, which
associates, with each element of A, the element itself.
Given two functions f : A → B and g : B → C, their composition is the func-
tion g ◦f : A → C which associates, with each element a ∈ A, the element
(g ◦f)(a) def= g(f(a)) ∈ C. Sometimes, in sake of simplicity, we will denote by gf

the composition g ◦f .
Moreover, we will denote by λx.f(x) the function f on the variable x. Consider two
sets S and T , and a natural number n ∈ N, if f : S → T then 〈f, ..., f〉 : Sn → Tn

denotes the componentwise extension of f , i.e., 〈f, ..., f〉 = λσ.〈f(σ1), ..., f(σn)〉.

Cardinalities, ordinals and induction

In this section, we describe how it is possible to measure the number of elements
contained in a set. The idea is to count , i.e, to associate with each element a
natural number. Let us see, how we can associate with each natural number a set
[79].

Definition 2.7. For each natural number let us define recursively the following
set: {

0 def= ∅
k + 1 def= k ∪ {k}

In this way we can define ω def=
{
n
∣∣n ∈ N

}
. Let us consider some properties of

these sets.

Definition 2.8. Let X be any set.

(a) ∀n ∈ ω we define ∪nX as {
∪0X = X

∪k+1X =
⋃

(∪kX)

(b) The transitive closure of X is defined as TC(X) =
⋃{
∪nX

∣∣n ∈ ω }.
(c) A set is transitive if TC(X) = X.

Example 2.9. Consider TC(3), where 3 = {0, 1, 2}.

∪03 = {0, 1, 2} = {∅, {0}, {0, 1}}
∪13 =

⋃
{∅, {0}, {0, 1}} = {0, 1} = {∅, {0}}

∪23 =
⋃
{∅, {0}} = {0}

...

2.1 Mathematical background 19

Hence, TC(3) = {0, 1, 2} = 3, namely 3 is transitive. Let us consider now X =
{{0}, {1}, {2}}.

∪0X = X

∪1X =
⋃
{{0}, {1}, {2}} = {0, 1, 2}

...

Namely TC(X) = X ∪ {0, 1, 2} 6= X, which means that X is not transitive.

We say that two sets A and B are equipotent , A ≈ B, if there exists a one-to-one
function from A onto B. Hence, a set A is finite if A ≈ n, for some n ∈ N, while
A is a numerable infinite set if there exists a one-to one function f : ω → A.
The relation ≈ is an equivalence relation, whose equivalence classes are called
cardinalities, denoted by | · |. Namely |X| is the collection of all the sets Y such
that Y ≈ X. In particular there exists n ∈ N such that n ≈ X, which identifies
the cardinality. In all the numerable sets, namely with at most the cardinality of
natural numbers, we can use a technique, called induction, for proving or defining
properties.

Principle 2.10 (Induction) A property p holds for all n ∈ N, i.e., p(n) true for
all n ∈ N, iff

1. p(0) is true;
2. For each n ∈ N, n > 0, we have that p(n) true implies p(n+ 1) also true.

Now we extend the previous notions in order to cope also with sets with a
number of elements greater than ω, i.e., with non-numerable sets.

Definition 2.11 (ordinal). A set α is an ordinal if α is transitive and strictly
well-ordered by ∈.

In the following, O will denote the class of ordinals. Give two ordinals α and β,
we say that α ≤ β if α ∈ β, and therefore α ⊆ β. For each ordinal α, its successor
S(α) = α∪{α} is an ordinal. Hence, α can be a finite ordinal only if it is a natural
number, and the first infinite ordinal is ω. In particular ω is the smallest ordinal
α such that {

α 6= 0
∀β ∈ α . S(β) ∈ α

Let us define the least upper bound (see Def. 2.18) of a set of ordinals.

Theorem 2.12. Let A ⊆ O, then

•
⋃
A ∈ O;

• If ∀α ∈ A . ∃β ∈ A . α ≤ β, then
⋃
A is the smallest ordinal that exceeds all

ordinals in A.

Each ordinal α is called successor ordinal if there exists an ordinal β such that
α = S(β). An ordinal which is not a successor ordinal is called a limit ordinal .
Now we extend the induction technique to non-numerable (transfinite) sets.

20 2 Basic Notions

Principle 2.13 (Transfinite induction) A property p holds for each ordinal α
if

1. p(0) holds;
2. For each ordinal β, if p(β) is true then also p(S(β)) is true;
3. For each limit ordinal γ, if we have that ∀η < γ we have that p(η) holds, then

also p(γ) holds.

See [79] for a complete description of the arithmetic on ordinals.

2.1.2 Algebraic ordered structures

A set is a collection of objects without any kind of structure. We would like to
work with structures that embody the relations existing among their objects.

Poset

Let us consider first, the structures obtained combining sets with order relations.

Definition 2.14 (poset). A set P with an order relation ≤ is said (partial) or-
dered set, denoted by 〈P,≤P 〉, and it is called poset.

Depending on the relation existing between the elements of a poset, we can classify
the structure in different ways. In particular, if, in a poset P , all the pairs of
elements are in the relation ≤P , then we say that P is a set with a total order and
P is said chain.

Definition 2.15 (Chain). A P poset is a chain if, for each x, y ∈ P , we have
x ≤P y or y ≤P x.

A chain is a totally ordered set. A set X is an anti-chain if for each pair of
elements x, y ∈ P r {⊥,>}, we have x 6≤P y and y 6≤P x. A typical example of
partial ordered set is the powerset ℘(X) of any set X. This poset is composed by
all the subsets of X and it is ordered by inclusion. This is a partial order since not
all the elements are in this order, e.g., {a, b} * {b, c} and {a, b} + {b, c}, for each
a, b, c ∈ X. Typical examples of totally ordered sets are the sets of numbers with
the classical order relation. Typical examples of anti-chains are the flat domains.

At this point we can think of inverting the order in a poset P . Namely, given
a generic poset P , we can build a new poset P δ (dual of P) defining x ≤P δ y iff
y ≤P x. This definition leads to the following principle:

Principle 2.16 (Duality) Given any theorem Φ, true for all the posets, its dual,
Φδ, holds for all the posets.

On a poset 〈P,≤P 〉 we can define two families of sets depending on the order ≤P .

2.1 Mathematical background 21

Definition 2.17. Let 〈P,≤P 〉 be a poset. We say that Q ⊆ P is an ideal of P if
we have that ∀x ∈ Q, y ∈ P . y ≤P x ⇒ y ∈ Q. We say that Q is a filter if it is
the dual of an ideal.

These two sets can be build starting from a subset of P . In particular, the filter
closure of a set Q ⊆ P , is the set ↑Q def=

{
y ∈ P

∣∣∃x ∈ Q . x ≤P y
}
, where 〈P,≤P 〉

is a poset. The set ↓ Q, ideal closure, is dually defined. We use the simplified
notation ↑x and ↓x for denoting ↑{x} and ↓{x}.

Definition 2.18. Let 〈P,≤P 〉 be a poset, and let X ⊆ P . We say that a is an
upper bound of X if ∀x ∈ X . x ≤P a, a is said maximal if it also belongs to X.
If the set of upper bounds has the smallest element m, then we call this element
least upper bound of X (shortly lub) and we write m =

∨
X.

If the lub belongs to P then it is said maximum (or top) and it is usually denoted
by >.

Dually, we define the notions of lower bound, minimal element, greatest lower
bound (glb) of a set X, denoted by

∧
X, and minimum (or bottom), denoted by

⊥. In the following, we will denote by max(X), the set of all the maximal elements
in X, and by min(X) the set of all the minimal ones.
We can note that if a poset has top (or bottom), then it is necessary unique for
the antisymmetry property of the order relation. In general, we denote by x ∧ y
and x ∨ y, respectively the elements

∧
{x, y} and

∨
{x, y}.

Lattices and cpo

Let us consider some more complex ordered structures.

Definition 2.19 (Directed set). Let P be a poset. We say that P is a directed
set if each non-empty finite subset of P has least upper bound in P .

For example a chain is always a directed set. Let us define a complete partial
ordered set in the following way.

Definition 2.20 (cpo). A complete partial order on directed sets (dcpo or cpo)
is a poset 〈P,≤P 〉 such that ⊥ ∈ P and for each directed set D in P we have∨
D ∈ P .

Every finite poset is a cpo. The set of all the natural numbers, with the usual
order, is a cpo only if we add the limit element ω, since, without it, we don’t have,
in the set, the least upper bound of all the natural numbers.

Proposition 2.21. A poset 〈P,≤P 〉 is a cpo iff each chain in P has least upper
bound.

Let us introduce the important notion of lattice.

22 2 Basic Notions

Definition 2.22. Let 〈P,≤P 〉 be a poset. P is a semi-lattice as regards ∨P [∧P] if
∀x, y ∈ P .x∨P y ∈ P [∀x, y ∈ P .x∧P y ∈ P]. It is a lattice if it is a semi-lattice as
regards both ∨P and ∧P . The lattice is said to be complete if ∀S ⊆ P .

∨
P S ∈ P

and
∧

P S ∈ P .

The lattice described in Def. 2.22 is denoted by 〈P,≤P ,∨P ,∧P ,>P ,⊥P 〉. A typical
example of complete lattice is the powerset of X where the glb operation is the
intersection, while the lub operation is the union of sets. Let us consider now other
characterizations of complete lattices.

Theorem 2.23. Let P be a poset, P 6= ∅. The following assertions are equivalent:

(i) P is a complete lattice;
(ii) For each subset S of P we have that

∧
P S exists in P ;

(iii) P has the > element and for each non-empty S of P we have
∧

P S exists in
P .

In the following, we will call domain a generic ordered structure 1. Note that, if
P is a complete lattice, then a cartesian product Pn (called direct product) is still
a complete lattice under the canonical componentwise ordering induced from P .
The following particular kind of complete lattice is very important when speaking
of abstract interpretation

Definition 2.24 (Moore family). Let L be a complete lattice. X ⊆ L is a Moore
family of L if X =M(X) def=

{ ∧
S
∣∣S ⊆ X }

, where
∧

∅ = > ∈M(X).

In general, for each X ⊆ L, M(X) is called Moore closure of X in L, i.e., M(X)
is the smallest (w.r.t. inclusion) subset of L which contains X and which is a
Moore family of L. Let us define the notion of irreducible elements of a lattice. In
a complete semi-lattice, an element is irreducible if it cannot be obtained as glb
[lub] of two other elements.

Definition 2.25 (Meet-irreducible). An element p ∈ L, p 6= >, with L being a
lattice, is called meet-irreducible if p = x ∧L y implies p = x or p = y.

In the following we will denote by Mirr(L) the set of meet-irreducible elements
in a lattice L. The join-irreducible elements are dually defined and are denoted
by Jirr(L). We say that a lattice L is meet-generated by its meet-irreducibles iff
L = M(Mirr(L)), namely if the Moore closure of these elements generates each
element of the lattice. Dually, we can define a join-generated lattice. The following
proposition shows how it is possible to characterize the meet-irreducible elements
of a powerset.

Proposition 2.26. Let A be a set, and X ⊂ A, then X is meet-irreducible in ℘(A)
iff there exists a ∈ A such that X = Ar {a}.

1 Recall that, for Scott, a domain is a ω-dcpo, namely a domain in which the limits of

directed sets with numerable cardinality exist.

2.1 Mathematical background 23

Corollary 2.27. ℘(A) =M(Mirr(℘(A)))

Let us define now the set of atoms [co-atoms] of a lattice.

Definition 2.28 (Atom). Let P be a poset with bottom ⊥. We say that a ∈ P ,
a 6= ⊥, is an atom of P if for each x ∈ P , with x 6= ⊥, we have that ⊥ ≤P x ≤P a

implies x = a.

The notion of co-atom is dually defined. A lattice is called atomistic when it is
join-generated by its atoms. A lattice is co-atomistic if it is meet-generated by its
co-atoms. Therefore, if a lattice is co-atomistic, then the set of its Mirr coincides
with the set of its co-atoms.

Definition 2.29 (ACC lattice). Let P be a poset. We say that P satisfies the
ascending chain condition (ACC) if for each x1 ≤ x2 ≤ . . . ≤ xn ≤ . . ., increasing
sequence of elements of P , there exists k ∈ N such that xk = xk+1 =

Dually, we can define a DCC lattice as a lattice without infinite descending chains.
At this point, we can give the following characterizations of complete lattices.

Theorem 2.30. Let P be a poset

(i) If P has the bottom, ⊥, and it is ACC then it is a complete lattice;
(ii)If P is both ACC and DCC then P is a complete lattice.

Functions on domains

Let us consider functions defined on ordered structures.

Definition 2.31 (Monotone function). Let 〈P,≤P 〉 and (Q,≤Q) be two posets.
A function f : P → Q is monotone (or order-preserving) if for each x, y ∈ P such
that x ≤P y we have that f(x) ≤Q f(y).

Namely, a monotone function preserves the order between two structures. The
function is an order-embedding when x ≤P y iff f(x) ≤Q f(y). The set of all the
monotone functions between two posets is denoted by (P m−→Q,v), it is ordered
pointwise, i.e., f v g if, for each x ∈ P we have f(x) ≤Q g(x)), and it is called
space of the monotone functions between P and Q. The following kind of functions
is very important in the study of semantics of programs.

Definition 2.32 ((Scott-)continuous function). Let P and Q be two cpo. A
function f : P → Q is (Scott-)continuous if it is monotone and for each directed
set D of P , we have f(

∨
P D) =

∨
Q f(D).

This means that a function is continuous if it preserves the limits of directed sets.
Moreover, by Proposition 2.21 [87], this notion can be equivalently formalized on
chains instead of on directed sets, namely f ∈ P → Q is continuous iff f preserves
lub’s of (non-empty) chains. We denote the space of continuous functions between
P and Q, ordered pointwise, as (P c−→Q,v). A function that preserves the bottom

24 2 Basic Notions

element, ⊥, is called strict. We denote the space of the strictly continuous functions
between P and Q, as P ⊥−→Q. We can define the co-continuous functions dually.
Now we introduce another important condition on functions which is additivity
([32]).

Definition 2.33 ((Completely) addittive function). Let P and Q be two
cpo. We say that a function f : P → Q is (completely) additive if for each subset
X of P , we have that f(

∨
P X) =

∨
Q f(X).

Therefore, an additive function preserves limits (lub’s) of all subsets of P (empty-
set included). This means that all the additive functions are also continuous. The
space of additive functions, ordered pointwise, is denoted by (P a−→Q,v). We can
dually define co-additive functions, whose space is denoted by (P coa−→Q,v).

Definition 2.34 (Join-uniform function). [63] Let L be a complete lattice. A
function f : L → L is join-uniform if for all Y ⊆ C we have that the implication
(∃x̄ ∈ Y. ∀y ∈ Y. f(y) = f(x̄))⇒ (f(

∨
Y) = f(x̄)) holds.

In other terms, f is join-uniform if it is additive for any family of elements for
which f is constant. Meet-uniformity is dually defined.

Scott hierarchy

In the following, we will introduce some classical characterizations of complete
lattices. First of all, we have to define an operation on elements of a complete
lattice: the complement.

Definition 2.35 (Complement). Let P be a poset with ⊥ and >. For each
x ∈ P we say that y ∈ P is the complement of x if it satisfies the following
condition:

(C) x ∧ y = ⊥ and x ∨ y = >

A lattice where each element has a complement is called complemented lattice.

Definition 2.36 (Boolean algebra). A boolean algebra (shortly Ba) is a com-
plemented and distributive lattice P , namely such that for each x, y, z ∈ P :

(D) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

A complete boolean algebra (shortly cBa) is a complete lattice that satisfies the
conditions (C) and (D), in Def. 2.35 and 2.36, respectively. It is well known that
(D) implies its dual condition, indeed each boolean algebra is isomorphic to its
dual. Another notion of complementation is the pseudo-complement.

Definition 2.37 (Pseudo-complement). Let L be a lattice, and let x ∈ L. We
say that x∗ is the pseudo-complement of x if the following condition holds:

(PC) x ∧ x∗ = ⊥ e ∀y ∈ L . x ∧ y = ⊥ ⇒ y ≤ x∗

2.1 Mathematical background 25

Hence, the pseudo-complement of an element x is the greatest element, whose glb
with x is the bottom (⊥). Note that the pseudo-complement has no condition on
the lub operation. A lattice is pseudo-complemented if each element of the lattice
has a pseudo-complement.
A lattice L is relatively pseudo-complemented if each pair of elements x, y ∈ L

has relative pseudo-complement x ∗ y: x ∧ x ∗ y ≤L y, and, if for each z ∈ L

we have x ∧ z ≤L y, then z ≤L x ∗ y. Birkhoff [14] proved that each relatively
pseudo-complemented lattice is also distributive.

Definition 2.38 (Complete Heyting algebra). A complete Heyting algebra
(shortly cHa), is a complete lattice P completely distributive, namely that satisfies
the following condition:

(CD) x ∧
∨
Y =

∨{
x ∧ y

∣∣ y ∈ Y }
for each x ∈ P and Y ⊆ P .

A Heyting algebra is a lattice, possibly not complete, which satisfies the property
(CD). This property can be also formalized in the following way:

Definition 2.39 (Heyting algebra). A Heyting algebra (shortly Ha) is a lattice
H such that

∀a, b ∈ H .
∨{

x ∈ H
∣∣a ∧ x ≤ b } ∈ H

Fixpoint theory

Let us consider the notion of fixpoint.

Definition 2.40 (Fixpoint). Let P be a poset, and let f : P → P be a func-
tion on P . Then x ∈ P is a fixpoint of f if f(x) = x. We will denote by
Fix(f) def=

{
x ∈ P

∣∣ f(x) = x
}

the set of all the fixpoints of f .

If ≤P is the partial order on P , we denote by lfp(f) the least fixpoint of f , namely
the unique element x ∈Fix(f) such that ∀y ∈Fix(f) .x ≤P y. Dually we can define
the notion of greatest fixpoint of f , i.e., gfp(f).

Definition 2.41. In the same hypothesis of Def. 2.40 we say that x ∈ P is
a pre-fixpoint of f if x ≤p f(x). We define Pre(f) def=

{
x ∈ P

∣∣x ≤P f(x)
}
.

We say that x is a post-fixpoint of f if f(x) ≤p x, and we define the set
Post(f) def=

{
x ∈ P

∣∣ f(x) ≤P x
}
.

At this point we can conclude that

Fix(f) = Pre(f) ∩ Post(f)

We are interested in constructive characterizations of fixpoints, in particular of
the least and of the greatest fixpoint. For this reason, we recall the Tarski theorem
[110].

26 2 Basic Notions

Definition 2.42 (Upper transfinite iteration sequence). Consider the com-
plete lattice 〈L,≤L,∨,∧,>,⊥〉. Let x ∈ L and let f : L → L be a monotone
function. We define the upper transfinite iteration sequence of f , {fα(x)}α∈O,
starting from x, as

f0(x) = x

fα+1(x) = f(fα(x)), α ∈ O
fβ(x) =

∨
α≤β f

α(x), for each limit ordinal β

Dually we can define the lower transfinite iteration sequence, where we use the
operator inf. When all the iterations of f exist and are well defined, we say that
the function is iterable.

Definition 2.43 (Stationary transfinite sequence). Given a function f , we
say that the sequence 〈fα(x), α ∈ O〉 is stationary if there exists an ordinal ε ∈ O
such that ∀β ≥ ε we have fβ(x) = f ε(x); in this case the limit of the sequence is
f ε(x), and ε is said closure ordinal. We denote as luis(f)(x) the limit of the upper
stationary sequence of f starting from x. Analogously we denote by llis(f)(x) the
limit of the lower stationary sequence of f starting from x.

Note that, if f is continuous, then this sequence has limit with a finite closure
ordinal. The following is the Tarski theorem.

Theorem 2.44. [110] Let 〈L,≤L,∨,∧,>,⊥〉 be a complete lattice and f : L→ L

be a monotone function, then the set of all the fixpoints of f is a complete lattice
such that the least and the greatest fixpoints are, respectively

lfp(f) =
∧

Post(f) e gfp(f) =
∨

Pre(f)

If f is continuous, then
lfp(f) =

∨
n≤ω

fn(⊥)

This theorem tells us that, if we have a continuous function on a complete lattice,
then its least fixpoint is the limit (that is obtained with at most ω steps) of the
iteration sequence obtained starting from the bottom of the lattice. Dually, starting
from the top of the lattice, we can find the greatest fixpoint of a co-continuous
function.

Theorem 2.45. Let f : L → L be a co-continuous function, defined on the com-
plete lattice 〈L,≤L,∨,∧,>,⊥〉, then

gfp(f) =
∧

n≤ω

fn(>)

Therefore, this characterization of least [greatest] fixpoint requires continuity
[co-continuity] of the considered function. This makes this characterization not-
constructive since, for example, when the function f is continuous, then we have a

2.2 Abstract Interpretation 27

method for finding the least fixpoint, but not for finding the greatest one. In [30]
it is described a constructive characterization of the Tarski theorem, which relax
the continuity condition, but requires a transfinite iteration. This allows to con-
structively characterize the complete lattice of the fixpoints of a function defined
on L. Note that, 〈Fix(f),≤L〉 ⊆ 〈L,≤L〉, where the operations, ∨,∧,>,⊥ are the
same as in L.

Theorem 2.46 ([30]). In the hypotheses of Def. 2.42, the set of the fixpoint of
f is a non-empty complete lattice ordered by ≤L, with bottom luis(f)(⊥) and top
llis(f)(>).

Therefore, the least and the greatest fixpoint of a monotone function can be found
as limits of the transfinite iteration sequences, respectively, lower and upper, start-
ing respectively from the bottom and from the top of the lattice. In particular, if
the function is continuous [co-continuous] the least [greatest] fixpoint has a finite
closure ordinal.

2.2 Abstract Interpretation

2.2.1 Abstract domains individually

In this section, we recall the Cousot and Cousot’s definition of abstract domain.
Let C be a complete lattice or cpo, playing the role of concrete domain, and A

be the poset of abstract objects ordered by their precision: x ≤A y if x is more
precise than y in describing a given computational property. The standard abstract
interpretation framework is funded on the adjoint relation between the abstract
and the concrete domain [28].

Galois connections

Let us introduce the typical tools used for defining abstract interpretations.

Definition 2.47 (Galois connection). Let (A,≤A) and (C,≤C) be two posets,
α : C → A and γ : A → C. We say that 〈A,α, γ, C〉 is a Galois connection (or
adjunction), shortly GC, if

• For each a ∈ A and for each c ∈ C we have that α(c) ≤A a ⇔ c ≤C γ(a).

In this case we write GC

(C,≤C) −→←−α
γ

(A,≤A).

When 〈A,α, γ, C〉 is a Galois connection, then α [γ] is called left adjoint [right
adjoint] of γ [α]. In general C is called concrete domain, A is called abstract domain,
α is also called abstraction and γ is also called concretization. Moreover, the fact
that the two functions are monotone means that, both the processes, of abstraction

28 2 Basic Notions

and of concretization, preserve the relative precision relation. Namely, if a concrete
element contains a greater amount of information if compared with another one,
then also its abstraction has to contain a greater (or equal) amount of information.
On the other hand, the condition x ≤ γ(y) ⇔ α(x) ≤ y [32] guarantees the
existence of the best approximation α(x) of x
Galois connections have two important properties:

• The function γα is extensive, i.e., ∀c ∈ C . c ≤C γα(c).
• The function αγ is reductive, i.e., ∀a ∈ A . αγ(a) ≤A a.

Therefore, we can observe that

∀a ∈ A . γαγ(a) = γ(a)
∀c ∈ C . αγα(c) = α(c)

The following results are proved in [32].

Proposition 2.48. If (C,≤C) −→←−
α1

γ1
(A,≤A) and (C,≤C) −→←−

α2

γ2
(A,≤A), then

α1 = α2 iff γ1 = γ2.

The consequence of this fact is that we represent a Galois connection simply by
giving its left adjoint or its right adjoint. In particular, each adjoint can be uniquely
determined by using the other one in the following way:

Proposition 2.49. If (C,≤C) −→←−α
γ

(A,≤A), then for each c ∈ C we can define
the function α(c) =

∧{
a ∈ A

∣∣ c ≤C γ(a)
}
. While, for each a ∈ A, we can define

the function γ(a) =
∨{

c ∈ C
∣∣α(c) ≤A a

}
.

This means that, α maps each element c ∈ C in the smallest element in A whose
image by γ is greater than c, as regards ≤C . Viceversa, γ maps each element a ∈ A
in the greatest element in C whose image by α is lower than a, as regards ≤A.

Theorem 2.50. (C,≤C) −→←−α
γ

(A,≤A) iff α is an additive map iff γ is a co-
additive map.

This means that, whenever we have an additive [co-additive] function between two
domains, we have a Galois connection between the two domains. More precisely,
whenever we have an additive function f , we can always build a Galois connection
by considering its right adjoint f+ def= λx.

∨{
y
∣∣ f(y) ≤ x

}
. On the other, hand

whenever we have a co-additive function f , we can always build a Galois connec-
tion by considering its left adjoint f− def= λx.

∧{
y
∣∣x ≤ f(y)

}
. In this conditions,

(f+)− = (f−)+ = f .

Definition 2.51 (Galois insertion). If (C,≤C) −→←−α
γ

(A,≤A) is such that αγ =
ιA, then we have a Galois insertion, GI, and we write (C,≤C) →−→←−α

γ
(A,≤A).

Proposition 2.52. Let (C,≤C) −→←−α
γ

(A,≤A), then the following assertions are
equivalent:

2.2 Abstract Interpretation 29

1. (C,≤C) →−→←−α
γ

(A,≤A);
2. α is onto;
3. γ is one-to-one.

Analogously, if γα = ιc, we say that the connection is a Galois projection and
we denote it as (C,≤C) −→←←−α

γ
(A,≤A). In this case, it is possible to prove that

α is one-to-one and that γ is onto. Note that a Galois insertion induces an order
structure from the domain C to the domain A.

Proposition 2.53. If 〈C,≤C〉 →−→←− 〈A,≤A〉, and the concrete domain C is a com-
plete lattice, then also A is a complete lattice.

We can always obtain a Galois insertion starting from a Galois connection. This
process is called reduction. This consists in collecting together all the elements
a ∈ A, that have the same image under γ. The following proposition shows how
we can compose Galois connections.

Proposition 2.54. If (C,≤C) −→←−
α1

γ1
(B,≤B) and (B,≤B) −→←−

α2

γ2
(A,≤A), then

we can define a Galois connection in the following way: (C,≤C) −→←−
α2α1

γ1γ2
(A,≤A).

Closure operators

Let us introduce the notion of closure operator.

Definition 2.55 (Upper closure operator). A function ρ : P → P on a poset
〈P,≤P 〉, is an upper closure operator (shortly upper closure or uco) if it satisfies
the following conditions:

(i) ∀x ∈ P . x ≤P ρ(x) (Extensivity);
(ii) ∀x, y ∈ P . (x ≤P y ⇒ ρ(x) ≤P ρ(y)) (Monotonicity);
(iii) ∀x ∈ P . ρρ(x) = ρ(x) (Idempotence).

Viceversa, if ρ is reductive, i.e., ∀x ∈ P . x ≥P ρ(x), then it is called lower closure
or lco.
Given a Galois connection (C,≤C) −→←−α

γ
(A,≤A), we can prove that the map γα

is an upper closure on C while αγ is a lower closure on A. This means that, while
in the abstraction process it is allowed to lose information, this is not possible in
the concretization process, hence we can say that, if c ∈ C, then α(c) is the most
precise abstract element that represents c. Viceversa, the upper closure operators
identifies Galois insertions. Moreover, Ward, in [115], provides a characterization
of Galois insertions in terms of Moore families.

Theorem 2.56. Let A and C two lattices, let α : C → A and γ : A → C. The
following assertions are equivalent:

• C →−→←−γ
α

A;
• A is isomorphic to a Moore family of C;

30 2 Basic Notions

• If ρ is an upper closure on C, and there exists an isomorphism ι : ρ(C) → A

(and therefore ι−1 : A→ ρ(C)), then C →−→←−
ι◦ρ
ι−1

A.

This means that each Galois insertion, and therefore each abstraction of C, can
be, uniquely, associated with an upper closure operator on C. Hence, it is possible
to describe abstract domains on C in terms of both Galois insertions and upper
closure operators [31]. In particular, the formulation of abstract domains through
upper closures is particularly convenient when reasoning about the properties of
abstract domains independently from the representation of their objects, i.e., in-
dependently from the name of objects in A [31].
Note that 〈ρ(C),≤〉, which is an abstraction of C by Theorem 2.56, is a complete
meet sub-semi-lattice of C (i.e., ∧ is its glb), but, in general, it is not a complete
sub-lattice of C, since the lub in ρ(C) — defined by λY ⊆ ρ(C). ρ(∨Y) — might be
different from that in C. ρ(C) is a complete sub-lattice of C (later called disjunctive
abstraction) iff ρ is additive. Dual results hold for lower closures.

2.2.2 Abstract domains collectively

The lattice LC of abstract interpretations of C (cf. [28, Section 7] and [31, Sec-
tion 8]), is the complete lattice of all possible abstract domains (modulo isomorphic
representation of their objects) of the concrete domain C, and it is isomorphic to
the lattice uco(C) of all the upper closure operators on C. Indeed, if C is a complete
lattice or a cpo, then

〈uco(C),v,t,u, λx.>, λx.x〉

is a complete lattice [100, 115], where for every ρ, η ∈ uco(C), {ρi}i∈I ⊆ uco(C)
and x ∈ C:

– ρ v η iff ∀y ∈ C. ρ(y) ≤ η(y) iff η(C) ⊆ ρ(C);
– (ui∈Iρi)(x) = ∧i∈Iρi(x);
– (ti∈Iρi)(x) = x ⇔ ∀i ∈ I. ρi(x) = x;
– λx.> is the top element, whereas λx.x is the bottom element.

The pointwise ordering on uco(C) corresponds precisely to the standard order-
ing used to compare abstract domains with regard to their precision: A1 is more
precise than A2 (i.e., A2 is an abstraction of A1) iff A1 v A2 in uco(C). Least
upper bounds and greatest lower bounds, on uco(C), have the following reading
as operators on domains. Let {Ai}i∈I ⊆ uco(C): (i) ti∈IAi is the most concrete
among the domains in LC which are abstractions of all the Ai’s, i.e., ti∈IAi is the
least (w.r.t. v) common abstraction of all the Ai’s; (ii) ui∈IAi is (isomorphic to)
the well-known reduced product (basically cartesian product plus reduction) of all
the Ai’s, or, equivalently, it is the most abstract among the domains in LC which
are more concrete than every Ai. Let us remark that ui∈IAi =M(∪i∈IAi).
Let us see now some properties of closure operators.

Proposition 2.57. Let ρ, η ∈ uco(C) and Y ⊆ C

2.2 Abstract Interpretation 31

1. ρ(
∧
ρ(Y)) =

∧
ρ(Y)

2. ρ(
∨
Y) = ρ(

∨
ρ(Y))

3. η v ρ ⇔ η ◦ ρ = ρ ⇔ ρ ◦ η = ρ

4. ([94]) ρ ◦ η ∈ uco(C) ⇔ ρ ◦ η = η ◦ ρ = ρ t η

Some of the most important operations on upper closure operators are: Reduced
product u [23,31], t, pseudo-complement 	 [23,45,59] and reduced (relative) power
−→ [31,64,66].

Reduced product

A simple method used for composing closure is reduced product, which allows to
build modular closures starting form simpler ones. We saw before that

(ui∈Iρi)(x) =
∧
i∈I

ρi(x)

namely, the reduced product is the smallest Moore family containing the set of
all the involved closures. In Fig. 2.1 we have two closures, Sign and Par, on ℘(Z),
which respectively consider the sign and the parity of integer numbers. In particu-
lar, 0+ represents all the non-negative integers, 0− all the non-positive integers, ev
all the even integers and od all the odd integers. By reduced product we obtain the
smallest, namely the most abstract, closure which contains the cartesian product
of the two closures.

Least upper bound of closures

The other operation in uco(C) is the least upper bound:

(ti∈Iρi)(C) =
⋂
i∈I

ρi(C)

Let us see an example in Fig. 2.2. In this case, we have two closures on ℘(Z).
The closure that we obtain as result is the set intersection of the two closures; the
greatest, namely the most concrete, closure contained in both the closures.

2.2.3 Equivalence relations vs Closure operators

In this section, we recall that there exists an isomorphism between equivalence
relations and upper closure operators [101], in particular, for each equivalence
relation on the domain C, R ⊆ C × C, we can define an upper closure operator
on ℘(C), CloR ∈ uco(℘(C)), and viceversa, from each upper closure operator
η ∈ uco(℘(C)) we can define an equivalence relation Relη ⊆ C × C.

Consider an upper closure operator η ∈ uco(℘(C)), we can define a correspond-
ing equivalence relation Relη ⊆ C × C, in the following way:

32 2 Basic Notions

••

•

•

•

u • •

•

•

=

��
��

��
�

??
??

??
?

???????

�������

??
??

??
?

�������

��
��

��
�

???????
0−0+

0

Z

∅

odev

Z

∅

•

•

(0+, Z) (0−, Z)(Z, ev) (Z, od)

(0−, ev) (0+, od)(0+, ev) (0−, od)

(0, ev)

44
44

44
44

4

ooooooooooooooooo

OOOOOOOOOOOOOOOOO

GG
GG

GG
GG

GG
GG

ww
ww

ww
ww

ww
ww

GG
GG

GG
GG

GG
GG

ww
ww

ww
ww

ww
ww

GG
GG

GG
GG

GG
GG

ww
ww

ww
ww

ww
ww

??
??

??

��
��

��

OOOOOOOOOOO

��
��
��
��
��
��

ttttttttttttttttttt

Z

∅

Fig. 2.1. Example of reduced product

•

•

• ••

• ••

•

•t
•

•

•

= •

•

•

JJJJJJJJJJ

tttttttttt

JJJJJJJJJJ

JJJJJJJJJJ

tttttttttt

tttttttttt

JJJJJJJJJJ

tttttttttt

JJJJJJJJJJ

???????????

��
��

��
��

��
�

tttttttttt

JJJJJJJJJJ

0−6= 00+

0

Z

−+

∅

Z Z

∅ ∅

od 0

ev

0

Fig. 2.2. Example of least upper bound of closures

∀x, y ∈ C . x Relη y ⇔ η({x}) = η({y})

Proving that Relη is an equivalence relation is immediate and doesn’t depend on
the fact that η is an uco, but only on the fact that it is a function.

2.2 Abstract Interpretation 33

Consider now an equivalence relation R ⊆ C×C, we can define a corresponding
upper closure operator CloR ∈ uco(℘(C)), in the following way:

∀x ∈ C . CloR ({x}) = [x]R
∀X ⊆ C . CloR (X) =

⋃
x∈X [x]R

Namely, CloR is obtained by disjunctive completion of the equivalence classes
induced by R . Proving that CloR is an upper closure operator is immediate. In
particular idempotence derives directly from the fact that R is an equivalence
relation. In [101] the closure CloR , as defined above, is identified as the most
concrete upper closure operator inducing the same partition as the relation R , and
it is called partitioning . Let πR the partition induced by R , then we can rewrite
the characterization of CloR in terms of abstract domain transformers:

CloR =
j

(M(πR)) =
j

(πR ∪ {C,∅})

Given a generic closure η, we can always associate with it the partitioning closure,
denoted by P(η), corresponding to the partition Relη, by using the isomorphism
described before. Moreover, we have that η = P(η) iff η is closed under ∨ and ¬
[102], therefore the following result holds.

Proposition 2.58. An upper closure operator η ∈ uco(℘(C)) is partitioning, i.e.,
η = P(η), iff it is complemented, namely if ∀X ∈ η. X def= C rX ∈ η.

Indeed, an upper closure operator η is always closed under glb, intersection in
this context, therefore whenever it is closed also under complementation, we have
that it is surely disjunctive, for the well known De Morgan laws. In the following
we have an example of partitioning closure associated with a partition.

Example 2.59. Consider Σ = {1, 2, 3, 4} and the partition π = {{1}, {2, 3}, {4}},
then the closure η with fix points {∅, {1}, {4}, {123}, Σ} induces exactly π as
partition of states, but the (unique) most concrete closure that induces π is Cloπ =b

({∅, {1}, {2, 3}, {4}}, Σ), which is exactly the closure on the right in Fig. 2.3.

O

1 2 3 4

1234

123

O

1 2 3 4

23

14

1234

123 234

partition induced
by a closure

corresponding
partitioning closure

Fig. 2.3. A partitioning closure.

34 2 Basic Notions

2.2.4 Abstract domain soundness and completeness

In this section, we introduce the notions of soundness and completeness of an
abstract domain as regards a given concrete function or operation. We said, in
the previous section, that the abstraction process introduces a loss of information,
therefore it may be possible that what is computed in the concrete, does not coin-
cide with what is computed in the abstract domain. Anyway, it is important that
what holds in the concrete, holds also in the abstract process. On the contrary, we
accept that in the abstract we have something more. This means that generally we
require the soundness of the abstract domain, while we can relax the completeness
requirement.

Soundness

In abstract interpretation there are two equivalent ways to express soundness of
abstractions [31].

Definition 2.60. Let 〈A,α, γ, C〉 be a GI, let f : C → C be a function on the
concrete domain, and let f] : A→ A be its abstraction. We say that the abstraction
is sound if

∀x ∈ C . α ◦f(x) ≤A f] ◦α(x) or, equivalently ∀x ∈ C . f ◦γ(x) ≤A γ ◦f](x)

This means that the abstract domain describes everything is described by the
concrete, and possibly much more. In Fig. 2.4 we have a graphical representation
of soundness. In particular, in Fig. 2.4(a) is represented the condition α ◦f(x) ≤A

f] ◦α(x), which compares the computational processes in the abstract domain. In
Fig. 2.4(b) is represented the condition f ◦γ(x) ≤C γ ◦f](x), which compares the
computational processes in the concrete domain.
We can note that there exists a particular abstract function f] that guarantees
soundness for f .

Theorem 2.61.

∀x ∈ C . α ◦ f(x) ≤A f] ◦ α(x) ⇔ ∀x ∈ C . α ◦ f ◦ γ(x) ≤A f](x)

As a consequence, we have that α ◦f ◦γ : A→ A is the best correct approximation
(bca) in A of f : C → C [31].

Completeness

Let us see in which conditions, the concrete and the abstract processes of calculus
preserve the same precision. In particular, as we have done for soundness, we can
think of comparing the two computational processes both in the abstract and in
the concrete domain. But, while the two different characterizations of soundness
are equivalent, they are not equivalent for completeness, namely when equality
is required. The most known notion of completeness compares the computational
results in the abstract domain and it is formalized as follows [31]:

2.2 Abstract Interpretation 35

> >]

f(x)

α
00

f](α(x))

α(f(x))

x

OO

**
α(x)

gg

⊥ ⊥]

(a)

> >]

γ(f](x)) f](x)

γ

kk

f(γ(x))

γ(x)

OO

x

OO

tt

⊥ ⊥]

(b)

Fig. 2.4. Soundness condition

Definition 2.62 (Complete abstraction). Let 〈A,α, γ, C〉 be a GI, and let
f : C → C be a concrete function. We say that f] : A → A is complete for f , on
the abstract domain α(C), if α ◦f = f] ◦α.

This completeness require that in the abstract domain, the abstract and the con-
crete computations provide the same result. In the following we call this notion
of completeness, backward completeness (B-completeness). In Fig. 2.5 we have the
graphical representation of this condition. This condition is not always true, for
each possible abstraction α, but if there exists a complete function for f in α(C),
then α ◦f ◦γ is also complete, and viceversa [31]. This means that it is possible to
define a complete function for f in α, iff α ◦f ◦γ is complete. Moreover, since γ
can be defined in terms of α, we can omit it, speaking of abstraction α complete
for the concrete function f [65].

Lemma 2.63. The function α ◦f ◦γ : A → A, is complete for f if and only if
γ ◦α ◦f ◦γ ◦α : C → C is such that γ ◦α ◦f ◦γ ◦α = γ ◦α ◦f .

If we consider ρ = γ ◦α, this condition can be rewritten as

ρ ◦f ◦ρ = ρ ◦f. (2.1)

36 2 Basic Notions

> >]

f(x)

α

33 f
](α(x))

x
**
α(x)

⊥ ⊥]

Fig. 2.5. Backward completeness condition

On the other hand, if we decide to compare the two computations in the concrete
domain, then we obtain another notion of completeness that we call forward com-
pleteness (F-completeness). In this case completeness holds iff f ◦γ(x) = γ ◦f](x).
In Fig. 2.6 we have the graphical representation of this condition. As before, we

> >]

f(γ(x)) f](x)kk

γ(x) x

γ

tt

⊥ ⊥]

Fig. 2.6. Forward completeness condition

can make this definition independent from the concretization and from the specific
abstract function, by considering the corresponding closure operator and the bca
of the concrete function f . In this way we can formalize forward completeness as

ρ ◦f ◦ρ = f ◦ρ. (2.2)

While B-completeness is well known in abstract interpretation, and corresponds
to the standard notion of completeness [65, 95], the notion of F-completeness is
less known. B-completeness means that the domain ρ is expressive enough such
that no loss of precision is accumulated by abstracting in ρ the arguments of f .
Conversely, F-completeness means that no loss of precision is accumulated by
approximating the result of the function f computed in ρ. Clearly, when ρ is both
B and F complete for f , then ρ is a morphism: ρ ◦f = f ◦ρ.

2.2 Abstract Interpretation 37

Completeness shells and core

In this section, we introduce a family of domain transformers that make an abstract
domain complete. The problem of making abstract domains B-complete has been
solved in [65]. These results have been extended to F-completeness in [60]. The key
point in this construction is that there exists an either B or F complete abstract
function f] in an abstract domain A iff the best correct approximation α ◦f ◦γ
of f in A is respectively either B or F complete. This means that both F and
B completeness are properties of the underlying abstract domain A relatively to
the concrete function f . These transformations are defined in terms of a function
f : C → C on the concrete domain and they transform an abstract domain
A, i.e., a closure operator, in order to make it complete for the given function
f adding or erasing the smallest possible amount of information. We can obtain
these transformers in two ways: by finding the most abstract domain that contains
A and which is complete (complete shell of A); or by finding the most concrete
domain contained in A and which is complete for f (complete core of A). These
two methods are provided in [65] for backward completeness. The generalization
to forward completeness is straightforward [60]. In a more general setting consider
the function f : C1 → C2 on the complete lattices C1 and C2, ρ ∈ uco(C2), and
η ∈ uco(C1). 〈ρ, η〉 is a pair of B[F]-complete abstractions for f if ρ ◦f = ρ ◦f ◦η
[f ◦η = ρ ◦f ◦η]. Consider the following sets

F(C1, C2, f) def=
{
〈ρ, η〉

∣∣ f ◦η = ρ ◦f ◦η
}

B(C1, C2, f) def=
{
〈ρ, η〉

∣∣ρ ◦f = ρ ◦f ◦η
}
.

In particular, when C1 = C2, we write respectively FR(C, f) and BR(C, f). At this
point, we consider domain transformations that allow to minimally transform any
abstract domain A, not complete for f , in order to get completeness.

Definition 2.64. Let f : C m−→C with C being a complete lattice. Let’s define

RBf
def= λρ.M(

⋃
y∈ρ max(f−1(↓y))) CBf

def= λρ.
{
y ∈ C

∣∣max(f−1(↓y)) ⊆ ρ
}

RFf
def= λρ.M(f(ρ)) CFf

def= λρ.
{
y ∈ C

∣∣ f(y) ⊆ ρ
}

All these functions, RBf and CBf , RFf and CFf , are defined on uco(C).

It is clear that RBf is monotone on uco(C), because f is monotone in the complete
lattice 〈℘(C),⊆〉. Moreover, by definition, RBf (X) v X. The idea is that the inverse
image of f contains all the elements that make a domain backward complete for
f . On the other hand, also RFf is clearly monotone, and the idea is that the image
of f contains all the elements that make a domain forward complete. Analogous
reasonings can be done for the other functions.

Consider first the cases when C1 = C2, and η = ρ, then we want to find the
shell and the core in B(C, f) def=

{
ρ
∣∣ρ ◦f = ρ ◦f ◦ρ

}
. Note that ρ ∈ B(C, f) iff

ρ v RBf (ρ), this is important because allows to build the complete domain as
fixpoint. Then the following result holds.

38 2 Basic Notions

Theorem 2.65. [65] Consider ρ ∈ uco(C) and suppose that it is not backward
complete as regards the concrete function f . The backward complete shell of ρ is

RBf (ρ) = gfpvρ λϕ.ρ uRBf (ϕ)

While the backward complete core of ρ is

CBf (ρ) = lfpvρ λϕ.ρ t CBf (ϕ)

where λϕ.ρ t CBf (ϕ) : uco(C)→ uco(C) and λϕ.ρ uRBf (ϕ) : uco(C)→ uco(C).

On the other hand, as far as the forward completeness is concerned, we look for
shells and cores in the set F(C, f) def=

{
ρ
∣∣ f ◦ρ = ρ ◦f ◦ρ

}
. Note that ρ ∈ F(C, f)

iff ρ v RFf (ρ), this is important because allows to build the complete domain as
fixpoint, in particular we have the following result.

Theorem 2.66. Consider ρ ∈ uco(C) and suppose that it is not forward complete
as regards the concrete function f . Then the forward complete shell of ρ is

RFf (ρ) = gfpvρ λϕ.ρ uRFf (ϕ)

While the forward complete core of ρ is

CFf (ρ) = lfpvρ λϕ.ρ t CFf (ϕ)

where λϕ.ρtCFf (ϕ) : uco(C) −→ uco(C) and λϕ.ρuRFf (ϕ) : uco(C) −→ uco(C).

Consider ` ∈ {B,F}. Note that R`
f ∈ lco(uco(C)) and C`

f ∈ uco(uco(C)) (see [65]).
It is worth noting that `-complete cores and shells are adjoint abstract domain
transformers, i.e., adjoint functions on the lattice of abstract interpretations.

Theorem 2.67. Let C1, C2 be complete lattices and f : ℘(C1)
m−→℘(C2). For any

η ∈ uco(C1) and ρ ∈ uco(C2): C`
f (η) v ρ⇔ η v R`

f (ρ).

In particular, it is possible to show that C`
f (η) v ρ⇔ η v R`

f (ρ).

Remark 2.68. If the function f is additive, then we can show that

max
{
x
∣∣ f(x) ≤ y

}
=
∨{

x
∣∣ f(x) ≤ y

}
= f+,

namely f admits the right adjoint f+ [60]. This means that in this case we have

B-completeness for f ⇔ F-completeness for f+

In [65] this notion of completeness is called absolute, while the most general
case, in which we consider the sets FR and BR introduced before, is called relative
completeness. At this point, we would like to characterize the shell and the core
also for relative completeness [65]. By extending the observations made in [65]
we have that the only interesting cases are the calculus of the backward/forward

2.2 Abstract Interpretation 39

complete core of ρ relative to η, and of the backward/forward complete shell of η
relative to ρ. Let ` ∈ {F ,B}, we have:

C`,η
f (ρ) = ρ t C`

f (η) `-Complete core of ρ relative to η;
R`,ρ

f (η) = η uR`
f (ρ) `-Complete shell of η relative to ρ.

Finally, note that by the definitions of the functions C`
f and R`

f , we can prove the
following relation:

C`,η
f (ρ) = ρ ⇔ η = R`,ρ

f (η) (2.3)

Indeed, ρ t C`
f (η) = ρ iff C`

f (η) v ρ, η u R`
f (ρ) = η iff R`

f (ρ) w η, and we have
seen above that C`

f (η) v ρ iff R`
f (ρ) w η.

Examples of completeness transformers

Most domain refinements can be specified, as F-complete refinements with respect
to a given semantic operation. Intuitively, a domain refinement adds the function-
alities of a given semantic operation of interest, namely the direct image of a
function f . This corresponds to saying that a domain refinement can be specified
as solution of a F-completeness problem. In the following we consider as example
the three basic operations for domain refinements originally introduced in [31],
namely disjunctive completion, reduced product and reduced power of domains.
A number of other operations can be specified in the same way as F-completeness
problems with respect to a given semantic operation. Clearly, whenever the oper-
ation f is additive, these characterizations all have an equivalent formulation in
terms of standard completeness.

Reduced product and pattern completion:

Reduced product corresponds to the glb operation in uco(C). Clearly any domain,
being a Moore family, is F-complete with respect to the binary and infinitary
∧ operation. Therefore, it is immediate that the least F-complete domain with
respect to ∧, that contains the domains A and B, is indeed A u B. A similar ob-
servation holds for patterns completion, like refinements introduced in [24], which
are basically reduced product where one argument is fixed. The following result
characterizes the pattern completion λX. A uX as a F-completeness problem.

Theorem 2.69. Let C be a complete lattice and A,B ∈ uco(C). B is F-complete
for the function λX. {a ∧ x | x ∈ X, a ∈ A} iff B v A.

Disjunctive completion:

It is well known that a domain is disjunctive whenever the corresponding closure
operation ρ is additive. Weaker forms of disjunctive completion are possible by
allowing finite additivity. Therefore, the disjunctive completion can be formulated
as follow [31,61,77]

40 2 Basic Notions

j
(X) =

⊔{
Y ∈ uco(C)

∣∣Y v X ∧ Y additive
}

The following result characterizes the disjunctive completion as a F-completeness
problem with respect to disjunction:

Theorem 2.70. Let C be a complete lattice and ρ ∈ uco(C).

1. ρ is finitely disjunctive iff ρ is F-complete for λX. {
∨
S | S ⊆fin X};

2. ρ is disjunctive iff ρ is F-complete for λX. {
∨
S | S ⊆ X}.

Therefore, in both cases, the disjunctive completion
b

(A) can be obtained by
solving the recursive equation X = A u RF∨ (X). A constructive characterization
of this solution can be obtained for co-continuous lattices.

Proposition 2.71. If C is a co-continuous lattice, then RF∨ is co-continuous in
uco(C).

Reduced power and Heyting completion:

The reduced power operation in [31] takes two input domains X and Y and returns
the domain of monotone functions from X to Y , denoted A→ B. A logical model
for this construction was studied in [66], under the hypothesis that C is a complete
Heyting algebra. If A,B ∈ uco(C) then

A→ B =M(
{
a→ b

∣∣a ∈ A, b ∈ B })
where a→ b = ∨

{
x
∣∣a ∧ x ≤ b } [66].

Theorem 2.72. Let C be a complete lattice and A ∈ uco(C). A is F-complete for
→ if and only if ∀a, b ∈ A. a→ b ∈ A.

As observed in [66], the function λA. gfp(λX. AuX → X) is a domain refine-
ment, which provides the Heyting completion of A. This operation can be defined
as a F-completeness problem: gfp(λX. A u X → X) is the most abstract solu-
tion of the recursive domain equation X = A u RFf (X) where the function is
f = λX. {x→ y | x, y ∈ X}.

3

A Geometry of Abstract Domain Transformers

Wisdom begins with wonder.

Socrate

Standard abstract interpretation provides advanced methods for the calcula-
tional design of static analyzers (see [26] for a fully detailed example) from a
formally defined semantics of the programming language and from some given
specifications on how semantics has to be approximated. An abstract interpreter
can, therefore, be derived automatically from these two specifications. However,
no such methodologies are known to provide an analogous calculational design
of domain operations. Most of well known operations for refining and simplifying
domains are in fact the result of either solutions to specific problems in refining or
simplifying domains (viz. disjunctive completion [31,34], complete refinements and
kernels [65], reduced power [31] and Heyting completion [66]) or inherited directly
from the basic structure of the lattice of abstract interpretations (viz. reduced
product [31], complementation [23]). The problem we want to attack in this chap-
ter is that of studying a general framework for the calculational design of abstract
domain operations, in such a way that systematic modification methodologies can
be designed to modify generic abstract domains.

The main idea, for solving the problem of systematically design domain trans-
formers, is to use the same abstract interpretation framework, but now lifted one
level up: the object of discourse are domains instead of program state descrip-
tions. A theory for the use of abstract interpretation to reason about abstract
domain transformers is the main contribution of this chapter. The use of abstract
interpretation in higher types, later called higher-order abstract interpretation will
show the potentiality of abstract interpretation methods to fully design versatile
abstract domain transformers.

42 3 A Geometry of Abstract Domain Transformers

In this chapter, we show that the standard Cousot and Cousot theory of ab-
stract interpretation, based on the so called adjoint-framework of Galois connec-
tions, can be directly applied to reason about abstract domain operations, yet
providing formal methodologies for the systematic design of abstract domain trans-
formers. We first show that most domain transformers can be viewed as suitable
problems of achieving precision with respect to some given semantic feature of
the programming language we want to analyze. This observation has indeed an
intuitive justification: the goal of refining a domain is always that of improving pre-
cision with respect to some basic semantic operation (e.g., arithmetic operations,
unification in logic programs, data structure operations in simple and higher-order
types). Analogously, simplifying domains corresponds to the dual operation of re-
ducing precision with respect to analogous semantic operations. We show that
most well known operations for transforming domains can be interpreted in this
way and that the relation between refinement and simplification on domains is
indeed an instance of the same abstract interpretation framework lifted to higher
types, i.e., where the objects of abstraction/concretization are abstract domains.

3.1 Abstract interpretation in higher types

The notion of abstract domain refinement and simplification has been introduced
in [44, 61] as a generalization of most well-known operations for transforming ab-
stract domains. In this section, we consider these notions as instances of a more
general pattern where abstract domain transformers have the same structure of
abstract domains. In the sake of simplicity we consider unary functions only, even if
all the following results can be easily generalized to generic n-ary functions. A do-
main transformer τ is any operator on uco(C). If τ is monotone then it preserves
the relative precision of the transformed domains. Following [61] we distinguish
between:

Domain refinements: A domain refinement τ : uco(C) → uco(C) is a function
refining domains, i.e., X ⊆ τ(X).

Domain simplifications: A domain simplification τ : uco(C) → uco(C) is a func-
tion simplifying domains, i.e., τ(X) ⊆ X.

Monotone refinements and simplifications can be associated with closure opera-
tors: If τ is a monotone refinement or simplification then λx. gfp(λy. x u τ(y))
and λx. lfp(λy. x t τ(y)) are the corresponding idempotent refinements and sim-
plifications [29]. Therefore, monotone refinements and simplifications may have
the same structure of abstract domains, as closure operators on uco(C), resp.
τ ∈ lco(uco(C)) and τ ∈ uco(uco(C)). This key observation will be the basis
in order to lift standard abstract interpretation in higher types, i.e., from a the-
ory for approximating computational objects, such as semantics, to a theory for
transforming abstract domains and domain transformers. We prove that Cousot

3.1 Abstract interpretation in higher types 43

and Cousot’s Galois connection based abstract interpretation theory is perfectly
adequate to develop a theory of abstract domain transformers providing these
transformations with the same calculational design techniques which are known
for standard abstract interpretation.

As we recalled in Section 2.2.1, standard Galois connection-based abstract in-
terpretation is based on the notion of adjointness. The following result, due to
Janowitz [15,76], characterizes the structure of adjoint closure operators.

Theorem 3.1 ([76]). Let 〈τ, τ+〉 and 〈τ−, τ〉 be pairs of adjoint closure operators
on C. Then:

(1) τ ∈ lco(C) ⇔ τ− ∈ uco(C) ⇔
{
τ− ◦τ = τ

τ ◦τ− = τ−

(2) τ ∈ lco(C) ⇔ τ+ ∈ uco(C) ⇔
{
τ+ ◦τ = τ+

τ ◦τ+ = τ

Note that, saying that 〈τ, τ+〉 is a pair of adjoint operators, means that τ is addi-
tive, and that τ+ = λx.

∨{
y
∣∣ τ(y) ≤ x }, while saying that 〈τ−, τ〉 is a pair of ad-

joint operators, means that τ is co-additive, and that τ− = λx.
∧{

y
∣∣x ≤ τ(y) }.

Stated in our terms, this result says that any (either right or left) adjoint of a re-
finement (simplification) is a simplification (refinement). This means that for any
refinement (simplification) we may have two possible simplifications (refinements)
corresponding to either the right or the left adjoint, when one or both of them
exist.
Let τ ∈ lco(uco(C)) be a domain refinement. By Th. 3.1, if τ− exists then:

τ−(τ(X)) = τ(X) and τ(τ−(X)) = τ−(X).

This means that τ− is a simplification such that both τ and τ− have the same sets
of fixpoints, namely τ− reduces any abstract domain X until the reduced domain
Y satisfies τ(Y) = Y . We call τ− the core of τ and τ the shell of τ−.

A

Simplification: S(A)

A

Refinement: R(A)

S(A)=R(S(A))

π holds: Shell of A
π doesn’t hold

π doesn’t hold
π holds: Core of A

Fig. 3.1. Shells vs cores.

44 3 A Geometry of Abstract Domain Transformers

The following proposition, provides a further characterization of the adjoint
closure operators as shell/core.

Proposition 3.2. Let τ ∈ lco(C) and η ∈ uco(C). If 〈τ−, τ〉 and 〈η, η+〉 are pairs
of adjoint operators, then

τ− = λx.
∧{

τ(y)
∣∣ τ(y) ≥ x }

η+ = λx.
∨{

η(y)
∣∣x ≤ η(y) }

Proof. Let us prove that
∧{

τ(y)
∣∣ τ(y) ≥ x } =

∧{
y
∣∣ τ(y) ≥ x } (the proof for

η can be obtained by duality). We suppose that 〈τ−, τ〉 is a pair of adjoint func-
tions, namely that τ is co-additive. We prove that the two implications of equality
separately. Note that{

τ(y)
∣∣ τ(y) ≥ x } ⊆ { y ∣∣ τ(y) ≥ x }
⇒

∧{
τ(y)

∣∣ τ(y) ≥ x } ≥ ∧{ y ∣∣ τ(y) ≥ x } .
On the other hand, τ is co-additive, therefore

τ(
∧{

y
∣∣ τ(y) ≥ x }) =

∧{
τ(y)

∣∣ τ(y) ≥ x } ≥ x
⇒ τ(

∧{
y
∣∣ τ(y) ≥ x }) ∈ { τ(y) ∣∣ τ(y) ≥ x }

This means, since τ is reductive, that∧{
y
∣∣ τ(y) ≥ x } ≥ τ(∧{

y
∣∣ τ(y) ≥ x }) ≥∧{

τ(y)
∣∣ τ(y) ≥ x } .

In this way we proved the equality.

In particular, if π ⊆ uco(C) is a
⊔

-closed property of abstract domains (where t
is the greatest lower bound of closures). It is clear that, if C ∈ π, then

Rπ
def= λX ∈ uco(C).

⊔{
Y
∣∣Y ∈ π∩ ↓X }

∈ lco(uco(C))

Rπ(X) is the most abstract domain refining X such that π holds (see Fig. 3.1). It
is clear that R−π exists iff π is a complete sublattice of uco(C). In this case, both
Rπ and R−π have the same set of fixpoints which is π, and

R−π
def= λX.

l{
Y
∣∣Y ∈ π∩ ↑X }

∈ uco(uco(C)).

The interpretation of the right adjoint of a refinement τ , when it exists, is quite
different. By Th. 3.1, if τ+ exists, then:

τ+(τ(X)) = τ+(X) and τ(τ+(X)) = τ(X).

In this case τ+(X) is not a fixpoint of τ . Instead, it returns the most abstract
domain whose precision can be lifted to that of X by refinement. The following
proposition, provides a further characterization of the adjoint closure operators as
expander/compressor.

3.2 Reversible transformers 45

Proposition 3.3. Let τ ∈ lco(C) and η ∈ uco(C). If 〈τ, τ+〉 and 〈η−, η〉 are pairs
of adjoint operators, then:

τ+ = λx.
∨{

y
∣∣ τ(y) = τ(x)

}
η− = λx.

∧{
y
∣∣ η(y) = η(x)

}
Proof. Let us prove the result for τ , the other case is obtained by duality. Since
we suppose that 〈τ, τ+〉 is a pair of adjoint functions, we are supposing that τ
is additive. We prove the two implication of equality separately. First of all note
that, since τ is reductive, i.e., τ(x) ≤ x, then{

y
∣∣ τ(y) = τ(x)

}
⊆
{
y
∣∣ τ(y) ≤ x }

⇒
∨{

y
∣∣ τ(y) = τ(x)

}
≤
∨{

y
∣∣ τ(y) ≤ x }

On the other hand, since τ(x) ∈
{
τ(y)

∣∣ τ(y) ≤ x }, by additivity of τ , we have
that

τ(
∨{

y
∣∣ τ(y) ≤ x }) =

∨{
τ(y)

∣∣ τ(y) ≤ x } ≥ τ(x)
Moreover, for each y, such that τ(y) ≤ x, we have τ(y) ≤ τ(x), by idempotence of
τ , therefore

τ(x) ≥
∨{

τ(y)
∣∣ τ(y) ≤ x } ⇒ τ(x) ≥ τ(

∨{
y
∣∣ τ(y) ≤ x })

Hence, τ(
∨{

y
∣∣ τ(y) ≤ x }) = τ(x), i.e.,

∨{
y
∣∣ τ(y) ≤ x } ∈ { y ∣∣ τ(y) = τ(x)

}
,

which implies ∨{
y
∣∣ τ(y) = τ(x)

}
≥
∨{

y
∣∣ τ(y) ≤ x } .

In this way we proved the equality.

Note that, τ+ reduces any abstract domain X such that τ(X) = X, towards the
most abstract domain Y such that τ(Y) = X. We call τ+ the compressor of τ
and τ the expander of τ+. In this case, if π ⊆ uco(C) is a

d
-closed property of

abstract domains (where u is the reduced product of closures) and {>} ∈ π then

Rπ
def= λX.

⊔{
Y
∣∣Y ∈ π∩ ↓X }

∈ lco(uco(C)).

Let π¬(X) def= {Y | Rπ(Y) = Rπ(X)}. If Rπ is co-additive, we have

R+
π

def= λX.
⊔{

Y
∣∣Y ∈ π¬(X)∩ ↑X

}
∈ uco(uco(C))

The idea here is thatR+
π (X) refines the domain towards the domain which includes

X and all those elements that Rπ would weed out (see Fig. 3.2).

3.2 Reversible transformers

When a transformer (simplification or refinement) admits an adjoint (right or
left), then we say that the refinement is reversible. Clearly, not all the domain

46 3 A Geometry of Abstract Domain Transformers

A

R(A)=R(B(A))
Base of A

Simplification: B(A)

A

Refinement: R(A) π doesn’t hold

π holds: Shell of A
π doesn’t hold

Fig. 3.2. Expander vs compressors.

transformers are reversible, because not all closures are either additive or co-
additive functions. However, adjointness can be weakened by considering only
those properties that make a transformer reversible, either as a pair shell/core
or expander/compressor. In the following, we describe the properties of invert-
ible refinements since the properties of invertible simplifications can be derived by
duality as shown above.

3.2.1 Shell vs core

By Prop. 3.2, the relation between the shell τ and the core τ− is characterized by
the fact that τ−(X) isolates the most concrete domain which is contained in X

and which is a fixpoint of τ :

τ−(x) =
∧{

τ(y)
∣∣x ≤ τ(y) }

While τ− ◦τ = τ always holds for any τ ∈ lco(C), the key property, which charac-
terizes the pair shell/core, is τ ◦τ− = τ− and it holds iff 〈τ−, τ〉 is a pair of adjoint
functions.

Theorem 3.4. Let τ ∈ lco(C). Then τ ◦τ− = τ− holds iff τ is co-additive.

Proof. We prove that ∀x ∈ C. τ(
∧{

τ(y)
∣∣ τ(y) ≥ x }) =

∧{
τ(y)

∣∣ τ(y) ≥ x } iff
τ is co-additive. If τ is co-additive then

τ(
∧{

τ(y)
∣∣ τ(y) ≥ x }) =

∧{
ττ(y)

∣∣ τ(y) ≥ x } =
∧{

τ(y)
∣∣ τ(y) ≥ x }

where the last equality holds by idempotence of τ .
Suppose, towards a contradiction, that the equality holds and that τ is not
co-additive. If τ is not co-additive, then there exists Z ⊆ τ(C) such that
τ(
∧
Z) 6=

∧
Z. Let’s prove that

∧
Z =

∧{
τ(y)

∣∣ τ(y) ≥ ∧Z }. Note that∧
Z ≤

∧{
τ(y)

∣∣ τ(y) ≥ ∧Z }. On the other hand, it is worth noting that

τ(y) ∈ Z ⇒ τ(y) ≥
∧
Z ⇒ τ(y) ∈

{
τ(y)

∣∣ τ(y) ≥ ∧Z }

3.2 Reversible transformers 47

Namely, Z ⊆
{
τ(y)

∣∣ τ(y) ≥ ∧Z }, therefore
∧
Z ≥

∧{
τ(y)

∣∣ τ(y) ≥ ∧Z }. So
we have the equality. Therefore we can conclude that

τ(
∧{

τ(y)
∣∣ τ(y) ≥ ∧Z }) = τ(

∧
Z) 6=

∧
Z =

∧{
τ(y)

∣∣ τ(y) ≥ ∧Z }
This means that the relation between shells and cores holds only in the standard
adjoint framework.

3.2.2 Complete shell vs core

We’ve just introduced the general notion of core. In Sect. 2.2.4 we introduced the
completeness core, which erases all the elements that make an abstract domain
incomplete. We want to characterize, in the completeness framework, when a com-
pleteness core exists, namely for which conditions on f the completeness shell for
f is reversible.
The following result characterizes the existence of F cores for a function f : C → C.

Theorem 3.5. Let C be a complete lattice and f : C → C be a monotone function.
Then RFf ∈ lco(uco(C)) is co-additive iff f is co-additive.

Proof. First of all note that, RFf = λX.M(f(X)) is co-additive iff the following
equations hold:

M(f(uiXi)) = uiM(f(Xi)) =M(∪iM(f(Xi))) =M(∪if(Xi))
=M(f(∪iXi))

This means that RFf is co-additive iff M(f(uiXi)) =M(f(∪iXi)). In particular,
if we consider {xi}i∈N ⊆ C, then we have M(f(ui{>, xi})) = M(f(∪i{>, xi})).
Hence, being f(

∧
i xi) ∈ M(f(ui{>, xi})), we have f(

∧
i xi) ∈ M(f(∪i{>, xi})).

It is worth noting that the least element in M(f(∪i{>, xi})) is
∧

i f(xi), there-
fore f(

∧
i xi) ≥

∧
i f(xi). On the other hand,by monotonicity of f , we have that

f(
∧

i xi) ≤ f(xi) for each i ∈ N, and therefore f(
∧

i xi) ≤
∧

i f(xi), by well-known
properties of greatest lower bound. So we have the equality and the co-additivity
of f . On the other hand, if f is co-additive then it is simple to prove that also RFf
is co-additive.

In the following, we show some example of F-complete cores associated with
the standard domain refinements in [31].

Product core:

Reduced product always admits a corresponding core. We consider the core asso-
ciated with the domain refinement λX. A uX, with A ∈ uco(C). In this case, by
Theorem 3.1, the corresponding core is defined as follows:

CF∧ = λX. u
{
Y
∣∣A u Y ⊆ X }

=
{
{>} X 6v A
X otherwise

48 3 A Geometry of Abstract Domain Transformers

Disjunctive core:

Let C be a Heyting algebra, i.e., a completely distributive lattice. This ensures that
the semantic operation ∨ is co-additive. Then, by Theorem 3.5, the disjunctive
completion

b
admits core CF∨ which is, by Theorem 3.1 defined as follows:

CF∨ = λX.
l{

Y
∣∣b(Y) ⊆ X

}
.

Intuitively, CF∨ (X) returns the most concrete disjunctive portion of X, namely the
largest disjunctive domain contained in X.

3.2.3 Expander vs compressor

By Prop. 3.3, the relation between the expander τ and its compressor τ+ is char-
acterized by the fact that τ+(x) is the most abstract domain which allows us to
reconstruct τ(x) by refinement:

τ+(x) =
∨{

y
∣∣ τ(x) = τ(y)

}
While τ+ ◦τ = τ+ always holds for any τ ∈ lco(C), the key property which
characterizes the pair expander/compressor, is τ ◦τ+ = τ and it holds iff τ is join-
uniform (see Def. 2.34). Join-uniformity captures precisely the intuitive insight
of the pair expander/compressor. If τ is join-uniform, and x ∈ C, then there
always exists a (unique) element

∨
Z, such that τ(

∨
Z) = τ(x) when we have

Z = {y ∈ C | τ(x) = τ(y)}. In this case,
∨
Z is the most abstract domain which

leads to the same domain refinement as x does. As observed in [63], τ+ may fail
monotonicity. In [63] the authors proved that τ+ is monotone on a lifted order
induced by τ .

Definition 3.6. [63] Let τ : C m−→C and 〈C,≤〉 be a complete lattice. The lifted
order ≤τ⊆ C × C is defined as follows:

x ≤τ y ⇔ (τ(x) ≤ τ(y)) ∧ (τ(x) = τ(y) ⇒ x ≤ y)

The lifted ≤τ is such that ≤⇒≤τ . The following theorem strengthen [63, Th. 5.10]1

proving the equivalence between reversibility and adjointness in the lifted order
for any lower closure.

Theorem 3.7. Let τ ∈ lco(L) and τ+ = λx.
∨{

y
∣∣ τ(y) = τ(x)

}
. The following

facts are equivalent:

1. τ ◦τ+ = τ ;
2. τ is join-uniform on ≤;
3. τ is additive on ≤τ and the right adjoint of τ on ≤τ is τ+.

1 In [63, Th. 5.10] the authors proved only that 1.⇔ 2.⇒ 3.

3.2 Reversible transformers 49

Proof. Since τ is join uniform if τ(
∨{

y
∣∣ τ(y) = τ(x)

}
) = τ(x), by definition, we

have that the equivalence of the first two points is straightforward. Let’s prove the
equivalence between the second and the third point, namely τ join-uniform on ≤
if and only if τ is additive on ≤τ . The fact that τ is additive on the lifted order
when it is join-uniform on the standard order comes by duality from [63, Th. 5.10].
Let us prove the other implication, and consider the definition of lifted least upper
bound [63]

∨
τ

Y =
{∨{

y ∈ Y
∣∣ τ(y) = τ(x)

}
if ∃x ∈ Y .

∨
τ(Y) = τ(x)∨

τ(Y) otherwise

Note that x ∈
{
y
∣∣ τ(y) = τ(x)

}
, and that

∨{
τ(y)

∣∣ τ(y) = τ(x)
}

= τ(x), there-
fore ∨

τ

{
y
∣∣ τ(y) = τ(x)

}
=
∨{

y ∈
{
z
∣∣ τ(z) = τ(x)

} ∣∣ τ(y) = τ(x)
}

=
∨{

y
∣∣ τ(y) = τ(x)

}
Hence we have

τ(
∨{

y
∣∣ τ(y) = τ(x)

}
) = τ(

∨
τ

{
y
∣∣ τ(y) = τ(x)

}
)

=
∨

τ

{
τ(y)

∣∣ τ(y) = τ(x)
}

= τ(x)

This is join-uniformity of τ on the order ≤. Let us prove that
∨

τ

{
y
∣∣ τ(y) ≤τ x

}
is the right adjoint of τ in the order ≤τ is τ+ when τ is join-uniform. Note that{

y
∣∣ τ(y) ≤τ x

}
=
{
y
∣∣ τ(y) ≤ τ(x), τ(y) = τ(x) ⇒ τ(y) ≤ x

}
=
{
y
∣∣ τ(y) ≤ τ(x) }

by reductivity of τ . This implies that
∨

τ

{
y
∣∣ τ(y) ≤τ x

}
=
∨

τ

{
y
∣∣ τ(y) ≤ τ(x) }

holds. Consider the definition of least upper bound given above and note that
x ∈

{
y
∣∣ τ(y) ≤ τ(x) }, and that

∨{
τ(y)

∣∣ τ(y) ≤ τ(x) } = τ(x), therefore∨
τ

{
y
∣∣ τ(y) ≤τ x

}
=
∨

τ

{
y
∣∣ τ(y) ≤ τ(x) } =

∨{
y
∣∣ τ(y) ≤ τ(x), τ(y) = τ(x)

}
=
∨{

y
∣∣ τ(y) = τ(x)

}
The relation between join-uniformity and meet-uniformity is preserved by the re-
lation of adjointness on the standard order.

Proposition 3.8. Let τ ∈ lco(L) be a join-uniform operator on ≤. Then we have
τ+(x) =

∨
{y|τ(x) = τ(y)} is meet-uniform on ≤.

Proof. First of all we can note that, by Theorem 3.7, τ join-uniform on ≤ implies
τ additive on the lifted order ≤τ that implies τ+ co-additive on this order. Note
that

τ(
∧{

y
∣∣ τ+(y) = τ+(x)

}
) = τ(

∧
τ

{
y
∣∣ τ+(y) = τ+(x)

}
)

by the dual of [63, Lemma 5.6]. For the properties of adjoint closures this implies
that

50 3 A Geometry of Abstract Domain Transformers

ττ+(
∧{

y
∣∣ τ+(y) = τ+(x)

}
) = ττ+(

∧
τ

{
y
∣∣ τ+(y) = τ+(x)

}
)

= τ(
∧

τ

{
τ+(y)

∣∣ τ+(y) = τ+(x)
}
)

(by co-additivity of τ+ on the lifted order)
= ττ+(x)

Therefore, τ(
∧{

y
∣∣ τ+(y) = τ+(x)

}
) = τ(x) which implies that

τ+τ(
∧{

y
∣∣ τ+(y) = τ+(x)

}
) = τ+τ(x)

and, by the equations of adjointness between closures, this implies that

τ+(
∧{

y
∣∣ τ+(y) = τ+(x)

}
) = τ+(x)

namely τ+ is meet-uniform on the order ≤.

Unfortunately, the inverse implication of Prop. 3.8 does not hold in general, as
we can see in the following example.

Example 3.9. In the figure below, we provide an example where the map τ+ is
meet-uniform, while τ is not join-uniform.

τ

+τ

yx

Indeed, note that τ+ = λX. >, which is clearly meet-uniform, while τ is not
join-uniform since, for instance, τ(x) = τ(y) 6= >, but τ(x ∨ y) = τ(>) = >.

3.2.4 Complete expansion vs compression

In this section, we want to characterize, in the completeness framework, when a
completeness compression exists. Namely, which conditions on f make the com-
pleteness refinement, for f , right reversible. Unfortunately, we have not found an
elegant characterization of the functions that make the completeness refinement
right reversible. Anyway, we derived a method for checking, given a function and
a domain, whether the domain admits a base for the completeness refinement. We
call base of ρ the result of the compression, when it exists, i.e., the most abstract
domain, contained in ρ, that have the same refinement as ρ. In particular, our
method is relative to the starting closure. This means that it allows to find the
base of a given domain, when it exists, but it cannot prove that the completeness

3.2 Reversible transformers 51

refinement is right reversible. We can only say, whenever the given domain does
not admit the base, that the corresponding refinement is not right reversible, i.e.,
not join uniform. Indeed, we can define a notion of relative join-uniformity . We
say that a function f : C → C is join-uniform relatively to an element x ∈ C

if f(
∨{

y ∈ C
∣∣ f(y) = f(x)

}
) = f(x). Clearly, if the refinement is join-uniform

relatively to an element, it is not necessarily join-uniform, on the other hand if
we find an element for which the refinement is not relative join-uniform, then it
cannot be join-uniform.

As we have seen in the previous section, if R is join-uniform, then there exists a
corresponding compressor K. This means that for each closure operator ρ ∈ uco(C)
we can find its base K(ρ) ∈ uco(C) with the same refined domain R(ρ). Here,
we provide a systematic method for simplifying finite abstract domains in order
to isolate the most abstract domain, when it exists, whose refinement towards
completeness for a given semantic function, f : C → C, returns a given domain,
here called base [50]. In the following, we would like to give some characterizations
of join-uniform, namely right-reversible, completeness transformers, in terms of
the function f for which we want completeness. We start from the consideration
that irreducible elements play a key role in designing domain compressors.

Definition 3.10. Consider the function f : C → C, the set of f-reducible elements
is ḟ(C) def=

{
x ∈ C

∣∣∃y ∈ C r {x} . f(y) = x
}
. The set of f-irreducible elements

is defined as firr(C) def= C r ḟ(C).

The idea is that x is f -reducible if x can be generated from elements which
are different from x. Consider the sequence obtained by iterating a function f :
f1(x) def= f(x) and fn+1(x) def= f(fn(x)). For x ∈ C define f∗(x) = Z ⊆ C if
∀z ∈ Z . ∃n ∈ N . fn(x) = z. The following proposition relates the lack of join-
uniformity to cycles via f in C. Note that, in sake of simplicity, in the following
of this section, we will denote by Rf the forward completeness refinement RFf .

Proposition 3.11. Let C a complete lattice and let Mirr(C) ∩ ḟ(C) = X 6= ∅.
If f : C m−→C and there exists Y ⊆ X and x1, x2 ∈ X such that x1 6= x2 and
f∗(x1) = Y = f∗(x2) then Rf is not join-uniform.

Proof. Consider the two trivial closures:

Z1
def= {>, x1} ∈ uco(C)

Z2
def= {>, x2} ∈ uco(C)

Then Z1 t Z2 = {>} ∈ uco(C). It is clear that Rf ({>}) = {>}, while Rf (Z1) =
M(Y) = Rf (Z2) 6= {>}. Namely Rf is not join-uniform.

Next example shows that, in general, the inverse of Proposition 3.11 doesn’t hold.

Example 3.12. Consider the lattice depicted below, and f as drawn in the picture:

52 3 A Geometry of Abstract Domain Transformers

⊥

ab

a b

>

c

f

Consider the closure operator {>, a, b, ab} (represented with a dashed line) and
the operator {>, b, c,⊥} (represented with a dotted line). Both these closures are
such that their refinements Rf give back the whole lattice, while their intersection
{>, b} is still complete but different from the whole lattice. In this case Rf is not
join-uniform and the hypotheses of Proposition 3.11 are not satisfied.

At this point, we would like to formalize a method consisting in an algorithm
that allows to characterize the base of any join-uniform completeness refinement.
The algorithm that we are going to describe [50], given a closure ρ, finds the most
abstract domain that generates Rf (ρ), when it exists. This is exactly the base of
ρ if the completeness refinement is join-uniform. The key idea is that each element
of the forward completeness refinement Rf (ρ) can be generated, starting from ρ,
by meet or by f . In the following, we give an intuitive idea of the algorithm, whose
aim is that of finding the most abstract domain ρ′, contained in ρ, able to generate
Rf (ρ) by completeness refinement, i.e., such that Rf (ρ) = Rf (ρ′).

1. Let us consider all the domains, more abstract than ρ, that cover ρ, i.e., all
the domains in the filter of ρ, obtained by erasing only one element from ρ2;

2. For each one of these elements we check if it can generate Rf (ρ). If none is
able to generate this domain, then ρ was minimal in the set of all the domains
that can generate Rf (ρ) by forward completeness refinement, and we put it
in a set denoted P(ρ). Otherwise we repeat the same step for all the domains
that can generate Rf (ρ).

3. When there are no more domains for which to check the generation of Rf (ρ),
we check the cardinality of P(ρ). If |P(ρ)| = 1, then it contains the most
abstract domain generating Rf (ρ), which is base of ρ when the refinement is
join-uniform. Otherwise the refinement cannot be join-uniform.

Note that, we always specify that we find the base only when the refinement
is join-uniform, this is due to the fact that we can have |P(ρ)| = 1 even if the
completeness refinement is not join-uniform. Indeed, as we have said before, with

2 Clearly, we can obtain these domains only by erasing elements that cannot be generated

from the others by meet, since the resulting domains have to be Moore families.

3.2 Reversible transformers 53

this method we can only check relative join-uniformity . Then we can say that if
|P(ρ)| = 1, then the refinement is join-uniform relatively to ρ, but not necessarily
join-uniform.

At this point, we can introduce the basic tools used in the algorithm. Hence, we
consider the domain ρ ∈ uco(C), to be compressed, and we consider a candidate
base δ ∈ uco(C), which is the domain that represents the domain, candidate to be
the base of ρ. In order to model join-uniformity, we need first to model when a set
of objects can be generated from a candidate base by domain refinement Rf .

Definition 3.13. Let C be a finite lattice, X ⊆ C, x ∈ C, and δ ∈ uco(C). Con-
sider f : C → C, then G(x) def= min

{
Z ⊆ C

∣∣x /∈ Z, (
∧
Z = x ∨ f(Z) = x)

}
3.

In any case,
x
X (δ) def=

{ ⋃
x∈X Yx

∣∣∣∣ ((G(x) 6= ∅ ∧ x /∈ δ) ⇒ Yx ∈ G(x)),
((G(x) = ∅ ∨ x ∈ δ) ⇒ Yx = {x})

}
;

In the definition above, G(x) is the set of all minimal (viz., non-redundant) sets
of elements that do not include x and generate x by either meet or f .

x
X (δ) is

the collection of all the sets that can generate X by one step of the completeness
refinement assuming δ to be the candidate base. This means that we have to find
only the elements generating X r δ. In order to design a method for filtering out
those objects that can be generated by domain refinement, and therefore that are
not in the base, we design a tree-like structure, where the descendant nodes of the
tree are sets of objects from which the ancestor can be derived by refinement. Given
an abstract domain δ ∈ uco(C), we introduce a binary relation →δ⊆ ℘(C)×℘(C)
such that X →δ Y if Y ∈

x
X (δ) (i.e. X ⊆ Rf (Y)). At this point, we define the

tree that we are going to use in the following. The definition is by induction and
the tree has finite depth. In order to guarantee this fact we need to avoid infinite
chains of generation by f or by meet. For this reason we consider finite domains.

Definition 3.14. Let δ ∈ uco(C) and x ∈ C.

• Γx(δ): x is the root;(
x� AndY Y ∈ G(x) ∧ x /∈ δ ∧ ∀y ∈ C . ∃m ∈ N . y�m x⇒ x 6= y

x 6� otherwise

∀ AndY ∈ Γx(δ) ∀y ∈ Y . AndY � Γy(δ).
• Leaves of Γx(δ):8<:Lx(δ) = {{x}} if in Γx(δ) x 6�

Lx(δ) =
[[̇ n

Ly(δ)
˛̨̨
x� AndY � y

o ˛̨̨
Y ∈ G(x)

ff
where for each X,Y ⊆ ℘(C) we have X∪̇Y =

{
X ′ ∪ Y ′

∣∣X ′ ∈ X, Y ′ ∈ Y
}
.

3 We abuse notation by denoting with f also its additive lift to sets f(X)
def
=

S
x∈X f(x).

54 3 A Geometry of Abstract Domain Transformers

We abuse notation by letting Γx(δ) to represent this tree. A path in the tree
from the root x to X represents a sequence of different sets of objects that, by
iteratively applying Rf , may generate x. Note that X is not a leaf in the tree (i.e.,
∃Y . X � Y) if X 6⊆ δ can be generated by Rf from a different set and there is
no cycle, in the path from the root to X.

Remark 3.15. Note that, if C is a finite lattice and ρ ∈ uco(C), then for each x ∈ C
the tree Γx(ρ) is finite by construction. Indeed there is a check on the existence
of cycles in Γx(δ), which avoids repetitions in the tree. Moreover, for each node X
which is not a leaf, i.e., such that

x
X (δ) 6= {X}, X 6⊆ δ, whenever Γx(δ) is without

cycles, we have that
x
X (δ) contains each possible minimal set, different from X,

that can generate, by either meet or f , all the elements of X that are not in δ.

In the following, we consider finite lattices C and monotone functions f : C → C.
Next proposition proves the correspondence between the tree construction and the
generation of objects in the refined domain.

Theorem 3.16. Let C be a finite lattice, δ ∈ uco(C) and x ∈ C. Then:

(1) Y ∈ Lx(δ) ⇒ x ∈ Rf (Y) and
(2) x ∈ Rf (δ) ⇒ ∃Y ∈ Lx(δ) . Y ⊆ δ.

Proof. We prove the two points separately.
(1) We have to prove that if Y ∈ Lx(δ) then x ∈ Rf (Y). In order to obtain this
we have to define the notion of depth of the tree Γx(δ).

Dx(δ) = 0 if in Γx(δ) x 6�

Dx(δ) = max
{

1 +Dy(δ)
∣∣∣∣∃Y ∈ G(x), y ∈ Y .

x� AndY � y

}
We prove the thesis by induction on the depth Dx(δ) of the tree Γx(δ).

Base: Consider Dx(δ) = 1, namely for each y ∈ Y ∈ G(x) we have x �
AndY � y 6� in Γx(δ). Therefore, by definition of the set of leaves we have:

Lx(δ) =
⋃{ ⋃̇{

Ly(δ)
∣∣x� AndY � y

} ∣∣Y ∈ G(x)
}

=
⋃{ ⋃̇{

{{y}}
∣∣x� AndY � y

} ∣∣Y ∈ G(x)
}

=
⋃{

{Y }
∣∣Y ∈ G(x)

}
= G(x)

So we have Y ∈ Lx(δ) ⇒ Y ∈ G(x) ⇒ x ∈ Rf (Y) by definition of G(x).
Inductive Step: Suppose that, if Dx(δ) = n then the thesis holds. Let’s

consider the case Dx(δ) = n+1. If we have Y ∈ Lx(δ) then, by definition, we have

Y ∈
⋃{ ⋃̇{

Ly(δ)
∣∣x� AndY � y

} ∣∣Y ∈ G(x)
}

3.2 Reversible transformers 55

Hence, there exists Z ∈ G(x) such that Y ∈
⋃̇{

Lz(δ)
∣∣x� AndZ � z

}
. By

definition of ∪̇ we have that

∀zi ∈ Z . ∃Zi ∈ Lzi
(δ) . Y =

⋃
i

Zi

Clearly we have ∀zi ∈ Z . Dzi
(δ) = Dx(δ) − 1 = n, therefore, by induc-

tive hypothesis we have that Zi ∈ Lzi(δ) ⇒ zi ∈ Rf (Zi). This means that
Z ⊆ Rf (

⋃
i Zi) = Rf (Y). Since, by construction, we have x ∈ Rf (Z), we can

conclude, by monotonicity and idempotence of Rf that x ∈ Rf (Y).

Let’s prove now the point (2). We prove the thesis by induction on the smallest
number of steps n of Rf necessary in order to introduce x in the refined domain.
By construction Rf id the least fix point of the function Rf = λX.M(X ∪ f(X)).
Consider the closure δ ∈ uco(C) and x ∈ C r δ.

Base: If n = 1, then x ∈ M(δ ∪ f(δ)). We can have two cases: x ∈ f(δ) or
x =

∧
Z where Z ∩ δ 6= ∅ and Z ∩ f(δ) 6= ∅. Suppose x ∈ f(δ), then there exists

a minimal Z ⊆ δ such that x = f(Z) (or x ∈ f(Z)). Therefore ∀z ∈ Z we have
x� AndZ � z. Being Z ∈ G(x), we have

{Z} =
⋃̇{

{{z}}
∣∣x� AndZ � z

}
⊆
⋃{ ⋃̇{

Ly(δ)
∣∣x� AndY � y

} ∣∣Y ∈ G(x)
}

= Lx(δ) ⇒ Z ∈ Lx(δ)

By the hypothesis we have Z ⊆ δ, and therefore we have the thesis.
Consider now that x =

∧
Z in the hypotheses written above. Therefore, we have

Z1
def= Z ∩ δ 6= ∅ and Z2

def= Z ∩ f(δ) 6= ∅. By construction of the tree, we have
x � AndZ � z since Z ∈ G(x). Clearly for all z ∈ Z1 we have z 6�, while
for all z ∈ Z2 there exists Yz ⊆ δ such that z = f(Yz) (or x ∈ f(Yz)), then z �
AndYz � y for each y ∈ Yz with y 6�. Let’s now considered some consequences
of the constructions made. By definition of Lx(δ) and of Z, we have that⋃̇{

Lz(δ)
∣∣x� AndZ � z

}
⊆ Lx(δ)

On the other hand, we have, by construction, that[̇ n
Lz(δ)

˛̨̨
x� AndZ � z

o
=

[̇ n
{{z}}

˛̨̨
z ∈ Z1

o
∪̇

[̇ n
Lz(δ)

˛̨̨
z ∈ Z2

o
= {Z1}∪̇

[̇ [[̇ n
Ly(δ)

˛̨̨
z� AndY � y

o ˛̨̨
Y ∈ G(z)

ff ˛̨̨
z ∈ Z2

ff
= {Z1}∪̇

[̇ [̇ n
{{y}}

˛̨̨
z� AndYz � y

o ˛̨̨
z ∈ Z2

ff
= {Z1}∪̇

[̇ n
{Yz}

˛̨̨
z ∈ Z2

o
= Z1 ∪

[
z∈Z2

Yz ∈ Lx(δ)

but clearly, by construction, Z1 ∪
⋃

z∈Z2
Yz ⊆ δ.

56 3 A Geometry of Abstract Domain Transformers

Inductive Step: Suppose that if x is introduced in n steps of Rf then the
thesis holds. Consider the case n+1 and consider x ∈ Rf (δ). This last hypothesis
implies that ∃Z ⊆ Rf (δ) .Z ∈ G(x). In particular n+1 is the minimum number of
steps for introducing x, namely x /∈ Rn

f (δ) but Z ⊆ Rn
f (δ). By inductive hypothesis

we have that
∀z ∈ Z (y ∈ Rf (δ)) ⇒ ∃Yz ∈ Lz(δ) . Yz ⊆ δ

On the other hand we have ∀z ∈ Z . x� AndZ � z, so

Lx(δ) =
⋃{ ⋃̇{

Ly(δ)
∣∣x� AndY � y

} ∣∣Y ∈ G(x)
}

⇒
⋃̇{

Lz(δ)
∣∣x� AndZ � z

}
⊆ Lx(δ)⇒

⋃
z∈Z

Yz ∈ Lx(δ)

But, by construction, we have
⋃

z∈Z Yz ⊆ δ and therefore we have the thesis.

In the following example, we show two different domains together with the
construction of the corresponding trees. In particular, in the following, we will put
an X under a leaf contained in the candidate base, and we will put an O under
leaves containing cycles.

Example 3.17. Consider the concrete domains depicted below and suppose that ρ
is the identity. We want to check, by using the tree construction, if the candidate
bases, generate, respectively, the whole domains. It’s clear that, in order to generate
the whole concrete domain from the base, we have to generate Mirr(ρ), denoted
with dashed circles. Let’s consider an example of construction of Γx(δ) where
δ = M(firr(C)) is the candidate base. Consider the function f is drawn on the
domains.

f = λx. .x ∨ bc

ab ac
bc

⊥

>

a b c

⊥

a b

bcab

>

c

(1)

Γb : {b} {ab}

And{ab}

{bc}

And{b,c} And{⊥}

{b, c}

(2)

And{ab}

{ab}

And{ac}

{ac}

Γb : {b}

And{bc}

Γc : {c}

{⊥}

Note that, in figure (1) the domain refinement Rf is join uniform and it is sim-
ple to verify that the base is exactly the closure {>, a, ab, ac,⊥}. Also in figure
(2) the refinement Rf associated with the represented function is join uniform,
but the candidate base δ = M(firr(C)) = {>, a, c, ab,⊥} is clearly too concrete:
Rf ({>, a, c, ab,⊥}) = C and also Rf ({>, a, c,⊥}) = C.

Since abstract domains are Moore families, it’s clear that, if the goal is to compress
the concrete domain C, then δ can be a base for Rf if Mirr(C) ⊆ Rf (δ). Moreover,

3.2 Reversible transformers 57

f(C)

Bf (ρ) Mirr(Rf (ρ))
>

ρ

Rf (ρ)

Fig. 3.3. The global picture

if MC
f

def= Mirr(C) ∩ ḟ(C) and If (C) def= Mirr(C) ∩ firr(C) then, since any x ∈ MC
f

can still be generated by refinement from δ, being f -reducible, δ has to include
at least If (C). Indeed, the elements in If (C) cannot be generated neither by f

nor by meet. Therefore, if δ ∈ uco(C) is a candidate base then If (C) ⊆ δ. In
order to generalize this situation to the base of any abstraction ρ of C, we require
Mirr(Rf (ρ)) ⊆ Rf (δ).

Lemma 3.18. Let ρ ∈ uco(C). Then

(1) x ∈ Mirr(Rf (ρ)) ∩ ρ ⇒ x ∈ Mirr(ρ) and
(2) x ∈ Mirr(Rf (ρ)) r ρ ⇒ x ∈ ḟ(C).

Proof. Let x ∈ Mirr(Rf (ρ)) ∩ ρ and suppose that x /∈ Mirr(ρ). Then there exists
Y ⊆ ρ r {x} such that

∧
Y = x. But Rf (ρ) ⊇ ρ so Y ⊆ Rf (ρ), namely x

is not meet-irreducible in Rf (ρ), which is absurd for the hypothesis made. Let
x ∈ Mirr(Rf (ρ)) r ρ and suppose that x /∈ ḟ(C). Then if x ∈ Mirr(C), being
x /∈ ḟ(C), we have that x cannot be generated by refinement, but this implies that
if x 6∈ ρ then it cannot be in Rf (ρ) either, which is absurd. Therefore, being x

generated in Rf (ρ), there exists Y ⊆ Rf (ρ) such that
∧
Y = x, but this means

that x is not meet-irreducible in Rf (ρ), which is absurd. It is worth noting that
the hypothesis made implies that x ∈ ḟ(C) r ρ.

Lemma 3.18 implies that any candidate base has to generate the following set of
meet-irreducibles:

Mρ
f

def= Mirr({x ∈ ḟ(C) r ρ | ∃L ∈ Lx(ρ) . L ⊆ ρ}) ∪ Mirr(ρ).

Mρ
f is clearly redundant even though it does not require the construction of Rf (ρ),

as specified by the following proposition.

Proposition 3.19. If ρ ∈ uco(C) and ρ v δ, then Mρ
f ⊆ Rf (δ) ⇒ Rf (δ) =

Rf (ρ).

58 3 A Geometry of Abstract Domain Transformers

Proof. Note that Lemma 3.18 says that whenever x ∈ Mirr(Rf (ρ)) we have that
(x ∈ ρ ⇒ x ∈ Mirr(ρ)) or x /∈ ρ ⇒ x ∈ ḟ(C)). If x /∈ Mirr(ρ) ∪ (ḟ(C) r ρ) then
x /∈ Mirr(Rf (ρ)).
If x ∈ Mirr(ρ) then trivially x ∈ Mf (ρ) and so we have x ∈ Rf (δ), being
Mf (ρ) ⊆ Rf (δ). If x ∈ ḟ(C) r ρ, by the hypotheses we have x ∈ Rf (ρ), there-
fore by Theorem 3.16, we have ∃Y ∈ Lx(ρ) . Y ⊆ ρ. This implies that x ∈{
x ∈ ḟ(C) r ρ

∣∣∃L ∈ Lx(ρ) . L ⊆ ρ
}

. At this point if x is not meet-irreducible
in this set, then there exists a set Y of meet-irreducible of the set such that∧
Y = x, but if Y , which is in Mf (ρ), is generated in Rf (ρ), then also x is

generated in Rf (ρ). Namely x ∈ Rf (Mf (ρ)), which implies x ∈ Rf (δ), because
Mf (ρ) ⊆ Rf (δ). In this way we proved that Mirr(Rf (ρ)) ⊆ Rf (δ) that implies,
by monotonicity of Rf , that Rf (δ) = Rf (ρ).

The proposition above says that Mρ
f contains all the elements of C that can be

generated starting from elements in ρ and that are necessary in order to generate
the whole domain Rf (ρ). Namely it contains the set of all the meet-irreducible
elements of Rf (ρ) that will be generated by refinement. We use this set to derive
an algorithm for computing the base of an abstract domain. Since we deal with
finite domains, the algorithm gives also a method for deciding whether a refinement
is not join-uniform. In Fig. 3.3 we depict the scenario. The idea is that, for each
element in Rf (ρ) we should check if there is an element in the base generating it.
Prop. 3.19 guarantees the same result even if we check the generation only for a
particular set of elements, that is Mρ

f .

Remark 3.20. Note that the left adjoint of an expander, when it exists, i.e., the
left adjoint of a join-uniform lco, it is not necessarily an erosion, namely a meet-
uniform core. Let’s see an example:

c

e

>

⊥

a b

d f

In this example it is simple to verify that the completeness refinement is join-
uniform and the base of the whole domain is {>, c, e, f,⊥}. On the other hand,
the completeness core is not meet-uniform. Indeed, the completeness core of both
the closures {>, e} and {>, f} is {>}, while the core of their reduced product
{>, e, f,⊥} is {>,⊥}.

3.2 Reversible transformers 59

Computing the base

Let D(ρ) be the collection of all the possible Moore families which are strictly
contained in the closure ρ ∈ uco(C), and can generate Rf (ρ) by refinement.
They contain all the elements that cannot be generated by refinement, i.e., If (C):
D(ρ) def=

{
ρr {x}

∣∣x ∈ Mirr(ρ) r If (C)
}
⊆ uco(ρ). We design an algorithm for

computing the base of an abstract domain ρ, w.r.t. a refinement Rf , by induction
on the construction of a sequence of sets Nn, such that:

∀n ∈ N, ∀δ ∈ Nn : ρ v δ, Rf (δ) v ρ, and (σ ∈ Nn+1 rNn ⇒ |σ| < |δ|).

The domains δ ∈ Nn are the candidate bases for Rf (ρ) after n steps of the algo-
rithm. The set P will include the minimal candidates, i.e., those domains that, by
erasing any of their elements, are unable to regenerate the whole domain.

Step 1: P(ρ) := ∅. We define the following sets: δ1 := ρ and N1 := {δ1};
Step n+ 1: Let δn ∈ Nn. If D(δn) = ∅ then P(ρ) := P(ρ) ∪ {δn} (δn is minimal

since all the elements that can be erased are re-introduced by the Moore clo-
sure). Otherwise Un

def=
{
δ ∈ D(δn)

∣∣∣∃y ∈Mρ
f r δ . ∀L ∈ Ly(δ) . L 6⊆ δ

}
. This

is the set of all the candidate bases that are not able to generate all the el-
ements in Mρ

f . We define the set of candidate bases more abstract than δn,
at step n + 1, as N δn

n+1 := D(δn) r Un. If N δn
n+1 = ∅ then δn is minimal and

P(ρ) := P(ρ)∪{δn}. The set of all the candidate bases at step n+1 is therefore
Nn+1 :=

⋃
δn∈Nn

N δn
n+1.

Since, at each step n, we reduce the size of the domains in Nn, and since C is
finite, it is immediate to prove the following proposition.

Proposition 3.21. The algorithm terminates and

P(ρ) =

 δ ∈ uco(ρ)

∣∣∣∣∣∣∣
Mirr(δ) r If (C) = ∅ ∨
(∀x ∈ Mirr(δ) r If (C) . ∃y ∈Mρ

f r (δ r {x}) .
∀L ∈ Ly(δ r {x}) . L 6⊆ δ r {x})

The correctness of the algorithm is obtained by proving that P(ρ) contains all and
only the domains whose sub-domains are unable to generate ρ by refinement.

Lemma 3.22. Let ρ ∈ uco(C) and δ ∈ uco(ρ) with δ 6= ρ, Rf (δ) = Rf (ρ), and
x ∈ Mirr(δ) then Rf (δ r {x}) 6= Rf (ρ) if and only if δ ∈ P(ρ).

Proof. (⇐) If δ ∈ P(ρ), then by construction we have that Mf (ρ) ⊆ Rf (δ) and
then, by Proposition 3.19, this implies that Rf (δ) = Rf (ρ). Moreover also
the minimality, i.e., ∀x ∈ Mirr(δ) . Rf (δ r {x}) 6= Rf (ρ), derives from the
construction of P in the algorithm.

(⇒) Consider δ ∈ uco(ρ) such that Rf (δ) = Rf (ρ) and such that for each element
x ∈ Mirr(δ) we have Rf (δ r {x}) 6= Rf (ρ). Suppose that δ /∈ P(ρ), namely

60 3 A Geometry of Abstract Domain Transformers

that ∃x̄ ∈ Mirr(δ) r If (C) . ∀y ∈ Mf (ρ) . ∃L ∈ Ly(δ̄(ρ) r {x̄}) . L ⊆ δ̄ r {x̄}
and this implies that Mf (ρ) ⊆ Rf (δ r {x̄}). But for what we said above this
implies, by Proposition 3.19, that ρ ⊆ Rf ((δ̄ r {x̄})), which is absurd for the
hypothesis made.

Theorem 3.23. Let Bf (ρ) =
⋂

δ∈P(ρ) δ. The completeness refinement Rf is join-
uniform relatively to ρ, and its base is Bf (ρ) if and only if {Bf (ρ)} = P(ρ).

Proof. Consider Bf (ρ) =
⋂

δ∈P(ρ) δ. By Lemma 3.22 its clear that in P(ρ) we have
all and only the minimal closures δ such that Rf (δ) generates the whole domain
Rf (ρ). Suppose that Bf (ρ) ∈ P(ρ), this implies that the following equalities hold:

⋂{
δ ∈ uco(ρ)

∣∣Rf (δ) = ρ
}

=
⋂{

δ ∈ uco(ρ)
∣∣∣∣Rf (δ) = ρ,

δ minimal

}
=
⋂

δ∈P(ρ) δ = Bf (ρ)

Moreover, by Lemma 3.22, we have that if Bf (ρ) ∈ P(ρ) then Rf (Bf (ρ)) = ρ.
Suppose now that Bf (ρ) /∈ P(ρ) and suppose that Rf (Bf (ρ)) = ρ, namely that Rf

is join-uniform. Being Bf (ρ) =
⋂

δ∈P(ρ) δ /∈ P(ρ) it means that for each δ ∈ P(ρ)
there exists Cδ 6= ∅ such that Bf (ρ) = δ ∪ Cδ, namely ∀δ . Bf (ρ) (δ with
Rf (Bf (ρ)) = ρ which is absurd by construction of the δ’s.

The algorithm described above provides a systematic method for deriving the most
abstract domain with the same refinement, of any finite domain as regards a F-
completeness refinement. The complexity of the algorithm strongly depends upon
the structure of C and on how f behaves. In the worst case it may be necessary to
check the whole concrete domain C, while in the best case it is sufficient to check
Mirr(C) whose size, in Boolean lattices, is logarithmic on the size of C.

An application in predicate abstraction

In this section, we consider two different examples of bases for predicate abstrac-
tions of transition systems 〈Σ, τ〉, w.r.t F-complete refinements Rpost[τ]. The idea
of predicate abstraction is to choose a set of predicates ϕ representing sets X ⊆ Σ
of concrete states, those which satisfy ϕ: X =

{
s
∣∣ s |= ϕ

}
[11, 35, 70]. The key

point in predicate abstraction is the choice of the so called abstract state lattice,
which is naturally induced by composing, by conjunction, the chosen predicates.
In this context, the abstract state lattice is a closure on ℘(Σ). In the first example,
we show two different abstract state lattices with comparable but different bases,
while in the second example we show different abstract state lattices sharing the
same base. These examples show how bases can be useful to derive a least set
of most-abstract predicates which represent the base of any given abstract state
lattice. These bases can be useful both to compare abstract state lattices and to
design optimal predicates for a given system. In this latter case, the predicates
in the base cannot be removed without changing the way abstract state lattices

3.2 Reversible transformers 61

can be refined. Moreover, imagine the analysis of a system which is specified by a
family of transition relations τ1, . . . , τn and an abstract domain X. It is clear that
if we are not interested in the precision of the analysis for τi, then for any j 6= i:
Rgpre[τj](Bgpre[τi](X)) is the candidate non-redundant domain, which is backward
complete for post[τj]. In predicate abstraction, this method provides a system-
atic way to simplify the definition of predicates by removing all those predicates
that are necessary to achieve completeness for τi. The idea, shown in Fig. 3.4, is

Model checker
Spurious counter-example

refinements

〈Σ, τ〉 ϕ ∈ ACTL

Bgpre[τ]
Abstract

domain

Fig. 3.4. An application to predicate abstraction.

that of applying the construction of the base, in order to simplify the formula’s
models, in model checking. In particular, recall that a model contains spurious
counter-example for a formula, if it is not complete, as regards the post relation
[60]. Indeed, given a formula ϕ, and the model that we want to check, we could find
its base in order to erase all the information that could be added by complete-
ness refinement, and then, by using, for instance, the spurious counter-example
refinement [18], we could add just the information needed for modeling the given
formula ϕ. In this way, we could obtain the most abstract model for the formula
ϕ.

Example 3.24. Let’s consider the transition system in Figure 3.5 (a), with tran-
sition relation τ , and f = post[τ]. We consider the two different abstractions
represented in Figure 3.5 (b) and (c). We have that the points double circled are
the elements of the abstractions, while the points single circled are the elements
generated by the refinement. In the following, we will omit the nodes AndY ,
when possible. First we consider some sets of elements of C which are used by the
algorithm: MC

f = {{1, 2}, {1, 3}}, If (C) = {{2, 3}}, ḟ(C) = {>, {1, 2}, {1, 3}}.
Consider the abstraction ρ = {>, {1, 2}, {2}}, represented in figure (b). We note
that Mirr(ρ) = {{1, 2}, {2}} while Mρ

f = {{1, 2}, {2}}, because the tree with root
{1, 3} has no leaves in ρ.

Step 1: δ1 = ρ and N1 = {δ1};
Step 2: D(δ1) = {{>, {1, 2}}, {>, {2}}}. Moreover, {1, 2} ∈ Γ{1,2}({>, {1, 2}})

while {1, 2}� {2} in Γ{1,2}({>, {2}}), therefore both the possible successors
{>, {1, 2}} and {>, {2}} may generate {1, 2}. Let’s consider {2}. It’s clear that
{2} ∈ Γ{2}({>, {2}}) while {2}� {{1, 2}, {2, 3}} in Γ{2}({>, {1, 2}}), namely
{2} cannot be generated from {>, {1, 2}}. Hence, we obtain U2 = {{>, {1, 2}}}
and N2 = {{>, {2}}};

62 3 A Geometry of Abstract Domain Transformers

Step 3: Let δ2 ∈ N2, then D(δ2) = {>}, but it is clear that nothing can be
generated from >, therefore U3 = {>} and N3 = ∅. In this way we have that
P = {{>, {2}}} and the algorithm terminates.

It is clear that, by Theorem 3.23, the closure {>, {2}} is the base of Rf (ρ). Con-
sider now the abstraction η = {>, {1, 3}, {2}, {3},⊥}, represented in Fig. 3.5 (c)
by double circled points.

{2, 3}

{2} {3}{1}

>

{2, 3}

{2} {3}{1}

>

⊥⊥

τ

2

31

(a)

(b) (c)

{2, 3}

{2} {3}{1}

>

⊥

{1, 2} {1, 2}

{1, 2}

f = post[τ]

{1, 3}

{1, 3}{1, 3}

Fig. 3.5. Example of compression

We note that Mirr(η) = {{1, 3}, {2}, {3}} while it is simple to find that Mη
f =

{{1, 2}, {1, 3}, {2}, {3}}, because {1, 2}� {2} in Γ{1,2}(η).

Step 1: δ1 = η and N1 = {δ1};
Step 2: D(δ1) = {{>, {2}, {3},⊥}, {>, {1, 3}, {2},⊥}, {>, {1, 3}, {3},⊥}}. It is

clear that {1, 2} � {2} � {{1, 2}, {2, 3}} in Γ{1,2}({>, {1, 3}, {3},⊥}),
namely {>, {1, 3}, {3},⊥} is in U2. Note that each other closure contain-
ing {2} may generate {1, 2}. Consider {3}, it’s clear that {1, 3} � {3} �
{{1, 3}, {2, 3}} in Γ{3}({>, {1, 3}, {2},⊥}), namely {>, {1, 3}, {2},⊥} ∈ U2

doesn’t generate {3}. Finally {1, 3}� {3} in Γ{1,3}({>, {2}, {3},⊥}). Hence,
we obtain the sets U2 = {{>, {1, 3}, {2},⊥}, {>, {1, 3}, {3},⊥}} and N2 =
{{>, {2}, {3},⊥}};

Step 3: Let δ2 ∈ N2, then D(δ2) = {{>, {2},⊥}, {>, {3},⊥}}, but it is clear
that, from what we saw in the previous step, {2} and {3} can be generated
only from closures that contain respectively these two elements. Namely we
obtain U3 = {{>, {2},⊥}, {>, {3},⊥}} and N3 = ∅. In this way we have that
P = {{>, {2}, {3},⊥}} and the algorithm terminates.

3.2 Reversible transformers 63

42

1 3

τ

{2, 3, 4}

{2, 3} {3, 4}

{3} {4}

⊥

>
f = post(τ)

{2}

>

⊥

>

⊥

{3}

{2, 3}

{2, 4}

{4}{2}{1}

{2, 4}

{2, 3, 4} {2, 3, 4}

{3, 4}{2, 4}

{4}{3}{2}

(b) (c)

(a)

{1, 2, 3} {1, 3, 4}

{1, 2}
{1, 3}

{1, 4}

{1}

{1, 2}

{3, 4}

{1, 2, 3} {1, 3, 4}

{1, 3} {1, 4} {2, 3}

{1}

{1, 2} {1, 4}

{1, 3, 4}
{1, 2, 3}

{1, 2, 4}

{1, 3}

{1, 2, 4} {1, 2, 4}

Fig. 3.6. A transition system, two abstractions and their complete refinements

It is clear that, by Theorem 3.23 the closure {>, {2}, {3},⊥} is the base of Rf (η).
By observing Bf (ρ) A Bf (η) we can compare the two closures ρ and η. This implies
that Rf (ρ) A Rf (η).

Example 3.25. On the left side of Figure 3.6(a) we have the transition system
with states Σ = {1, 2, 3, 4} and transition relation τ . On the right side we have
the concrete domain ℘({1, 2, 3, 4}) including the function f = post[τ]. In Fig-
ure 3.6(b) and (c) we consider, respectively, two different abstractions of the con-
crete domain and their corresponding refinements. The elements double circled
are the points in the abstractions, the elements single circled are the points added
by Rpost[τ]. It is worth noting that both η = {>, {1, 4}, {2, 3}, {1},⊥} and ρ =
{>, {1, 4}, {2, 3}, {3},⊥} have the same refinement: Rpost[τ](ρ) = Rpost[τ](η) =
{>, {1, 3, 4}, {1, 4}, {2, 3}, {1, 3}, {1}, {3},⊥}. In this case MC

f = {{1, 3, 4}}, the
irreducibles are If (C) = {{1, 2, 3}, {1, 2, 4}, {2, 3, 4}}, and the reducibles are
ḟ(C) = {{1, 3, 4}, {1, 3}, {3, 4}, {3}}. Note that Mirr(ρ) = {{1, 4}, {2, 3}, {3}}
while it is simple to verify that Mρ

f = {{1, 4}, {2, 3}, {3}, {1, 3}, {1, 3, 4}}. More-
over Mirr(η) = {{1, 4}, {2, 3}, {1}} while it is simple to verify that Mη

f =
{{1, 4}, {2, 3}, {1}, {1, 3}, {1, 3, 4}}. These fact hold because the trees with root
respectively {1, 3} and {1, 3, 4} have a leaf both in ρ and η. The algorithm ter-
minates for both domains in 3 steps, computing the base Bf (ρ) = Bf (η) =
{>, {1, 4}, {2, 3},⊥}. The least set of generating predicates is Bf (ρ). Analogously,
if ρ′ = {>, {1, 4}, {3},⊥} and η′ = {>, {1, 4}, {1},⊥}, then Bf (ρ′) = Bf (η′) =

64 3 A Geometry of Abstract Domain Transformers

{>, {1, 4}}. Because Bf (ρ) @ Bf (ρ′), this means that ρ and ρ′ will lead to different
complete domains once refined.

3.3 Making domain transformers right reversible

In this section, we introduce a systematic method for making any domain trans-
former reversible as a pair expander/compressor. As usual we consider domain
refinements, being domain simplification dual.

Right-reversibility corresponds to join-uniformity. In this case, the set of all
join-uniform refinements is a dual-Moore-family of lco(C) [63]. In the following we
characterize the corresponding transformation which maps any refinement R to
the most abstract refinement which is more concrete than R and join-uniform:

(R)M =
⊔{

τ
∣∣ τ v R, τ is join-uniform

}
Theorem 3.26. Let η ∈ lco(L), C complete lattice, then η is join-uniform if and
only if ∀x ∈ η . ∀Z ⊆ C . ((η(Z) = const ∧ Z 6≥ x) ⇒

∨
Z 6≥ x), where we

denote as η(Z) = const the fact ∃w ∈ η . ∀z ∈ Z . η(z) = w and as Z 6≥ x the fact
∀z ∈ Z . z 6≥ x.

Proof. (⇒) We prove that if ∃x ∈ η .∃Z ⊆ C .(η(Z) = const ∧ Z 6≥ x ∧
∨
Z ≥ x)

then η is not join-uniform. We know that Z is such that ∃w ∈ η.∀z ∈ Z.η(z) =
w, this means that ∀z ∈ Z . z ≥ w. Moreover the hypothesis

∨
Z ≥ x implies,

by monotonicity, that η(
∨
Z) ≥ x and if η(

∨
Z) = w then we would have

w ≥ x and this is absurd because otherwise we would have ∀z ∈ Z . z ≥ x,
which is avoided by the hypotheses on x and Z. Therefore η(

∨
Z) 6= w, namely

the closure η is not join-uniform.
(⇐) We prove that if η is not join-uniform then ∃x ∈ η . ∃Z ⊆ C . (η(Z) =

const ∧ Z 6≥ x ∧
∨
Z ≥ x). Consider w ∈ η and Z =

{
z ∈ C

∣∣ η(z) = w
}
,

then ∀z ∈ Z . z ≥ w and this implies that
∨
Z ≥ w. By monotonicity this

implies η(
∨
Z) ≥ w. We supposed that η was not join-uniform, this means

that η(
∨
Z) > w, i.e. there isn’t the equality. Let x = η(

∨
Z), therefore∨

Z ≥ η(
∨
Z) = x. Moreover we have ∀z ∈ Z . z 6≥ x, otherwise if it exists

z ∈ Z such that z ≥ x we would have also η(z) = w < x = η(x) by definition
of x, which is absurd for the monotonicity of η. All these facts imply that Z
is such that η(Z) = const, by construction, and Z 6≥ x and

∨
Z ≥ x for what

we have just proved.

This theorem implies that we can isolate a set of refined domains in η which
represent the closest join-uniform refinement contained in η. This set is precisely
the transformer making a refinement reversible as a pair expander/compressor,
i.e., the transformer which erases all the domains which make the refinement not
join-uniform.

3.3 Making domain transformers right reversible 65

(η)M def=
{
x ∈ η

∣∣∀Z ⊆ C . ((η(Z) = const, Z 6≥ x)⇒
∨
Z 6≥ x)

}

Lemma 3.27. If η ∈ lco(C) then (η)M ∈ lco(C).

Proof. Consider a set Y of elements y such that y ∈ (η)M(C), we have to prove
that

∨
Y ∈ (η)M(C). The hypotheses imply that for each y ∈ Y we have that

∀Z ⊆ C.(η(Z) = w ∧ Z 6≥ y) ⇒
∨
Z 6≥ y. Consider Z ⊆ C such that η(Z) = const

then we prove that Z 6≥
∨
Y implies

∨
Z 6≥

∨
Y . Therefore suppose Z 6≥

∨
Y and

suppose
∨
Z ≥

∨
Y , this condition implies that ∀y ∈ Y .

∨
Z ≥ y. Consider now

the condition Z 6≥
∨
Y . Therefore ∀z ∈ Z . z 6≥

∨
Y , i.e. ∀z ∈ Z . ∃y ∈ Y . z 6≥ y.

If we prove that, with these hypotheses, ∃y ∈ Y . ∀z ∈ Z . z 6≥ y, i.e Z 6≥ y, than
we would have an absurd because we have

∨
Z ≥ y and that Z 6≥ y when the

hypothesis was that y ∈ (η)M(C). Suppose that ∀y ∈ Y . ∃z . z ≥ y. Then we know
that ∀z ∈ Z . z ≥ w and by monotonicity this implies that w = η(z) ≥ η(y) = y.
Therefore ∀y ∈ Y .w ≥ y and this implies that ∀z ∈ Z .z ≥ w ≥

∨
Y , by definition

of
∨

, that is absurd by the hypothesis made. This means that ∃y ∈ Y .∀z ∈ Z.z 6≥ y,
that for the absurd described above implies that

∨
Z 6≥

∨
Y . Indeed if Z 6≥

∨
Y

then
∨
Z 6≥

∨
Y , so

∨
Y ∈ (η)M(C)

Theorem 3.28. η ∈ lco(C) is join-uniform iff (η)M = η.

Proof. Trivially we have that if η is join-uniform then it is image of itself. In-
deed by Theorem 3.26 all the elements of η satisfy the condition imposed by (η)M.
Analogously for each η ∈ lco(L) we have that (η)M is join-uniform, again by Theo-
rem 3.26. Moreover (η)M is the most concrete join-uniform closure contained in η.
Indeed if there exists another join-uniform closure operator η′ contained in η such
that η′ v (η)M, then there exists at least one element x ∈ η′ such that x /∈ (η)M.
By Theorem 3.26, this means that x ∈ (η)M and consequently η′ cannot be join-
uniform.

Join-uniformity can be characterized on join-irreducible domains.

Theorem 3.29. (η r (η)M) ∩ Jirr(η) = ∅ ⇔ η = (η)M.

Proof. Consider η 6= (η)M, namely ∃x ∈ η such that Z 6≥ x and
∨
Z ≥ x. Consider

Y ⊆ Jirr(η) such that x =
∨
Y . We have to prove that there exists y ∈ Y such that

Z 6≥ y. Suppose that ∀y ∈ Y .Z ≥ y, namely ∀z ∈ Z .∀y ∈ Y .z ≥ y. Let w = η(Z),
we can note that z ≥ y implies, by monotonicity of η, that w = η(z) ≥ η(y) = y,
and this holds for each y ∈ Y . We supposed that x =

∨
Y , so by definition of

∨
we have that w ≥ x, but we know that for each z we have z ≥ w, this would mean
that ∀z ∈ Z . z ≥ x, which is avoided by the hypotheses on Z and x. Therefore
∃y ∈ Y . Z 6≥ y. Finally, if we consider this y then we have that

∨
Z ≥ x ≥ y, i.e.

we have the thesis.
On the other hand if η = (η)M then η r (η)M = ∅ and therefore the intersection is
∅.

66 3 A Geometry of Abstract Domain Transformers

Example 3.30. Consider the following lattice where the circled points, � and },
are the points in the closure δ. In particular the point } is the point in the lattice
that makes join-uniformity to fail, i.e. it is δM.

•

•�

• • •� }

�

JJJ
JJJ

JJJ
J

ttttttttt

��
��

��
�

??
??

??
?

��
��

��
�

??
??

??
?

��
��
��

ttttttttt

llllllllllllll

RRRRRRRRRRRRRR

//
//

/
oooooooooooo

>

⊥

x

z y

It is sufficient to erase y to get a join-uniform closure.

As noticed in the beginning of this section all these results can be dualized for
any δ ∈ uco(L), giving a method for making simplifications invertible by using
a transformer (·)O ∈ uco(uco(uco(C))). In this way we obtain the algebra of do-
main transformers, depicted in Fig. 3.7, where the dashed arrows represent the
transformation (·)O and its dual.

lco

Compressor

uco

Expander

CoreShell

Fig. 3.7. The algebra of transformers.

3.4 The 3D geometry of completeness transformers

Note that, all the results that we have in order to reverse a completeness domain
transformers are proved for the forward completeness (F-completeness). Naturally
we are interested in doing the same for B-completeness. In [60] the authors proved
that if the function f , w.r.t. we refine the domain, is additive then

RBf = RFf+ (analogously EBf = EFf+)

3.4 The 3D geometry of completeness transformers 67

where RBf denotes the B-completeness refinement for f and EBf denotes the com-
pleteness core for f (see also page 38). This means that when we have to solve
a problem of B-completeness for an additive function then we can solve the F-
completeness for the right adjoint function, obtaining the searched result. It’s clear
that it would be much more important to translate a B-completeness problem in
an F-completeness problem for a generic (continuous) function.

Whenever a function f : C → C is not additive, then we have that the map
f+

def= λx. max
{
y
∣∣ f(y) ≤ x

}
is a relation on C×C, or analogously a function on

C → ℘(C). We want to prove that also in this case the function f+ allows us to
move from B to F completeness.

Let 〈C,≤〉 be a complete lattice ordered by ≤. Let’s consider the standard
preorder on ℘(C) 4: Let X,Y ∈ ℘(C) then X 4 Y if ∀x ∈ X.∃y ∈ Y . x ≤ y.
Our aim is to describe the function f+ as the right adjoint of a transformation
of f . In order to obtain this we have to define a partial order, since a preorder
is not sufficient for defining an adjunction. For this reason note that the image
of f+ is not a generic subset of C but it is always an anti-chain of C. Therefore,
if Ac(C) def=

{
X ∈ ℘(C)

∣∣X is an anti-chain
}
, then we can prove the following

proposition:

Proposition 3.31. Let 〈C,≤〉 a complete lattice,

〈Ac(C),4〉 is a partial ordered set.

Proof. We have to prove that on Ac(C) the order 4 is partial, namely that it
is antisymmetric, being a preorder on ℘(C). Let X,Y ∈ Ac(C), then it is worth
noting that X = max(X) and that Y = max(Y). Suppose now that X 4 Y and
Y 4 X we want to prove that this implies that X = Y . These hypotheses say that
∀x ∈ X.∃y ∈ Y . x ≤ y and ∀y ∈ Y.∃x ∈ X . y ≤ x.
Consider x1 ∈ X, then there exists y1 ∈ Y such that x1 ≤ y1. This implies that
there exists x2 ∈ X such that y1 ≤ x2, but this means that x1 ≤ x2 which is absurd
because X is an anti-chain, so it must be x1 = x2 = y1 ∈ Y , namely x1 ∈ Y . We
proved in this way that X ⊆ Y .
Viceversa consider y1 ∈ Y , then there exists x1 ∈ X such that y1 ≤ x1. This
implies that there exists y2 ∈ Y such that x1 ≤ y2, but this means that y1 ≤ y2
which is absurd because Y is an anti-chain, so it must be y1 = y2 = x1 ∈ X,
namely y1 ∈ X. We proved in this way that Y ⊆ X, and therefore that X = Y .

Let f : C → C, let’s consider the following function:

f̃
def= λX.

∨{
f(x)

∣∣x ∈ X }
: Ac(C)→ C

We can prove that this is the left adjoint of the function f+.

Proposition 3.32. Consider the complete lattices 〈C,≤〉 and 〈Ac(C),4〉 and the
continuous function f : C → C. Then

68 3 A Geometry of Abstract Domain Transformers

C −→←−ef
f+

Ac(C)

Proof. First of all we have to prove that both the function are monotone.
Let’s consider the function f+, and take x, y ∈ C such that x ≤ y. This im-
plies that

{
z ∈ C

∣∣ f(z) ≤ x
}
⊆
{
z ∈ C

∣∣ f(z) ≤ y
}
. Therefore, for each element

x′ ∈ max
{
z ∈ C

∣∣ f(z) ≤ x
}

we have x′ ∈
{
z ∈ C

∣∣ f(z) ≤ y
}
, which means that

there exists y′ ∈ Y . x′ ≤ y, namely f+(x) 4 f+(y).
On the other hand, consider f̃ and take X,Y ∈ Ac(C) such that X 4 Y . This
means that ∀x ∈ X∃y ∈ Y . x ≤ y. We have to prove that

∨{
f(x)

∣∣x ∈ X }
≤∨{

f(y)
∣∣ y ∈ Y }. Note that if ∀x ∈ X.∃y ∈ Y . x ≤ y then, by monotonicity of

f , we have that ∀x ∈ X.∃y ∈ Y . f(x) ≤ f(y). Therefore for each x ∈ X we have
f(x) ≤

∨{
f(y)

∣∣ y ∈ Y }, namely
∨{

f(x)
∣∣x ∈ X }

≤
∨{

f(y)
∣∣ y ∈ Y } which

is f̃(X) ≤ f̃(Y).
Now we have to prove that they form a Galois connection. Consider X ∈ Ac(C)
and x ∈ C:

f+f̃(X) = max
{
y ∈ C

∣∣∣ f(y) ≤ f̃(X)
}

= max
{
y ∈ C

∣∣ f(y) ≤
∨⋃

x∈X f(x)
}
⊇ X

The last relation implies that X 4 f+f̃(X) because it is worth noting that ⊆⇒ 4.

f̃f+(x) = f̃(max
{
y ∈ C

∣∣ f(y) ≤ x
}
) =

∨{
f(z)

∣∣∣ z ∈ max
{
y ∈ C

∣∣ f(y) ≤ x
} }

(∗) ≤
∨{

f(z)
∣∣ f(z) ≤ x

}
≤ x

where (∗) holds since
{
f(z)

∣∣∣ z ∈ max
{
y ∈ C

∣∣ f(y) ≤ x
} }
⊆
{
f(z)

∣∣ f(z) ≤ x
}
.

Finally, we can prove that the function f+ is exactly the one necessary in order to
translate a B-completeness problem in an F-completeness problem.

Theorem 3.33. Let C be a complete lattice and f : C c−→C. Let us define the
adjoint function f+

def= λx.max
{
y ∈ C

∣∣ f(y) ≤ x
}
. Then

RBf = RFf+
(analogously EBf = EFf+

)
Proof.

RBf (X) =M(
⋃

y∈X max(f−1(↓y))) =M(
⋃

y∈X max
{
z ∈ C

∣∣ f(z) ≤ y
}
)

=M(f+(X)) = RFf+
(X)

3.5 Discussion: The 3D scenario

In this chapter, we describe an algebra for abstract domain transformers, where
the operations on abstract domains can be designed and classified. In particular,
the first distinction is between simplifications, reducing domain’s information, and
refinements, improving the domain’s information. Moreover, we notice how, in gen-
eral, we can identify simplifications with upper closure operators, and refinements

3.5 Discussion: The 3D scenario 69

with lower closure operators, on the lattice of abstract interpretations.
In this general setting, we show what it means to reverse a domain transformer.
In particular, we show that this inversion can be modeled by using adjunctions.
This implies that we can consider two possible ways for reversing abstract domain
transformers: either computing the left adjoint, or computing the right one. At
this point, we characterize reversible transformers with a particular attention to
completeness refinements, and we study how to make a domain transformer right
reversible. As it is shown also in Fig. 3.7, we don’t have a method for making
transformers left reversible, and this deserves further research.
The whole work is in particular instantiated to abstract domain completeness
transformers. In this case, as shown in Fig. 3.8, we can add a new dimension,
since we have two different completeness notions, and therefore transformers. The
important thing is that, as shown in [60], we can move from one to the other
completeness problem simply by adjunction.

Note that this algebra provides all the notions and the background, necessary
in order to design, classify and relate new abstract domain transformers. Indeed, in
the following of this thesis some aspects of what have been introduced here, will be
used for understanding and relating the abstract domain transformers considered
for weakening the notion of non-interference in language-based security and for
classifying the secrecy level of programs, and of computational systems in general.

F−CoreF−Shell

B−Shell B−Core

lco

F−Compressor

B−Expander

uco

F−Expander

B−Compressor

? ?

Fig. 3.8. The 3D algebra of transformers.

4

Computational Systems and Semantics

Wisdom does not inspect, but behold.

Henry David Thoreau

In this chapter, we introduce the computational systems that are considered in
the following of this thesis and the possible semantics that can be used for mod-
elling them.
In Sect 4.1, we describe the possible models that can be used for describing the
meaning of computational systems. In particular, in Sect 4.1.1, we describe the
model of computation that, from our point of view, gives the most concrete de-
scription of computation: We consider computational trees, in the following called
tree semantics, which emboby both the branching and the linear aspects of com-
putation. In this section, we also describe how it is possible to derive the trace
semantics as abstraction of the tree semantics. In Sect 4.1.2, we recall the Cousot
hierarchy of semantics, where different semantics are related by abstract interpre-
tations, starting from the maximal trace semantics [27].
At this point, in Sect 4.2, we define the syntax and the operational semantics of
the considered computational systems. In particular, we consider imperative lan-
guages, and starting from the simple deterministic fragment Imp [116] introduced
in Sect. 4.2.1, we arrive to describe its non-deterministic and multi-threaded ex-
tensions. These computational systems are described together with an operational
semantics given in terms of inference rules, which determine a transition system.
Other important computational systems are process algebras, which model systems
communicating through synchronization. In Sect 4.2.2, we introduce a particular
process algebra defined for modelling security properties: Spa [47]. Also in this
case, together with the syntactic definition of the system, we provide the opera-
tional semantics given in terms of a labelled transition system derived from a set of
inference rules. Finally, we define timed automata, which are a well-known model

72 4 Computational Systems and Semantics

for real-time systems [5]. Again we describe the operational semantics of this kind
of systems as a labeled transition system.

4.1 Semantics

In the following, we consider the tree models of computation as the most concrete
possible semantics, that can be derived from a transition system associated with a
computational system. Starting from this models we can obtain the trace semantics
as the abstraction that forgets about the branching structure of the computation.
At this point, we can follow Cousot’s construction [27, 33], defining semantics, at
different levels of abstraction, as the abstract interpretation of the maximal trace
semantics of a transition system associated with each well-formed program.

4.1.1 Transition systems

The standard models used for computational systems are transition systems. A
transition system is a pair 〈Σ,−→〉, where Σ is the set of configurations that the
system can have, called states, while −→⊆ Σ × Σ is a binary relation between a
state and its possible successors, called transition relation. This relation is such
that s −→ s′ means that s′ is a configuration reachable from s in the system
modeled by 〈Σ,−→〉. In the following, Σ+ and Σω def= N→ Σ denote, respectively,
the set of all the finite nonempty sequences, and the set of all the infinite sequences,
of symbols in Σ. Given a sequence σ ∈ Σ∞ def= Σ+ ∪ Σω, its length is denoted by
|σ| ∈ N ∪ {ω} and its i-th element is denoted by σi. Moreover, σ` will denote σ0,
and when |σ| = n ≤ ω, then σa will denote σn−1. A non-empty finite (infinite)
trace σ is a finite (infinite) sequence of program states, where two consecutive
elements are in the transition relation −→, i.e., for all i < |σ|: σi −→ σi+1.
A labelled transition system is a triple 〈Σ,−→, λ〉, which is a transition system
〈Σ,−→〉 equipped with a labelling function λ : Σ × Σ → Lab, where Lab is
a set of labels (also called actions) for transitions. Given a transition s −→ s′,
we have that λ(s, s′) is the label associated with the transition. A run in the
system is a sequence ρ = 〈s0 −→l0 s1 −→l1 . . .〉, such that for each i, si ∈ Σ,
li = λ(si, si+1) ∈ Lab, and si −→ si+1. The projections of runs onto labels are
called traces of the labelled transition system. The set of traces of a transition
system is denoted by Tr(〈Σ,−→, λ〉) def=

{
〈l0, l1 . . .〉

∣∣∀i. si −→li si+1

}
.

Given a transition system, we can extend it to a labelled one by defining a labelling
function λ. In particular, we can note that the action associated with any transition
is the transformation of the state of the machine, namely we can think of labelling
a transition with the reached state. Therefore 〈Σ,−→〉 can be extended to the
system 〈Σ,−→, λ〉, where Lab

def= Σ and λ : Σ ×Σ → Σ is defined as λ(s, s′) def= s′.
In this case runs and traces coincide.

4.1 Semantics 73

Tree semantics.

Consider labeled transition systems 〈Σ,−→, λ〉, where Σ is a set of states, −→ is
a transition relation on Σ, and λ : Σ ×Σ → Act is a labeling function.
In the following, we will model computational systems by considering the tree
generated by the corresponding transition system. We assume that for any r ∈ Σ:∣∣{ s ∈ Σ ∣∣ r −→ s

}∣∣ < ω, allowing finite branching. In particular, we consider the
set of trees generated by a transition system 〈Σ,−→〉, denoted by TΣ . We recall
that t ∈ TΣ is the tuple t = 〈r, t1, . . . , tn〉, where r ∈ Σ is the root of the tree,
i.e., r = root(t), and for each i ≤ n ∈ N we have ti ∈ TΣ . Moreover, we define the
notion of height of a tree t, denoted h(t), inductively: Let ε be the empty tree, then
h(ε) = 0, h(〈r, ε〉) = 1 and h(〈r, t1, . . . , tn〉) = 1 + max

{
h(ti)

∣∣ i ≤ n }. We can
also characterize the leaves of a tree inductively: leaves(ε) = ∅, leaves(〈r, ε〉) = r

and leaves(〈r, t1, . . . , tn〉 =
⋃

i≤n leaves(ti). In the following, we denote by tcn
the

subtree of t, with height n, obtained taking t cut at height n. A run of the system
is a path on the tree starting from the root, while a trace is the sequence of
actions corresponding to a run. When t′ is subtree of t we will write t′ 4 t. If,
in particular, there exists n ≤ h(t) such that t′ ≡ tcn

, then we write t′ 4n t.
In the following, Tn

Σ =
{
t ∈ TΣ

∣∣h(t) = n
}
, Tω

Σ =
{
t ∈ TΣ

∣∣∀n ∈ N . ∃tcn

}
and

T+
Σ =

⋃
n∈N Tn

Σ . We define finite and infinite semantics of a computational system
P by considering finite and infinite computational trees: {|P |}ṅ = t ∈ Tn

Σ if and
only if ∀〈r, t1, . . . , tk〉 4 t,∀i ≤ k . r −→ ti, where r −→ t denotes that there exists
a transition in −→ from r to the root of t. Let T be the set of final/blocking states,
then we define {|P |}n = t ∈ {|P |}ṅ iff leaves(t) ⊆ T and {|P |}+ =

∨
n∈N{|P |}n, where∨

i ti returns the minimal tree t that contains all the trees ti as subtrees. Finally,
{|P |}ω = t ∈ Tω

Σ if and only if ∀n ∈ N,∀〈r, t1, . . . , tk〉 4n t,∀i ≤ k . r −→ ti. In the
following, we will denote by TΣ the set of all the trees on the action alphabet Σ.

4.1.2 Cousot’s semantics hierarchy

In this section, we recall Cousot’s hierarchy of semantics [27, 33]. Semantics, in
the hierarchy, are derived as abstract interpretations of a more concrete oper-
ational semantics that associates a discrete transition system with each well-
formed program. Consider a transition system, where the transition relation −→
is denoted by τ . The maximal trace semantics1 of the transition system [33] is
τ∞

def= τ+ ∪ τω, where if T ⊆ Σ is a set of final/blocking states τ ṅ = {σ ∈
Σ+||σ| = n,∀i ∈ [1, n) . 〈σi−1, σi〉 ∈ τ}, τω = {σ ∈ Σω| ∀i ∈ N . 〈σi, σi+1〉 ∈ τ},
τ+ = ∪n>0{σ ∈ τ ṅ| σa ∈ T}, and τn = τ ṅ ∩ τ+. In the following, we will use the
concatenation operation between traces: The concatenation σ = η_ξ of the traces
η, ξ ∈ Σ∞ is defined only if η|η|−1 = ξ0. In this case, σ has length |σ| = |η|+ |ξ|−1

1 Note that, if we consider a labelled transition system 〈Σ,−→, λ〉, then we can simply

define the maximal trace semantics as the set Tr(〈Σ,−→, λ〉), i.e., the set of all the

sequences of actions that the system can make.

74 4 Computational Systems and Semantics

and it is such that σl = ηl for each 0 ≤ l < |η|, while σ|η|−1+n = ξn if 0 ≤ n < |ξ|.
Moreover, if η ∈ Σω, then, for each ξ ∈ Σ∞, we have η_ξ = η.

The semantics τ∞ has been obtained in [33] as the least fixpoint of the mono-
tone operator F∞ : ℘(Σ∞)→ ℘(Σ∞), defined on traces as F∞(X) = τ1 ∪ τ 2̇ _X.
This operator provides a bi-induction (induction and co-induction) on the com-
plete lattice of the maximal trace semantics 〈℘(Σ∞),v∞,u∞,t∞,u∞, Σ+, Σω〉,
where X v∞ Y if and only if X ∩Σ+ ⊆ Y ∩Σ+ and Y ∩Σω ⊆ X ∩Σω. This or-
der, later called the computational order , allows to combine both least and greatest
fixpoint process in a unique least fixpoint presentation: finite (terminating) traces
are obtained by induction (least fixpoint) of F∞ on 〈℘(Σ+),⊆〉, and infinite traces
are obtained by co-induction (greatest fixpoint) on 〈℘(Σω),⊆〉, which corresponds
to the least fixpoint of F∞ on 〈℘(Σω),⊇〉. In this case: τ∞ = lfpv

∞

Σω F∞ (see
[27, 33] for details). Cousot proved also that the natural trace semantics can be
calculated as the greatest fixpoint, of the same function, on the domain with the
usual inclusion order, here called approximation order , namely τ∞ = gfp⊆Σ∞F

∞.
Note that, this maximal trace semantics can be seen as an abstraction of the
tree semantics. Indeed, if we consider the function αT : TΣ → ℘(Σ∞) defined as
αT (t) def=

{
σ
∣∣σ trace in t

}
, then the maximal trace semantics of a program P is

〈|P |〉 def= αT ({|P |}).
All the semantics, in the hierarchy, are derived as abstract interpretation of

the trace-based semantics. In particular, each semantics in natural style corre-
sponds to a suitable abstraction of the basic natural trace-based semantics τ∞.
In the following we denote by Nat the identical abstraction of the maximal trace
semantics.

Relational semantics.

The relational semantics R∞ associates, with program traces, an input-output
relation by using the bottom symbol, ⊥ 6∈ Σ, to denote non-termination. This
corresponds to an abstraction of the maximal trace semantics, where intermediate
computation states are ignored. The abstraction function αR, that allows to get the
relational semantics as abstraction of the maximal trace one, i.e., R∞ = αR(τ∞),
is given in Table 4.1. The corresponding closure is:

Rel(X) def= γRαR(X) =
{
σ ∈ Σ+

∣∣∃δ ∈ X+ . σ` = δ` ∧ σa = δa
}
∪{

σ ∈ Σω
∣∣∃δ ∈ Xω . σ` = δ`

}
Denotational semantics.

The denotational semantics D∞ abstracts away from the history of computations,
by considering input-output functions. This semantics is isomorphic to relational
semantics. The abstraction function αD, that allows to get the denotational seman-
tics as abstraction of the relational one, i.e., D∞ = αD(R∞), is given in Table 4.1.
The corresponding closure operator on the trace semantics is:

4.1 Semantics 75

Den(X) def= γRγDαDαR(X) =
{
σ ∈ Σ+

∣∣∃δ ∈ X+ . σ` = δ` ∧ σa = δa
}
∪{

σ ∈ Σω
∣∣∃δ ∈ Xω . σ` = δ`

}
In the following, given a program P , we will denote its denotational semantics by
JP K.

Weakest precondition semantics.

Dijkstra’s predicate transformer gWp is represented as co-additive functions, de-
noting weakest-precondition predicate transformers [42]. We consider the program
S, and a post-condition (set of desired final states) P , that we want to hold after
the execution of S. The semantics consists in finding the weakest pre-condition,
namely the biggest set of possible initial states, which allows the program to finish
in P . The abstraction function αgWp, that allows to get the weakest precondition
semantics as abstraction of the denotational one, i.e., gWp = αgWp(D∞), is given
in Table 4.1. The corresponding closure operator on the trace semantics is:

gWp(X) def= γRγDγgWpαgWpαDαR(X) ={
σ ∈ Σ+

∣∣∃δ ∈ X+ . σ` = δ` ∧ σa = δa
}
∪{

σ ∈ Σω
∣∣∃δ ∈ Xω . σ` = δ`

}
Hoare’s axiomatic semantics.

Similarly to the gWp semantics, in the Hoare axiomatic semantics we consider
triples of the kind {Q} S {P}, and, in this case, we give semantics to the pro-
gram S by finding all the pairs 〈P,Q〉 such that {Q} S {P} is a valid Hoare triple
[74]. Hoare’s axiomatic semantics gH is represented as elements in tensor product
domain, i.e., GC’s, specifying the adjoint relation between weakest-precondition
and strongest-postcondition in Hoare’s triples {P} C {Q}. The abstraction func-
tion αgH, that allows to get the axiomatic semantics as abstraction of the weakest
precondition one, i.e., gH = αgH(gWp), is given in Table 4.1. The corresponding
closure operator on the trace semantics is the same as the denotational semantics.

Each semantics in natural style may have a corresponding angelic, demonic,
and infinite observable, which is again an abstraction. For each semantics, all the
observables are derived as the fixpoints, in the computational order, of semantic
functions obtained by applying the fixpoint transfer theorems [27].

Angelic.

The angelic trace semantics τ+ is designed as an abstraction of the maximal trace
semantics, and it is obtained by approximating sets, of possibly finite or infinite
traces, with the set of finite traces only, i.e., τ+ = α+(τ∞) (see Table 4.2).
We denote by R+, D+,Wlp, and pH respectively the big-step relational semantics
[99], angelic denotational, weakest-liberal precondition [43], and Hoare’s partial

76 4 Computational Systems and Semantics

Semantics Domain relation Abstraction and Concretization

R∞ = αR(τ∞) 〈℘(Σ∞),⊆〉 αR(X) =
n
〈σ`, σa〉

˛̨̨
σ ∈ X ∩Σ+

o
→−→←−

αR

γR

∪
n
〈σ`,⊥〉

˛̨̨
σ ∈ X ∩Σω

o
〈℘(Σ ×Σ⊥),⊆〉 γR(Y) =

n
σ ∈ Σ+

˛̨̨
〈σ`, σa〉 ∈ Y

o
∪

n
σ ∈ Σω

˛̨̨
〈σ`,⊥〉 ∈ Y

o
D∞ = αD(R∞) 〈℘(Σ ×Σ⊥),⊆〉 αD(X) = λs.{s′ ∈ Σ⊥| 〈s, s′〉 ∈ X}

→−→←←−
αD

γD

γD(f) =
n
〈x, y〉

˛̨̨
y ∈ f(x)

o
〈Σ −→ ℘(Σ⊥),v〉

gWp = αgWp(D∞) 〈Σ −→ ℘(Σ⊥),v〉 αgWp(f) = λP.
n

s ∈ Σ
˛̨̨
f(s) ⊆ P

o
→−→←←−

αgWp

γgWp

γgWp(Φ) = λs .
n

s′
˛̨̨
s 6∈ Φ(Σ⊥r{s′})

o
〈℘(Σ⊥) coa−→℘(Σ),w〉

gH = αgH(gWp) 〈℘(Σ⊥) coa−→℘(Σ),w〉 αgH(Φ) =
n
〈X, Y 〉

˛̨̨
X ⊆ Φ(Y)

o
→−→←←−

αgH

γgH

γgH(H) = λY .
S n

X
˛̨̨
〈X, Y 〉 ∈ H

o
〈℘(Σ)⊗ ℘(Σ⊥),⊇〉

Table 4.1. Basic natural-style semantics as abstract interpretations

correctness semantics [74]. All these semantics have been proved, in [25], to be
the angelic abstractions of the corresponding semantics in natural style. The basic
angelic trace semantics is constructively derived as the least fixpoint, in the compu-
tational order, of a semantic function: τ+ = lfp⊆∅F

+ where F+(X) = τ1 ∪ τ 2̇ _X.

Demonic.

The demonic trace semantics, denoted as τ∂ , is derived from the maximal trace
semantics by approximating non-termination by chaos, namely by the set of all the
possible finite computations starting from the state that leads to non-termination.
This corresponds to allowing the worst possible behavior of the program [27,40,43].
This semantics is obtained as abstraction of the natural semantics by using the
function α∂ , i.e., τ∂ = α∂(τ∞) (see Table 4.2). In this way, the demonic observable
is defined on the domain D∂ = α∂(℘(Σ∞)), which is such that X ∈ D∂ if and
only if

σ ∈ X ∩Σω ⇒ chaos(σ`) ⊆ X ∩Σ+

where chaos(σ`)
def=
{
δ ∈ Σ+

∣∣ δ` = σ`
}
.

We denote by R∂ , D∂ , Wp∂ , and gH∂ the demonic relational, demonic denota-
tional [10], demonic weakest-precondition and demonic Hoare’s semantics. These

4.1 Semantics 77

Semantics Domain relation Abstraction and Concretization

τ+ = α+(τ∞) 〈℘(Σ∞),⊆〉 →−→←−
α+

γ+

〈℘(Σ+),⊆〉 α+(X) = X ∩Σ+

γ+(Y) = Y ∪Σω

τ∂ = α∂(τ∞) 〈℘(Σ∞),⊆〉 →−→←−
α∂

γ∂

〈D∂ ,⊆〉 α∂(X)
def
= X ∪

S n
chaos(σ`)

˛̨̨
σ ∈ X ∩Σω

o
γ∂(Y) = Y

τω = αω(τ∞) 〈℘(Σ∞),⊆〉 →−→←−
αω

γω

〈℘(Σω),⊆〉 αω(X) = X ∩Σω

γω(Y) = Y ∪Σ+

Table 4.2. Observable semantics as abstract interpretations

semantics have been proved, in [25], to be the demonic abstractions of the cor-
responding semantics in natural style. The basic demonic trace semantics is con-
structively derived as the least fixpoint, in the computational order, of a semantic
function: τ∂ = lfpv

∂

Σ∞F
∂ where F ∂(X) = τ1 ∪ τ 2̇ _X.

Infinite.

The infinite trace semantics, denoted τω, is derived by observing non-terminating
traces only, i.e., τω = αω(τ∞) (see Table 4.2). The corresponding infinite semantics
are denoted by Rω, Dω, Wpω, and gHω. The basic infinite trace semantics is
constructively derived as the greatest fixpoint, in the computational order, of a
semantic function: τω = gfp⊆ΣωFω where Fω(X) = τ 2̇ _X.

Weakest precondition.

The weakest precondition semantics for total correctness Wp, is modeled as a
further abstraction of the natural trace semantics. This semantics considers only
those computations that surely terminate, in other words, the weakest precondition
is the largest set of initial states terminating in the given post-condition. This
observable is obtained as abstraction of the gWp semantics: Wp = αWp(gWp)
where

αWp(Φ) = Φ |℘(Σ)

γWp(Ψ) = λP . (if ⊥ 6∈ P then Ψ(P) else ∅)

and 〈(℘(Σ⊥) coa−→ ℘(Σ)),⊇〉 →−→←−
αWp

γWp

〈(℘(Σ) coa−→ ℘(Σ)),⊇〉.
The semantics tH is the Hoare’s axiomatic abstraction ofWp, i.e., tH = αgH(Wp).

78 4 Computational Systems and Semantics

The whole hierarchy2, relating semantics styles and observables, is shown in
Fig. 4.1, where lines and arrows denote, respectively, isomorphisms and strict ab-
stractions between semantics.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

OO

OO OO

OO

eeLLLLLL
99rrrrrr

99rrrrrr

eeLLLLLL
99rrrrrr

99rrrrrr

eeLLLLLL
99rrrrrr

99rrrrrr

eeLLLLLL
99rrrrrr

99rrrrrr

eeLLLLLL
99rrrrrr

99rrrrrr //

//

τ∞

R∞

D∞

gWp

gH

τ+

R+

D+

Wlp

pH

τ∂

R∂

D∂

Wp∂

gH∂

τω

Rω

Dω

Wpω

gHω

Wp

tH

angelic

natural

demonic

infinite

Hoare’s axiomatic

Dijkstra’s pred-trans

Denotational

Relational

Trace-based

Fig. 4.1. Cousot’s hierarchy.

4.2 Computational systems

In the following, we are going to introduce some very simple fragments of im-
perative languages: the deterministic fragment Imp [116], the non-deterministic
fragment, with a non-deterministic choice operator, that we will call Nd-Imp, and
the multi-threaded (or concurrent) fragment, with a parallel composition operator,
that we will call Mt-Imp. Afterwords, we introduce a standard model for parallel
systems communicating through synchronization: Process algebras [92]. In partic-
ular, we describe a particular process algebra introduced for modelling security
properties: Spa [47]. Finally, we introduce timed automata, a standard model for
real-time systems [5]. The semantics of all these computational systems is given
by using a transition system, induced by a set of inference rules.

4.2.1 A simple imperative language

In this section, we introduce the syntax of a programming language, Imp [116], a
small imperative language. Imp is called an imperative language because program
2 In [58] the symmetric and relational structure of this hierarchy is studied and in [51]

this hierarchy is extended in order to model also transfinite computations, providing

a model for program slicing.

4.2 Computational systems 79

execution involves carrying out a series of explicit commands to change state.
Formally, Imp’s behaviour is described by rules which specify how its expressions
are evaluated and its commands executed.

Imp: The deterministic fragment.

First of all, we list the syntactic sets associated with Imp:

• Values V;
• Truth values B = {true, false};
• Variables Var;
• Arithmetic expression Aexp;
• Boolean expression Bexp;
• Commands Com

We assume that the syntactic structure of numbers is given. For other syntactic
sets we have to say how their elements are built-up. We will use a variant of BNF
as a way of writing down the rules of construction of the elements of these syntactic
sets. We will use the following convention:

• m,n range over values V;
• x, y range over variables Var;
• a ranges over arithmetic expression Aexp;
• b ranges over boolean expression Bexp;
• c ranges over commands Com;

So, we describe the formation rules for arithmetic expression Aexp by:

a ::= n | x | a0 + a1 | a0 − a1 | a0 · a1

For Bexp we have:

a ::= true | false | a0 = a1 | a0 ≤ a1 | ¬b | b0 ∧ b1 | b0 ∨ b1

Finally, for commands we have the following syntax:

c ::= nil | x := a | c0; c1 | while b do c endw | if b then c0 else c1

Note that

if b then c0 else c1 ≡ while b do c0; b := false endw;
while ¬b do c1; b := true endw

Therefore, in the following we will, sometimes, consider the language Imp, omitting
the control statement if.
As usual, V can be structured as a flat domain whose bottom element, ⊥, denotes
the value of not initialized variables. In the following we will denote by Var(P)
the set of variables of the program P ∈ Imp. Let’s consider the well-known (small-
step) operational semantics of Imp in Table 4.3 [116]. The operational semantics

80 4 Computational Systems and Semantics

〈nil, s〉 −→ s
〈e, s〉 −→ n ∈ Vx

〈x := e, s〉 −→ 〈nil, s[n/x]〉

〈c0, s〉 −→ 〈c′0, s′〉

〈c0; c1, s〉 −→ 〈c′0; c1, s
′〉

〈c1, s0〉 −→ 〈c′1, s′0〉

〈nil; c1, s〉 −→ 〈c′1, s′0〉

〈b, s〉 −→ true, 〈c0, s〉 −→ 〈c′0, s′〉

〈if b then c0 else c1, s〉 −→ 〈c′0, s′〉

〈b, s〉 −→ false, 〈c1, s〉 −→ 〈c′1, s′〉

〈if b then c0 else c1, s〉 −→ 〈c′1, s′〉

〈b, s〉 −→ true, 〈c, s〉 −→ 〈c′, s′〉

〈while b do c endw, s〉 −→ 〈c′;while b do c endw, s′〉

〈b, s〉 −→ false

〈while b do c endw, s〉 −→ 〈nil, s〉

Table 4.3. Operational semantics of Imp

naturally induces a transition relation on a set of states Σ, denoted −→, specifying
the relation between a state and its possible successors. In this transition system,
states are representations of the memory, i.e., associations between variables and
values. For this reason, in the following we will denote states as tuples of values, the
values associated with the variables by the given state. Therefore, if |Var(P)| = n,
then Σ is a set of n-tuples of values, i.e., Σ = Vn. In sake of simplicity, we denote
by Vx the set of values over which x can range, i.e., the domain of x.

The non-deterministic fragment.

A simple way to introduce some basic issues in order to obtain non-deterministic
languages is to extend the simple imperative language Imp by an operation of non-
deterministic choice. We define in this way the language Nd-Imp, whose commands
are defined in the following way:

c ::= nil | x := a | c0; c1 | while b do c endw | if b then c0 else c1 | c0 � c1

Clearly. we have to extend the operational semantics with the rules for the non-
deterministic choice:

〈c0, s〉 −→ 〈c′0, s′〉

〈c0 � c1, s〉 −→ 〈c′0, s′〉

〈c1, s〉 −→ 〈c′1, s′〉

〈c0 � c1, s〉 −→ 〈c′1, s′〉
The multi-threaded fragment.

A simple way to introduce some basic issues in order to obtain parallel languages is
to extend the simple imperative language Imp by an operation of parallel compo-
sition of commands. We define in this way the multi-threaded imperative language
Mt-Imp, whose commands are defined in the following way:

4.2 Computational systems 81

c ::= nil | x := a | c0; c1 | while b do c endw | if b then c0 else c1 | c0 ‖ c1

Now, we have to extend the operational semantics with the rules for the parallel
composition:

〈c0, s〉 −→ 〈c′0, s′〉

〈c0 ‖ c1, s〉 −→ 〈c′0 ‖ c1, s′〉

〈c1, s〉 −→ 〈c′1, s′〉

〈c0 ‖ c1, s〉 −→ 〈c0 ‖ c′1, s′〉

4.2.2 A process algebra: Spa

The Security Process Algebra (Spa for short) [47] is a slight extension of Milner’s
CCS [92], where the set of visible actions is partitioned into high level actions and
low level ones, in order to specify multilevel systems. Spa syntax is based on the
same elements as CCS, which are:

• A set I = {a, b, . . .} of input actions, a set O = {a, b, . . .} of output actions, and
a set L = I ∪O of visible actions, ranged over by α;

• A function · : L → L such that if a ∈ I then a ∈ O, and if a ∈ O then a ∈ I. If
L ⊆ L then L def=

{
a
∣∣a ∈ L };

• Two sets ActH and ActL , of high and low level actions, such that ActH = ActH
and ActL = ActL , ActH ∩ActL = ∅ and ActH ∪ActL = L;

• A set Act = L∪ {τ} of actions (τ is the special unobservable, internal action),
ranged over by µ;

• A set K of constants, ranged over by Z.

The syntax of Spa agents (or processes) is defined as follows [48]:

A ::= 0 | µ.A | A+A | A ‖ A | A\\L | A[f] | Z

where L ⊆ Act r {τ} and f : Act → Act is such that f(α) = f(α), f(τ) = τ .
Moreover, for every constant Z there must be the corresponding definition Z def= A,
and A must be guarded on constants3. 0 is the empty process, which cannot do
any action; µ.A can do the action µ and then behaves like A; A1 +A2 can choose
to behave like A1 or like A2; A1 ‖ A2 is the parallel composition of A1 and A2,
where the executions of the two systems are interleaved, possibly synchronized on
complementary input/output actions, producing an internal action τ ; A\\L can
execute all the actions A is able to do, provided they do not belong to L; if A
can execute the action µ, then A[f] executes the action f(µ). Starting from the
defined syntax, we consider two specific restriction operators:

A\L def= A\\L ∪ L
A\IL

def= A\\L ∩ I

and the hiding operator of CSP [75]:
3 The recursive substitution of all the non prefixed, i.e., not appearing in a context µ.A′,

constants in A with their definitions terminates after a finite number of steps.

82 4 Computational Systems and Semantics

Prefix µ.A
µ−→A

Sum
A1

µ−→A′1

A1 + A2
µ−→A′1

A2
µ−→A′2

A1 + A2
µ−→A′2

Parallel
A1

µ−→A′1

A1 ‖ A2
µ−→A′1 ‖ A2

A2
µ−→A′2

A1 ‖ A2
µ−→A1 ‖ A′2

A1
α−→A′1 A2

α−→A′2

A1 ‖ A2
τ−→A′1 ‖ A′2

Restriction
A

µ−→A′

A\\L µ−→A′\\L
if µ /∈ L

Relabelling
A

µ−→A′

A[f]
f(µ)−→A′[f]

Constant
A

µ−→A′

Z
µ−→A′

if Z
def
= A

Table 4.4. Operational semantics of Spa

A/L
def= A[fL] where fL(x) =

{
x if x /∈ L
τ if x ∈ L

Let E the set of Spa agents, given A ∈ E , L(A) denotes the set of actions
occurring syntactically in A. We can define the set of high level agents, i.e.,
EH

def=
{
A ∈ E

∣∣L(A) ⊆ ActH ∪ {τ}
}
, and the set of low level agents, which is

EL
def=
{
A ∈ E

∣∣L(A) ⊆ ActL ∪ {τ}
}
.

The operational semantics is a labelled transition system 〈E ,Act,−→〉, where
the states are the terms of the algebra, and the transition relation is defined, as
for CCS, by structural induction as the least relation generated by the axioms and
inference rules reported in Table 4.4.

4.2.3 Timed Automata

In this section, we recall the notion of timed automata [5]. In the following, R is
the set of real numbers and R+ the set of non-negative real numbers. A clock takes
values from R+. Given a set X of clocks, a clock valuation over X is a function
assigning a non-negative real number to every clock. The set of valuations over X
is denoted VX and it is a set of total functions from X to R+. Given ν ∈ VX and
δ ∈ R+, then ν + δ is the map that with each clock x associates ν(x) + δ. Given
a set X of clocks, a reset γ is a subset of X . The set of all the resets is denoted
by ΓX . Given a valuation ν ∈ VX and a reset γ ∈ Γ , with ν r γ we denote the

4.2 Computational systems 83

valuation:

ν r γ(x) =
{

0 if x ∈ γ
ν(x) if x /∈ γ

Given a set X of clocks, the set ΨX of clock constraints over X are defined as
follows:

ψ ::= true | false | ψ ∨ ψ | ψ ∧ ψ | ¬ψ | x op t | x− y op t

where x, y ∈ X , t ∈ R+, and op ∈ {<,>,≤,≥,=}. Clock constraints are evaluated
over clock valuation. The satisfaction of a clock constraint ψ ∈ ΨX by a valuation
ν ∈ VX is denoted ν |= ψ and it is defined in the standard way.

Definition 4.1 (Timed automaton). A timed automaton A is defined by a tuple
〈Q,Q0, Σ,X , I, E〉, where: Q is a finite set of states, Q0 ⊆ Q is the set of initial
states, Σ is a finite alphabet of actions, X is a finite set of clocks, I is a mapping
that labels each location q ∈ Q with any clock constraint in ΨX , E is a finite
set of edges. Each edge e ∈ E is a tuple in Q × ΨX × ΓX × Σ × Q such that if
e = 〈q, ψ, γ, σ, q′〉 then q is the source, q′ is the target, ψ is the constraint, σ is the
action label and γ is the reset.

The semantics of a timed automaton A is an infinite (labelled) transition system
S(A) = 〈Σ,−→, λ〉, where Σ is the set of states and −→ is the transition relation.
The states Σ are the pairs 〈q, ν〉, where q ∈ Q is a state of A, and ν ∈ VX of A.
An initial state in S(A) is a state 〈q, ν〉 such that ν(x) = 0 for each x ∈ X . At any
state 〈q, ν〉, A can perform an action labeling an outgoing edge e or to stay idle in
the state, anyway we obtain the following labelling λ:

1.
δ ∈ R+, 0 ≤ δ′ ≤ δ ⇒ ν + δ′ |= I(q)

〈q, ν〉 −→δ 〈q, ν + δ〉
2.
〈q, ψ, γ, σ, q′〉 ∈ E , ν |= ψ

〈q, ν〉 −→σ 〈q′, ν r γ〉

Thus, a run in S(A) is ρ = s0 −→l0 s1 −→l1 . . . where for each i we have si ∈ Σ
and li ∈ Σ ∪ R+. The time sequence tj of the time elapsed from the state s0 to
the state sj in the trace τ is:

t0 = 0

ti+1 = ti +
{

0 if li ∈ Σ
li otherwise

The event sequence of the events occurring during the run σ, including the elapsed
time, is 〈l0, t0〉〈l1, t1〉 The action sequence (or trace) of the run σ is the projec-
tion of the event sequence of r on the pairs in the set

{
〈l, t〉

∣∣ l ∈ Σ }.
Definition 4.2 (Timed language). Let A = 〈Q,Q0, Σ,X , I, E〉 be a timed au-
tomaton, the timed language accepted by A is the set of the action traces of all the
sequences possible in S(A), i.e., Tr(S(A)). This language is denoted 〈|A|〉.

Therefore we can say that two timed automata A1 and A2 are equivalent, i.e.,
A1 ≈ A2, iff 〈|A1|〉 = 〈|A2|〉.

5

Non-Interference in Language-based Security

When we imagine, we can only see,

when we know we can compare.

Jean-Jacques Rousseau

In the last decades, an important task of language based security is to protect
confidentiality of data manipulated by computational systems. Namely, it is im-
portant to guarantee that no information, about confidential/private data, can be
caught by an external viewer. In many fields, where protection of confidentiality is
a critical problem, the standard way used to protect private data is access control:
special privileges are required in order to read confidential data. Unfortunately,
these methods allow to restrict accesses to data but cannot control propagation
of information. Namely once the information is released from its container, it can
be improperly transmitted without any further control. This means that the se-
curity mechanisms, such as signature, verification, and antivirus scanning, do not
provide assurance that confidentiality is maintained during the whole execution
of the checked program. This implies that, to ensure that confidentiality policies
are satisfied, it becomes necessary to analyze how information flows within the
executed program. In particular, if a user wishes to keep some data confidential,
he might state a policy stipulating that no data visible to other users is affected
by modifying confidential data. This policy allows programs to manipulate and
modify private data, as long as visible outputs of those programs do not reveal
information about these data. A policy of this sort is called non-interference policy
[68], since it states that confidential data may not interfere with public data. Non-
interference is also referred as secrecy [111], since confidential data are considered
private, while all other data are public [39]. The difficulty of preventing a program
P from leaking private information depends greatly on what kind of observations
of P are possible [109]. If we can make external observations of P ’s running time,
memory usage, and so on, then preventing leaks becomes very difficult. For exam-

86 5 Non-Interference in Language-based Security

ple, P could modulate its running time in order to encode the private information.
Furthermore, these modulations might depend on low level implementation de-
tails, such as caching behaviours. But this means that it is insufficient to prove
confinement with respect to an abstract semantics, every implementation detail,
that affects running time, must be addressed in the proof of confinement. If, in-
stead, we can only make internal observations of P ’s behaviour, the confinement
problem become more tractable [109]. Internal observations include the values of
program variables, and everything is observable internally, e.g. time in real-time
systems.

In this chapter, we provide an excursus on the different notions of non-
interference, in different computer science fields, and we describe the main ap-
proaches studied (see [104] for a survey). In the following, we first provide a brief
background of the notion of non-interference, from the Lampson’s formalization
of the confinement problem [80] to the Cohen’s strong dependency [19; 20], to
the Goguen and Meseguer’s definition of non-interference [68]. We conclude this
part, introducing the semantic approach to non-interference of Joshi and Leino
[78] and the PER model, applied to non-interference by Sabelfeld and Sands [106].
At this point, we provide a background about the existing techniques used for
enforcing non-interference. Starting from the initial access control methods, such
as the Bell and LaPadula model [13], we arrive to introduce the Denning and
Denning information flow static analysis [38]. We conclude this part describing
the Smith and Volpano security type system [114] and the axiomatic approaches
to non-interference [7, 6]. Afterwards, we describe how this notion has been ex-
tended in order to cope with richer and more complex computational systems
(e.g., non-deterministic and multi-threaded languages, process algebras and timed
automata). We also introduce the notion of covert channel and we describe some
existing solutions studied for avoiding this kind of information flows (e.g, timing
and probabilistic channels, termination channels, and so on). Finally, we describe
some existing weakenings of the notion of non interference, from the quantitative
approaches that measures the information released [17, 84], to the definition of
robust declassification [118], from the probabilistic approach characterizing how
much statistical tests are necessary to disclose secrets [41], to the complexity-based
approach which determines how complex is to disclose secrets [82].

5.1 Background: Defining non-interference

We have underlined above, how the problem of keeping confidential data private
can be modeled as a non-interference problem, by stating that secure programs
can manipulate and modify private data, as long as visible outputs of those pro-
grams do not reveal confidential information. In this section, we describe how
non-interference can be defined in different fields of computer science, depending

5.1 Background: Defining non-interference 87

on what the low level user is supposed to be able to observe. Before entering in
the specific of the non-interference notion, we want to define what is a security
property. Consider a set SC of security classes [38] (also called security domains
in [86]), corresponding to disjoint classes of information. Suppose that each object
e of a system is bound to a security class in SC, denoted dom(e), which specifies
the security class associated with the information represented by e. In general, a
security domain can be, e.g., a group of users, a collection of files or a memory sec-
tion. A security property is composed of a non-interference relation 6 ⊆ SC×SC,
which formalizes a security policy by stating which domains may not interfere with
others, with a definition of security [86]. In the following, we simplify and consider
only two domains, private/high H and public/low L , and the security policy which
demands that H must not interfere with L , i.e., H 6 L .

In order to describe the background of the notion of security as absence of flows
from private to public we have to go back to the seminal paper [80] where the notion
of confinement problem is introduced (also known as secrecy). Consider a customer
program and a service (host) program, the customer would like to ensure that the
service cannot access (read or modify) any of his data, except those information
to which he explicitly grants access (said public). In other words, the confinement
problem consists in preventing the results of the computation from leaking even
partial information about confidential inputs. Clearly, if the public data depends,
in any way, on the private ones, then confinement becomes a problem. This strict
relation between the confinement problem and the dependencies among data allows
to describe the confinement problem as a problem of non-interference [68] by using
the notion of strong dependency introduced in [19]. In the latter, the transmission
of information is defined by saying that information is transmitted over a channel
when variety is conveyed from the source to the destination. Clearly, if we substitute
source with private and destination with public, then we obtain the definition
of insecure information flow. More formally speaking, Cohen in [19] says that
information can be transmitted from a to b during the execution of a system S, if
by suitably varying the initial value of a (exploring the variety in a), the resulting
value in b after S’s execution will also vary (showing the variety is conveyed to
b). The absence of strong dependency has been interpreted as non-interference in
[68], where non-interference is defined as:

“One group of users [...] is noninterfering with another group of users if
what the first group does [...] has no effect on what the second group of
users can see”.

Starting from this informal definition, a non-interference policy which states that
a group of users G does not interfere with another group of users G′ is defined by
saying that what any user u ∈ G can observe when the machine is in the state
representing the effect of an input string w on the states, starting from the initial
state of the whole system, denoted by JwKu, is the same of what it can observe by

88 5 Non-Interference in Language-based Security

erasing all the actions of users in G′.
Therefore, we have that security, defined as presence of only secure information
flows, is non-interference, which is absence of strong dependencies. These defini-
tions are general and can be applied to different kind of computational systems,
as we will see later on.
The notion of non-interference is used to stipulate policies of non-interference
whenever a user wishes to keep some data confidential. This policy allows pro-
grams to manipulate and modify private data so long as visible outputs of those
programs do not reveal confidential information. Therefore these policies stipulate
that no data visible to other users is affected by confidential data [68].

5.1.1 Cohen’s strong and selective dependency

Starting from the observation that in sequential programs information can be
transmitted among variables, Cohen noted that the approaches previously studied
were almost intuitionistic. His aim was that of providing a formal approach to
information transmission so that information paths can be determined precisely
given the formal semantics of a program. Moreover, the formal approach allows
to answer more selective questions about information transmission. For example,
we may not care if the output variable b reflects whether the input variable a

is odd or even. However we might like to show that b depends on a in no other
way. This leads clearly both to a semantic formalization of the problem and to
a way for weakening the problem itself. In information theory, information can
be transmitted from a source a to a destination b if a variety can be conveyed
from a to b, namely as the result of program execution [19, 20]. This is exactly
the idea used for defining strong dependency. The selective aspect of dependency,
called selective dependency, comes from the observation that assertions, constraints
on inputs of computation, can eliminate certain information paths, for example
making a test always true. Cohen considers a simple imperative language with the
usual semantics.

The idea for defining strong dependency is that of considering that if the input
a may initially take on a number of different values, resulting in a number of
different values in b after the execution of the program P , then we can say that
b strongly depends on a. To show that information transmission is possible, we
need only to find two different input values for a that yield different values for b
after the execution of P . Therefore, adapting Cohen’s definition to the security
framework, we consider L as the set of public variables and H as the set of private
ones. Then we say that the variables L are strongly dependant on H in the program
P , H BP L , namely the program is not secure, if

∃s1, s2 . sL1 = sL2 ∧ JP K(s1)L 6= JP K(s2)L

where s1 and s2 are states of P , namely tuples of values for the variables in P ,
and sL is the tuple of values in s for the variables in L .

5.1 Background: Defining non-interference 89

Cohen realized that this definition, in some situations, was too strong, more-
over he noted that adding input assertions reduces the information that can be
transmitted. In general, any addition or strengthening of an input assertion may
reduce (and never increase) information transmission [20]. This consideration leads
him to the definition of the selective dependency: Often we are not interested in
the fact that information is indeed transmitted from one object to another as
long as specific properties, portions of the information, are protected. Consider
the program

P
def= b := x+ (a mod 4)

We can note that b does depend on a, i.e., a BP b, but only upon the last two
bits of a. We can prove that the rest of a is protected from b by using strong
dependency with a constraint, for example φ : a mod 4 = 3. We can note that,
even though P conveys variety from a to b, φ eliminates all the variety that is
conveyed. Therefore, we define selective dependency for security (with a simplified
notation). Consider as above H and L in a program P . We say that L is selectively
independent from H in P , as regards the assertion φ, i.e., H 6BP

φ L , if:

∀s1, s2 . (φ(sH1) ∧ φ(sH2) ∧ sL1 = sL2) ⇒ JP K(s1)L = JP K(s2)L

The role of φ is clearly that of characterizing which information we admit to flow
from H to L , indeed in the previous example any possible constraint on the value
a mod 4 makes b selectively independent from a.

5.1.2 Goguen-Meseguer non-interference

In [68] the authors treat directly the problem of information transmission for
enforcing program’s security. Their approach to non-interference is intended to
deal with both the abstract conceptual level of the security problem, where general
concepts and methods are described, and the concrete modelling level, where actual
systems are modeled in order to prove that they are secure in any sense. The
definition introduced by Goguen and Meseguer is based on the notion of security
policy, which defines the security requirements for a secure system. Therefore, in
this context, security verification consists of showing that a given policy is satisfied
by a given model. In general, information flow techniques attempt to analyze how
users (or processes, or variables) can potentially interfere with other users. On the
other hand, the security policy wants to say when users (or processes, or variables)
must not interfere with other users. The purpose of a so-called security model is
to provide a basis for determining whether or not a system is secure, and if not,
for detecting its flaws.
In [68], the basic definition used to make non-interference precise considers systems
as machines having a set of users U , a set of commands (changing-states) C, a
set of read commands R, a set of outputs O and a set of internal states S, with
initial state s0. Moreover, there is a next function: do : S × U × C −→ S, where

90 5 Non-Interference in Language-based Security

do(s, u, c) gives the next state after the user u executes the command c in the
state s; and an output function: out : S×U×R −→ O where out(s, u, r) gives the
result of a user u executing a read command r in the state s. Therefore, output
commands have no effect on states, and state commands produce no output. The
history of a system is the sequence w = 〈(u1, c1) . . . (un, cn)〉 where all the pairs
are of commands ci ∈ C ∪ R with their users ui ∈ U , since the initial startup of
the system is in the state s0. When reasoning about states we can omit all output
commands from the history, since output commands do not affect states. Thus, the
state reached after the execution, in the system, of a sequence of state commands,
starting from the initial state s0, is given by the function do∗ : S × (U × C)∗

defined inductively by do∗(s, empty) = s, do∗(s, 〈w(u, c)〉) = do(do∗(s, w), u, c).
Let JwK denote the state reached from s0 after the execution of the sequence w,
i.e., JwK = do∗(s0, w).
A non-interference assertion expresses that a certain group G of users executing
a certain set H of state transition commands does not interfere with, i.e., cannot
be detected by, another group of users G′ executing a set L of output commands;
this is denoted G, H :|G′, L . This assertion holds if and only if for each sequence
w ∈ (U × C)∗, each v ∈ G′, and each l ∈ L we have:

out(JwK, v, l) = out(JPG,H (w)K, v, l)

where PG,H (w) is the sequence obtained from w by eliminating all occurrences
of pairs (u, c) with u ∈ G and c ∈ H . Intuitively, this means that whatever any
v ∈ G′ can tell by executing output commands in L , everything looks as if the
users in G had never executed any commands in H . This is mostly the core work in
[68] and it is a slightly different notion from the one introduced by Cohen. Indeed
here we require that whenever private actions are executed the output observable
behaviour has to be as if no private actions have been executed at all. In sequential
programs the private actions are those where private variables are modified, and
therefore in general it is a very strong requirement to extract computations where
the execution of private actions are avoided. This impose the definition of a weaker
notion of non-interference that we will call standard non-interference, and which is
defined as the negation of Cohen’s strong dependency, where private actions may
interfere with the output behaviour, unless they do not convey a variety.

5.1.3 Semantic-based security models

As we have seen in the formalization of the Cohen’s strong dependency, the prob-
lem of non-interference can be characterized by considering semantics of systems.
A semantic approach has several features. First, it gives a more precise character-
ization of security than other approaches. Second, it applies to any programming
constructs whose semantics are definable, for example, the introduction of non-
determinism poses no additional problems. Third, it can be used for reasoning
about indirect leaking of information through variation of the program behaviour

5.1 Background: Defining non-interference 91

(e.g., whether or not the program terminates). Finally, it can be extended to the
case where the high and the low security variables are defined abstractly, as func-
tion of the actual program variables [78]. We introduce here two main semantic
approaches.

A semantic approach to secure information flow.

As we said above, a program is secure if any observation of the initial and final
values of the low variables, denoted l : L , do not provide any information about
the initial value of the private variables, denoted h : H [78]. Assume that the
adversary has knowledge of the program text and of the initial and final values
of l. The idea of Joshi and Leino’s semantic-based approach to language-based
security is that of characterizing secure information flow as program equivalence,
denoted by .=. They introduce a program H H

def= “assign to h an arbitrary value”.
Consider a program P , for which we want to prove non-interference. The program
H H ;P corresponds to run P after having set h to an arbitrary value; while the
program P ; H H discards the final value of h resulting from the execution of P .
Then a program P is said to be secure if

H H ; P ; H H
.= P ; H H (5.1)

where .= is the relational input/output semantic equality between programs,
namely for each possible input the two programs have to show the same pub-
lic output behavior. In order to understand this characterization, note that the
occurrence of H H after P on both the sides of the equality indicates that only
the final values of l are of interest, whereas the occurrence of H H before P on
the left side of the equality indicates that the program starts with an arbitrary
assignment to h. Clearly, the two programs are input/output equivalent provided
that the final value of l, produced by P , does not depend on the initial value of h,
which is indeed standard non-interference.

PER’s model.

The semantic approach described above has also been equivalently formalized by
using partial equivalence relations (PER) [106]. In this paper, the authors show
how PER can be used to model dependencies in programs. Indeed, as we noted
above, the problem of non-interference can be seen as absence of dependencies
among data, where the meaning of dependency is given by Cohen [19]. The idea
behind this characterization consists in interpreting security types as partial equiv-
alence relations. In particular the variables H on D are interpreted by using the
equivalence relation AllD, and L by using the relation IdD, where for all x, x′ ∈ D:

x AllD x′ x IdD x′ ⇔ x = x′

The intuition behind the relations AllD and IdD is that they represent the per-
spective of the user who does not have access to the high information. This user

92 5 Non-Interference in Language-based Security

can see the difference between distinct low data, but any high datum is indistin-
guishable from any other. This perspective can simply be generalized to multilevel
security problems.

In order to use this model in the security framework, consider partial equiv-
alence relation, namely equivalence relation which can fail the reflexive property.
At this point, we can define a relation between functions. Let Per(D) be the set
of partial equivalence relations on D. Given P ∈ Per(D) and Q ∈ Per(E) we can
define (P _ Q) ∈ Per(D −→ E):

f (P _ Q)g ⇔ ∀x, x′ ∈ D . x P x′ ⇒ f(x) Q g(x′)

which is in general partial since it can fail reflexivity. Consider P ∈ Per(D), if
x ∈ D is such that x P x then we write x : P . Therefore, if f is such that
∀x, x′ ∈ D . x P x′ ⇒ f(x) Q f(x′) then we write f : P _ Q . Finally for binary
relations P and Q , we define the relation P × Q by:

〈x, y〉 P × Q 〈x′, y′〉 ⇔ x P x′ ∧ y Q y′

At this point, we can formalize security in this model: let us distinguish, in the
state s of P the values for low and private variables, i.e., s = 〈sH , sL 〉 and let P
be a program and JP K its semantics, then P is secure iff

JP K : All×Id _ All×Id ≡ ∀s, t.〈sH , sL 〉All×Id〈tH , tL 〉 ⇒ JP K(s)All×IdJP K(t)

where clearly JP K(s) returns a state which is again a tuple of low and private
values.

5.2 Background: Enforcing non-interference

Belief that a system is secure, with respect to confidentiality, should arise from a
rigorous analysis showing that the system, as a whole, enforces the confidential-
ity policies of its users. In particular, we are interested in enforcing information
flow policies. With the term enforcement we mean the checking process that en-
sures that a program does not reveal private information [80]. There are several
approaches for checking non-interference. The standard method used for checking
non-interference is to show that an attacker cannot observe any difference between
two executions that differ only in the confidential input [69]. Clearly information
flow analysis methods can be used for this purpose, but other approaches can be
studied and developed. Statically, we can enforce non interference by using a type
system. The idea is that of augmenting the type of variables and expressions with
annotations that specify policies on the use of typed data, in order to enforce
security policies at compile time. Other approaches define a semantic-based se-
curity model, providing powerful reasoning techniques. Checking non-interference
is indeed an abstraction of the rigorous notion of non-interference that we want
to enforce. In particular multi-level security can be expressed at three levels of
abstraction [69]:

5.2 Background: Enforcing non-interference 93

1. As a precise security policy, defined by a simple security requirement on lan-
guages, like the one given above;

2. As a set of general conditions on the transition function of the system that
inductively guarantees its multi-level security, as in Bell-LaPadula model [13];

3. As a finite set of lemmas obtained by syntactic analysis of system specifications,
such that if all the lemmas are true then any system satisfying these specifica-
tions is guaranteed multi-level secure with complete mathematical certainty.

The first formulation is the closest to intuition, since it expresses directly the con-
straints that should be enforced on the information flow, i.e., it expresses the policy
that has to be enforced. The second formulation, which is obtained as unwinding
[69] of the first one, reduces the proof of satisfaction of the policy to simpler con-
ditions that, by inductive argument, guarantee that the policy holds. Finally, the
third formulation is such that, if the process of derivation of lemmas from the
policy has been proved mathematically sound, then it reduces the problem of ob-
taining full mathematical certainty about the security of a system to a form that
can be checked by a theorem-prover.

5.2.1 Standard security mechanism

As we noted in the introduction, the standard mechanism used for checking non-
interference is access control. Access control, which consists in a collection of access
control lists and capabilities, is an important part of language-based security. For
instance, it can be used when a file may be assigned access control permissions
that prevent users, other than its owner, from reading the file. One of the most
famous models, based on access control, is the Bell and LaPadula model [13] (see
below).
The problem with access control is that it cannot control how data are propagated
after they have been read from the file. For this reason, access control is not
sufficient for guaranteeing certain kind of security policies, and information-flow
control has to be used. Other common mechanisms are, for example, firewalls,
encryption and antivirus software which can be used for protecting confidential
information. The problem with these mechanisms is that they do not provide end-
to-end security. For example, with encryption, we have not assurance that, after
decryption, the confidentiality of data is respected. Another problem, related to
access control mechanisms, is that it has been proved undecidable whether an
access right to an object will “leak” to a process in a system whose access control
mechanism is modeled by an access matrix [73].

Bell and LaPadula model.

Bell and LaPadula use finite-state machines to formalize their model [13]. They
define the various components of the finite state machine defining what it means
(formally) for a given state to be secure. In particular, they consider only the

94 5 Non-Interference in Language-based Security

transitions that can be allowed so that a secure state can never lead to an insecure
one. This model is based on the access matrix model which is composed by an
access matrix that decides in which mode each subject (user, program,...) can access
to an object (files, variables,...). In addition to subjects and objects of the access
matrix, the Bell and LaPadula model includes the security levels of the system:
each subject has a clearance and each object has a classification. Each object has
also a current security level which has not to exceed the subject’s clearance. At
this point, a set of rules, governing the transitions among states, is used in order
to preserve the given security properties. Each rule is formally defined and it is
provided together with a set of restrictions on the possible applications of the rule
itself.

5.2.2 Denning and Denning Information flow static analysis

One of the first work which aim is to provide a mathematical framework suitable
for formulating the requirement of secure information flow is [38]. The central
component of this model is a lattice structure derived from the security classes
and justified by the semantics of information flow. Security here means that no
unauthorized flow of information is possible, which is another formulation for non-
interference.

Consider an information flow model F , defined as F = 〈N,P,S,⊕,→〉, where
N = {a, b, . . .} is a set of objects, P = {p, q, . . .} is a set of processes, which
are active agents responsible of information flow. S = {A,B, . . .} is a complete
lattice of security classes corresponding to disjoint classes of information, with least
upper bound ⊕ and greatest lower bound denoted by ⊗. The idea behind these
classes is that of modeling the security classification of objects. Each object a is
bounded to a security class A which specifies the security class associated with the
information stored in a. There are two kinds of binding: static, where the security
classes associated with objects are constants, and dynamic, where the security
classes may vary during the execution. The operator ⊕ is the class-combining
operator, an associative and commutative binary operation that specifies, given
two operand classes, the class in which the result of any binary function on values
from the operand classes belongs. Finally→ is a flow relation among classes. Given
two classes A and B, we write A → B if information in class A is permitted to
flow into class B. Information is said to flow from class A to class B whenever
information associated with A affects the value of information associated with B.
At this point, a flow model F is secure if and only if the execution of a sequence
of operations cannot give rise to a flow that violates the relation →.

Enforcing security.

The primary problem in guaranteeing security lies in detecting (and monitoring)
all flows causing a variation of data [38]. Here, we find the first distinction between

5.2 Background: Enforcing non-interference 95

implicit and explicit flows. Consider the statement if a = 0 then b := 0 else nil;
if initially b 6= 0 then we can know something about a after the execution of the
statement. For this reason the authors distinguish between implicit and explicit
flows. Explicit flows are those due to the execution of any statement that directly
transfer information among variables. Implicit flows to b occur when the result of
executing or not a statement, that causes an explicit flow to b, is conditioned on
the value of a guard. At this point, in order to specify the security requirements of
programs causing implicit flows, it is convenient to consider an abstract represen-
tation of programs that preserves the flows but not necessarily the whole original
structure. The abstract program S is defined recursively:

1. S is an elementary statement, i.e., an assignment;
2. There exist S1 and S2 such that S = S1;S2;
3. There exist S1, . . . , Sm and an m-valued variable c such that S = c :
S1, . . . , Sm.

where the third point defines conditional structures in which the value of a variable
selects among alternative programs.
At this point, security is enforced by modeling implicit and explicit flows in the
lattice of security classes and checking if these flows are allowed by the security
policy chosen. Let us see how this is defined for the abstract program S described
above. An elementary statement S is secure if any explicit flow caused by S is
secure, namely if the value of b is derived in S from the values of a1, . . . , am then
A1 ⊕ . . .⊕ Am → B is allowed. S = S1;S2 is secure if both S1 and S2 are secure.
Finally S = c : S1, . . . , Sm is secure if each Sk is secure and all implicit flows from
c are secure, namely let b1, . . . , bm be the objects into which S specifies explicit
flows, then all the implicit flows are from c to each bk and they are secure if
C → B1 ⊗ . . .⊗Bm is allowed.
The authors use this model for generating a certification mechanism for secure
information flow [39]. In particular, in the hypothesis of static binding, they easily
incorporate the certification process into the analysis phase of a compiler and the
mechanism is presented in the form of certification semantics - actions for the
compiler to perform, together with usual semantic actions such as type checking
and code generation, when a string of a given semantic type is recognized. This
analysis has been widely studied and has been characterized as an extension of an
axiomatic logic for program correctness in [7] (see Sect. 5.2.4).

5.2.3 Security type systems

A security type system is a collection of inference rules and axioms for deriving
typing judgments, in particular it describes which security type is assigned to a
program (or expression), based on the types of subprograms (or subexpressions).
In [114] the Denning’s approach is formulated as a type system, in such a way
that all the well-typed programs are proved satisfy the non-interference property.
A typing judgment has the form:

96 5 Non-Interference in Language-based Security

γ ` n : τ γ ` x : τ var
γ ` e : τ var

γ ` e : τ

γ ` x : τ var γ ` e : τ

γ ` x := e : τ cmd

γ ` c1 : τ cmd γ ` c2 : τ cmd

γ ` c1; c2 : τ cmd

γ ` e : τ γ ` c : τ cmd γ ` c′ : τ cmd

γ ` if e then c else c′ : τ cmd

γ ` e : τ γ ` c : τ cmd

γ ` while e do c

Table 5.1. Security type system

τ ≤ τ ′

` τ ⊆ τ ′
` ρ ⊆ ρ

` ρ ⊆ ρ′, ` ρ′ ⊆ ρ′′

` ρ ⊆ ρ′′

` τ ⊆ τ ′

` τ cmd ⊇ τ ′ cmd

γ ` p : ρ, ` ρ ⊆ ρ′

γ ` p : ρ′

Table 5.2. Subtyping rules

γ ` p : τ

which asserts that the program p has type τ with respect to the identifier typing
γ. An identifier typing is a map from identifiers to types; it gives the type of any
free identifier of p. So, for example, we have the inference rule γ ` x : τ if γ(x) = τ .
Let’s start from the Denning’s model [38]. The types of a systems are stratified
into two levels. At one level are data types, denoted by τ , which are the security
classes of S, partially ordered by ≤. At the other level are phrase types, denoted
by ρ. These include data types, assigned to expression, variable types of the form
τ var and command types of the form τ cmd. As expected, a variable type τ var
stores information whose security class is τ or lower. Moreover, a command c

has type τ cmd only if it is guaranteed that every assignment within c is made
to a variable whose security class is τ var or higher. This is the confinement
property ensuring secure implicit flows. In order to formalize this relation we have
to extend the partial order ≤ on security classes to a subtype relation ⊆ among
types. A simplified version of the rules introduced in [114] are given in Table 5.1.
In Table 5.2 we can find the subtyping rules. This system has been proved to be
sound and therefore each program that can be typed in this system has only secure
information flow. On the other hand, the system is not complete, which means that
there are programs with only secure information flows and that cannot be typed
in this system. For instance, the program p

def= if h = 1 then l := 0 else l := 0 with
l : L , h : H and L ≤ H , has clearly only secure information flows but it cannot be
typed in the system in Table 5.1.

5.2 Background: Enforcing non-interference 97

5.2.4 The axiomatic approach

Another important approach for checking the existence of insecure information
flows is the axiomatic one introduced, for the first time, in [7]. This approach
uses a program flow proof constructed applying flow axioms and inference rules.
An important aspect of this technique is that it can certify flows in both parallel
and sequential programs. Moreover, once the flow proof for a program has been
constructed, the proof can be used to validate a variety of flow policies. The idea of
this work consists in using assertions of the kind {P}S {Q}, which means that if P
is true before the execution of S, then Q is true after the execution of S, provided
that S terminates. This is the standard notation used in correctness proofs, the
difference is that P and Q here refers to classes rather than to values. In order
to develop a flow proof of {P} S {Q}, the authors describe a deductive logic that
allows to characterize the information flow semantics of statements. The inference
rules used are of the form

A1, . . . , An

B

which means that if logical statements Ai are true, then so is B.
More recently, in [6], another Hoare-style logic has been defined in order to

analyze information flow for confidentiality. In this case, confidentiality is treated
as independency of variables [19], and program traces, potentially infinitely many,
are abstracted, in the standard framework of abstract interpretation [28], by a
finite set of variable independencies. The potentiality of this approach is that these
variable independencies can be statically checked against the logic. Moreover, this
method allows, once a program is deemed insecure, to explain why the program
is insecure by statically generating counterexamples. The basic idea of this paper
is to annotate the program in order to statically check independencies. This is
achieved by using the Hoare-like logic described in Table 5.3, where [x#w] denotes
that the current value of x is independent of the initial value of w, and where
judgements are of the form G ` {T#

1 } C {T
#
2 }. This judgement is interpreted by

saying that if the independencies described in T#
1 hold before execution of C, then

the independencies described in T#
2 will hold after the execution of C, provided

that C terminates. In [6], the authors provide also a correctness result, which can
be seen as the non-interference result for information flow. Indeed, with l and h

interpreted as low and high respectively, suppose that [l#h] appears in the final
set of independencies T#, after the execution of a program C. Then, any two
traces in the execution of C, that have initial values that differ only on h, must
agree on the current value of l. Moreover, if, on the other hand, the program is
deemed insecure, i.e, [l#h] does not appear in the final set of independencies, then
it means that l is dependant on h, and, in addition, the derived assertions allow to
find a counterexample, i.e., two initial values of h that produce two different final
values of l.

98 5 Non-Interference in Language-based Security

[Assign] G ` {T#
0 }x := e{T#}

If ∀[y#w] ∈ T# .

(x 6= y ⇒ [y#w] ∈ T#
0),

(x = y ⇒ w /∈ G ∧ ∀z free variable in e. . [z#w ∈ T#
0])

[Seq]
G ` {T#

0 }C1{T#
1 }, G ` {T#

1 }C2{T#
2 }

G ` {T#
0 }C1; C2{T#

2 }

[If]
G0 ` {T#

0 }C1{T#}, G0 ` {T#
0 }C2{T#}

G ` {T#
0 }if e then C1 else C2{T#}

If G ⊆ G0,

w /∈ G0 ⇒ ∀x free variable in e . [x#w] ∈ T#
0

[While]
G0 ` {T#}C{T#}

G ` {T#}while e do C{T#}

If G ⊆ G0,

w /∈ G0 ⇒ ∀x free variable in e . [x#w] ∈ T#

[Sub]
G1 ` {T#

1 }C{T
#
2 }

G0 ` {T#
0 }C{T

#
3 }

If T#
0 ⊆ T#

1 , T#
2 ⊆ T#

3 , G0 ⊆ G1

Table 5.3. An axiomatic logic for independencies

5.3 Non-interference for different computational systems

A major line of research in information flow purses the goal of defining non interfer-
ence for the different computational models, and for accommodating the increased
expressiveness of modern programming languages.

5.3.1 Deterministic systems: Imperative languages

As we underlined before, non-interference for programs essentially means that any
possible variation of confidential (high/private) input does not cause a variation
of public (low) output. This in particular means that each variable has a static
attribute called security level. In [114] the confinement property for deterministic
languages is defined as follows.

Definition 5.1. A program P has the non-interference property if for all memories
µ and ν such that µ(l) = ν(l) for all low variables l, and such that P terminates

5.3 Non-interference for different computational systems 99

successfully starting both from µ and ν, yielding, respectively, to µ′ and to ν′, then
we have µ′(l) = ν′(l) for all low variables l.

Basically, it says that altering the initial contents of private variables does not
interfere with the final value of any low variable. For instance, if variable pin is
private and y is public then the following program does not preserve confinement,
exactly as the program y := pin:

while ¬(mask = 0)
if ¬(pin & mask = 0) (bitwise and)

y := y | mask; (bitwise or)
mask := mask/2;

If mask is a power of two, then it indirectly copies pin to y, one bit at time [114].
Starting from the Cohen’s seminal study of strong dependency [19], the notion

of non-interference can be rigorously formalized using the programming-language
semantics. Suppose that s ∈ Σ is the denotation for states of programs, and that
states, representing the tuples of values assigned to variables (i.e., representing
memories), can be partitioned in order to distinguish the values of private variables
from the values of public ones: s = 〈sH , sL 〉. In general a program, starting from a
state s can terminate in a state s′ or can diverge. The denotational semantics of
programs is the function that associates with each possible initial state the set of
all the corresponding terminal state together with ⊥, if the given initial state can
lead to non-termination. Moreover, we can define an equivalence relation among
states: s1 =L s2 iff sL1 = sL2 . Therefore, for a given semantic model JP K of the
program P , non-interference can be formalized as follows: P is secure iff

∀s1, s2 ∈ Σ . s1 =L s2 ⇒ JP K(s1) =L JP K(s2) (5.2)

which is exactly the absence of strong dependency of public data from private ones
[19]. For example the program

c
def= if h = 3 then l := 5 else nil

is clearly insecure since the high initial values 3 and 4 provides different results for
the variable l: 〈4, 1〉 =L 〈3, 1〉 but JcK(4, 1) = 〈4, 1〉 while JcK(3, 1) = 〈3, 5〉, where
〈4, 1〉 6=L 〈3, 5〉.
In general we can rewrite non-interference by saying that if two state share the
same low values, then the behaviours of the program executed on these states
are indistinguishable by the attacker. This means that the notion can be made
parametric on what the attacker can really see. This is a key observation in order
to abstract the notion of non-interference.

5.3.2 Non-deterministic and thread-concurrent systems

The natural extension of the notion of non-interference to non-deterministic sys-
tems is the notion of possibilistic non-interference [86]. As we have said before,

100 5 Non-Interference in Language-based Security

in order to prevent direct information flows, certain aspects of the system be-
haviour must not be directly observable by users who do not have the appropriate
clearance. However, in general, an observer might still be able to deduce confi-
dential information from other observations. In the worst case, the observer has
complete knowledge of the system and can construct all the possible system be-
haviours which generate a given observation, trying to deduce confidential infor-
mation from this set. The basic idea of possibilistic security is to demand that
this set is so large that the observer cannot deduce confidential information since
it cannot be sure which behaviour has actually occurred [86]. In [108] the con-
finement (non-interference) property for non-deterministic languages is defined as:

Definition 5.2. A non-deterministic program P satisfies the possibilistic non-
interference property if for all memories µ and ν such that µ(l) = ν(l) for all
low variables l, and P can terminate successfully starting from µ yielding to the
final state µ′, then there exists a state ν′ such that P can terminate successfully
starting from ν yielding ν′ and µ(l) = ν′(l) for all low variables l.

It says that altering the initial contents of high variables does not interfere with
the set of possible final values of any low variable [108]. The property rules out
concurrent programs with information channels that exploit thread synchroniza-
tion. In particular, we have a purely non-deterministic system if the scheduler of
the system, that activates the threads, is characterized by the simple rule: At each
step, any thread can be selected to run for one step. For instance, consider the
following system:

Thread α: Thread β: Thread γ:
y := x; y := 0; y := 1

Suppose that x is a private binary variable, while y is public. Then the program
satisfies the possibilistic non-interference property.

Possibilistic security properties.

Due the complex structure of non-deterministic systems, the notion of possibilistic
non-interference given above, is not the only confidentiality property that can be
defined on this kind of systems. The first attempts to provide a general theory
in which uniformly define possibilistic security properties was through the use of
selective interleaving functions [91]. In this paper, it is observed that possibilistic
security properties fall outside of the Alpern-Schneider safety/liveness domain [4],
since these properties are not properties of traces, i.e., trace sets, but properties
of trace sets, i.e., sets of trace sets. In particular, possibilistic security properties
are defined as closure properties with respect to some functions that takes two
traces and interleaves them to form a third trace [91]. This theory is then used for
studying how these security properties behave when systems are composed, i.e.,
if a system satisfying property X is composed with a system satisfying property

5.3 Non-interference for different computational systems 101

Y , using composition constructor Z, what properties will the composite system
satisfy? In the following we will recall the principal security properties treated in
this general theory.

Non-inference: Informally, non-inference requires that for any trace of the system,
removing all the high level events, we obtain a trace that is still valid. More
formally, if purge(τ) is the function that takes a trace τ and sets all high level
inputs and outputs in τ to the empty value λ, then a system satisfies non-
inference if the set of its traces is closed under the function purge, i.e., the
image of purge is always contained in the set of valid traces of computation.

Generalized Non-inference: Informally, generalized non-inference requires that for
any trace τ , it must be possible to find another trace σ such that the low level
events of τ are equal to σ and σ has not high level inputs. More formally, if
input-purge(τ) is the function that takes a trace τ and sets all high level inputs
in τ to the empty value λ, then a system satisfies non-inference if the set of
its traces is closed under the function input-purge.

Separability: Informally, separability holds if no interaction is allowed between high
level and low level events. It is like having two separate systems, one running
the high level processes, and one running the low level ones. More formally, if
interleave(τ1, τ2) is the function that takes two traces τ1 and τ2 and returns
the trace τ such that the high input and output of τ are taken in τ1 and low
input and output of τ are taken in τ2, then a system satisfies separability if
the set of its traces is closed under the function interleave.

Generalized Non-interference: Generalized non-interference holds if modifying a
trace τ , inserting or deleting high level input, results in a sequence σ that can
be transformed in a valid trace by inserting or deleting high level outputs.
More formally, if input-interleave(τ1, τ2) is the function that takes two traces
τ1 and τ2 and returns the trace τ such that the high input of τ are taken
in τ1 and low input and output of τ are taken in τ2, then a system satisfies
generalized non-interference if the set of its traces is closed under the function
input-interleave.

This framework has been made more intuitive and general in [117], in order to
model more security properties, such as perfect security property (PSP), which
allows high level outputs to be influenced by low level events [117]. More recently,
all these security properties have been modeled in a modular structure in [85],
where they are obtained as combination of basic security predicates.

5.3.3 Communicating systems: Process algebras

The possibilistic notions of non-interference introduced in the previous section
allows to consider non deterministic system, but are not adequate for treating
non-interference in systems with the synchrony assumption: a system is composed
of several components which have to proceed together at every time instant [47].

102 5 Non-Interference in Language-based Security

Synchrony is a basic feature, together with non-determinism, of process algebras,
and probably, the most famous representative of this class is CCS [92]. In partic-
ular, in [47], the problem of studying secure information flows is considered in a
particular process algebra, Spa (see Sect. 4.2.2), which is a slight extension of CCS.
At this point, we recall the principal notions of non-interference defined on Spa

in [47]. In particular there are two classes of definitions, depending on the equiv-
alence of processes chosen: trace-based or bisimulation-based. In order to better
understand the notions of non-interference that we are going to introduce, let’s re-
formulate the idea of non-interference as follows: Let G and G′ be two user groups,
given any input sequence γ, let γ′ be its subsequence obtained by deleting all the
actions of users in G; G is non-interfering with G′ iff for every input sequence γ,
the users of G′ obtain the same output after the execution of γ and of γ′.

Trace-based security properties.

Let us consider the trace-based equivalence of processes ≈T , i.e., A1 ≈T A2 iff
the set of traces associated with A1 is equal to the set of traces associated with
A2. Then the first extension of the notion of non-interference to Spa is the Non-
deterministic Non-Interference (NNI), defined as follows:

A ∈ NNI ⇔ (A\IActH)/ActH ≈T A/ActH

This notion requires that, when we avoid high level inputs, we obtain a trace whose
projection on low level actions (i.e., the hiding of high level actions) is equal to the
low level projection of a generic trace of actions of the system. A more restrictive
form of NNI requires that, for every trace γ, the sequence γ′, obtained deleting all
the high level actions (input and output), is still a trace. This property is called
Strong NNI (SNNI) and is defined as follows:

A ∈ SNNI ⇔ A/ActH ≈T A\ActH

The relation between these two notions is that, in Spa, SNNI ⊂ NNI. If, such
as in CSP, we don’t have distinction between inputs and outputs, then NNI =
SNNI.
Another interesting notion of non-interference is Non-Deducibility on Compositions
(NDC). A system is NDC if the set of its low level views cannot be modified by
composing the system with any high level process. This property can be defined
as follows:

A ∈ NDC ⇔ ∀Π ∈ EH . A/ActH ≈T (A ‖ Π)\ActH

In [47] it is proved that NDC = SNNI.

Bisimulation-based security properties.

All the security notions introduced so far are based on the assumption that the
semantics of a system is the set of its execution traces. In this section we show

5.3 Non-interference for different computational systems 103

that, in [47], these security properties have been rephrased on the finer notion
of system behaviour called weak bisimulation (or observational equivalence) [92].
This extension was considered since trace semantics is rather weak, as it is unable
to distinguish systems which give different observations to a user, even if they have
the same traces. Here we recall the definition of weak bisimulation over Spa agents
[47]. Let A µ=⇒A′ a short hand for A τ−→ ∗A1

µ−→A2
τ−→ ∗A′, where τ−→ ∗ means

zero or more times τ . In the following A
bµ=⇒ E′ stands for A µ=⇒ A′ if µ ∈ L,

for A τ−→∗A′ if µ = τ . The following example shows that trace-based equivalence
is weaker than bisimulation based equivalence. Indeed the two systems have the
same set of traces but they are not bisimilar.

?>=<89:;a ?>=<89:;a

��
��

��
��

�

??
??

??
??

?

?>=<89:;b

��
��

��
��

�

>>
>>

>>
>>

>
?>=<89:;b ?>=<89:;b

76540123c ?>=<89:;d 76540123c ?>=<89:;d

Fig. 5.1. Trace vs bisimulation equivalence

Definition 5.3. A relation R ⊆ E × E is a weak bisimulation if it satisfies:

• Whenever 〈A,B〉 ∈ R and A µ−→A′, then there exists B′ ∈ E such that B bµ=⇒
B′, and 〈A′, B′〉 ∈ R;

• Whenever 〈A,B〉 ∈ R and B µ−→B′, then there exists A′ ∈ E such that A bµ=⇒
A′, and 〈A′, B′〉 ∈ R;

Two Spa agents A,B ∈ E are observationally equivalent, A ≈B B, if there exists
a weak bisimulation containing the pair 〈A,B〉.

Note that ≈B is an equivalence relation, and that it is stronger than ≈T . At
this point in [47] the Bisimulation NNI (BNNI), Bisimulation SNNI (BSNNI)
and the Bisimulation NDC (BNDC) are introduced simply by substituting ≈B

for ≈T in their algebraic Spa-based characterizations. In particular we can give a
characterization of BNDC equivalent to the simple substitution of the equivalence
relation.

– A ∈ BNNI iff (A\IActH)/ActH ≈B A/ActH ;
– A ∈ BSNNI iff A/ActH ≈B A\ActH ;
– A ∈ BNDC iff ∀Π ∈ EH . A\ActH ≈B (A ‖ Π)\ActH .

All the relations among these notions are deeply studied in [47].

104 5 Non-Interference in Language-based Security

?>=<89:;76540123q0

false,H ,{}

))

true,L ,{}

ii ?>=<89:;76540123q0

true,L ,{}
��

true,H ,{xinterf} // ?>=<89:;76540123q1

xinterf≥n,H ,{xinterf}

uu

true,L ,{}

KK

Fig. 5.2. The automata InhibH and Interfn
H .

5.3.4 Real-time systems: Timed automata

The most widespread models for real-time systems are timed automata (see
Sect. 4.2.3). In [12], a new notion of non-interference for timed automata is intro-
duced. The notion is based on high-level action delays magnitude and on equiva-
lence of timed automata. Given a natural number n, the authors say that high-level
actions do not interfere with the system, considering minimum delay n, if the sys-
tem behaviour in absence of high-level actions is equivalent to the system behaviour,
observed on low-level actions, when high-level actions can occur with a delay be-
tween them greater than or equal to n. Thus, the environment of the system does
not offer high-level events separated by less that n times units, and if the property
holds, there is no way for low-level users to detect any high-level action. The main
improvement of this notion, if compared with untimed notions, is that time is ob-
servable and the property captures those systems in which the time delay between
high-level actions cannot be used to construct illegal information flows.
Let A be a timed automaton over the alphabet of actions Σ and 〈|A|〉 the accepted
language associated with A. We suppose that Σ is partitioned into two disjoint
sets of actions H and L such that H is the set of the high-level actions, while L

is the set of the low-level ones. First of all, consider an automaton A, we want to
observe its behaviour in absence of high-level actions. In order to obtain this, we
compose it in parallel with an automaton, called InhibH , that does not allow the
execution of high-level actions (see Fig. 5.2). In Fig. 5.2 we use the conventions
that double-circled states are final, and q0 is initial, moreover, an edge having as
label a set of actions represents a set of edges, one for each action in the set, with
the same clock constraint and clock reset. In the product A||InhibH the component
A cannot have transition labeled by h ∈ H since InhibH never performs high-level
actions (its constraints on high-level actions are false). Thus only low-level actions
are executed.
Consider Interfn

H in Fig. 5.2. This automaton allows the execution of high-level
actions only when they are separated by at least n time units. Indeed, both the
states can execute low-level actions without any restriction. But, if a high-level
action occurs, then the automaton goes in state q1 and reset the clock xinterf ,
which is reset by all high-level actions, and all high-level actions can be executed
if xinterf is greater or equal than n. Namely a high-level action can be executed
only if at least n time units have elapsed from the previous one.

5.4 Covert Channels 105

Then an automaton A is said to be n non-interfering if:

(A||Interfn
H)/H ≈ A||InhibH

where the operator /H hides high-level actions, namely whenever the label of an
edge is σ ∈ H it is replaced by ε, and ≈ is defined by: A1 ≈ A2 iff L(A1) = L(A2).

The notion of non-interference for timed automata can be equivalently char-
acterized on languages [12]. Let 〈|A|〉 be the timed language accepted by A on a
alphabet Σ and consider the following manipulation of languages:

〈|A|〉|L
def=
{
〈σ, t〉 ∈ 〈|A|〉

∣∣∣∀〈σi, ti〉 ∈ 〈σ, t〉 . σi ∈ L
}

〈|A|〉/H def=

{
ω

∣∣∣∣∣∃〈σ, t〉 ∈ 〈|A|〉 such that ω is the projection of 〈σ, t〉
on the pairs

{
〈σ, t〉

∣∣σ ∈ L
} }

〈|A|〉nH
def=

{
〈σ, t〉 ∈ 〈|A|〉

∣∣∣∣∣∀〈σi, ti〉, 〈σj , tj〉 ∈ 〈σ, t〉 . i 6= j, σi, σj ∈ H

⇒ |ti − tj | ≥ n

}

Namely, 〈|A|〉|L avoids high-level actions, it takes only the traces of the system
that make only low-level actions. On the other hand, 〈|A|〉/H hides the high-level
actions, i.e., it executes them and then it hides them. Finally, 〈|A|〉nH selects only
those traces where the high-level actions are distant at least n.
Then, in [12], a system is said to be n-non-interfering iff

〈|A|〉nH /H = 〈|A|〉|L

5.4 Covert Channels

By covert channels we mean those channels that are not intended for information
transfer at all [80]. The importance of studying these kind of channels lies on the
fact that they pose the greatest challenge in preventing improper transmission
leaks. There are several kind of covert channels [104]:

Implicit channels : Channels of information flow due to the control structure of a
program;

Termination channels : Channels of information flow due to the termination or
non-termination status of a program;

Timing channels : Channels of information flow due to the time at which an action
occurs rather than due to the data associated with the action. The action may
be termination;

Probabilistic channels : Channels of information flow due to the change of the
probability distribution of observable data. These channels are dangerous when
the attacker can run repeatedly a computation and observe its stochastic be-
haviour;

106 5 Non-Interference in Language-based Security

Resources channels : Channels of information flow due to the possible exhaustion
of a finite, shared resource, such as disk memory;

The kind of covert channel, that may be created, depends on what the at-
tacker/user can view of the computational system. This means that a compu-
tational system can be said to protect confidential information only with respect
to a model of what attackers/users are able to observe of its execution.

5.4.1 Termination channels

Consider Definition 5.1 of non-interference for deterministic languages. In this
definition it is said that the program has to “terminate successfully”, starting
from the given states. It is clear that, changes in high variables may cause the
program to diverge, leaving unchanged the fact that the program can still satisfy
the definition. This may make the property unsuitable in situations where this
sort of behaviour can be observed. If, such as for PER model, the denotational
semantics is used for defining non-interference, then we note that in case of non-
termination denotational semantics associates with each state, leading to non-
termination, the symbol ⊥. In this way, Eq. 5.2 can be used also for defining
termination-sensitive non-interference. Therefore, the PERs model can be simply
adapted by considering domains of values enriched with the symbol ⊥, i.e., D⊥,
and extending relations R ∈ Per(D) to R ⊥ ∈ Per(D⊥) naturally by adding the
relation ⊥R ⊥⊥. In this way we make the definition insensitive to non-termination
[106]. Namely termination channels are avoided simply by enriching the semantics.
Note that, also in [1], where for the first time dependencies were given in term of
PERs, for a calculus based on a variation of λ calculus, was shown that PERs
capture termination sensitive security.
When non-interference is checked on the syntax, by typing secure programs (see
Sect. 5.2.3), then it become necessary to enrich the type system in order to avoid
termination channels [112]. In this paper, the authors show that termination flows
can be handled with just a simple modification of the original type system in
[114], based on the notion of minimum type. They say that a type τ is minimum
if τ ≤ τ ′ for every type τ ′, to handle the covert flow arising from non-termination
they merely change the typing rule for while b do c endw to require that b has
minimum type. In other words, this means that this type system disallows high
loops and require high conditionals have no loops in the branches.

5.4.2 Timing channels

Note that, in practice, non-termination cannot be distinguished from a very time-
consuming computation, thus the termination channel can be viewed as an in-
stance of the timing channel. Timing-sensitive non-interference can be formalized
by considering Eq. 5.2, where the low view relation =L is substituted by ≈L , which
relates two behaviour iff both diverges or both terminate in the same number of

5.5 Weakening non-interference 107

execution steps in low-equal final states [104]. In [113] the authors avoid timing
channels in the type system by restricting high conditionals to have no loops in
the branches and wrapping each high conditional in a protect statement whose
execution is atomic. In [2] program transformation is used in order to close tim-
ing leaks. In particular, the “type” of a program C is its low slice CL , which is
syntactically identical to C but only contains assignments to low level variables.
All the assignments to high level variables are replaced with appropriate dummy
commands with no effect on variables, therefore the low slice has the same ob-
servational behaviour as the original program with respect to low level variables.
Finally, the usual type system is considered and, either the original program C is
rejected (in case of a potential explicit or implicit insecure information flow) or
accepted and transformed into the program CL free of timing leaks.

5.4.3 Probabilistic channels

Probability-sensitive non-interference can be formalized in the Eq. 5.2 by replacing
=L with an equivalence relation ≈L that relates two behaviours iff the distribu-
tion of low output is the same. Indeed, as we can see in the following example,
possibilistic non-interference is not sufficient to prevent probabilistic information
flows [90]. Consider, for example, the following multi-threaded system:

Thread α: Thread β:
y := x; y := random(100)

where random(100) returns a random number between 1 and 100, and x ∈ [1, 100].
Then the program satisfies the possibilistic non-interference since regardless the
initial value of x, the final value of y is a random number between 1 and 100. But
with a probabilistic semantics, this is not good enough, because the final values of y
are not equally probable, indeed the more probable value for y is the initial value
of x [109]. Moreover, in multi-threaded systems, also the scheduler of processes
may be probabilistic. In [113] the authors define a notion of probabilistic non-
interference that captures the probabilistic information flows that may result from
a uniform scheduler in a multi-threaded language. In [106] the authors considers
PERs on probabilistic powerdomains in order to catch probabilistic flows. While
in [105] the authors connect probabilistic security with probabilistic bisimulation
[81], improving the precision of the previous probability-sensitive notions.

5.5 Weakening non-interference

The limitation of the notion of non-interference described so far, is that it is
an extremely restrictive policy. Indeed, non-interference policies require that any
change upon confidential data has not to be revealed through the observation of
public data. There are at least two problems with this approach. On one side,

108 5 Non-Interference in Language-based Security

many real systems are intended to leak some kinds of information. On the other
side, even if a system satisfies non-interference, some kinds of tests could reject
it as insecure. These observations address the problem of weakening the notion
of non-interference both characterizing the information that is allowed to flow,
and considering weaker attackers that cannot observe any property of public data.
Clearly, as we will show in this thesis, these are dual aspects of the same problem,
and in the following sections we will describe the most relevant works in this
direction.

5.5.1 Characterizing released information

As we have addressed above, real systems often do leak confidential information,
therefore it seems sensible to try to measure that leakage as best as possible.
The first work on this direction is [19], where the notion of selective dependency
(see Sect. 5.1.1) is introduced. Selective dependency consists in a weaker notion
of dependency, and therefore of non-interference, that identifies what flows during
the execution of programs. More recently, in literature we can find several works
that attack this problem from different points of view. A first approach consists
in a quantitative (information theoretic) definition of information flows [17, 84].
Another relevant approach models the attacker’s power by using equivalence rela-
tions, and by transforming these equivalence relations it characterizes the released
information [118]. Afterwards, several papers treated the declassification of confi-
dential information [83,96,103].

An information theory approach.

In [17], Shannon’s information theory is used to quantify the amount of information
a program may leak and to analyze in which way this depends on the distribution
of inputs. In particular, the authors are interested in analysing how much an at-
tacker may learn (about confidential information) by observing the input/output
behaviour of a program. The basic idea is that all information in the output of a
deterministic program has to come from the input, and what it is not provided by
the low input has to be provided by the high input. Therefore, this work wants to
investigate how much of the information carried by the high inputs to a program
can be learned by observation of the low outputs, assuming that the low inputs are
known. Now, since the considered language is deterministic, any variation of the
output is due to a variation of the input. Hence, once we account for knowledge
of the program’s low inputs, the only possible source of surprise in an output is
the interference from the high inputs. So, given a program variable X (or a set
of program variables), let Xι and Xω be, respectively, the corresponding random
variables on entry and exit from the program. In [17] the authors take as measure
of the amount of leakage into X due to the program: L(X) = H(Xω|Lι), where L
is the set of low variables, this Lι is the random variable describing the distribu-

5.5 Weakening non-interference 109

tion of the program’s non-confidential inputs, and H is the entropy1. Moreover, in
[17], it is shown that there exists a more general characterization of the amount
of information released that is appropriate even for languages with an inherently
probabilistic semantics. In this case, they say that a natural definition of the leak-
age into X is the amount of information shared between the final value of X and
the initial value of H, given the initial value of L: L′ = I(Hι;Xω|Lι), where I
is the conditional mutual information2 between Hι and Xω given knowledge of
Lι. This is essentially the definition used by Gray [71], specialized in a simpler
semantic setting. In [17] it is also proved that, for deterministic languages L = L′.

Shannon’s information theory is not the only approach, existing in literature,
for quantifying information flow. Indeed in [84] the capacity of covert channels,
i.e., the information flow quantity, is measured in terms of the number of high level
behaviours that can be accurately distinguished from the low level point of view.
The idea is that if there are N such distinguishable behaviours, then the high level
user can use the system to encode an arbitrary number in the range 0, . . . , N−1 to
send it to the low level user, in other words log2N bits of information are passed.

Declassification.

In the previous paragraph, we described a method that allows to quantify the
amount of information released. In literature, there exists another important, more
qualitative, approach whose aim is to discover which is the information that flows
in order to declassify it for guaranteeing non-interference. Declassifying informa-
tion means downgrading the sensitivity of data in order to accommodate with
(intentional) information leakage3. Robust declassification has been introduced in
[118] as a systematic method to drive declassification by characterizing what infor-
mation flows from confidential to public variables. In particular, the observational
attacker’s capability is modeled by using equivalence relations as in PER models,
and declassification of private data is obtained by manipulating these relations
in a semantic-driven way. The semantics considered is the operational semantics,
defined on a transition system. The idea is to consider views of the computational
traces determined by the observational capability of the attacker. Hence, given a
trace τ of computations of the system S, and given the ≈-view of τ (where ≈ is an
equivalence relation), a view of τ is τ/≈ defined as follows: ∀i < |τ |.(τ/≈)i = [τi]≈.
The intuition is that a passive attacker (that cannot modify computations), who is

1 Recall that, given a random variable X, let x ranges over the set of values which X may

take and let p(x) the probability that X take x, then H(X) = Σxp(x) log 1
p(x)

. The

conditional entropy measuring the uncertainty in the variable X given the knowledge

of the variable Y is H(X|Y) = H(X, Y)−H(X).
2 Recall that, given the random variables X, Y and Z, the conditional mutual in-

formation between X and Y given the knowledge of Z is defined as I(X; Y |Z) =

H(X|Z) +H(Y |Z)−H(X, Y |Z).
3 Note that this is similar to the Cohen’s notion of selective dependency [19].

110 5 Non-Interference in Language-based Security

able to distinguish states up to ≈, will see the trace τ as a sequence of equivalence
classes. Then, an observation of the system S, with respect to starting state σ and
view ≈, is defined as: Obsσ(S,≈) def=

{
τ/≈

∣∣ τ trace of S starting in σ
}
. This is

the set of all the possible sequences of equivalence classes under ≈, that might be
observed by watching the system whenever it starts in state σ. At this point, the
information that might be learned by observing S through the view ≈ is obtained
by transforming ≈, in function of the set Obsσ(S,≈). In particular, the authors
define a new equivalence relation S[≈], called observational equivalence, such that
two states are equivalent only if the possible traces leading from these states are
indistinguishable under ≈:

∀σ, σ′ ∈ Σ . 〈σ, σ′〉 ∈ S[≈] ⇔ Obsσ(S,≈) ≡ Obsσ′(S,≈)

Hence, in the paper a system is said secure if all the ≈-equivalent states are obser-
vationally equivalent. In other words, there is no information flow to an observer
with view ≈. This characterization is then used in order to declassify data in the
system. The basic idea of declassification is that any system that leaks information
can be thought of as containing declassification. A passive attacker may be able
to learn some information by observing the system but, by assumption, that in-
formation leakage is allowed by the security policy [118]. In this way, the attacker
is made blind , i.e., all the the information that the attacker can get from the exe-
cution of the program is declassified. Note that, in [118], robust declassification is
defined in the more general case where the attacker can be active, namely it can
interfere in the execution, for example being a program running concurrently. This
work has been recently generalized in [96] in three ways. First, it is shown how to
express the property in a language-based setting, for a simple imperative language.
Second, the property has been generalized so that untrusted code and data are
explicitly part of the system rather than appearing only when there is an active
attacker. Third, a security guarantee, called qualified robustness has been intro-
duced. This provides untrusted code with a limited ability to affect information
release. The key point of this paper is the proof that both robust and qualified
declassification can be enforced by a compile-time program analysis based on a
simple type system.

More recently, explicit declassification is allowed by weakening the notion of
non-interference, in particular in [103] the notion of delimited information release is
introduced in order to type as secure also systems that admit explicit confidential
information release. The idea behind this notion is that a given program is secure
as long as updates to variables that are later declassified occur in a way that does
not increase the information visible by the attacker [103]. In order to solve the
same problem, in [83] the authors define the notion of relaxed noninterference .
The basic idea is to treat downgrading policies as security levels in traditional
information flow systems. Instead of having only two security classes, i.e., H and
L the authors consider a much richer lattice of security levels where each point
corresponds to a downgrading policy, describing how the data can be downgraded

5.5 Weakening non-interference 111

from this level. Afterwards, the authors define a type system for enforcing the new
notion of non-interference.

5.5.2 Constraining attackers

As noted before, the notion of non-interference introduced in this chapter, is based
on the assumption that an attacker is able to observe public data, without any
observational or complexity restriction. In particular, for some computational sys-
tems, disclose any kind of confidential properties require a particular number of
statistical tests [41], or a particular computational complexity [82]. The idea is to
characterize, in some ways, which has to be the power of the attacker that can
disclose certain confidential properties form a given program.

A probabilistic approach.

The notion of non-interference is based on the concept of indistinguishability of
behaviours: In order to establish that there is no information flow between two
objects A and B, it is sufficient to establish that, for any pair of behaviours of
the system that differ only in A’s object, B’s observations cannot distinguish
these two behaviours. This suggest that it is possible to weaken this notion by
approximating this indistinguishability relation [41]. In this paper, the authors
replace the notion of indistinguishability by the notion of similarity. Therefore,
two behaviours, though distinguishable, might still be considered as effectively
non-interfering, provided that they are similar, i.e., their difference is below a
threshold ε. A similarity relation can be defined by means of an appropriate notion
of distance and provides information on how much two behaviours differ from each
other. The power of the attacker is then measured since this quantitative measure
of differences between behaviours is related with the number of statistical tests
needed to distinguish the two behaviours.

A complexity-based approach.

As noted above, the standard notion of non-interference requires that the public
output of the program do not contain any information (in the information-theoretic
sense) about the confidential inputs. This corresponds to an all-powerful attacker
who, in his quest to obtain confidential information, has no bounds on the re-
sources (time and space) that it can use. Furthermore, in these definitions an
“attacker” is represented by an arbitrary function, which does not even have to
be a computable function; the attacker is permitted essentially arbitrary power
[82]. The observation made in this paper is that, instead, realistic adversaries are
bounded in the resources that they can use. For this reason the author provides
a definition of secure information flow that corresponds to an adversary working
in probabilistic polynomial time, together with a program analysis that allows to
certify these kinds of information flows.

6

Abstract Non-Interference: Imperative languages

There are more things in heaven and earth, Horatio,

than are dreamt of in our philosophy.

William Shakespeare

The standard approach to the confidentiality problem, i.e., non-interference, is
based on a characterization of attackers that does not impose any observational
or complexity restriction on the attackers’ power. This means that, in this model,
the attackers are all-powerful, namely they are modeled without any limitation in
their quest to obtain confidential information. For this reason non-interference, as
defined in literature, is an extremely restrictive policy. The problem of refining this
kind of security policies has been addressed by many authors as a major challenge
in language-based information flow security [104]. Refining security policies means
weakening standard non-interference checks, in such a way that these restrictions
can be used in practice. Namely, in order to adapt security policies to practical
cases, we need a weaker notion of non-interference where the power of the attacker
(or external viewer) is bounded, and where intentional leakage of information is
allowed. Our idea is to use this weaker notion in order to characterize the secrecy
degree of programs by identifying the most powerful attacker that is not able to
disclose confidential information by observing the execution of programs, but also
in order to characterize the most abstract information released. This would allow
to certify the security of programs parametrically on the attackers’ power. In or-
der to systematically derive these certifications, it is essential to understand how
much an attacker may learn from the executions of programs, since this informa-
tion characterizes their security level. In this chapter, we show in which way we
can model attackers as static program analyzers, whose aim is to disclose confiden-
tial information by (statically) analyzing the input/output behavior of programs.
Therefore, our goal is to automatically generate, given a security policy, a certifi-

114 6 Abstract Non-Interference: Imperative languages

cate specifying that the given program has only secure information flows, relatively
to a given attacker’s model.

Consider the following program, written in the simple language Imp (see
Sect. 4.2.1), where the while-statement iterates until x1 is 0. Suppose x1 is a
secret variable and x2 is a public variable:

while x1 do x2 := x2 + 2; x1 := x1 − 1 endw

Clearly, in the standard sense of non-interference, there is an implicit flow from x1

to x2, since, due to the while-statement, x2 changes depending on the initial value
of x1. This represents the case where no restriction is considered on the power of
an attacker. However, suppose that the attacker can observe only the parity of
values (0 is even). It is worth noting that if x2 is initially even, then it is still
even independently from the execution of the while, and therefore from the initial
value of x1. Similarly, if x2 is initially odd then it remains odd independently from
the execution of the while, i.e., from the value of x1. This means that there’s no
information flow concerning parity.
We said above that, in the same model, we want also to characterize the private
information that flows in programs, due to the semantics and to the attacker’s
observational capability. In order to understand how we can characterize what
flows, consider the following program fragment:

l := l ∗ h2

Suppose that the attacker can only observe the parity of the public variable l, then
it is clear that if we are interested only in keeping private the sign of h, then the
program is secure, since the only information disclosed, in this case, is its parity. In
this expression, it is the semantics of the program that puts a firewall that hides
the sign of h. Therefore, given the model of the attacker, we can characterize, not
only if there is an information flow, but also what is flowing, when it turns out
that the program is insecure.

In order to model these situations we need to weaken standard non-interference
relatively to the properties about data that an attacker can statically observe on
program information flows. Therefore, we introduce the notion of abstract non-
interference by parameterizing standard non-interference relatively to what an
attacker is able to observe and to what has not to be revealed about confidential
inputs. As we have said above, we consider attackers as static program analyzers
whose task is to reveal properties of secret data by statically analyzing public
resources. Hence, a program ensures secrecy with respect to a given property, which
can be statically analyzed by the attacker, if that property on confidential data
cannot be disclosed by analyzing public data. For instance, in the first example
above, any attacker looking at parity is unable to disclose secrets about confidential
data. In this sense the program is secret for parity, while it is not secret relatively
to stronger attackers, able to observe more concrete properties of data such as

6.1 Defining abstract non-interference 115

how much a variable grows (e.g. by interval analysis [28]). Since static program
analysis can be fully specified as the abstract interpretation of the semantics of
the program [28], we can model attackers as abstract interpretations. The results
presented in this chapter has been published in [52].

6.1 Defining abstract non-interference

In this section, we define a notion of non-interference defined in terms of attackers
modelled as abstract interpretations of concrete data domains. In other words, we
can say that attackers are static program analyzers of data properties. Let JP K be
the denotational semantics of a program P (see Sect. 4.1.2). In order to analyze
the variables of a program as regards the given set of security classes {H , L },
we consider a typing function t ∈ Var −→ {H , L }, which associates with each
variable in a program its security class. In the following, if x ∈ Var(P) then we
denote x : t(x) the corresponding security typing. Moreover, whenever T ∈ {H , L },
v ∈ Vn, and n = |{x ∈ Var(P)|t(x) = T }|, we abuse notation by denoting v ∈ VT

the fact that v is a possible value for the vector of variables with security type T .
At this point, we can reformulate Eq. 5.2, defining standard non-interference, as
follows:

A program P is secure if
∀v ∈ VL ,∀v1, v2 ∈ VH . JP K(v1, v)L = JP K(v2, v)L

Now, let us consider this definition applied to the example seen before:

P
def= while x1 do x2 := x2 + 2; x1 := x1 − 1 endw

and note that, for instance, we have

JP K(1, 2)L = 4 6= JP K(0, 2)L = 2

which means that the program is not secure. Suppose now that, as we noted above,
the attacker is able to observe the parity of public output, then we would have

Par(JP K(1, 2)L) = even = Par(JP K(0, 2)L)

The idea that arises looking at this example is that of modeling secrecy relatively
to some fixed observable property. We assume that any program variable must
preserve secrecy only as regards a particular amount of information, and depending
on what the attacker can observe. In other words, the program is secret as long as
a given property of private data is not disclosed from the given attacker. Hence,
we introduce an abstract notion of information flow, which models an attacker
that can observe only some properties of public (i.e., L) concrete values. Clearly,
in general, we can suppose that the attacker has the same kind of limitations in
observing the public inputs. For this reason, in order to be as general as possible,

116 6 Abstract Non-Interference: Imperative languages

we distinguish between the attacker’s observational capability on the public inputs
and on the public outputs of programs, by considering two distinct properties for
respectively input and output L -values. As usual, in abstract interpretation, a
property is an upper closure operator on the concrete domain of computations
(see Sect. 2.2), therefore we consider two closure operators on the domain for
public values, η, ρ ∈ uco(℘(VL)), for modeling the attacker’s power. This leads us
to the first generalization of standard non-interference, called narrow (abstract)
non-interference (NANI for short). The idea is that a program satisfies narrow
abstract non-interference relatively to a typing on security classes and a pair of
closures η and ρ, denoted 〈η, ρ〉-NSecrecy, if, whenever the L input values have
the same property η then the L output values have the same ρ property. This
captures precisely the intuition that η-indistinguishable input values provide ρ-
indistinguishable results. The following definition introduces the notion of narrow
abstract non-interference as a generalization of the standard one.

Definition 6.1. Let η, ρ ∈ uco(℘(VL)). A program P ∈ Imp is 〈η, ρ〉-NSecret if

∀h1, h2 ∈ VH ,∀l1, l2 ∈ VL .

η(l1) = η(l2) ⇒ ρ(JP K(h1, l1)L) = ρ(JP K(h2, l2)L).

Clearly, if ρ cannot observe non-termination, i.e., {⊥} /∈ ρ, then this notion could
be termination-sensitive, namely, if the attacker is able to observe non-termination,
then some information could be released even if narrow abstract non-interference
is satisfied. We write |= [η]P (ρ) (or simply [η]P (ρ)) to say that a program P

is 〈η, ρ〉-NSecret. If [η]P (ρ) does not hold, written 6|= [η]P (ρ), then the attacker
may observe an interference due to confidential data-flow.

Example 6.2. Consider the property Sign and Par represented in Figure 6.1 and
the program:

P
def= l := 2 ∗ l ∗ h2;

with security typing: t = 〈h : H , l : L 〉 and V = Z. Clearly in the standard notion of

•

•

• •

•

LLLLLL
rrrrrr

rrrrrr

LLLLLL

0

∅

0− 0+

Z

•

• •

•

::::::::

��������

rrrrrr

LLLLLL

∅

2Z + 1 2Z

Z

Fig. 6.1. The Sign and Par domains.

secrecy there is a flow of information from variable h to variable l, since l depends
on the value of h, i.e., the statement is not secure. Let’s see what happens for
the 〈Sign,Par〉-NSecrecy. If the input is such that Sign(l) = 0+, then the possible

6.1 Defining abstract non-interference 117

outputs, depending on h, are always in 2Z, indeed the result is always even because
there is a multiplication by 2. The same holds if Sign(l) = 0−. Therefore any
possible output value, with a fixed input l, has the same abstraction in Par, which
is 2Z. Hence we have |= [Sign]P (Par).

It is worth noting that 6|= [η]P (ρ) does not necessarily imply an information
flow from H to L values. In fact, whenever narrow non-interference fails, it is
possible that the revealed flow is a flow due to the η-undistinguished public values.
Namely, what is revealed may not be an insecure information flow, which means
that this flow may not convey private information into the public output. Indeed,
whenever we can find two different public values l1 and l2 such that η(l1) = η(l2),
and a private value h such that ρ(JP K(h, l1)L) 6= ρ(JP K(h, l2)L), then narrow non-
interference fails for what we call a deceptive flow . Since these flows are due to the
fact that the public input ranges over sets of elements with the same property η.
It is worth noting that the smaller are these sets, i.e., the more precise is η, and
the less deceptive flows may arise.

Example 6.3. Consider the property Sign and Par represented in Figure 6.1 and
the program in Example 6.2. Let us consider 〈Par,Sign〉-NSecrecy. In this case
note that

Par(−2) = Par(4) = 2Z but Sign(JP K(h,−2)L) = 0− 6= 0+ = Sign(JP K(h, 4)L)

In general we have a flow for each positive and negative number with the same
abstraction in Par, i.e., for each pair of even or odd numbers with different sign.
This means that [Par]P (Sign) doesn’t hold due to deceptive flows generated by
variations of low inputs having the same property in Par.

In order to avoid the presence of deceptive flows we consider the possibility
of passing abstract L values as input to the program’s semantics. The idea is
to model only information flows generated by the variation of H values. This is
obtained by computing the concrete semantics applied to abstract values for L

inputs, denoting η-indistinguishable data.

Moreover, we said above, that we want to characterize also which properties of
the private input can flow, or conversely which property of private input has to be
kept confidential. Hence, we model when the change of a particular property in the
private input has effects in what the attacker can observe concerning the properties
of public output. This leads us to introduce a weaker notion of non-interference
having no deceptive flows and such that, when the attacker is able to observe the
property η of public input and the property ρ of public output, no information flow
concerning the property φ of private input interferes in the observable property
ρ of the public output, under the assumption that the public input property η

doesn’t change. In this case, the abstraction φ represents the property of private
data that has not to flow into the public variables, given an attacker that can

118 6 Abstract Non-Interference: Imperative languages

observe η on public input and ρ on public output. We call this notion abstract
non-interference (ANI for short), denoted 〈η, φ, ρ〉-Secrecy, as regards the closures
η, ρ ∈ uco(℘(VL)), and φ ∈ uco(℘(VH)).

Definition 6.4. Let η, ρ ∈ uco(℘(VL)) and φ ∈ uco(℘(VH)). P ∈ Imp is
〈η, φ, ρ〉-Secret if

∀h1, h2 ∈ VH ,∀l1, l2 ∈ VL .

η(l1) = η(l2) ⇒ ρ(JP K(φ(h1), η(l1))L) = ρ(JP K(φ(h2), η(l2))L).

In the following, when a program P is 〈η, φ, ρ〉-Secret, we will write |=
(η)P (φ []ρ) (or simply (η)P (φ []ρ)). Next example shows the difference be-
tween narrow and abstract non-interference.

Example 6.5. Consider the property Par represented in Figure 6.1, the sign prop-
erty defined as Sign

def= {>,+,−,∅} and the program in Example 6.2. Consider
〈Par, id,Sign〉-Secrecy. Then we have that

Sign(JP K(h,Par(−2))L) = Sign(JP K(h,Par(4))L) = Sign(2Z ∗ h2) = Z.

In general we can prove that (Par)P (id []Sign) holds. Hence no more deceptive
flows can be revealed.

In order to understand which is the difference between (η)P (id []ρ) and
(η)P (φ []ρ), let us consider the example shown before.

Example 6.6. Consider the properties Sign and Par described in Fig. 6.1 and the
program fragment used before:

P
def= l := l ∗ h2;

with security typing: t = 〈h : H , l : L 〉 and V = Z. Consider 〈id, id,Par〉-Secrecy.
Note that:

Par(JP K(2, 1)L) = Par(4) = 2Z while Par(JP K(3, 1)L) = Par(9) = 2Z + 1

which are clearly different, therefore in this case (id)P (id []Par) doesn’t hold. On
the other hand, consider 〈id,Sign,Par〉-Secrecy and note that:

Par(JP K(Sign(2), 1)L) = Par(JP K(Sign(3), 1)L) = Par(0+) = Z.

In this case, it is simple to check that (id)P (Sign []Par) holds.

It is clear that standard non-interference is exactly abstract non-interference
with all identity maps, i.e., 〈id, id〉-NSecrecy and 〈id, id, id〉-Secrecy. More in gen-
eral, the following proposition shows the relations existing among the given notions
of non-interference.

6.1 Defining abstract non-interference 119

Proposition 6.7. [id]P (id)

⇓
[η]P (ρ)⇒ (η)P (id []ρ)⇒ (η)P (φ []ρ)

Proof. We prove the single implications separately. Consider l, l1, l2 ∈ VL and
h1, h2 ∈ H . The following proofs use the well-known property ρ(

⋃
Y) = ρ(

⋃
ρ(Y))

(see Prop. 2.57).

[id]P (id) ⇒ (η)P (id []ρ) Suppose JP K(h1, l)L = JP K(h2, l)L and consider
η(l1) = η(l2), we have to prove that ρ(JP K(h1, η(l1))L) = ρ(JP K(h2, η(l2)L):

ρ(JP K(h1, η(l1))L) = ρ
(⋃

l∈η(l1)
JP K(h1, l)L

)
= ρ

(⋃
l∈η(l2)

JP K(h1, l)L
)

(since η(l1) = η(l2))

= ρ
(⋃

l∈η(l2)
JP K(h2, l)L

)
(by hypothesis [id]P (id))

= ρ(JP K(h2, η(l2))L)

[η]P (ρ) ⇒ (η)P (id []ρ) Suppose η(l1) = η(l2) implies ρ(JP K(h1, l1)L) =
ρ(JP K(h2, l2)L), we have to prove that ρ(JP K(h1, η(l1))L) = ρ(JP K(h2, η(l2))L)
holds:

ρ(JP K(h1, η(l1))L) = ρ
(⋃

l∈η(l1)
JP K(h1, l)L

)
= ρ

(⋃
l∈η(l1)

ρ(JP K(h1, l)L)
)

(by Prop. 2.57)

= ρ
(⋃

l∈η(l2)
ρ(JP K(h2, l)L)

)
(by hypothesis [η]P (ρ))

= ρ
(⋃

l∈η(l2)
JP K(h2, l)L

)
(by Prop. 2.57)

= ρ(JP K(h2, η(l2))L)

(η)P (id []ρ) ⇒ (η)P (φ []ρ) Suppose (η)P (id []ρ), we prove that η(l1) =
η(l2) = η(l) implies ρ(JP K(φ(h1), η(l))L) = ρ(JP K(φ(h2), η(l))L):

ρ(JP K(φ(h1), η(l))L) = ρ
(⋃

h∈φ(h1)
JP K(h1, η(l))L

)
= ρ

(⋃
h∈φ(h1)

ρ(JP K(h, η(l))L)
)

(by Prop. 2.57)

= ρ
(⋃

h′∈φ(h2)
ρ(JP K(h′, η(l))L)

)
(by (η)P (id []ρ))

= ρ
(⋃

h′∈φ(h2)
JP K(h′, η(l))L

)
(by Prop. 2.57)

= ρ(JP K(φ(h2), η(l))L)

Note that, we don’t have the implication [id]P (id) ⇒ [η]P (ρ). The following
example shows that this implication does not hold, due to deceptive flows.

Example 6.8. Consider η = Sign and ρ = Par, defined in Fig. 6.1. Consider the
program fragment:

P
def= l := l + 2

120 6 Abstract Non-Interference: Imperative languages

We can note that |= [id]l := l + 2 (id) since there cannot be insecure flows in P .
On the other hand, we can note that 6|= [Sign]l := l + 2 (Par) since, for example,
we have the following deceptive flow:

Par(Jl := l + 2K(h, 2)L) = Par(4) = 2Z while
Par(Jl := l + 2K(h, 3)L) = Par(5) = 2Z + 1

where Sign(2) = Sign(3) = +.

Abstract non-interference is parametric on program properties specified as clo-
sure operators. In order to better understand the meaning of input/output ab-
stractions in the definitions above, we observe that the property (η)P (φ []{>})
always holds. Indeed, if a closure makes equal some objects, then any more abstract
closure will make equal at least the same objects. From these simple observations,
we derive the following basic properties of narrow and abstract non-interference.

Proposition 6.9. Let η, ρ ∈ uco(℘(VL)), φ ∈ uco(℘(VH)), and P ∈ Imp.

1. [η]P (ρ) ⇔ ∀β w ρ . [η]P (β);
2. [η]P (ρ) ⇔ ∀β v η . [β]P (ρ);
3. ∀i. [η]P (ρi) ⇒ [η]P (

d
i ρi) and [η]P (

F
i ρi);

4. [id]P (ρ) ⇔ (id)P (id []ρ);
5. (η)P (φ []ρ) ⇒ ∀β w ρ . (η)P (φ []β);
6. ∀i. (η)P (φ []ρi) ⇒ (η)P (φ []

d
i ρi) and (η)P (φ []

F
i ρi).

Proof. 1. If ∀β w ρ . [η]P (β), then [η]P (ρ). Let us consider the other inclusion.
Suppose [η]P (ρ), namely ∀l1, l2 ∈ VL and ∀h1, h2 ∈ VH , we have that η(l1) =
η(l2) implies the equality ρ(JP K(h1, l1)L) = ρ(JP K(h2, l2)L). Consider β w ρ,
then ∀X,Y ∈ ℘(VL) . ρ(X) = ρ(Y) ⇒ β(X) = β(Y). This means that
ρ(JP K(h1, l1)L) = ρ(JP K(h2, l2)L) implies β(JP K(h1, l1)L) = β(JP K(h2, l2)L)
and therefore [η]P (β).

2. If ∀β v η . [β]P (ρ), then [η]P (ρ). Consider the other implication. Suppose
[η]P (ρ), and consider β v η, then ∀x, y ∈ VL we have that β(x) = β(y) ⇒
η(x) = η(y). By hypothesis ∀l1, l2 ∈ VL ,∀h1, h2 ∈ VH we have that η(l1) =
η(l2) implies ρ(JP K(h1, l1)L) = ρ(JP K(h2, l2)L). Therefore β(l1) = β(l2), which
implies η(l1) = η(l2), implies also ρ(JP K(h1, l1)L) = ρ(JP K(h2, l2)L). Hence we
have that [β]P (ρ) holds.

3. By hypotheses, for each i ∈ I, η(l1) = η(l2) implies that ρi(JP K(h1, l1)L) =
ρi(JP K(h2, l2)L), namely η(l1) = η(l2) implies ∀i ∈ I. ρi(JP K(h1, l1)L) =
ρi(JP K(h2, l2)L). But this corresponds to saying that η(l1) = η(l2) implies
that

d
i ρi(JP K(h1, l1)L) =

d
i ρi(JP K(h2, l2)L). [η]P (

F
i ρi) holds for the first

point.
4. Straightforward by the definitions of narrow and abstract non-interference.
5. If ∀β w ρ . (η)P (φ []β), then (η)P (φ []ρ). Let us consider the other inclu-

sion. Suppose (η)P (φ []ρ), namely consider ∀l1, l2 ∈ VL ,∀h1, h2 ∈ VH we
have that η(l1) = η(l2) implies ρ(JP K(φ(h1), η(l1))L) = ρ(JP K(φ(h2), η(l2))L).

6.2 Checking abstract non-interference 121

Consider now β w ρ, then ∀X,Y ∈ ℘(VL) . ρ(X) = ρ(Y) ⇒ β(X) =
β(Y). This means that ρ(JP K(φ(h1), η(l1))L) = ρ(JP K(φ(h2), η(l2))L) implies
β(JP K(φ(h1), η(l1))L) = β(JP K(φ(h2), η(l2))L) and therefore (η)P (φ []β).

6. By hypotheses, for each i ∈ I the condition η(l1) = η(l2) implies that
ρi(JP K(φ(h1), η(l1))L) = ρi(JP K(φ(h2), η(l2))L). This is equivalent to saying
that η(l1) = η(l2) implies ρi(JP K(φ(h1), η(l1))L) = ρi(JP K(φ(h2), η(l2))L),
for each i ∈ I. This corresponds to saying that η(l1) = η(l2) impliesd

i ρi(JP K(φ(h1), η(l1))L) =
d

i ρi(JP K(φ(h2), η(l2))L). Hence, (η)P (φ []
F

i ρi)

holds for we proved in the first point.

6.2 Checking abstract non-interference

In this section, we derive the abstract non-interference semantics of a programming
language by abstract interpretation of its maximal trace semantics. The abstract
non-interference semantics of a program is the set of all the denotations, viz. func-
tions, representing computations for P that satisfy (η)P (φ []ρ). Formally, we de-
fine the domain S (η, φ []ρ) parametric on the abstract domains η, ρ ∈ uco(℘(VL))
and φ ∈ uco(℘(VH)). This domain is an abstraction of the concrete domain of the
angelic denotational semantics Σ → ℘(Σ) as introduced in [27], where Σ = Vn

(see Sect. 4.1.2).

S (η, φ []ρ)
def=
{
f ∈ Σ → ℘(Σ)

∣∣∣∣∀h1, h2 ∈ VH ,∀l1, l2 ∈ VL . η(l1) = η(l2) ⇒
ρ(f(φ(h1), η(l1))L) = ρ(f(φ(h2), η(l2))L)

}
The key point, in order to show that S (η, φ []ρ) is an abstraction of αD(℘(Σ∞)),
is to note that if f doesn’t satisfy abstract non-interference, i.e., f /∈ S (η, φ []ρ),
then there is no way to make it satisfy that property by adding traces, namely
∀g w f. g /∈ S (η, φ []ρ). On the other hand, if f ∈ S (η, φ []ρ), then ∀g v f we
have g ∈ S (η, φ []ρ).

Proposition 6.10. Let η, ρ ∈ uco(℘(VL)) and φ ∈ uco(℘(VH)).

1. S (η, φ []ρ) is a Moore-family;
2. (S (η, φ []ρ), α, id, αD(℘(Σ∞))) is a GI where, if f ∈ αD(℘(Σ∞)), then

α(f) =

λx. Σ if ∃δ`, σ` ∈ Σ .η(σL`) = η(δL`)∧

ρ(f(φ(σH`), η(σL`))L) 6= ρ(f(φ(σH`), η(δL`))L)
f otherwise

Proof. The proof that S (η, φ []ρ) is a Moore-family comes directly from the fact
that the greatest lower bound of functions corresponds to the intersection of the
target set the functions. This means that the greatest lower bound operation se-
lects only a subset of the set of computations of both the functions. Therefore,
since it is immediate to verify that by deleting computations we cannot add inter-
ference, the intersection function denote secret computations.

122 6 Abstract Non-Interference: Imperative languages

It is immediate to prove, by definition, that αD is monotone, extensive and idem-
potent.

An analogous result holds in the narrow case. Hence, to check (η)P (φ []ρ)

means checking whether α(JP K) = JP K. This check boils down to a standard static
program analysis. Let P ∈ Imp, η, ρ ∈ uco(℘(VL)) and φ ∈ uco(℘(VH)) be the
observable properties that characterize the attacker. We observe that it is possible
to monitor the possible flows of information from variables of type H to variables
of type L , by considering the best correct approximation of JP K given by ρ, η, and
φ.

Theorem 6.11. Let η, ρ ∈ uco(℘(VL)) and φ ∈ uco(℘(VH)).

• [η]P (ρ) iff ∀Y ∈ η(℘(VL)). λx ∈ VH , y ∈ Y. ρ(JP K(x, y)L) is constant.
• (η)P (φ []ρ) iff ∀Y ∈ η(℘(VL)). λx ∈ VH . ρ(JP K(φ(x), Y)L) is constant.

Proof. Let us prove the two directions separately. Consider (⇐). Suppose that
the function F = λx ∈ VH . ρ(JP K(φ(x), Y)L) is a constant map, which means that
∀x1, x2 ∈ Vh .F (x1) = F (x2). This means that ∀x1, x2 ∈ Vh .ρJP K(φ(x1), η(y))L =
ρJP K(φ(x2), η(y))L , and this holds for each y ∈ Vl, therefore we have secrecy.
Consider (⇒). Suppose that (η)P (φ []ρ), namely ∀y ∈ Vl, x1, x2 ∈ Vh we have
the equality ρ(JP K(φ(x1), η(y))L) = ρ(JP K(φ(x2), η(y))L). But this holds for each
x1, x2, therefore the function is constant. A similar proof can be done for the
narrow case.

Hence, checking abstract non-interference corresponds to checking whether the
best correct approximation of the concrete semantics of P , restricted to H vari-
ables in input and L variables in output, is constant. A similar result holds for
narrow abstract non-interference, even though the checking process in the narrow
case would not involve the best correct approximation of the concrete semantics
but rather the concrete semantics itself. It is clear that, if φ and η are complete
abstractions for ρ and JP K (see Sect. 2.2.4 [65]), then [η]P (ρ) iff (η)P (φ []ρ).
Finally, note that abstract non-interference, as well as non-interference, is not in
general a safety property [91] since it is a property of sets of traces and not a
property of traces. It is a safety property only if no possible change is observable
on L variables.

6.3 Deriving attackers

In this section, we define systematic methods for deriving attackers from programs
by abstract interpretation. In particular, we are interested in characterizing the
most concrete, viz. most precise, attacker for which a given program is secure. This
is useful both in automatic program certification for abstract non-interference and
in order to classify programs in terms of the properties that make them secure.

6.3 Deriving attackers 123

Since attackers are characterized as pairs of abstract domains, the idea is to define
an abstract domain transformer, depending on the program to be analyzed, which
is able to transform any non-secret abstraction ρ into the closest abstraction for
which the program is secure. This corresponds to characterizing the most powerful
harmless attacker for a given program. Here, harmless means that we look for
the most powerful attacker whose observational capability is not sufficient for
disclosing any confidential information.

This construction is significant in both, narrow and abstract non-interference,
when we are intended to simplify domains: By Proposition 6.9, any refinement
of non-secret output abstraction is still non-secret. Let P be a program, η, ρ ∈
uco(℘(VL)), and φ ∈ uco(℘(VH)). Assume that the program P is not 〈η, ρ〉-NSecret

[resp. 〈η, φ, ρ〉-Secret]. We assume fixed the input-abstraction η and the private
property φ. We know by Proposition 6.9 that the most concrete β w ρ such
that [η]P (β) [resp. (η)P (φ []β)], always exists unique. We call this domain the
narrow [resp. abstract] secret kernel of ρ for P . As usual in systematic abstract
domain design [31,61], we specify secret kernels by corresponding abstract domain
transformers, KP, [η],KP, (η), φ : uco(℘(VL))−→uco(℘(VL)):

KP, [η]
def= λρ.

d{
β
∣∣ρ v β ∧ [η]P (β)

}
KP, (η), φ

def= λρ.
d{

β
∣∣ρ v β ∧ (η)P (φ []β)

}
In order to characterize these abstract domain transformers, we have to identify
when a program property, viewed as a collection of values, is secure. Program
properties are closure operators on sets of possible values. This means that we
have to characterize the sets of values that can stay in an abstract domain ρ in
order to guarantee [η]P (ρ) [resp. (η)P (φ []ρ)].

6.3.1 Characterizing secret kernels

The idea is that of defining a predicate on sets of values that identifies exactly those
elements that, in a given closure ρ, form the secret kernel, namely we would like to
define a core of the kind R−π (see Sect. 3.1), where π is composed by all the closures
whose elements guarantee secrecy. Let’s try to understand which properties have
to satisfy the elements of a closure in order to guarantee abstract non-interference.
Consider the definition of narrow non-interference, it requires that all the objects
JP K(h, l), where the l’s have the same property η and h is any possible private
value, have the same property ρ. This means that, if we want to build the most
concrete such ρ, we have to collect together, in the same abstract object, all such
elements. For this reason, given a public value l ∈ VL , we define the following
set characterizing all the elements that have to be indistinguishable in order to
guarantee NANI:

Υ η

JP K(l)
def=
{

JP K(h, y)L
∣∣ η(y) = η(l), h ∈ VH

}
,

124 6 Abstract Non-Interference: Imperative languages

On the other hand, consider abstract non-interference, its definition requires that
all the elements JP K(φ(h), η(l)), where l is a given public value, while h can range
over the domain for private values, have the same abstraction under ρ. As above,
this means that, if we want to build the most concrete such abstract domain ρ, we
have to collect together, in the same abstract object, all these elements. For this
reason, given a public value l ∈ VL , we define the following set characterizing all
the elements that have to be indistinguishable in order to guarantee ANI:

Υ η, φ

JP K (l) def=
{

JP K(φ(h), η(l))L
∣∣h ∈ VH

}
In other words, these sets represent the collections of the sets of values that any
secure property ρ has not to distinguish, i.e., which have to be abstracted by ρ into
the same object. At this point, if we want to reformulate the notion of abstract
non-interference in terms of the sets defined above, we can say that any abstract
domain ρ, that guarantee non-interference, has not to distinguish elements in each
one of the sets Υ η

JP K [resp. Υ η, φ

JP K]. We formalize this intuition by defining a predicate
Secr, such that Secr(X), for X set of values, holds whenever X is not able to
distinguish values in each one of the sets Υ η

JP K [resp. Υ η, φ

JP K]. So, let ε = η or ε = η, φ.
We define the predicate Secrε

JP K(X) for any X ⊆ VL :

Secrε
JP K(X) iff

∀l ∈ VL . (∃Z ∈ Υ ε
JP K(l) . Z ⊆ X ⇒ ∀W ∈ Υ ε

JP K(l) . W ⊆ X)

In other words, Secrε
JP K(X) holds if X does not brake any Υ ε

JP K(l), namely for each
l ∈ VL , X contains all the sets in Υ ε

JP K(l) or none of them. In this case we also say
that X is secret.

The following result proves that Secr precisely identifies all and only those sets
of values that form the secret kernel.

Theorem 6.12. Let η ∈ uco(℘(VL)) and φ ∈ uco(℘(VH)).

• KP, [η](id) =
{
X ∈ ℘(VL)

∣∣Secrη
JP K(X)

}
;

• KP, (η), φ(id) =
{
X ∈ ℘(VL)

∣∣Secrη,φ
JP K(X)

}
.

Proof. In order to prove the thesis we have, first, to show that the two sets are
Moore-families, i.e., closure operators. Afterwards, we have to show that they are
the most concrete closures that make the program secret.
Let’s consider the narrow case. In order to show that

{
X
∣∣Secrη

JP K(X)
}

is a Moore-
family we show that it contains the intersection of its elements. Hence, consider
X,Y ∈

{
Z
∣∣Secrη

JP K(Z)
}

and consider X ∩Y . For the hypotheses on X and Y we
have that

∀l ∈ VL . (∃Z ∈ Υ η

JP K(l) . Z ⊆ X ⇒ ∀W ∈ Υ η

JP K(l) . W ⊆ X and
∃Z ∈ Υ η

JP K(l) . Z ⊆ Y ⇒ ∀W ∈ Υ η

JP K(l) . W ⊆ Y)

6.3 Deriving attackers 125

We have to prove that the same condition holds for X ∩ Y . Therefore, suppose,
for each l ∈ VL , that ∃Z ∈ Υ η

JP K(l) . Z ⊆ X ∩ Y . This means that Z ⊆ X and
Z ⊆ Y . By the hypotheses, we have that Secrη

JP K(X) and Secrη
JP K(Y), therefore the

previous conditions imply that ∀W ∈ Υ η

JP K(l) we have W ⊆ X and W ⊆ Y , which
is equivalent to saying that W ⊆ X ∩ Y . Hence, we have proved Secrη

JP K(X ∩ Y).
It is simple to verify that this result can be generalized to arbitrary intersections,
therefore

{
X
∣∣Secrη

JP K(X)
}

is a Moore-family. Note that in the proof above we
didn’t used the fact that we were considering the narrow abstract non-interference,
therefore the same result holds in the abstract case.
Now we have to prove that S def=

{
X ∈ ℘(VL)

∣∣Secrη
JP K(X)

}
is such that [η]P (S),

i.e., such that η(l1) = η(l2) implies S(JP K(h1, l1)L) = S(JP K(h2, l2)L). Sup-
pose, towards a contradiction, that there exists h1, h2, l1, l2 such that η(l1) =
η(l2), with S(JP K(h1, l1)L) 6= S(JP K(h2, l2)L). Note that, both the elements
JP K(h1, l1)L , JP K(h2, l2)L ∈ Υ η

JP K(l1) being η(l1) = η(l2), and, moreover, there exist
X1, X2 ∈ ℘(VL) such that S(JP K(h1, l1)L) def= X1 6= S(JP K(h2, l2)L) def= X2, which
means that X1, X2 ∈ S, therefore Secrη

JP K(X1) and Secrη
JP K(X2) hold. At this point,

if X1 + X2, then we have JP K(h1, l1)L ∈ Υ η

JP K(l1) such that JP K(h1, l1)L ⊆ X1,
while JP K(h2, l2)L ∈ Υ η

JP K(l1) such that JP K(h2, l2)L * X1, which is a contradic-
tion, for the hypothesis on X1. If X1 ⊇ X2, then we have X2 + X1 and therefore
we obtain the contradiction on X2. Again, we can prove the same fact for abstract
non-interference, simply by generalizing the proof above.
Finally, we have to prove that the secret closure obtained so far is the secret
kernel, i.e., it is the most concrete closure that makes the program secret. Sup-
pose this is false, towards a contradiction, namely suppose that there exists an
abstract domain ρ such that [η]P (ρ), with ρ * S. We consider only the case
ρ ⊇ S, since otherwise we could consider the greatest lower bound ρ u S which is
secret by Proposition 6.9(3). At this point, we can note that there exists X ∈ ρ
such that X /∈ S, i.e., such that ¬Secrη

JP K(X). But this means that there exists
a low input l such that ∃Z ∈ Υ η

JP K(l) with Z ⊆ X, and there exists W ∈ Υ η

JP K(l)
such that W * X. Hence, we have that Z = JP K(h1, l1)L for some h1, l1 ∈ V,
and W = JP K(h2, l2)L for some h2, l2 ∈ V, with η(l1) = η(l2) = η(l), since
both the sets are in Υ η

JP K(l). These facts imply that ρ(JP K(h1, l1)L) ⊆ X, since
JP K(h1, l1)L ∈ X, while ρ(JP K(h2, l2)L) * X, since JP K(h2, l2)L /∈ X. Therefore,
ρ(JP K(h1, l1)L) 6= ρ(JP K(h2, l2)L), which is a contradiction, since we supposed that
[η]P (ρ). This means that such a closure cannot exists. Also in this case the proof
for abstract non-interference is analogous.

In the following, we use the notation Sε
JP K : ℘(℘(VL))−→℘(℘(VL)) to denote

the predicate transformer Sε
JP K(X) =

{
X ∈ X

∣∣Secrε
JP K(X)

}
, that transforms each

domain X in the most concrete one that it contains and such that all its elements
satisfy the predicate Secr. At this point we can define the secret kernels of a generic
domain ρ in the following way:

Corollary 6.13. Let η ∈ uco(℘(VL)) and φ ∈ uco(℘(VH)).

126 6 Abstract Non-Interference: Imperative languages

• KP, [η](ρ) =
{
X ∈ ρ

∣∣Secrη
JP K(X)

}
;

• KP, (η), φ(ρ) =
{
X ∈ ρ

∣∣Secrη,φ
JP K(X)

}
.

Proof. By definition, the secret kernels, parametric on the output observation
ρ, are respectively: KP, [η] = λρ.KP, [η](id) t ρ and KP, (η), φ = λρ.KP, (η), φ(id) t ρ.
We have to prove that this domains are, respectively,

{
X ∈ ρ

∣∣Secrη
JP K(X)

}
and{

X ∈ ρ
∣∣Secrη,φ

JP K(X)
}
. This means that

{
X ∈ ρ

∣∣Secrη
JP K(X)

}
has to be equal

to
{
X ∈ ℘(VL)

∣∣Secrη
JP K(X)

}
t ρ. Consider, now, an element belonging to this

set, i.e., Y ∈
{
X ∈ ρ

∣∣Secrη
JP K(X)

}
, then it is in ρ and it is such that Secrη

JP K(Y),
namely it is in KP, [η](id) t ρ. Analogously, the inverse inclusion holds, so we have
the equality. Similarly, we can prove the same in the abstract case.

Therefore, we have that K is an abstract domain simplification (see Sect. 3.1, [61]),
as we said above, namely K ∈ uco(uco(℘(C))), mapping insecure abstract domains
to the most concrete of their secure abstractions.

The problem with this characterization is that, if we want build this secret
kernel, then we have to check the predicate Secr on all the possible sets of elements
and this could be resource consuming, also for finite domains. Therefore, we would
like to go deeper in the meaning of non-interference in order to identifies which
elements are surely secret, which are never secret, and for which sets of elements
we do have to check secrecy.

6.3.2 Deriving secret kernels

In this section, we analyze more deeply the meaning of non-interference in order to
characterize three kind of sets: The sets of value that surely cannot generate inter-
ference, those that surely do generate interference and finally, those for which we
have to check if they generate or not interference. As observed above, any secure
abstraction has not to distinguish elements in the sets Υ η

JP K(l) [resp. Υ η, φ

JP K (l)], for
each l ∈ VL . In order to obtain this, we have to understand which are the small-
est sets of values that need to be indistinguishable, and therefore that a secret
abstraction has to contain in order to guarantee non-interference. In Fig. 6.2 (a)
we depict what happens for narrow non-interference, indeed consider two elements
JP K(h1, l1) and JP K(h2, l2) such that h1, h2 ∈ VH , l1, l2 ∈ VL and η(l1) = η(l2).
Consider now an abstract domain ρ, then if we have an element X ∈ ρ, as depicted
in the figure, we would have ρ(JP K(h1, l1)) = X 6= ρ(JP K(h2, l2)), and therefore we
would have an interference. For this reason we note that the smallest elements,
containing all the objects JP K(h, l) with the same η property of l, that a secret ab-
stract domain has to contain are JP K(VH , η(l)). Each smaller set would distinguish
objects that must be indistinguishable in order to guarantee non-interference. In
Fig. 6.2 (b) we have a similar situation for abstract non-interference, and also
in this case we note that the smallest elements, containing the all the objects
JP K(φ(h), η(l)) with h ranging over VH , that a secret abstraction has to contain

6.3 Deriving attackers 127

JP K(h2, l2)JP K(h1, l1)

X

JP K(φ(h1), η(l1))

JP K(VH , η(l1))

JP K(φ(h2), η(l2))

ρ(JP K(φ(h1), η(l1)) = ρ(JP K(φ(h2), η(l2))))

Abstract Non-Interference

(b)

ρ(JP K(φ(h1), η(l1)) 6= ρ(JP K(φ(h2), η(l2))))

JP K(h1, l1)

X

ρ(JP K(h1, l1) 6= ρ(JP K(h2, l2)))

ρ(JP K(h1, l1) = ρ(JP K(h2, l2)))

Narrow Abstract Non-Interference

JP K(h2, l2)

(a)

JP K(VH , η(l1))

Fig. 6.2. Deriving attackers: The idea

are again JP K(VH , η(l)). Let us collect all these sets of indistinguishable values,
depending on public values, by defining, for any η ∈ uco(℘(VL)), the following
family of sets of values:

DJP K(η)
def=
{

JP K(VH , η(y))L
∣∣ y ∈ VL

}
The following example shows that the set DJP K(η) is not, in general, a Moore-family.

Example 6.14. Consider the program fragment

P
def= while h do l := l ∗ 2; h := 0 endw

with typing 〈h : H , l : L 〉 and V = N. Its single-step standard denotational seman-
tics is:

JP K(h, l) =
{

(h, l) if h = 0
(0, l ∗ 2) otherwise

Then, for each l ∈ N, we have JP K(N, l)L = {l, 2l}, hence we can obtain the
set DJP K(id) = {{0}, {1, 2}, {2, 4}, {3, 6}, {4, 8}, . . .}, which is not a Moore-family
since, for example, it does not contain {1, 2} ∩ {2, 4} = {2}.

128 6 Abstract Non-Interference: Imperative languages

The construction of the set DJP K allows to characterize which elements can never
be contained in a secret abstract domain. Indeed each set of values that contains
any JP K(φ(h), η(l)) [JP K(h, l) in the narrow case], but that does not contain the
set JP K(VH , η(l)), will surely cause an interference, making the program insecure.
In Fig. 6.3 these point are those in the empty area between the two lines. On the
other hand, all the sets that do not contain any JP K(φ(h), η(l)) [JP K(h, l) in the
narrow case] cannot create any problem, since they are not able to distinguish
values that must be indistinguishable. In Fig. 6.3 these points are those in the
filled area.

JP K(φ(h1), η(l1))

JP K(φ(h2), η(l1))

JP K(VH , η(l2))

JP K(VH , η(l1))

JP K(φ(h1), η(l2))

Fig. 6.3. Irrelevant elements

These latter elements of the concrete domain of values are always secret and
need not to be involved in the verification of secrecy. We call these elements irrel-
evant and we can formally define them in the following way:

Irrφ, η

JP K

def=
{
X ∈ ℘(VL)

∣∣∀h ∈ VH , l ∈ VL .X /∈ ↑(JP K(φ(h), η(l))L)
}

Irrelevant elements are also important in order to characterize the elements that
reveal deceptive flows in narrow abstract non-interference. Suppose the output
closure we are checking for secrecy contains an element X ⊂ JP K(h, η(l))L , for
some h ∈ VH , l ∈ VL , and X 6= ∅, then clearly there exists l1 ∈ η(l) such that
JP K(h, l1)L ∈ X and l2 ∈ η(l) such that JP K(h, l2)L /∈ X. In this situation, the
revealed flow for JP K(h, l1)L and JP K(h, l2)L , due to the presence of X in the clo-
sure, is clearly a deceptive flow. These sets, revealing deceptive flows, are in general
irrelevant elements in the abstract non-interference case. This because in the ab-
stract non-interference case we are interested in abstracting JP K(h, η(l))L . Since
X ⊂ JP K(h, η(l))L ⊆ JP K(φ(h), η(l))L , X falls in the set of irrelevant elements for
abstract non-interference. In particular, the sets X, which reveal deceptive flows,
are contained in Irrid, η

JP K r Irrid, id

JP K . Note also that, for the narrow case we have to
consider the more concrete closure that induces the same partition of values as
η ∈ uco(℘(VL)), i.e., P(η) def=

b ({
[l]η
∣∣ l ∈ VL

})
, where [l]η

def=
{
y
∣∣ η(l) = η(y)

}
.

6.3 Deriving attackers 129

This is essential in order get the secret kernel, i.e., the most concrete domain β

such that [η]P (β). The idea is that P(η) is the most concrete closure such that
for any y ∈ P(η)(l): P(η)(l) = P(η)(y), while in general η(y) ⊆ η(l). The following
example shows that, if we don’t consider partitioning closures (Sect. 2.2.3) mod-
eling the input, then the construction does not allow to obtain the secret kernel,
since we are not sure to find the most concrete harmless attacker.

Example 6.15. Consider the following program fragment:

P
def= while h do l := l + 6;h := h− 1 endw, JP K(h, l) = l + 6h

with security typing t = 〈h : H , l : L 〉 and V = Z. Let us consider [η]JP K (id),
where η(℘(Z)) = {Z, 3Z, 6Z,∅}.

>

6Z + 3
Z r 3Z

Z r 6Z3Z

∅

6Z

P(η) :
Z r 6Z + 3

>

3Z

6Z

η :

∅

We show that if we consider η instead of P(η) we don’t find the secret kernel of
the program. First of all, note that

∀l ∈ 6Z . Υ η

JP K(l) = 6Z
∀l. η(l) = 3Z. Υ η

JP K(l) = 6Z + 3
∀l /∈ 3Z . Υ η

JP K(l) =
⋃{

6Z + l
∣∣ l /∈ 3Z

}
= Z r 3Z

At this point, DJP K(η) = {6Z, 3Z,Z}, and it is simple to verify that

Sη

JP K(↑(DJP K(η))) = {Z,Z r (3(2Z + 1)), 3Z, 6Z}

Let us consider now P(η) =
b

({Z,Z r 3Z, 3(2Z + 1), 6Z,∅}). Then it is simple to
verify that DJP K(P(η)) =

b
({6Z, 3(2Z + 1),Z r 3Z}). At this point, we have that

Sη

JP K(↑(DJP K(P(η)))) = DJP K(P(η)) which strictly contains the set Sη

JP K(↑(DJP K(η)))
obtained above.

Finally, we have to characterize the elements for which we do have to check non-
interference. These are the sets that contain the objects of the kind JP K(VH , η(l)),
for which we cannot say anything a priori. We defined above the set DJP K, then the
sets for which we have to check secrecy are those contained in ↑(DJP K(η)), which
is the upper area in Fig. 6.3. Therefore, we have to verify, for each one of these
sets, whether it satisfies the predicate Secr. The following example shows how to
construct the set Sε

JP K(↑(DJP K(η))), namely how to detect the secret elements in
↑(DJP K(η)).

130 6 Abstract Non-Interference: Imperative languages

Example 6.16. Let us consider the Example 6.14. We build S id
JP K(↑(DJP K(id))) by

checking which X ∈ ↑(DJP K(id)) are such that Secrid

P (X) holds. Note that, for
each l ∈ VL = N, the elements that have to be indistinguishable under a secret
abstraction, are collected in the sets:

Υ id

JP K(l) = {l, 2l}.

Let us define {2}N def=
{

2n
∣∣n ∈ N

}
[89]. We can prove that

Sε

JP K(↑(DJP K(id))) =
j ({

n{2}N
∣∣n ∈ 2N + 1

}
∪ {{0}}

)
.

Indeed, note that, if n ∈ 2N, i.e., n = 2k for some k ∈ N, then 2k, k ∈ Υ id
JP K(k),

2k ∈ n{2}N, and k /∈ n{2}N, therefore we always have that ¬Secrid

JP K(2k{2}N).
Suppose, now,

X ∈ ↑
({

n{2}N
∣∣n ∈ N

})
If X ⊇ 2k{2}N, for some k ∈ N, then X is not secret for the considerations above.
Therefore, suppose X 6⊇ 2k{2}N, for each k ∈ N.
Consider, under these hypotheses, that X /∈

b ({
n{2}N

∣∣n ∈ 2N + 1
}
∪ {{0}}

)
.

This means that there exists a set m{2}N which is not entirely contained in X, i.e.,
such that X ∩m{2}N 6= ∅ and X 6⊇ m{2}N. But this means that X is not secret
since there must exists an element h ∈ (X ∩m{2}N) such that 2h /∈ (X ∩m{2}N),
or viceversa, otherwise X ⊇ m{2}N, namely X “brakes” Υ (h).
Finally, ifX ∈

b ({
n{2}N

∣∣n ∈ 2N + 1
}
∪ {{0}}

)
, then it cannot brake any Υ (n).

In particular, if n is odd, then Υ (n) is contained only in n{2}N, while if n
is even, ∃h, k . n = 2kh with h odd, and in this case Υ (n) is contained only
in h{2}N. Therefore, we proved that the secret elements of ↑(DJP K(id))) are
Sε

JP K(↑(DJP K(id))) =
b ({

n{2}N
∣∣n ∈ 2N + 1

}
∪ {{0}}

)
.

In Figure 6.4, we have an example on how Sε
JP K(↑(DJP K(η))) is constructed.

Assume DP (η) = {d1, d2, d3, d4}. We note that d2 brakes the set Υ ε
JP K(l1) and

d3 cause the brake of Υ ε
JP K(l4), therefore Secr(d2) and Secr(d3) don’t hold. The

operation Sε
JP K erases d2 and d3 from ↑(DJP K(η)). With similar argument we erase

from ↑(DJP K(η)) all the points that do not satisfy Secr. The remaining points are
circled in the picture, and they form the set Sε

JP K(↑(DJP K(η))). We call these points
relevant elements of the secret kernel.

We are now in the position to characterize which are the elements that, follow-
ing our construction, are secret and should form the secret kernel:

[η]JP K (id)
def= Sη

JP K(↑(DJP K(P(η)))) ∪ Irrid, id

JP K

(η)JP K (φ []id)
def= Sη, φ

JP K (↑(DJP K(η))) ∪ Irrφ, η

JP K

Note that these definitions introduce a slight abuse of notation: Indeed, while
(η)JP K (φ []id) ∈ uco(℘(VL)) is an abstract domain, (η)P (φ []id) is a program
property. The same holds in the narrow case. The following result says that the

6.3 Deriving attackers 131

Υ ε
JP K(l4)Υ ε

JP K(l1) Υ ε
JP K(l3)

Υ ε
JP K(l2)

d1
d3

d2

d4 DJP K(η)

Fig. 6.4. The construction of Sε
JP K(↑(DJP K(η))).

domains [η]JP K (id) and (η)JP K (φ []id) are exactly the secret kernels of a program
P as regards a given attacker, i.e., a given input observation η for narrow non-
interference, or a given input observation η and private property φ for abstract
non-interference.

Theorem 6.17. Let η, ρ ∈ uco(℘(VL)) and φ ∈ uco(℘(VH)).

1. KP, [η](id) = [η]JP K (id);
2. KP, (η), φ(id) = (η)JP K (φ []id).

Proof. Let us consider the narrow case. We can obtain the proof for abstract
non-interference simply by substituting the closure P(η) with η. Consider narrow
non-interference, we have to prove that Sη

JP K(↑(DJP K(P(η)))) ∪ IrrJP K contains all
and only the elements that are contained in the set

{
X ∈ ℘(VL)

∣∣Secrη
JP K(X)

}
.

Let us prove the two inclusions separately.

(⊇) Suppose that Secrη
JP K(X), and suppose, towards a contradiction, that X /∈

Sη

JP K(↑(DJP K(P(η)))) ∪ IrrJP K. This last fact holds iff X /∈ Sη

JP K(↑(DJP K(P(η))))
and X /∈ IrrJP K. The first condition holds iff X /∈ ↑(DJP K(P(η))) or ¬Secr(X),
but since by hypothesis Secrη

JP K(X), this implies X /∈ ↑(DJP K(P(η))). On
the other hand, the second condition holds iff X ⊇ JP K(h, l) for some
h, l ∈ V. Namely we have that X is such that X ⊇ JP K(h, l) and X /∈
↑(DJP K(P(η))) which implies, in particular that X /∈ DJP K(P(η)). Moreover,
X + JP K(V,P(η)(l)), since X /∈ ↑(DJP K(P(η))). This implies then that
∃h′ ∈ VH , l′ ∈ VL such that P(η)(l′) = P(η)(l) and such that X + JP K(h′, l′)L .
But JP K(h′, l′)L , JP K(h, l) ∈ Υ η

JP K(l) since η(l) = η(l′), therefore we have
¬Secr(X), which is a contradiction.

(⊆) Suppose X ∈ Sη

JP K(↑(DJP K(P(η)))) ∪ IrrJP K. If X ∈ Sη

JP K(↑(DJP K(P(η)))) then
Secrη

JP K(X) by definition of F . If, instead, X ∈ IrrJP K, then, by definition of

132 6 Abstract Non-Interference: Imperative languages

IrrJP K, for each JP K(h, l)L we have that X + JP K(h, l)L , namely ∀l . ∀Z ∈
Υ η

JP K . Z ⊆ X, which means that Secrη
JP K(X) holds.

The following examples show the complete construction for both narrow and
abstract non-interference.

Example 6.18. Consider the program fragment:

P
def= while h do l := l ∗ 2; h := h− 1 endw

with security typing 〈h : H , l : L 〉 and V = N. We can note that this fragment is
secure as regards the output property Sign, while it is not secure as regards the
output property Parity, since the semantics of this program may change the parity
of l. For instance if the input l is odd, and the while is executed, then the output
is even. We find here the most concrete property (that clearly has to contain Sign)
that makes P secure. The denotational semantics of the program is:

JP K(h, l) =
{

(h, l) if h = 0
(0, l ∗ 2h) otherwise

Let us compute the closure [id]JP K (id). If l = 1 we have JP K(VH , 1)L = {2}N, if
l = 2 then JP K(VH , 2)L = 2{2}N, and for each l ∈ VL we have JP K(VH , l)L = l{2}N,
this means that

∀n ∈ N. Υ id

JP K(n) = n{2}N and DJP K(id) =
{
n{2}N

∣∣n ∈ N
}

Note that, the only secret elements in DJP K(id) are
{
n{2}N

∣∣n ∈ 2N + 1
}
∪{{0}}.

In fact, for each n we have n{2}N ⊇ 2n{2}N, which implies that n ∈ Υ (n). But
n /∈ 2n{2}N, while 2n ∈ Υ (n) and 2n ∈ 2n{2}N. Hence ¬Secrid

JP K(2n{2}N). Hence
S id

JP K can only select elements from ↑
({

n{2}N
∣∣n ∈ 2N + 1

}
∪ {{0}}

)
.

Following what we showed in Example 6.16, we obtain that the set resulting from
the application of S id

JP K is exactly the set

S id

JP K(↑(DJP K(id))) =
j ({

n{2}N
∣∣n ∈ 2N + 1

}
∪ {{0}}

)
In particular, consider X ∈ ↑

({
n{2}N

∣∣n ∈ N
})

. If X ⊇ 2n{2}N, then we proved
above that X is not secret. If X /∈

b ({
n{2}N

∣∣n ∈ 2N + 1
}
∪ {{0}}

)
, then for

each k ∈ N we have X 6⊇ 2k{2}N and X ⊇ n{2}N, with n odd. This means
that there exists a set m{2}N such that X ∩ m{2}N 6= ∅ and X 6⊇ m{2}N.
But this implies that X is not secret since it brakes the set Υ (m). Finally, if
X ∈

b ({
n{2}N

∣∣n ∈ 2N + 1
}
∪ {{0}}

)
, then it does not brake any Υ (m). In-

deed, if m is odd, then it is contained only in m{2}N, while if it is even, then
m = 2k with k odd, and it is contained only in k{2}N. Moreover, note that in this
case the set of irrelevants is {∅}. The resulting set, by Theorem 6.17, is the most
concrete domain making P secure.

6.3 Deriving attackers 133

Example 6.19. Let us consider the program fragment:

P
def= l := l + (h mod 3);

where mod is the rest of the integer division, the security typing is 〈h : H , l : L 〉
and V = Z. We would like that (η)P (id []id), where η is the abstract domain
η(℘(Z)) = {Z, [2, 4], [5, 8], {5},∅}. In order to build the set DJP K(id), we have to
compute the elements JP K(VH , η(l)):

JP K(Z, {5})L = [5, 7]
JP K(Z, [2, 4])L = [2, 6]
JP K(Z, [5, 8])L = [5, 10]

JP K(Z,Z)L = Z

Therefore DJP K(η) = {[5, 7], [2, 6], [5, 10],Z}.
On the other hand, we have that

∀l. η(l) = [2, 4]. Υ η, id

JP K (l) = {[2, 4], [3, 5], [4, 6]}
∀l. η(l) = [5, 8]. Υ η, id

JP K (l) = {[5, 8], [6, 9], [7, 10]}
Υ η, id

JP K (5) = {5, 6, 7}
∀l. η(l) /∈ {[2, 4], [5, 8], {5}}. Υ η, id

JP K (l) = {Z}

Note that these last sets cannot create problems to secrecy. It is possible to verify
that the resulting abstract domain Sη, id

JP K (↑(DJP K(η))) is the following collection of
objects: Y ∈ ℘(V)

∣∣∣∣∣∣
(Y ⊇ [2, 10]) ∨
(Y + [2, 10], Y ⊇ [2, 7], Y ∩ [5, 10] /∈ {[5, 9], [5, 8], [5, 8] ∪ {10}}) ∨
(Y + [2, 10], Y ⊇ [5, 10], Y ∩ [2, 7] /∈ {[4, 7], [3, 7], [4, 7] ∪ {2}})

These objects guarantee non-interference since they are all the elements that
do not brake the sets of indistinguishable value, i.e., the sets {[2, 4], [3, 5], [4, 6]},
{[5, 8], [6, 9], [7, 10]}, and {5, 6, 7}.

6.3.3 Approximating the secret kernel

It is clear that the construction above is really complex since it requires the de-
notational semantics of the program. An approximation can be introduced in the
derivation of the secret kernel by separately analyzing program fragments. In the
following, we show two methods for approximating the secret kernel of a closure ρ
for a program P , by inductively deriving the kernels of program components.

Bounded iterations.

Let JP K〈n〉 represents the partial semantics of the program at the n-th step of
evaluation, supposing that all while’s are unfolded: If P = c0; c1; . . . ; cm, then for
any n define:

134 6 Abstract Non-Interference: Imperative languages

JP K〈0〉 def= Jc0K
JP K〈n+1〉 def= Jcn+1K ◦JP K〈n〉

For instance, JP K〈2〉 is the semantics of c0; c1; c2, i.e., JP K〈2〉 = Jc2K ◦ Jc1K ◦ Jc0K.
We define an abstract domain transformer Kpar

P, [η] [resp. Kpar
P, (η), φ] denoting the

common abstraction among all the domains ρi such that the first i-steps are
〈η, ρi〉-NSecret, [resp. 〈η, φ, ρi〉-Secret] i.e., for any i ≤ n: ρi = [η]JP K〈i〉 (id) [resp.
(η)JP K〈n〉 (φ []ρi)], it is defined in the following way:

Kpar
P, [η]

def= λρ. ρ t
⊔

i≤n [η]JP K〈i〉 (id)

Kpar
P, (η), φ

def= λρ. ρ t
⊔

i≤n (η)JP K〈i〉 (φ []id)

It is clear that KP, [η] v Kpar
P, [η]. By Proposition 6.9, [η]P (Kpar

P, [η](ρ)) still holds. The
same holds in the abstract non-interference case. In this case we find the most
concrete output attacker which is harmless as regards each step of computation of
the program. As we will see, when we introduce timing channels, this corresponds
to saying that the program is secure even if the attacker is time-sensitive, i.e., if
it is able to observe also the time elapsed (see Sect. 5.4.2 for timing channels and
Chap. 9 for timed abstract non-interference).

Independent composition.

An even coarser approximation of the secret kernel of ρ can be obtained by con-
sidering the most concrete abstraction making all statements in P 〈η, ρ〉-NSecret

[resp. 〈η, φ, ρ〉-Secret]. Suppose that for each statement c in P , JcK is the denota-
tional semantics of c. Let P = c0; c1; . . . ; cm and define:

Ksbs
P, [η]

def= λρ. ρ t
⊔

i≤m [η]JciK (id)

Ksbs
P, (η), φ

def= λρ. ρ t
⊔

i≤n (η)JciK (φ []id)

Intuitively Ksbs
P, [η] [resp. Ksbs

P, (η), φ] is the property which is not disclosed with respect
to each fragment of the program P relatively to sequential composition. Note that,
in this case, if there is at least one statement c such that [η]JcK (id) = {>} then
Ksbs

P, [η] = {>}. Also in this case we have KP, [η] v Ksbs
P, [η]. It is clear that this is an

upper approximation of both KP, [η] and Kpar
P, [η] as shown in Figure 6.5:

KP, [η] v Kpar
P, [η] v Ksbs

P, [η]

The same holds in the abstract non-interference case. By Proposition 6.9, we have
that the predicates [η]P (Ksbs

P, [η](ρ)) and (η)P (φ []Ksbs
P, [η](ρ)) still hold. The fol-

lowing example shows, in the narrow abstract non-interference case, where the
relations KP, [η] v Kpar

P, [η] v Ksbs
P, [η] are strict inclusions.

Example 6.20. Consider the program fragment

P
def= l := 2 ∗ h; l := l ∗ h

6.3 Deriving attackers 135

Secret

Kpar
P,[η](ρ)

Ksbs
P,[η](ρ)

>

KP,[η](ρ)

ρ

L℘(VL) = uco(℘(VL))

Fig. 6.5. Deriving secret kernels

with typing 〈h : H , l : L 〉 and V = Z and JP K(h, l) = (h, 2∗h2). Consider [id]P (id),
then we can show that

DJP K(id) =
{{

2n2
∣∣n ∈ Z

}}
Moreover, in this case the operator S id

JP K is the identity on ↑(DJP K(id)). Hence, we
obtain the secret kernel by computing the irrelevant elements, which are

IrrJP K =
{
X
∣∣∀h, l . X 6⊆ JP K(h, l)

}
This is the set

{
X
∣∣∀n ∈ N . 2n2 /∈ X

}
. It is immediate to verify that this set is

equal to the set
b ({

{m}
∣∣∣m ∈ Z r

⋃{
2n2

∣∣n ∈ Z
}})

. At this point, we can
conclude that the secret kernel of P is the domain

ρ = ↑

({{
2n2

∣∣n ∈ Z
}}
∪

j({
{m}|m ∈ Z r

⋃{
2n2

∣∣n ∈ Z
}}))

Consider now Kpar
P, id. In order to obtain this domain we have to find the clo-

sure ρ1 such that [id]l := 2h (ρ1). First of all, we compute ↑
(
Dpar

JP K(id)
)
, which

is the set {2Z}. At this point, we have to find the set of irrelevants which is{
X
∣∣∀n ∈ N . 2n /∈ X

}
, namely it is the set ℘(2Z + 1). Therefore the domain ρ1

is the closure with fixpoints

ρ1 = ↑({2Z}) ∪ ℘(2Z + 1)

Clearly JP K〈2〉 = JP K, therefore Kpar
P, id = ρ1 t ρ. It is straightforward that ρ1 A

ρ, hence we have Kpar
P, id = ρ1 A ρ. Finally, consider Ksbs

P, id. The secret kernel
for the first statement is exactly ρ1, obtained in the previous case. We have to

136 6 Abstract Non-Interference: Imperative languages

compute ρ2 such that [id]l := l ∗ h (ρ2). It is straightforward that DJP K(id) is the
set of congruences of the kind nZ, with n ∈ Z. At this point, the operator Sε

JP K

determines the domain ρ2 = {Z} since each congruence of this type intersects with
any other one, breaking the corresponding set Υ . On the other hand, the set of
irrelevants is {∅}. Moreover we have that ρ2 A ρ1, therefore we conclude that
Ksbs

P, id = ρ1 t ρ2 = ρ2 A Kpar
P, id.

6.3.4 Canonical attackers

The construction that we have seen above, consider a fixed input observation
and finds the most concrete output observation that makes the program secret.
Anyway, an attacker is characterized by both the input and output observations,
therefore we would like to characterize the most concrete harmless attacker, able
to observe the same property both in input and in output. Hence, we want to char-
acterize the most concrete abstract domain ρ such that [ρ]P (ρ) [(ρ)P (φ []ρ)],
i.e., which represents a possible attacker unable to disclose confidential data by
analyzing the same property on input/output data. We call it canonical attacker
for P , since it allows to compare the relative security of different programs, in the
lattice of abstract interpretation. Namely we can say that a program P is more
secure than a program Q if the canonical attacker of P is more abstract than the
canonical attacker for Q. This problem is, clearly, slightly more complex and re-
quires an iterative solution. The idea is to consider an iterative application of the
construction given in the previous sections in order to derive the canonical attacker
as the fixpoint of this process. The following theorem provides a first simple and
immediate characterization of canonical attackers, given in terms of the previous
construction.

Theorem 6.21. Let ρ ∈ uco(℘(VL)) and φ ∈ uco(℘(VH)).

• [ρ]P (ρ) iff ρ = [ρ]JP K (id);
• (ρ)P (φ []ρ) iff ρ = (ρ)JP K (φ []id).

Proof. By construction an by Theorem 6.17.

Narrow abstract non-interference.

In order to constructively characterize the harmless attackers of a program, we con-
sider standard domain-theoretic arguments. It is worth noting that in the narrow
case [η]JP K (id), the set of irrelevants does not depend on the input observation
η. Therefore, the change of the input property does not have any effect on the
irrelevants Irrid, id

JP K . Moreover, by construction, the set DJP K monotonically depends
upon the input property η. Therefore, we have the following result.

Proposition 6.22. Let P be a program. The function λX ∈ uco(℘(V)). [X]JP K (id)

is monotone on the domain 〈uco(℘(VL)),v〉.

6.3 Deriving attackers 137

Proof. Let us prove that λX. [X]JP K (id) is monotone by showing that if η1 v η

then we have the inclusion
{
X
∣∣Secrη

JP K(X)
}
⊆
{
X
∣∣Secrη1

JP K(X)
}
. Namely, we

have to prove that for each X, the implication Secrη(X) ⇒ Secrη1(X) holds.
Suppose that Secrη(X), i.e., ∀l . (∃Z ∈ Υ η(l) . Z ⊆ X ⇒ ∀W ∈ Υ η(l) . W ⊆ X).
Note that Υ η

JP K(l) =
{

JP K(h, y)L
∣∣ η(y) = η(l), h ∈ VH

}
and Υ η1(l) ⊆ Υ η(l), since

η1(l) = η1(l′) implies η(l) = η(l′). Hence, if ∃Z ∈ Υ η1(l) such that Z ⊆ X, then
we have Z ∈ Υ η(l). Therefore, ∀W ∈ Υ η1(l) we have W ∈ Υ η(l), which means that
W ⊆ X. We can conclude that Secrη1(X) holds.

By Tarski fixpoint theorems, this function has least fixpoint, and it can be ob-
tained as fixpoint of the iterative application of the function itself (see Sect. 2.1.2).
Then we can note that the least fixpoint of this function is, by definition, the
most concrete canonical attacker. Indeed it is canonical being a fixpoint by The-
orem 6.21, it is the most concrete being the least fixpoint. Therefore, the idea for
deriving the most concrete secure attacker for a program P , in the narrow case, is
that of taking ρ0 = id and then finding, at each step n, the most concrete domain
ρn that satisfies [ρn−1]P (ρn), which is KP, [ρn−1](id). By Proposition 6.22, given
a program P , we have that λX. ([X]JP K (id)) = λX. KP, [X](id) is monotone on
uco(℘(VL)). The most concrete secure attacker for the narrow case is therefore the
least fixpoint of λX.KP, [X](id).

Corollary 6.23. The closure lfpvidλX. ([X]JP K (id)) is the (unique) most concrete
narrow secure attacker for P .

In the following, we denote FP
def= lfpvidλX. ([X]JP K (id)). The following examples

show how we can apply this fixpoint construction of canonical attackers. Moreover,
we show that the approximations used before can be also applied to canonical
attackers, preserving the same precision relation.

Example 6.24. Consider the fragment given in Example 6.18 together with its de-
notational semantics. In order to find the canonical attacker we consider

ρ0
def= id

ρ1
def= [ρ0]JP K (id) = [id]JP K (id)

In Example 6.18 we derived this closure, obtaining the following closure ρ1, at this
point we can find the successive closure ρ2:

ρ1 = Sε
JP K(↑(DJP K(id))) =

b ({
n{2}N

∣∣n ∈ 2N + 1
}
∪ {{0}}

)
ρ2

def= [ρ1]JP K (id)

Therefore, we have to find the most concrete closure that makes P secure with
input observation ρ1. Note that ρ1 = P(ρ1). In order to compute this closure we
have to compute the elements JP K(VH , Y) for each Y ∈ ρ1:

Y = {2}N ⇒ JP K(VH , {2}N)L = {2}N
Y = 3{2}N ⇒ JP K(VH , 3{2}N)L = 3{2}N
. . .

138 6 Abstract Non-Interference: Imperative languages

It is clear that, by using this results we obtain again the closure ρ1, which means
that we reached the fixpoint. Therefore, in this example, we obtain the closure
FP =

b ({
n{2}N

∣∣n ∈ 2N + 1
}
∪ {{0}}

)
.

We now apply bounded iterations to approximate the closure FP , denoted Fpar
P .

The single-step semantics of P is:

JP K(h, l) =
{

(h, l) if h = 0
(h− 1, l ∗ 2) otherwise

For each value l ∈ VL , we have JP K(VH , l)L = {l, 2l}. Hence, we can verify that

S id

JP K(↑(DJP K1(id))) =
j ({

n{2}N
∣∣n ∈ 2N + 1

}
∪ {{0}}

)
Consider the second step. For each l ∈ VL we have that JP K〈2〉(VH , l)L = {l, 2l, 4l}.
It is possible to verify that

b ({
n{2}N

∣∣n ∈ 2N + 1
}
∪ {{0}}

)
, which is the closure

Fpar
P , is again the resulting domain. In this case, the irrelevants are {∅}, since the

range of JP K covers the whole domain of values.

In the example above we reached the fixpoint in one step. Let us see an example
where an infinite iteration is necessary.

Example 6.25. Consider the program fragment:

P
def= l := l2 + (h mod l)

with security typing t = 〈h : H , l : L 〉, and V = N. The denotational semantics
JP K of P is immediate from its definition, and it is

JP K(h, l) = (h, l2 + (h mod l))

Let us consider the iteration process introduced above:

ρ0
def= id

ρ1
def= [ρ0]JP K (id) = [id]JP K (id)

In particular let us derive DJP K(id):

l = 1 ⇒ JP K(VH , 1)L = {1}
l = 2 ⇒ JP K(VH , 2)L = [4, 5]
l = 3 ⇒ JP K(VH , 3)L = [9, 11]
l = 4 ⇒ JP K(VH , 4)L = [16, 19]
. . .

Therefore DJP K(id) =
{

[n2, n2 + n− 1]
∣∣n ∈ N

}
. These intervals are all disjoint,

therefore S id
JP K on this set behaves like the identity map. This means that the

resulting closure ρ1 contains
b

(DJP K(id)) together with all the elements that are

6.3 Deriving attackers 139

not contained in any of these intervals, i.e., the irrelevants. Therefore we can
continue the process

ρ1 = DJP K(id) =
{

[n2, n2 + n− 1]
∣∣n ∈ N

}
∪ IrrJP K

ρ2
def= [ρ1]JP K (id)

In order to find ρ2, as before, we have to derive DJP K(id):

l = 1⇒ ρ1(1) = 1 ∧ JP K(VH , 1)L = {1}
l = 2⇒ ρ1(2) = 2 ∧ JP K(VH , 2)L = [4, 5]
l = 3⇒ ρ1(3) = 3 ∧ JP K(VH , 3)L = [9, 11]
l = 4⇒ ρ1(4) = [4, 5] ∧ JP K(VH , [4, 5])L = [16, 19] ∪ [25, 29]
. . .

l = 9⇒ ρ1(9) = [9, 11] ∧ JP K(VH , [9, 11])L = [81, 89] ∪ [100, 109] ∪ [121, 131]
. . .

We may continue in this way, until the fixpoint characterizing the canonical harm-
less attacker. Note that S id

JP K on these domains is always the identity, since the
generated intervals are always disjoint.

Abstract non-interference.

At this point, we would like to derive the same construction for abstract non-
interference. Unfortunately, we cannot obtain it in the same way since the function
that we should iterate in the abstract case is not monotone. In particular, there
are two facts that avoid monotonicity. First of all, the set of irrelevants grows
when we abstract η; second the set of relevants is not comparable with the set of
relevants obtained by abstracting η. Therefore, in general, λX. (X)JP K (φ []id) is
not monotone on 〈uco(℘(VL)),v〉 as we can see in the following example.

Example 6.26. Let us consider the program fragment P in Example 6.19. Let
us consider two closures η v β such that η(Z) = {Z, [2, 4], [5, 8], {5},∅} and
β(Z) = {Z, [2, 4], [5, 8],∅}. Consider η, in Example 6.19 we obtained that DJP K(η) =
{[5, 7], [2, 6], [5, 10],Z}. We can note that ¬Secrη,id

JP K([2, 6]) since [2, 6] contains some
elements of Υ η, id

JP K (5) (see Example 6.19), but not all of them. This means that
surely [2, 6] is not included in the final domain, as seen in Example 6.19. Consider
now β, then we have

Y = [2, 4]⇒ JP K(Z, [2, 4])L = [2, 6]
Y = [5, 8]⇒ JP K(Z, [5, 8])L = [5, 10]

Y = Z⇒ JP K(Z,Z)L = Z

Therefore DJP K(η) = {[2, 6], [5, 10],Z}. While

Υ η, id

JP K ([2, 4]) = {[2, 4], [3, 5], [4, 6]}
Υ η, id

JP K ([5, 8]) = {[5, 8], [6, 9], [7, 10]}
∀y. β(y) /∈ {[2, 4], [5, 8]}. Υ η, id

JP K (y) = {Z}

In this case Secrη,id
JP K([2, 6]), which implies that [2, 6] is now left in the domain.

140 6 Abstract Non-Interference: Imperative languages

This example shows that in abstract non-interference, in general, by fur-
ther abstracting the input observation we don’t necessarily further abstract the
output observation. Hence, in the abstract non-interference case, the fact that
λX. (X)JP K (φ []id) is not monotone, avoids us to characterize the canonical
harmless attacker by means of Tarski fixpoint theorems. In order to construc-
tively characterize an harmless attacker as the limit of a possible transfinite upper
iteration sequence of λX. (X)JP K (φ []id), we force this function to be extensive
on 〈uco(℘(VL)),v〉, i.e., we consider the function:

λX. (X)JP K (φ []id) tX

By a well known result in lattice theory we have that any extensive function has a
fixpoint [37]. The following result proves that any fixpoint of λX. (X)JP K (φ []id)t
X is a harmless attacker for P .

Theorem 6.27. Let ρ ∈ uco(℘(VL)) and φ ∈ uco(℘(VH)). Then

ρ = (ρ)JP K (φ []id) t ρ ⇒ (ρ)P (φ []ρ).

Proof. Consider ρ = (ρ)JP K (φ []id)t ρ, this means that, if ρ′ = (ρ)JP K (φ []id),
then ρ′ v ρ. By construction we have that (ρ)P (φ []ρ′) holds, and by Proposi-
tion 6.9(5) we conclude that (ρ)P (φ []ρ), being ρ′ v ρ.

Unfortunately, in this case, we cannot guarantee that we obtain the “most
concrete” harmless attacker, since the limit of an extensive function may not be
the “least” fixpoint of the function, we only know that surely it is a fixpoint.

6.4 Abstract declassification

Declassifying information means downgrading the sensitivity of data in order to
accommodate with (intentional) information leakage. In this section, we show how
abstract non-interference can be used also to characterize which is the maximal
amount of information about private data that surely flows and that we have
to declassify in order to guarantee secrecy. Namely, we want to characterize a
property that contains all the possible variations of private inputs that generate
insecure information flows. More formally speaking, let P ∈ Imp be a program
and η, ρ ∈ uco(℘(VL)) be abstract domains, we want to derive the closures φ such
that

∀h1, h2 ∈ VH . (φ(h1) = φ(h2) ⇒ ∀l ∈ VL . ρ(JP K(h1, η(l)L) = ρ(JP K(h2, η(l)L))
(6.1)

In other words, if we have two private values that show a flow of information, i.e.,
whose variation interferes in the public output, then they are distinguished by φ.
Any property φ satisfying the relation 6.1 will be called private observable of the
program P .

6.4 Abstract declassification 141

Clearly, a private observable, could distinguish private data too much. Namely,
a property that satisfies 6.1, could distinguish also private values whose variation
does not cause any insecure information flow. For this reason, we are also interested
in characterizing the abstractions φ ∈ uco(℘(VH)) such that any pair of values
which can be distinguished by φ violates 〈η, φ, ρ〉-Secrecy.

Definition 6.28. A closure φ ∈ P(uco(℘(VH))) is called flow-irredundant with
respect to a pair of input/output abstractions 〈η, ρ〉 if

∀h1, h2 ∈ VH . φ(h1) 6= φ(h2). ∃l ∈ VL . ρ(JP K(φ(h1), η(l))L) 6= ρ(JP K(φ(h2), η(l))L)

The most concrete flow-irredundant domain φ ∈ P(uco(℘(VH))), when it ex-
ists relatively to 〈η, ρ〉, defines the maximal abstract interference of P , denoted
(η)P (φ⇒ ρ).
It is clear that a property that is both the most abstract private observable, and
the maximal abstract interference, provides precisely the maximal amount of in-
formation concerning H -values that flows in P when the attacker is modeled by the
pair of input/output abstractions 〈η, ρ〉. Indeed, if φ is the most abstract private
observable, then it identifies all the insecure information flow situations, while if φ
is the most concrete non-redundant property that flows, then it identifies exactly
those situations where insecure information flows happen.

The idea for deriving the maximal amount of private information that flows,
is that of building the most abstract private observable collecting together only
those values that cannot generate insecure information flows. We will show that, in
this way, we obtain also the maximal abstract interference. Consider the following
partition of values:

ΠP (η, ρ) def=
{
〈
{
h ∈ VH

∣∣ρ(JP K(〈h, η(l)〉)L) = A
}
, η(l)〉

∣∣ l ∈ VL , A ∈ ρ
}

This is the set of all the pairs 〈H,L〉 ∈ ℘(VH) × ℘(VL), such that, whenever
η(l) = L, then for any h1, h2 ∈ H, no information flows are revealed. We use this
set for deriving a partition of private data that guarantees secrecy.
For each L ∈ η, we define the partition ΠP (η, ρ)|L

def=
{
H
∣∣ 〈H,L〉 ∈ ΠP (η, ρ)

}
, of

private data. The partition obtained corresponds to the most abstract property,
containing all the possible flows, whenever the property of public input is L.

At this point, we use these partitions, in order to find the most abstract private
observable φ1, representing the maximal abstract interference:

φ
def= P

l

L∈η

M(ΠP (η, ρ)|L)

Then, the following result holds.
1 Note that P(φ) is the most concrete domain that induces the same partition as φ,

and because in abstract non-interference we abstract single values, it is clear that we

can consider φ ∈ P(uco(℘(VH))).

142 6 Abstract Non-Interference: Imperative languages

Theorem 6.29. If 6|= (η)P (id []ρ) and φ is defined as shown above, then it is
the most abstract private observable and (η)P (φ⇒ ρ), i.e., it is also the maximal
abstract interference.

Proof. First of all, we have to prove that φ, as defined above, is a private ob-
servable and it is the most abstract. Consider h1, h2 ∈ VH , and suppose that
φ(h1) = φ(h2). By definition of φ, this means that for each L ∈ η, we have that h1

and h2 are in the same equivalence class induced by ΠP (η, ρ)|L. But, by definition
of ΠP (η, ρ)|L, this means that, for each L ∈ η, ρ(JP K(h1, L)L) = ρ(JP K(h2, L)L),
and this con be rewritten as ∀l ∈ VL . ρ(JP K(h1, η(l))L) = ρ(JP K(h2, η(l))L). So
we proved that φ is a private observable. Let us prove that it is the most ab-
stract. Suppose that there exists a private observable φ′ A φ. This implies that, in
particular, there exist two private values h1 and h2 such that φ′(h1) = φ′(h2)
and φ(h1) 6= φ(h2). By definition of φ, this means that there exists L ∈ η

such that ΠP (η, ρ)|L distinguishes the two private values, but if ΠP (η, ρ)|L distin-
guishes h1 and h2 then, by construction, ρ(JP K(h1, L)L) 6= ρ(JP K(h2, L)L). Namely,
∃l ∈ VL . ρ(JP K(h1, η(l))L) 6= ρ(JP K(h2, η(l))L), which is a contradiction since φ′

was a private observable.
Now, we have to prove that φ is flow-irredundant and that is the most concrete
one, as regards the closures η, ρ ∈ uco(℘(VL)).
First, we have to prove that φ is flow-irredundant, namely ∀x1, x2 ∈ VH such
that φ(x1) 6= φ(x2), there exists y ∈ VL such that ρ(JP K(φ(x1), η(y))L) 6=
ρ(JP K(φ(x2), η(y))L). Let [x1]φ and [x2]φ be the corresponding equivalence classes
of the partition induced by φ, i.e., [x1]φ = φ(x1) and [x2]φ = φ(x2). By con-
struction of these equivalence classes for each [x]φ and for each y ∈ [x]φ (i.e.,
y ∈ φ(x1)) we have ρ(JP K(y, η(y))L) = ρ(JP K(x, η(y))L), which implies that for
each y ∈ [x]φ, ρ(JP K(y, η(y))L) = ρ(JP K([x]φ, η(y))L) (*). At this point, by defini-
tion of partition, if z ∈ [x1]φ then z /∈ [x2]φ and viceversa. This means that for each
z ∈ [x1]φ there exists y ∈ VL such that ρ(JP K(z, η(y))L) 6= ρ(JP K([x2]φ, η(y))L),
since ρ(JP K(x2, η(y))L) = ρ(JP K([x2]φ, η(y))L). But we have also that for each
z ∈ [x1]φ, ρ(JP K(z, η(y))L) = ρ(JP K([x1]φ, η(y))L), therefore the property is flow-
irredundant, namely ρ(JP K([x1]φ, η(y))L) 6= ρ(JP K([x2]φ, η(y))L).
Now, we have to prove that φ is the most concrete flow-irredundant closure, as
regards the two observables properties η, ρ ∈ uco(℘(VL)). Suppose that there
exists a closure ϕ more concrete than φ or non comparable with φ, which is flow-
irredundant. Suppose they are incomparable, let us prove that the hypotheses
above implies that φ′ def= φ u ϕ is flow-irredundant. Being φ flow-irredundant we
have that ∀x1, x2.φ(x1) 6= φ(x2) there exists y such that ρ(JP K(φ(x1), η(y))L) 6=
ρ(JP K(φ(x2), η(y))L). Being φ′ v φ we have also that φ(x1) 6= φ(x2) implies
φ′(x1) 6= φ′(x2), let us prove that ρ(JP K(φ′(x1), η(y))L) 6= ρ(JP K(φ′(x2), η(y))L).
By definition of reduced product we have that φ′(x) = φ(x) ∩ ϕ(x). Hence

6.4 Abstract declassification 143

ρ(JP K(φ′(x1), η(y))L) = ρ(JP K(φ(x1) ∩ ϕ(x1), η(y))L)

= ρ
(⋃

h∈φ(x1)∩ϕ(x1)
JP K(h, η(y))L

)
= ρ(JP K(φ(x1), η(y))L) (for the condition (*), being h ∈ φ(x1))

6= ρ(JP K(φ(x2), η(y))L) = ρ
(⋃

h∈φ(x2)∩ϕ(x2)
JP K(h, η(y))L

)
= ρ(JP K(φ(x2) ∩ ϕ(x2), η(y))L) = ρ(JP K(φ′(x2), η(y))L)

This means that we can consider only ϕ v φ. This hypothesis implies that the
partition induced by ϕ is a refinement than the one induced by φ. Let [x]ϕ the new
equivalence classes and consider two values x1, x2 ∈ VH such that [x1]ϕ 6= [x2]ϕ and
such that x1 ∈ [x2]φ, two such classes in ϕ exist since this closure is more concrete
than φ. But if x1 ∈ [x2]φ, then by construction we have ∀y ∈ VL ,∀x′ ∈ [x1]φ, x′′ ∈
[x2]φ .ρ(JP K(x′, η(y))L) = ρ(JP K(x′′, η(y))L) and therefore, since ∀x. [x]ϕ ⊆ [x]φ we
have ρ(JP K([x1]ϕ, η(y))L) = ρ(JP K([x2]ϕ, η(y))L), which is a contradiction, since it
would mean that ϕ is not flow-irredundant.

The following example shows how we can use the transformer for characterizing
the most abstract private observable.

Example 6.30. Consider the program fragment:

P = l := l ∗ h2;

We can compute

ΠP (id,Par) =
{
〈Z, l〉

∣∣ l ∈ 2Z
}
∪
{
〈2Z, l〉

∣∣ l ∈ 2Z + 1
}
∪
{
〈2Z + 1, l〉

∣∣ l ∈ 2Z + 1
}

Therefore by using the notation above we have that

l ∈ 2Z ⇒ πl = Z
l ∈ 2Z + 1⇒ πl = {2Z, 2Z + 1}

This means that P(ul∈ZM(πl)) = Par. In other words, we have that by looking
at the low variables the only information that leaks about the high variables is its
parity.

Note that, this construction is related with declassification, since it says that all
the properties that distinguish values that are distinguished by the most abstract
private observable generate interference. Indeed, if we want to guarantee non-
interference by declassifying private properties, we have at least to declassify all
the properties that induce a partition which is as precise as the one induced by the
most abstract private observable. Note that, we are considering only the partition
induced by the private observable, since non-interference is defined by applying
the property on single values.

144 6 Abstract Non-Interference: Imperative languages

6.5 Enriching the semantics

In this section, we consider two slight extensions of the notion of abstract non-
interference introduced in the previous section. In particular, these extensions,
are obtained by enriching the semantics. In the first case, we consider the trace
semantics instead of the denotational one. In this way we, clearly, enrich the obser-
vational capability of the attacker, which is now able to observe the entire memory
of the system during the whole execution of the program. We will see, in the fol-
lowing, that this extension is necessary in order to make abstract non-interference
time-insensitive. In the second extension, we add non-determinism, by considering
the non-deterministic denotational semantics defined in [27] as abstraction of the
maximal trace semantics of non-deterministic systems.

6.5.1 Abstract non-interference on traces

In this section, we describe how it is possible to strengthen the given notions
of abstract non-interference, based on denotational (I/O) semantics, by defining
them in terms of trace semantics. This means that at each step of computation we
require that, what an attacker may observe does not depend on private input. Since
abstract non-interference is based on the distinction between input and output,
the simpler way to extend the two notions is to consider, as output, the results
of all the partial computations, and as input only the initial values (namely the
initial state). With this assumption we can consider again only two closures, η for
the public input, and ρ for the public output2.
Consider first narrow abstract non-interference. We can formulate the notion of
non-interference by saying that all the execution traces of a program starting
from states with different confidential input and the same η property of public
input, have to provide the same public observations. In particular, it consists in
guaranteeing that starting from a state with the low property η, then all the
possible observations of the states during the computation have the same low
property ρ. Therefore, the new notion of narrow non-interference consists simply in
abstracting each state of the computational traces. In the following, we will denote
the trace semantics of P as 〈|P |〉, in order to distinguish it from the denotational
semantics JP K. Let us introduce this notion through an example. Consider the
standard semantics where states are simply tuples of values for the variables, and
consider for example the concrete trace (each state is 〈h, l〉):

〈3, 1〉 −→ 〈2, 2〉 −→ 〈1, 3〉 −→ 〈0, 4〉 −→ 〈0, 4〉

Now, suppose to observe the parity of public data, i.e., Par, both in input and in
output, then intuitively the abstraction, i.e., the observation of this trace through
the property Par is:

2 Note that in the most general case we could consider a family of “output” observations.

6.5 Enriching the semantics 145

〈3, 2Z + 1〉 −→ 〈2, 2Z〉 −→ 〈1, 2Z + 1〉 −→ 〈0, 2Z〉 −→ 〈0, 2Z〉

Namely, we define the abstraction of a computational trace of P , i.e., σ ∈ 〈|P |〉,
relatively to the property ρ, as done in [118], with the only difference that we
abstract, explicitly, only the low values:

∀σ ∈ 〈|P |〉. ∀i ≤ |σ| . σρ
i = 〈σH , ρ(σLi)〉

At this point, consider only the angelic trace semantics of P , then we can define
the semantics of the abstract traces. Consider ρ ∈ uco(VL) and X ∈ ℘(Σ+):

〈|P |〉ηρ = αη
ρ(〈|P |〉)

αη
ρ(X) =

{
sηδρ

∣∣ s ∈ Σ, sδ ∈ X }
This is clearly an abstraction since it is additive by construction. Moreover, it
is immediate to determine the corresponding concretization as the set of all the
possible traces that have the same abstract trace. We can define narrow non-
interference for traces simply by changing the semantics:

A program P is secure if
∀h1, h2 ∈ VH ,∀l1, l2 ∈ VL . 〈|P |〉ηρ(h1, l1)L = 〈|P |〉ηρ(h2, l2)L .

where, as usual, η, ρ ∈ uco(℘(VL)). The interesting aspect of this extension is
that we can apply the transformers defined on abstract non-interference (seen in
the previous section) simply by considering the approximation based on bounded
iteration (see page 133). Bounded iteration, in fact, proves I/O non-interference
by requiring a stronger condition, i.e., it requires that all the partial computations
provide the same public output. This is clearly narrow non-interference on traces,
since we compare abstract observations of concrete computations.

It is worth noting that, in order to define narrow non-interference we keep
the concrete semantics and we change its observation. If, instead, we want to
define abstract non-interference on traces, then we have to change also the concrete
semantics by considering as initial state the set of all the states with the same
public input property. In this case we have to consider a lift of the transition
relation to sets: Consider the transition system 〈Σ,−→〉, we define the lift �⊆
℘(Σ)× ℘(Σ) as follows

X �
{
y ∈ Σ

∣∣∃x ∈ X. x −→ y
}

Consider now the lifted transition system 〈℘(Σ),�〉, and consider the trace se-
mantics obtained from this transition system. Let us denote also this semantics
as 〈|P |〉, since it is clear from the input (depending on the fact that it is a state
or a set of states) which semantics we have to consider. Again let us consider
the input and output abstractions and the abstract trace semantics 〈|P |〉ηρ, on the
lifted transition system, then we can define abstract non-interference on traces as
follows:

146 6 Abstract Non-Interference: Imperative languages

A program P is secure if
∀h1, h2 ∈ VH ,∀l ∈ VL . 〈|P |〉ηρ(φ(h1), η(l))L = 〈|P |〉ηρ(φ(h2), η(l))L .

where, as usual, φ ∈ uco(℘(VH)) and η, ρ ∈ uco(℘(VL)).

6.5.2 Abstract non-interference for non-deterministic languages

In the following, we consider the simple imperative language with non determin-
istic choice, Nd-Imp, introduced in Sect. 4.2.1. As in the deterministic case, the
operational semantics naturally induces a transition relation on a set of states
Σ, denoted −→, specifying the relation between a state and the set of its pos-
sible successors. Consider the Cousot’s construction (see Sect. 4.1.2), where Σ+

and Σω def= N → Σ denote respectively the set of finite nonempty and infinite se-
quences of symbols in Σ as in deterministic case. In the following JP K denotes
the input/output relation for the program P also in the non-deterministic case,
therefore JP K(s) denotes the set of all the states reachable by executing P starting
from the state s.

In this context, consider the possibilistic non-interference defined in [108] for
non deterministic programs: A program is secure if given two states s1 and s2
such that sL1 = sL2 , then for each computation σ with σL` = sL1 there exists a
computation δ with δL` = sL2 , such that σLa = δLa (see Sect 5.3.2). This notion can
be formulated as in Eq. 5.2 with the only semantic difference that now JP K(s)L

are sets of values instead of a single value. Unfortunately, the generalization is
not so straightforward, indeed if we don’t consider additive closure for the output
observation, then the notion of abstract non-interference as given above, is not
precise. In fact, missing additivity means that the property of a set is not the
union of the properties of its elements. In the context of non-interference, this
means that the collection of all the observations of the single computations, does
not corresponds to the observation of the set of all the possible results. Indeed,
we recall that possibilistic non-interference is based on the assumption that the
attacker can observe and collect all the possible system behaviours. Therefore, if it
is able to observe the property ρ of the output, then the natural non-deterministic
extension of abstract non-interference would say that the attacker can collect the
set of all the ρ observations of the possible system behaviours, which is in general
different from the ρ property of the set of all the possible system behaviours.
Therefore, in order to define abstract non-interference for non-deterministic system
simply by considering the non-deterministic denotational semantics as defined in
[27] we can only consider additive properties for the output observation. Therefore,
when ρ is additive we define abstract non-interference exactly as we have done for
deterministic systems:

A program P is secure if
∀h1, h2 ∈ VH ,∀l ∈ VL . ρ(JP K(φ(h1), η(l))L) = ρ(JP K(φ(h2), η(l))L)

6.5 Enriching the semantics 147

Anyway, we can overcome the limitation of requiring additive properties for the
public output, by considering the semantics obtained as denotational abstraction
(see Table 4.1) of the trace semantics abstracted by η and ρ, as seen in the previous
section. Therefore, we consider the abstract semantics 〈|P |〉ηρ (〈|P |〉 is the standard
trace semantics or the lifted one depending on the fact that we are defining narrow
or abstract non-interference) and we take its denotational abstraction:

JP Kη
ρ

def= αD(〈|P |〉ηρ)

Then we can define abstract non-interference for non-deterministic systems simply
by considering this semantics:

A non-deterministic program P is secure for narrow non-interference if
∀h1, h2 ∈ VH ,∀l1, l2 ∈ VL . η(l1) = η(l2) ⇒ JP Kη

ρ(h1, l1)L = JP Kη
ρ(h2, l2)L .

A non-deterministic program P is secure for abstract non-interference if
∀h1, h2 ∈ VH ,∀l ∈ VL . JP Kη

ρ(φ(h1), η(l))L = JP Kη
ρ(φ(h2), η(l))L .

In order to understand the difference between the two definitions of abstract
non-interference given for non-deterministic systems, let us consider the following
example.

Example 6.31. Let us consider the program fragment

P
def= while h do l := l + 1;x := x− 1 endw � l := 0;

with security typing t = 〈h : H , l : L 〉, and V = N. The concrete trace semantics
of this system is the set of traces

〈|P |〉 =
{
〈0, l〉 −→ 〈0, l〉

∣∣ l ∈ N
}
∪
{
〈h, l〉 −→ 〈h, 0〉

∣∣h, l ∈ N
}
∪{

〈h, l〉 −→ 〈h− 1, l + 1〉 −→ . . . −→ 〈0, l + h〉
∣∣h, l ∈ N, h 6= 0

}
Consider for example h = 3 and l = 1, then we have

JP K(3, 1) = αD(〈|P |〉)(3, 1) = {〈0, 4〉, 〈3, 0〉} hence JP K(3, 1)L = {4, 0}

On the other hand, consider the property Par
def= {>, 2N r {0}, 2N + 1, {0},∅},

clearly not additive, then the abstract semantics 〈|P |〉Par
Par is

〈|P |〉Par
Par =

{
〈0,Par(l)〉 −→ 〈0,Par(l)〉

∣∣ l ∈ N
}
∪{

〈h,Par(l)〉 −→ 〈h, {0}〉
∣∣h, l ∈ N

}
∪{

〈h,Par(l)〉 −→ 〈h− 1,Par(l + 1)〉 −→ . . .

−→ 〈0,Par(l)⊕ Par(h)〉
∣∣h, l ∈ N, h 6= 0

}
At this point we consider the denotational abstraction of this trace semantics
obtaining:

JP KPar

Par = αD(〈|P |〉Par

Par)(3, 1)L = {2N r {0}, {0}} 6= Par({4, 0}) = >

148 6 Abstract Non-Interference: Imperative languages

In the example above, it is worth noting that, the two notions of abstract non-
interference, provided for non-deterministic systems, are different, since they could
classify as secure different programs. Moreover, it is worth noting that the latter
is more precise, i.e., stronger.

6.6 Related works

As we have noted in the previous chapter, there exist different works whose task
is to weaken non-interference, in order to make it less restrictive. In particular,
we have found two works, that more than others, are strictly related with the
idea of abstract non-interference. In fact both, the PER model [106] and robust
declassification [118] model the observational capability of the attacker by using
equivalence relations, that, as shown in Sect. 2.2.3, are particular a kind of upper
closure operators, used in abstract non-interference.

6.6.1 Abstract non-interference vs PER model

In Sect. 5.1.3, we described the semantic approach to non-interference based on
partial equivalence relations. Due to the straightforward isomorphism existing be-
tween equivalence relations and partitioning closure operators (Sect. 2.2.3), the
relation between this model of non-interference and our abstract non-interference
is almost immediate. Consider a map f : C −→ C and consider R , Q , equivalence
relations on C. For what we proved in Sect. 2.2.3, the following partial equivalence
relations (PER) on functions are equivalent:

∀x1, x2 ∈ C . x1 R x2 ⇒ f(x1) Q g(x2)
∀x1, x2 ∈ C . CloR (x1) = CloR (x2) ⇒ CloQ (f(x1)) = CloQ (g(x2))

Since the second one, with f instead of g, is narrow abstract non-interference, we
can express narrow abstract non-interference inside the PER model, and in partic-
ular by substituting equivalence relations with closure operators. It is worth noting
that this correspondence is only with narrow non-interference since the semantics
f is computed on the concrete values, namely the output relation is applied to the
results of the concrete computations.

Moreover, the relation between PER model and the notion of narrow abstract
non-interference is even deeper when we consider non-deterministic systems. In-
deed, there is a correspondence between additive closures and power domain re-
lations, both introduced to cope with non-determinism ([106] for PER model,
Sect. 6.5.2 for NANI).
Indeed, recall that the extension of a relation R on a powerdomain is P[R] defined
as

X P[R] Y ⇔ ∀x ∈ X. ∃y ∈ Y . x R y and ∀y ∈ Y. ∃x ∈ X . x R y

6.6 Related works 149

If we consider a generic closure η inducing R , we can rewrite this definition as

X P[R] Y ⇔ ∀x ∈ X. ∃y ∈ Y . η(x) = η(y) and ∀y ∈ Y. ∃x ∈ X . η(x) = η(y)

which means, for each pair of set properties X and Y , we have

X P[R] Y ⇔
⋃

x∈X

η(x) =
⋃

y∈Y

η(y)

At this point, if η is additive, then it commutes with the union, and therefore we
obtain

X P[R] : Y ⇔ η(X) = η(Y)

This equivalence shows that power domain relations in the PER model correspond
to additive closure operators in narrow abstract non-interference. Moreover, both
power domain relations in PER and additive closures in abstract non-interference
are introduced, in the respective model, to cope with non-determinism.

6.6.2 Abstract non-interference vs robust declassification

Robust declassification has been introduced in [118] as a systematic method to
drive declassification by characterizing what information flows from confidential
to public variables, as we have introduced in Sect 6.4. In this section, we show the
relation between robust declassification and the notion of abstract declassification
introduced in Sect. 6.4, and such that, in the narrow case boils down to robust
declassification with passive attackers [118], simply called declassification.

In order to adapt the declassification, introduced in [118], to the abstract de-
classification, defined before in terms of denotational semantics, we take a seman-
tic variation of what is proposed in [118], which considers passive attackers only
and a semantics observing only the initial and the final states of computations in
deterministic systems. We follow [118] in defining the information leaked by an
equivalence relation transformer S[η, ρ] on Σ for each η, ρ ∈ uco(℘(VL)). Recall
that (see Sect. 5.5) the transformer defined in [118], given an equivalence relation
≈, is S[≈] defined as follows:

∀s1, s2 ∈ Σ . 〈s1, s2〉 ∈ S[≈] ⇔ Obss1(S,≈) ≡ Obss2(S,≈)
where Obss(S,≈) def=

{
τ/≈

∣∣ τ trace of S starting in s
}

and ∀i < |τ | . (τ/≈)i = [τi]≈

First of all, let us consider the denotational abstraction of the set Obss(S,≈):

ObsDs (S,≈) def= λ[s]≈.
{

[σa]≈
∣∣σ finite trace and σ` = s

}
We can further abstract this set in order to distinguish the relation observable on
inputs and on outputs, exactly as we have done in abstract non-interference. For
this reason we consider two closures on public value η, ρ ∈ uco(VL) and we define:

150 6 Abstract Non-Interference: Imperative languages

ObsDs (S, 〈η, ρ〉) def= λ[s]η.
{

[σa]ρ
∣∣σ finite trace and σ` = s

}
where s1 ∈ [s]η ⇔ η(sL1) = η(sL)

At this point we have all we need for defining abstract declassification:

s1S[η, ρ]s2 ⇔ ObsDs1
(S, 〈η, ρ〉) = ObsDs2

(S, 〈η, ρ〉)
⇔ λ[s1]η.

{
[σa]ρ

∣∣σ finite trace and σ` = s1
}

=
λ[s2]η.

{
[σa]ρ

∣∣σ finite trace and σ` = s2
}

which, in deterministic systems and by definition of [·]η and [·]ρ, becomes:

s1S[η, ρ]s2 iff sL1 ≈η s
L
2 and(∀σ, δ ∈ Σ+ . σ` = s1 ∧ δ` = s2 ⇒ σLa ≈ρ δ

L
a))

where s1, s2 ∈ Σ. It is simple to verify that s1S[η, ρ]s2 if and only if η(sL1) = η(sL2)
and, moreover, ρ(JP K(s1)L) = ρ(JP K(s2)L). Note that, this is true also with non-
deterministic systems, whenever ρ is additive. This means that abstract declassi-
fication a la [118] is based on a formulation of non-interference which is stronger
then abstract non-interference, since it may allow also deceptive flows, as we have
in the narrow abstract non-interference case. This means that abstract declassifica-
tion, for passive attackers, characterizes the information leaked in narrow abstract
non-interference. The following examples show that in the narrow abstract non-
interference the two methods provide the same partition of states, while in the
abstract non-interference, our method is more precise.

Example 6.32. Consider the program fragment given in Example 6.30. The corre-
sponding transition system is 〈Σ,−→〉, whereΣ = VH ×VL and 〈h, l〉 −→ 〈h, l∗h2〉.
Then ∀h1, h2 ∈ VH and ∀l1, l2 ∈ VL we have that

〈h1, l1〉S[id,Par]〈h2, l2〉 iff l1 = l2 and Par(l1 ∗ h2
1) = Par(l2 ∗ h2

2)

Clearly, this second condition is always true when Par(l1) = 2Z, but when
Par(l1) = 2Z + 1 implies that Par(h1) = Par(h2). Therefore, we conclude that

〈h1, l1〉S[id,Par]〈h2, l2〉 iff l1 = l2 andPar(l1) = 2Z ⇒ Par(h1) = Par(h2)

Then, the induced partition of states is the set{
〈Z, l〉

∣∣ l ∈ 2Z
}
∪
{
〈2Z, l〉

∣∣ l ∈ 2Z + 1
}
∪
{
〈2Z + 1, l〉

∣∣ l ∈ 2Z + 1
}

which is the same partition induced in Example 6.30. The leaked information is
parity of h when l is odd.

Example 6.33. Consider the program fragment in Example 6.19 and consider the
closure η(Z) = {Z, [2, 4], [5, 8], {5},∅}. We want to compute the most concrete
closure φ, flow-irredundant, such that (η)P (φ⇒ id). Note that for each h1, h2 ∈
VH , and for each Y ∈ η(Z), we have

JP K(h1, Y) = JP K(h2, Y) iff h1 mod 3 = h2 mod 3

6.7 Discussion 151

This means that, for each Y ∈ η(Z), we have πY = {3Z, 3Z + 1, 3Z + 2}, and
therefore φ = P({3Z, 3Z + 1, 3Z + 2}).
Consider the transition system associated with the program, which has transition
relation 〈h, l〉 −→ 〈h, l + (h mod 3)〉. Then

〈h1, l1〉S[η, id]〈h2, l2〉 iff η(l1) = η(l2) and l1 + (h1 mod 3) = l2 + (h2 mod 3)

This in particular implies that the two states 〈3, 2〉 and 〈6, 4〉 which are in the
relation Π(η, id) cannot be in the relation S[η, id], which in this case distinguish
3 from 6.

6.7 Discussion

In this chapter, we have defined a weakening of the notion of non-interference in
language-based security, called abstract non-interference. In particular, this no-
tion is based on the idea of modeling attackers as abstract interpretations of the
program’s semantics. This model of program security, provided us the framework
where studying the secrecy level of programs in the lattice of abstract interpreta-
tions. This is obtained by defining a domain transformer which, given the semantics
of a program, characterizes the most concrete property that can be observed in
the public output, without disclosing confidential properties. In the following we
will call this abstraction the most concrete public observer , which represents the
most powerful harmless attacker. We showed also that this construction can be
used for deriving the most concrete canonical attacker, by using a fixpoint con-
struction, allowing us to compare the secrecy degree of programs by comparing the
canonical attackers for which they are secure. Finally we showed that, the same
model, allows us to characterize the maximal amount of private information that
flows, which will be also called the most abstract private observable. This abstrac-
tion can be used for declassification, since it represents the most abstract property
that we have to declassify in order to guarantee non-interference. Weakening non-
interference is not new in language-based security. In particular, two works have
strong relations with abstract non-interference. The first is [106], and it models the
observational capability of attackers by using equivalence relations, which can be
associated with particular closure operators as we have seen in Chap. 2. The other
work is the one on robust declassification [118], where attackers are characterized
again by equivalence relations, and where the released information is identified by
transforming these equivalence relations.
It is worth noting that the more powerful is the attacker and the more precise is
the private property released by the program. This means that the more concrete
is the public observer and the more abstract is the information that can be kept
private. This strong relation between these two transformers will be formalized in
the following (in Chap. 8) as an adjunction in the algebra of domain transformers
described in Chap. 3.

152 6 Abstract Non-Interference: Imperative languages

One of the key aspects of the notion of abstract non-interference is the fact that
it is a semantic property. On one side, this makes the notion of abstract non-
interference not very practical, since it requires the computation of the complete
denotational semantics. This problem can be solved by defining a compositional
proof system that allows to certify programs inductively on the syntax of the pro-
gramming language, as we will see later on, in the following chapter.
On the other side, this semantic nature, makes abstract non-interference a very
versatile notion, since it is sufficient to change the semantics in order to change
the enforced notion of non-interference, as it is shown, for example, in this chapter
for non deterministic programs and as we will see in Chap. 9 for avoiding timing
channels.

7

Proving Abstract Non-Interference

The knowledge follows different ways [...]

we cannot see beyond next turn.

Khalil Gibran

Abstract non-interference is based on the idea that the model of an attacker
is an abstract interpretation of the semantics of the program. A program satis-
fies abstract non-interference relatively to some given abstraction (attacker) if the
abstraction obfuscates any possible interference between confidential and public
data. In the previous chapter, we introduce a step-by-step abstraction of stan-
dard non-interference by specifying abstract non-interference as a property of the
semantics of the program. The idea of modeling attackers as abstract domains pro-
vides advanced methods for deriving attackers by systematically transforming the
corresponding abstract domains. Any abstraction for which the program satisfies
abstract non-interference, is both a model of an harmless attacker and a certificate
for the security degree of the program. However, the original definition of abstract
non-interference is not specified inductively on program’s syntax but rather it is
derived as an abstraction of the concrete semantics of the whole program. This
makes the use of abstract non-interference hard in automatic program certification
mechanisms, such as in proof-carrying code architectures [97] and in type-based
verification algorithms. The logical approach to secure information flow is not new.
In [36] dynamic logic is used for characterizing secure information flows, deriving
a theorem prover for checking programs. In [7] and in [6] axiomatic approaches for
checking secure information flows are provided (see Sect. 5.2.4). However, these
works don’t characterize the power of the attacker.

In this chapter, we introduce a compositional proof system whose aim is to
certify abstract non-interference in programming languages, which means proving
that the program satisfies an abstract non-interference constraint relatively to some

154 7 Proving Abstract Non-Interference

given abstraction of its input/output. Abstractions are specified in the standard
abstract interpretation [28] framework. Assertions in the proof system have the
form of Hoare triples: (η)P (ρ) where P is a program fragment and η and ρ

are abstractions of program’s data. However, the interpretation of abstract non-
interference assertions is rather different from partial correctness assertions (see
[9]): (η)P (ρ) means that P is unable to disclose secrets if input and output values
on public variables are approximated respectively in η and ρ. Hence, abstract
non-interference assertions specify the secrecy of a program relatively to a given
model of an attacker and the proof system specifies how these assertions can be
composed in a syntax-directed a la Hoare deduction of secrecy. We introduce two
proof systems for checking abstract non-interference. The first deals with a narrow
abstract non-interference. The advantage of narrow abstract non-interference is in
the simplicity of the proof system and in its natural derivation from the operational
semantics of the language. This proof system is necessary in order to derive a proof
system for the more general notion of abstract non-interference assertions. We
prove that the proof systems are sound relatively to the standard semantics of an
imperative programming language. Both proof systems provide a deeper insight in
abstract non-interference, by specifying how assertions concerning secrecy compose
with each other. This is essential for any static semantics for secrecy devoted
to derive certificates specifying the degree of secrecy of a program. The results
presented in this chapter has been published in [54].

7.1 Axiomatic abstract non-interference

In this section, we introduce a proof system for certifying abstract non-interference
of programs. We assume a set Φ of basic formulas which can be freely generated
from some given set of predicates on VL with the basic connectives ∧, ∨ and ¬.
An abstract domain ρ ∈ uco(℘(VL)) can therefore be represented as a ∧-closed set
of formulas in Φ. The semantics of a set of formulas is the corresponding abstract
domain. The interpretation of

d
and

⊔
are therefore straightforward. In the fol-

lowing of this chapter, we always consider φ = id in abstract non-interference, for
this reason we will use a simplified notation, i.e., (η)P (ρ)

def= (η)P (id []ρ). More-
over, as noticed in the PER model (see Sect. 6.6.1), if we have to handle a tuple of
variable, then a property of this tuple is indeed a tuple of properties, one for each
element of the tuple. Therefore, given a tuple of values l def= 〈l1, l2, . . . , ln〉 then we
suppose that a property ρ of this tuple is indeed ρ(l) = 〈ρ1(l1), ρ2(l2), . . . , ρn(ln)〉,
where ρi are properties on the domain of data. In the following, if x is a variable
in the tuple l, then we denote by ρx, the component on x of the property ρ.

7.1.1 Proof system for invariants

In order to certify secrecy when implicit flows may occur, we need to model the
properties that are invariant during the execution of programs. Intuitively, an

7.1 Axiomatic abstract non-interference 155

I1: {>}L c {>}L I2: {ρ}L nil {ρ}L I3:
x : H

{ρ}L x := e {ρ}L

I4:
{ρ} 〈e, x〉 {ρ}, x : L

{ρ}L x := e {ρ}L
I5:

{ρ}L c1 {ρ}L , {ρ}L c2 {ρ}L
{ρ}L c1; c2 {ρ}L

I6:
{ρ}L c {ρ}L

{ρ}L while x do c endw {ρ}L
I7:

{ρ′}L c {ρ′}L , ρ′ v ρ

{ρ}L c {ρ}L

Table 7.1. Derivation of public invariants of programs.

abstraction is invariant for a program fragment P , written {ρ}L P {ρ}L , when by
observing the property ρ of public inputs, we are not able to observe any difference
in the ρ property of the corresponding public outputs. In other words, {ρ}L P {ρ}L
means that P is observably equivalent to nil as regards the observable property ρ.
This information is essential in order to certify the lack of implicit flows relatively
to an abstraction. These invariant abstractions are obtained with an a la Hoare
proof system, where assertions are invariant properties of the form {ρ}L P {ρ}L ,
with ρ ∈ uco(℘(VL)). Invariants of expressions are parametric on a public variable,
the public variable to which they can be assigned.

Definition 7.1. Let e be an expression in the language Imp and x a variable. The
property ρ of the variable x is invariant in e, written |= {ρ} 〈e, x〉 {ρ}, if:

∀l ∈ VL ,∀h ∈ VH . ρx(JeK(h, l)) = ρx(l|x)

where for any expression e, JeK : Σ−→V is the standard semantics of expressions
and where l|x is the value for x in the tuple l.

The intuition is that e does not change the property ρ of the value of x inside l.
We extend this definition of invariant properties of expressions in order to define
invariants of statements/programs.

Definition 7.2. Let P be an Imp program. A property ρ is invariant in the program
P , written |= {ρ}L P {ρ}L , if

∀l ∈ VL , ∀h ∈ VH . ρ(JP K(h, l)L) = ρ(l)

Public invariants for programs can be derived by induction on the syntax of Imp

by using the proof system I = {I1, . . . , I7} whose rules are defined in Table 7.1
and explained in the following.

[I1] Rule I1 says that the property > is invariant for any program. This holds
since > is the property unable to distinguish any difference among values.
Therefore, any change due to the execution of a program cannot be observed
through the property >.

156 7 Proving Abstract Non-Interference

[I2] Rule I2 says that any property is invariant for the program nil. This holds
since nil does not change public data, and therefore public data properties are
left unchanged.

[I3] When we have an assignment to private variables, then the semantics behaves
as nil relatively to public values, therefore rule I3 is similar to I2, since, by
definition, invariants are defined only for low variables.

[I4] In I4 if a property is invariant for the evaluation of an expression as regards
the low variable x, then it is invariant for the assignment of the expression to
x. Consider for example the expression l + 2, then the property Sign (which
abstracts the sign of an integer variable) is not invariant, since if we consider
the input value l = −1, then we have that Sign(l + 2) = Sign(1) = + 6=
Sign(l) = −. On the other hand, we have that Par (which abstracts the parity
of an integer variable) is invariant for this expression as regards the variable
l, since the operation l + 2 doesn’t change the parity of the value assigned to
l. Now, if the statement is l := l + 2, then {Par}L l := l + 2 {Par}L . Note
that, in this rule, it is important to consider, if VL = V1 × . . . × Vn, only
properties ρ ∈ uco(℘(VL)) such that ρ(〈x1, . . . , xn〉) = 〈ρ1(x1), . . . , ρn(xn)〉,
where ∀i. ρi ∈ uco(℘(Vi)).

[I5] Rule I5 says that the invariants distribute on the sequential composition.
Hence, if for example we consider the program l := l + 2; h := h − 1, then
we know, by the rule I3, that {Par}L h := h− 1 {Par}L and, by the rule I4,
that {Par}L l := l + 2 {Par}L . Therefore, we obtain the invariant assertion
{Par}L l := l + 2; h := h− 1 {Par}L .

[I6] Rule I6 states that, given a while statement, if a property is invariant for
the body, then the same property is invariant for the whole statement. This
rule holds since the only modifications of variables made by the while, are
made by its body.

[I7] Weakening (I7) says that any more abstract property of an invariant is still
invariant.

A derivation in the proof system of public invariants in Table 7.1 is denoted
`I . The following theorem shows that the proof system for invariants is sound as
regards the given definition of invariant properties.

Theorem 7.3. Let P ∈ Imp and VL = V1 × . . . × Vn, n =
∣∣{ x ∈ Var

∣∣x : L
}∣∣.

Let ρi ∈ uco(℘(Vi)), and ρ = 〈ρ1, . . . , ρn〉. If `I {ρ}L P {ρ}L then |= {ρ}L P {ρ}L .

Proof. The proof is by induction on the rules in Table 7.1. The rules I1 and
I2 are trivial since the closure > makes each element equal to the element >,
while JnilK(h1, l) = l by definition of nil and therefore for each ρ we have
ρ(JnilK(h1, l)L) = ρ(l). As regards I3, the semantics of assignment guaran-
tees that x : H implies ρ(Jx := eK(h, l)L) = ρ(l), being l left unchanged
by the assignment. Consider I4, then the hypothesis {ρ} 〈e, x〉 {ρ} says that
∀l ∈ VL . ρx(l|x) = ρx(JeK(h, l)). We have to prove that, with this hypothe-
sis, ρ(Jx := eK(h, l)L) = ρ(l) holds. Since we have that the abstraction ρ of a

7.1 Axiomatic abstract non-interference 157

N0:
[η]JcK (id) v ρ

[η]c (ρ)
N1: [η]c (>) N2:

Π(η) v Π(ρ)

[η]nil (ρ)

N3:
x |= [η]e (ρ), [Relη v Relρ], x : L

[η]x := e (ρ)
N4:

x : H , Relη v Relρ

[η]x := e (ρ)

N5:
[η]c1 (ρ), [ρ]c2 (β)

[η]c1; c2 (β)
N6:

{ρ}L c {ρ}L
[ρ]while x do c endw (ρ)

N7:
[η′]c (ρ′), η v η′, ρ′ v ρ

[η]c (ρ)
N8:

∀i ∈ I . [η]c (ρi)

[η]c (
F

i∈I ρi)
N9:

∀i ∈ I . [η]c (ρi)

[η]c (
d

i∈I ρi)

Table 7.2. Axiomatic narrow (abstract) non-interference

tuple of values is a tuple of abstractions, then after the execution of x := e

we obtain ρ(l[x 7→ JeK(h, l)]) = ρ(l)[x 7→ ρx(l|x)] = ρ(l). Consider now I5
and suppose that {ρ}L c1 {ρ}L and {ρ}L c2 {ρ}L , namely ∀l ∈ VL , h ∈ VH

we have ρ(Jc1K(h, l)L) = ρ(l) and ρ(Jc2K(h, l)L) = ρ(l). We have the following
equalities ρ(Jc1; c2K(h, l)L) = ρ(Jc2K(Jc1K(h, l))L) = ρ(Jc2K(h′, l′)L) = ρ(l′) with
l′ = Jc1K(h, l)L therefore ρ(l′) = ρ(l), so we have the thesis. I6 holds since the only
modifications that the statement while x do c endw can do are made by c. Also
I7 is straightforward from the definition of invariants.

7.1.2 Proof system for Narrow non-interference

We can now introduce a proof system for narrow abstract non-interference. In
this case we look for sufficient conditions that allow to deduce that a statement
satisfies narrow non-interference, simply by statically analyzing the syntax of the
statement. The rules of this proof system are specified in Table 7.2. In particular,
as we will see later on, in the proof system we introduce a semantic rule, based
on the derivation of secret kernels introduced in the previous chapter. The reason
that lead us to consider this construction as a rule in the proof system is that,
the only axiom in the proof system is not so much significant, therefore without
the semantic rule, it is difficult to derive significant non-interference properties of
generic programs. Therefore, the idea is to use the semantic construction on the
single statements of a program, and then to combine the different non-interference
properties by using the other rules of the proof system. This observation makes
also clear why we are interested in proving that the proof system, without the
semantic rule, is at least sound. Let us explain these rule:

[N0] Rule N0 derives from Th. 6.17. It states that given a program c and an input
observation η we can derive the most concrete output observation that makes
the program secret. This corresponds to finding the strongest post-condition
(viz. the most concrete abstract domain) for the program c with precondition

158 7 Proving Abstract Non-Interference

η such that narrow abstract non-interference holds. This is a “semantic rule”,
because it involves the construction of the abstract domain [η]JcK (id), which
is equivalent to compute the concrete semantics of the command c. However,
this rule allows us to include in the narrow abstract non-interference proofs,
also assertions which can be systematically derived as an abstract domain
transformation as shown in Sect. 6.3.2.

[N1] Rules N1 says that if the output observation is the property >, then the in-
put can be any property. Again, this holds because > is not able to distinguish
different public data.

[N2]] Rule N2 says that nil is secret for any possible attacker such that the par-
tition induced by input observation is more concrete than the one induced by
the output observation. This condition is necessary since in this case abstract
non-interference corresponds to saying ∀l1, l2 . η(l1) = η(l2) ⇒ ρ(l1) = ρ(l2)
which holds iff Relη v Relρ.

[N3] Rule N3 considers a notion of secrecy extended to expressions, depending
on a fixed variable to which the expression has to be assigned. Formally, we
can define this secrecy for expression as follows:

x |= [η]e (ρ) iff ∀l1, l2 ∈ VL . η(l1) = η(l2) ⇒ ∀h1, h2 ∈ VH .

ρx(JeK(h1, l1)]) = ρx(JeK(h2, l2)])

Being the variable x public, the secrecy of the expression distributes on the as-
signment when the partition induced by the input observation is more concrete
than the output one. This condition, on the induced partitions, is necessary
only when there are public variables for which the assignment behaves as nil
(see N2), i.e., when there are more than one public variable.

Example 7.4. For instance, consider the program fragment

l1 := 2 ∗ h ∗ l2

with l1, l2 : L , then 6|= [>]l1 := 2 ∗ h ∗ l2 (Par) since

Par(Jl1 := 2 ∗ h ∗ l2K(h, 〈l, 3〉)L) = 〈2Z, 2Z + 1〉 while
Par(Jl1 := 2 ∗ h ∗ l2K(h, 〈l, 2〉)L) = 〈2Z, 2Z〉.

This because Rel> 6v RelPar , and therefore >(3) = >(2) doesn’t imply
Par(3) = Par(2).

Anyway, the condition between the two closures results unnecessary when the
program contains only one low variable. Consider l := h ∗ 2, we have that
l |= [>]h ∗ 2 (Par), namely the multiplication by 2 hides the parity property
of the computed value. This implies that [>]l := h ∗ 2 (Par).

[N4] Rule N4 says that an assignment to a high variable is always secret when
the partition induced by the input observation is more concrete than the one
induced by the output observation, since an assignment to private variables

7.1 Axiomatic abstract non-interference 159

behaves as nil for the public variables. For instance, note that if we have the
statement h := h+ 1, then clearly

ρ(Jh := h+ 1K(h, l1)L) = ρ(l1) and ρ(Jh := h+ 1K(h, l2)L) = ρ(l2)

This means that also in this case narrow non-interference corresponds to re-
quiring that η(l1) = η(l2) ⇒ ρ(l1) = ρ(l2).

[N5] Rule N5 shows how we can compose attackers in presence of sequential
composition of programs. In particular, two programs c1 and c2 compose when
c1 is secret for the output observation which is the input one that makes c2
secret.

[N6] Rule N6 controls the while statement. In particular, {ρ}L c {ρ}L states
that the program c is not acting on the property ρ of the public data, namely
ρ is invariant in the execution of c, in the sense that the property ρ of public
data is not changed by the execution of c. If this happens, then the behaviour
of c observed from ρ is the same as the program nil, and therefore the fact that
the while is executed or not is not distinguishable from an observer. We apply
this rule also when the guard is a low variable, because narrow non-interference
may observe also deceptive flows.

[N7] Rule N7 is the consequence rule, which states that we can concretize the
input observation and we can abstract the output one (see Prop. 6.9).

[N8,N9] The rules N8 and N9 say that both the least upper bound and the
greatest lower bound of output observations making a program secret, still
make the program secret.

We denote by N = I ∪ {N0, . . . ,N9} the proof system for narrow abstract non-
interference and by N0 = I ∪ {N1, . . . ,N9} the same proof system without the
semantic rule N0. Being the rule N0 a semantic rule, as we explained above, we
are also interested in the properties of proof system, without this rule. In particular
next result specifies that the proof system, without N0, is sound.

Theorem 7.5. Let P ∈ Imp and VL = V1 × . . . × Vn, n =
∣∣{ x ∈ Var

∣∣x : L
}∣∣.

Let ρi ∈ uco(℘(Vi)), and ρ = 〈ρ1, . . . , ρn〉. If `N0 [η]P (ρ) then |= [η]P (ρ).

Proof. We prove the soundness of the system inductively on the rules in Ta-
ble 7.2. Consider l1, l2 ∈ VL and h1, h2 ∈ VH . The first three rules hold from
Proposition 6.9. Consider N3, the hypothesis says that η(l1) = η(l2) implies
ρx(JeK(h1, l1)) = ρx(JeK(h2, l2)), we have to prove that η(l1) = η(l2) implies that
ρ(Jx := eK(h1, l1)L) = ρ(Jx := eK(h2, l2)L). Hence, suppose η(l1) = η(l2) and
note that, being η v ρ then for each x and y we have that η(x) = η(y) implies
ρ(x) = ρ(y). Let l1 = 〈x1, . . . , x, . . . , xn〉 and l2 = 〈y1, . . . , yn〉, with n ∈ N. For the
condition above, the hypothesis η(l1) = η(l2) means that ∀i ≤ n . ηi(xi) = ηi(yi)
that implies that ∀i ≤ n . ρi(xi) = ρi(yi). Therefore the following equalities hold:

160 7 Proving Abstract Non-Interference

ρ(Jx := eK(h1, l1)L) = ρ(〈x1, . . . , JeK(h1, l1), . . . , xn〉)
= 〈ρ1(x1), . . . , ρx(JeK(h1, l1)), . . . , ρn(xn)〉
= 〈ρ1(y1), . . . , ρx(JeK(h2, l2)), . . . , ρn(yn)〉
= ρ(〈y1, . . . , JeK(h2, l2), . . . , yn〉) = ρ(Jx := eK(h2, l2)L)

Consider N4, suppose η(l1) = η(l2), being Relη v Relρ, we have also that ρ(l1) =
ρ(l2). Moreover, note that ρ(Jx := eK(h1, l1)L) = ρ(l1), being x : H . Analogously,
we can note that ρ(Jx := eK(h2, l2)L) = ρ(l2), and since ρ(l1) = ρ(l2) we have the
thesis. Consider rule N5. The hypotheses of the rule say that ∀l1, l2 . η(l1) = η(l2)
we have ∀h1, h2 . ρ(Jc1K(h1, l1)L) = ρ(Jc1K(h2, l2)L) and ∀l1, l2 . ρ(l1) = ρ(l2) we
have ∀h1, h2 . β(Jc2K(h1, l1)L) = β(Jc2K(h2, l2)L). Suppose η(l1) = η(l2) then the
following implications hold.

β(Jc1; c2K(h1, l1)L) = β(Jc2K(Jc1K(h1, l1))L) = β(Jc2K(Jc1K(h1, l1)H , Jc1K(h1, l1)L)L)
= β(Jc2K(Jc1K(h1, l1)H , Jc1K(h2, l2)L)L)
= β(Jc2K(Jc1K(h2, l2)H , Jc1K(h2, l2)L)L)
= β(Jc2K(Jc1K(h2, l2))L) = β(Jc1; c2K(h2, l2)L)

In order to show the soundness of N6 we prove that {ρ}L c {ρ}L , i.e., ρ(JcK(h, l)L) =
ρ(l), implies non-interference on the statement, namely

ρ(Jwhile x do c endwK(h1, l1)L) = ρ(Jwhile x do c endwK(h2, l2)L)

for any l1, l2 ∈ VL and h1, h2 ∈ VH such that ρ(l1) = ρ(l2). Let us denote
c1

def= while x do c endw. At this point, we have to prove, by induction on the
semantics, that ρ(Jc1K(h, l)L) = ρ(l) for any h, l. If JxK(h, l) = false, then by def-
inition we have that Jc1K = JnilK and therefore we have the thesis. Suppose now
that it holds for while’s with a number of loops less or equal to n, we prove it for
while’s with n + 1 iterations. Consider Jc1K = Jc; c1K where c1 has n iterations,
namely we can apply the inductive hypothesis on c1. Then

ρ(Jc; c1K(h, l)L) = ρ(Jc1K(JcK(h, l))L) = ρ(Jc1K(JcK(h, l)H , JcK(h, l)L)L)
= ρ(JcK(h, l)L) (by inductive hypothesis)
= ρ(l) (by the hypothesis of the rule on c)

Finally N7, N8 and N9 hold by Prop. 6.9.

Example 7.6. Consider the closure Par which observes parity, depicted in Fig. 6.1,
and the program:

P
def= l := 2 ∗ h; while h do l := l + 2; h := h− 1 endw

with security typing: t = 〈h : H , l : L 〉 and VH = VL = Z. Then we have that
l |= [>]2 ∗ h (ρ1), where ρ1 is the closure which is not able to distinguish even
numbers, i.e., ρ1 =

b (
{2Z} ∪

{
{n}

∣∣n odd
})

. Therefore, by N3, [>]l := 2∗h (ρ1)

(note that, since there is only one low variable we ignore the condition Relη v

7.1 Axiomatic abstract non-interference 161

Relρ). Consider now the while statement. We note that the operation l+2 leaves
unchanged the parity of l, this means that if the input is even the output is
even, and similarly if it is odd. Namely for each n such that Par(n) = Par(l) then
Par(Jl+2K(h, n)) = Par(n+2) = Par(n) = Par(l). Therefore {Par}〈l+2, l〉 {Par}
which implies

{Par} 〈l + 2, l〉 {Par}

{Par}L l := l + 2 {Par}L

h : H

{Par}L h := h + 1 {Par}L

Therefore, by I5, we have that {Par}L l := l+ 2; h := h− 1 {Par}L . Now we can
apply rule N6 obtaining

{Par}L l := l + 2; h := h− 1 {Par}L
[Par]while h do l := l + 2; h := h− 1 endw (Par)

Finally, note that ρ1 v Par hence by N7 we have also that [>]l := 2 ∗ h (Par),
therefore we can apply rule N5 and we obtain that [>]P (Par).

Unfortunately, the system N0 is not complete, and in particular N5 is the rule
that introduces incompleteness.

Example 7.7. Consider the property Par observing parity, and the program:

P
def= l := 4 ∗ h2 + 4; while h do l := l mod 4; h := 0 endw

with security typing: t = 〈h : H , l : L 〉 and VH = VL = Z. Let us denote the while
statement as c def= while h do l := l mod 4; h := 0 endw. We can prove that

|= [>]l := 4h2 + 4 (ρ1) and |= [>]P (ρ1)

where ρ1 is defined in Example 7.6. These facts hold since the result of the as-
signment is always an even number multiple of 4, independently from the value of
h (so the first fact holds). At this point, the while receives a multiple of 4 and
therefore the result is always 0, implying the second fact. On the other hand, we
have

6|= [ρ1]c (ρ1)

since without the assignment, the while can receive any number, in particular it
can receive as input numbers that are not multiples of 4. For these numbers the
statement is not secret, for instance ρ1(JcK(0, 5)L) = 5 6= ρ1(JcK(1, 5)L) = 1. This
means that 6`Nr{N1} [>]P (ρ1).

It is clear that rule N0 makes the proof system complete. This is a straight con-
sequence of Th. 6.17.

Corollary 7.8. The proof system N is complete.

Proof. If |= [η]P (ρ) then ρ w [η]JP K (id) by Theorem 6.17. Therefore for by Rule
N0 we have that `N [η]P (ρ).

162 7 Proving Abstract Non-Interference

A0:
(η)JcK (id) v ρ

(η)c (ρ)
A1: (η)c (>) A2: (η)nil (ρ)

A3:
x |= (η)e (ρ), x : L

(η)x := e (ρ)
A4:

x : H

(η)x := e (ρ)
A5:

(η)c1 (
b

(ρ)), [ρ]c2 (
b

(β))

(η)c1; c2 (
b

(β))

A6:
{ρ}L c {ρ}L , x : H

(ρ)while x do c endw (ρ)
A7:

(η)c (ρ), x : L

(η)while x do c endw (ρ)

A8:
(η)c (ρ′), ρ′ v ρ

(η)c (ρ)
A9:

∀i ∈ I . (η)c (ρi)

(η)c (
F

i∈I ρi)
A10:

∀i ∈ I . (η)c (ρi)

(η)c (
d

i∈I ρi)

Table 7.3. Axiomatic abstract non-interference

7.1.3 Proof system for Abstract non-interference

We now introduce in Table 7.3 a proof system for abstract non-interference, i.e.,
modeling how (η)P (ρ) assertions compose inductively on program’s syntax. As
before, we are looking for sufficient conditions, checkable on the syntax, that allow
us to derive non-interference properties about programs. Also in this case, we have
to introduce a semantic rule, based on the derivation of secret kernels, described in
the previous chapter, in order to be able to derive significant non-interference prop-
erties. Therefore, as in the narrow case, we prove that the proof system without
the first semantic rule is at least sound. Also in this case, the task is to apply the
first rule to single statements, and then to combine the resulting non-interference
properties by using the other rules of the proof system. Let us explain the rules of
this proof system:

[A0,A1] The rules A0 and A1 in Table 7.3 are similar to the ones in Table 7.2
and hold for the same reasons.

[A2] The rule A2 differs from N2 since abstract non-interference avoids deceptive
flows. Indeed, checking non-interference, in this case, consists in checking if
η(l1) = η(l2) implies ρ(η(l1)) = ρ(η(l2)), for all the possible public values l1
and l2. It is immediate to note that this implication always holds.

[A3] In rule A3 we consider the generalization of the notion of abstract non-
interference to expressions as we made for the narrow one:

x |= (η)e (ρ) iff ∀l ∈ VL .∀h1, h2 ∈ VH .ρx(JeK(h1, η(l))) = ρx(JeK(h2, η(l)))

Moreover, as in N3, for applying this rule it is necessary to consider only
abstractions of tuples that are tuples of abstractions. At this point we say
that, if the expression that we have to assign to the public variable x is secret
as regards η and ρ, then it is secret for the assignment of e to x.

[A4] Rule A4 is straightforward, since the assignments to private variables leave
unchanged public data, and therefore cannot generate insecure information

7.1 Axiomatic abstract non-interference 163

flows. In order to understand the difference between A4 and N4, consider
the example used for explaining N4, i.e., h := h + 1 then in abstract non-
interference we compute the following sets: ρ(Jh := h+1K(h, η(l1))L) = ρ(η(l1))
and ρ(Jh := h + 1K(h, η(l2))L) = ρ(η(l2)), which are always equal whenever
η(l1) = η(l2).

[A5] The major difference between narrow and abstract non-interference is in
rule A5. In this case we need to consider a narrow assertion for c2 involv-
ing disjunctive domains. This is due to the fact that by definition abstract
non-interference checks input properties on singletons while the output of the
abstract non-interference assertion for c1 deals with properties of sets of values.
In order to cope with this ‘type mismatch”, we have to require narrow non-
interference for the second statement in the composition. Next example shows
that considering abstract non-interference for c2 is not sufficient to achieve
soundness.

Example 7.9. Consider Par and the program P in Example 7.7. We can prove
that

(>)l := 4h2 + 4 (Par) and (Par)while h do l := l mod 4; h := 0 endw (ρ)

where ρ def= Par∪{0}. Indeed the first statement returns always an even number,
while the second one, returns always even numbers if the low input is even,
odd numbers if the low input is odd. On the other hand, 6|= (>)l := 4h2 +
4; while h do l := l mod 4; h := 0 endw (ρ) since

ρ(Jl := 4h2 + 4; cK(0,Z)L) = ρ(4) = 2Z while
ρ(Jl := 4h2 + 4; cK(1,Z)L) = ρ(0) = {0}

namely they are different.

Moreover, note that A5 requires that for both c1 and c2 the output closures
are additive maps, i.e., disjunctive abstract domains, which is a necessary
condition as shown in the following example.

Example 7.10. Consider the program:

P
def= c1; c2 = l := (h mod 2)(2l mod 4) + (1− (h mod 2))(l mod 2 + 1);

l := (l mod 2) ∗ 4h+ (1− (l mod 2)) ∗ (4h+ 1)

with security typing: t = 〈h : H , l : L 〉 and VH = VL = Z. Consider the
property ρ = {Z, 4Z, 4Z + 1, 4Z + 2, 4Z + 3,∅} (not additive), then (>)c1 (ρ)

since
∀h ∈ 2Z. ρ(Jc1K(h,Z)L) = ρ({1, 2}) = Z and
∀h ∈ 2Z + 1. ρ(Jc1K(h,Z)L) = ρ({0, 2}) = Z

On the other hand, it is simple to show that [ρ]c2 (ρ) since this statement
leaves unchanged the abstraction of l, namely ` (>)P (ρ). But if we consider

164 7 Proving Abstract Non-Interference

the definition of abstract non-interference, then we have that 6|= (>)P (ρ)

because if h ∈ 2Z then ρ(JP K(h,Z)L) = ρ({4h, 4h+1}) = Z while if h ∈ 2Z+1
then ρ(JP K(h,Z)L) = ρ({4h + 1}) = 4Z + 1. Note that the first statement is
not secret if we consider the disjunctive completion of ρ in output.

[A6] Rule A6 is equal to N6, since A5 requires narrow non-interference.
[A7] Rule A7 is straightforward from the definition of abstract non-interference

and was absent in narrow non-interference for the presence of deceptive flows.
Indeed, when we have a low guard no implicit flows are possible, and therefore
if the body of the while is secret, then the whole while is surely secret.

[A8,A9,A10] The last three rules (A8, A9 and A10) changes since in ab-
stract non-interference we cannot concretize the input observation, as proved
in Prop. 6.9.

The proof system for abstract non-interference in Table 7.3 is denoted A = N ∪
{A0, . . . ,A10} and the proof system without the semantic rules is denoted as
A0 = N0 ∪ {A1, . . . ,A10}. The following theorem proves the soundness of the
proof system A0 with respect to the standard semantics of Imp.

Lemma 7.11. [η]P (ρ) with ρ additive implies that

∀H ⊆ VH ,∀h ∈ VH . ρ(JP K(h, l)L) = ρ(JP K(H, l)L)

Proof. By hypothesis we have that ∀l ∈ VL , ∀h′ ∈ H we have ρ(JP K(h, l)L) =
ρ(JP K(h′, l)L). Being ρ additive we obtain the following equalities ρ(JP K(H, l)L) =⋃

h′∈H ρ(JP K(h′, l)L) = ρ(JP K(h, l)L).

Theorem 7.12. Let P ∈ Imp be a program and η, ρ ∈ uco(VL), such that ρ =
〈ρ1, . . . , ρn〉, where n =

∣∣{ x ∈ Var
∣∣x : L

}∣∣. If `A0 (η)P (ρ) then |= (η)P (ρ).

Proof. We prove the soundness of the system inductively on the rules in Ta-
ble 7.3. Consider l1, l2 ∈ VL and h1, h2 ∈ VH . The first three rules hold
from Prop. 6.9. Consider A3, the hypothesis says that η(l1) = η(l2) implies
ρx(JeK(h1, η(l1))) = ρx(JeK(h2, η(l2))), we have to prove that η(l1) = η(l2) implies
that ρ(Jx := eK(h1, η(l1))L) = ρ(Jx := eK(h2, η(l2))L). Let l1 = 〈x1, . . . , x, . . . , xn〉
and l2 = 〈y1, . . . , yn〉, with n ∈ N. By the hypothesis on η, we have that
η(l1) = η(l2) means ∀i ≤ n . η(xi) = η(yi). Therefore, the following equalities
hold:

ρ(Jx := eK(h1, η(l1))L) = ρ(〈η(x1), . . . , JeK(h1, η(l1)), . . . , η(xn)〉)
= 〈ρ1(η(x1)), . . . , ρx(JeK(h1, η(l1))), . . . , ρn(η(xn))〉
= 〈ρ1(η(y1)), . . . , ρx(JeK(h2, η(l2))), . . . , ρn(η(yn))〉
= ρ(〈η(y1), . . . , JeK(h2, η(l2)), . . . , η(yn)〉)
= ρ(Jx := eK(h2, η(l2))L)

Consider A4, suppose η(l1) = η(l2). We can note that ρ(Jx := eK(h1, η(l1))L) =
ρ(η(l1)), being x : H . Analogously, we have that ρ(Jx := eK(h2, η(l2))L) = ρ(η(l2)),

7.1 Axiomatic abstract non-interference 165

and since η(l1) = η(l2) we have the thesis. Consider A5, suppose (η)c1 (ρ) and
[ρ]c2 (β). Consider h1, h2 ∈ VH and l1, l2 ∈ VL with η(l1) = η(l2). The following
implications hold:

β(Jc1; c2K(h1, η(l1))L) = β(Jc2K(Jc1K(h1, η(l1)))L)
= β(Jc2K(H1, Jc1K(h1, η(l1))L)L) =

⋃
h∈H1,l∈η(l1)

β(Jc2K(h, Jc1K(h1, l)L)L)

where H1 = Jc1K(h1, η(l1))H . Note that ρ(Jc1K(h1, η(l1))L) = ρ(Jc2K(h2, η(l2))L),
then for each l ∈ η(l1) there exists l′ ∈ η(l2) = η(l1) such that ρ(Jc1K(h1, l)L) =
ρ(Jc2K(h2, l

′)L) and viceversa. This implies the following equalities.⋃
h∈H1,l∈η(l1)

β(Jc2K(h, Jc1K(h1, l)L)L) =
⋃

h∈H1,l′∈η(l2)
β(Jc2K(h, Jc1K(h2, l

′)L)L)
=
⋃

l′∈η(l2)
β(Jc2K(H2, Jc1K(h2, l

′)L)L) (by Lemma 7.11)
= β(Jc2K(H2, Jc1K(h2, η(l2))L)L) = β(Jc2K(Jc1K(h2, η(l2)))L)
= β(Jc1; c2K(h2, η(l2))L)

where H2 = Jc1K(h2, η(l2))H . Rule A6 is the equal to N6 and therefore holds by
Th. 7.5 and from the fact that narrow non-interference implies abstract one. A7 is
straightforward by the definition of abstract non-interference. The last three rules
hold by the properties of abstract non-interference (Prop. 6.9).

Next examples shows how we can apply the rule A5. In particular, the first one,
shows that, by considering narrow non-interference in rule A5, then we guarantee
the soundness of the rule.

Example 7.13. Consider Par and the program P in Example 7.7. We can prove
that

(>)l := 4h2 + 4 (Par) and [Par]while h do l := l mod 4; h := 0 endw (Par)

so, by rule A5, (>)l := 4h2 + 4; while h do l := l mod 4; h := 0 endw (Par).
Indeed, for instance, if we consider l1 = 4 and l2 = 8 then clearly >(4) = >(8) = >
and

Par(Jl := 4h2 + 4; cK(0,>)L) = Par(JcK(0, 4h2 + 4)L) = Par(4h2 + 4) = 2Z and
Par(Jl := 4h2 + 4; cK(1,>)L) = Par(JcK(1, 4h2 + 4)L) = Par(0) = 2Z

where c def= while h do l := l mod 4; h := 0 endw.

Example 7.14. Consider the program fragment

P
def= l := 2h; while h do l := 2 ∗ l; h := h− 1endw

with security typing: t = 〈h : H , l : L 〉 and VH = VL = N. First of all we note that

l |= (>)2h (ρ1) where ρ1
def=

j (
{{2}N} ∪

{
n
∣∣n /∈ {2}N

})

166 7 Proving Abstract Non-Interference

since the result is always an even number, independently from the initial value of
h. This means that we can apply A3:

l |= (>)2h (ρ1), l : L

(>)l := 2h (ρ1)

Consider the while statement, denoted by c, and the upper closure operator
ρ2

def=
b ({

n{2}N
∣∣n ∈ N odd

})
. We note that {ρ2} 〈2 ∗ l, l〉 {ρ2}, since the op-

eration 2 ∗ l does not change the property n{2}N of the initial value of l, namely
it does not change the odd factor of l. Therefore, we can apply I4 to the low
assignment and I3 for the high assignment:

{ρ2} 〈2 ∗ l, l〉 {ρ2}, l : L

{ρ2}L l := 2 ∗ l {ρ2}L

h : H

{ρ2}L h := h− 1 {ρ2}L

and therefore by applying I5 we obtain

{ρ2}L l := 2 ∗ l {ρ2}L , {ρ2}L h := h− 1 {ρ2}L

{ρ2}L l := 2 ∗ l; h := h− 1 {ρ2}L

Now we can apply A6

{ρ2}L l := 2 ∗ l; h := h− 1 {ρ2}L

[ρ2]while h do l := 2 ∗ l; h := h− 1 endw (ρ2)

and therefore we use A5:

(>)l := 2h (ρ1), [ρ2]while h do l := 2 ∗ l; h := h− 1 endw (ρ2)

(>)P (ρ2)

The following example shows that the proof system A0 for abstract non interfer-
ence in Table 7.3 is not complete.

Example 7.15. Consider the closure ρ def= {Z, 2Z, 4Z,∅} and consider the program

P
def= while h do l := (l mod 4) ∗ (l ÷ 4); h := 0 endw

with security typing: t = 〈h : H , l : L 〉 and VH = VL = Z. Note that (ρ)P (ρ)

since, for example, ρ(JP K(1, 2Z)L) = 2Z = ρ(JP K(0, 2Z)L). But 6|= {ρ}L P {ρ}L
since ρ(JP K(1, 2)L) = ρ(0) = 4Z 6= ρ(2) = 2Z.

The example above shows that A6 is not complete, but it is not the only
incomplete rule. In particular, by the same argument used in Example 7.7 for
N5, A5 is also incomplete. Even A7 is incomplete, since the guard of the while
can avoid interferences that may happen in the body, as shown in the following
example. All the other rules are complete.

7.1 Axiomatic abstract non-interference 167

Example 7.16. Consider ρ def= {Z, {0}, 2Z0, 2Z + 1,∅}, where 2Z0
def= 2Z r {0}, and

P
def= while l1 do l2 := iszero(l1) ∗ h2; l1 := 0 endw

with security typing: t = 〈h : H , l1, l2 : L 〉 and

iszero(x) =
{

1 if x = 0
0 otherwise

Then we can prove that

6|= (ρ)l2 := iszero(l1) ∗ h2; l1 := 0 (ρ)

since, if we take the low input 〈0, 2Z0〉 then we have

ρ(Jl2 := iszero(l1) ∗ h2; l1 := 0K(1, 〈0, 2Z0〉)L) = ρ(〈0, 1〉) = 〈0, 2Z + 1〉 6=
ρ(Jl2 := iszero(l1) ∗ h2; l1 := 0K(2, 〈0, 2Z0〉)L) = 〈0, 2Z0〉

But it is straightforward that (ρ)P (ρ). Indeed, for instance, ρ(JP K(h, 〈0, 2Z0〉)L) =
〈0, 0〉 and ρ(JP K(h, 〈2Z0, 2Z0〉)L) = 〈0, 0〉, since, inside the while, we always have
iszero(l1) = 0.

As above, for the proof system for narrow abstract non-interference N , also for ab-
stract non-interference, the semantic rule A0 makes A complete. This is a straight
consequence of Th. 6.17.

Corollary 7.17. The proof system A is complete.

Next result specifies a relation between derivations in the narrow and abstract
non-interference proof systems. This result is in accordance with the expected
relation between narrow and abstract non-interference, the first being stronger.

Lemma 7.18. Consider η, ρ ∈ uco(VL) and a program P in Imp, then

[η]P (ρ) ⇒ [η]P (
b

(ρ)).

Proof. Suppose [η]P (ρ), namely ∀h1, h2 ∈ VH and ∀l1, l2 ∈ VL we have that
η(l1) = η(l2) implies ρ(JP K(h1, l1)L) = ρ(JP K(h2, l2)L). But since P is determin-
istic, then JP K(h, l)L is a singleton in VL . Therefore we can conclude, from the
properties of disjunctive completion, that

b
(ρ)(JP K(h1, l1)L) = ρ(JP K(h1, l1)L) =

ρ(JP K(h2, l2)L) =
b

(ρ)(JP K(h1, l1)L), namely we have non-interference.

Lemma 7.19. x |= [η]e (ρ) ⇒ x |= (η)e (ρ)

Proof. Suppose x |= [η]e (ρ). Hence, by definition, for any h1, h2 ∈ VH and for any
l1, l2 ∈ VL such that η(l1) = η(l2), we have ρx(JeK(h1, l1)) = ρx(h2, l2). We want
prove that for any h1, h2 ∈ VH and for any l ∈ VL , we have ρx(JeK(h1, η(l))) =
ρx(JeK(h2, η(l))). Note that

ρx(JeK(h1, η(l))) = ρx (
⋃

l′ ∈ η(l)JeK(h1, l
′))

= ρx (
⋃

l′ ∈ η(l)ρx(JeK(h1, l
′))) (by Prop. 2.57)

= ρx (
⋃

l′ ∈ η(l)ρx(JeK(h2, l
′))) (by hypothesis)

= ρx (
⋃

l′ ∈ η(l)JeK(h2, l
′)) (by Prop. 2.57) = ρx(JeK(h2, η(l)))

168 7 Proving Abstract Non-Interference

Theorem 7.20. Let P ∈ Imp be a program and η, ρ ∈ uco(VL). If `N0 [η]P (ρ)

then we have `A0 (η)P (ρ).

Proof. We prove the implication by induction on the rules. For the axioms the
proof is immediate. By Proposition 6.7 we have that in narrow non-interference
implies abstract one. Consider now rule N3, consider x := e with x : L , by
Lemma 7.19 we have that x |= [η]e (ρ) implies that x |= (η)e (ρ), then we can
apply rule A3, and therefore we obtain that when `N0 [η]x := e (ρ) we have also
`A0 (η)x := e (ρ). Rule A4 is straightforward from N4 when x : H since it re-
quires less hypotheses. Consider rule N5 and suppose that `N0 [η]c1; c2 (β). This
means that `N0 [η]c1 (ρ) and `N0 [ρ]c2 (β). By Lemma 7.18 this implies that
`N0 [η]c1 (

b
(ρ)) and `N0 [ρ]c2 (

b
(β)). Now, by inductive hypothesis we have

that `A0 (η)c1 (
b

(ρ)) and therefore, by rule A5, we obtain `A0 (η)c1; c2 (
b

(β)).
At this point, since β w

b
(β), we can apply rule A8 in order to derive

`A0 (η)c1; c2 (β). Rule N6 and A6 have the same hypothesis, therefore when
x : H it is trivial to show that when `N0 [ρ]while x do c endw (ρ) then
`A0 (ρ)while x do c endw (ρ). On the other hand it is immediate to prove that
{ρ}L c {ρ}L implies [ρ]c (ρ) and therefore (ρ)c (ρ) by Proposition 6.7. This means
that if N6 is applicable than also A7 is applicable. Consider N7 and suppose that
[η]P (ρ) since [η′]P (ρ′) with η′ w η and ρ w ρ′. This means also that [η]P (ρ) can
be derived from [η]P (ρ′) (by using N7). At this point by inductive hypothesis we
have that `A0 (η)P (ρ′) and therefore we derive by A8 `A0 (η)P (ρ) since ρ w ρ′.
It is immediate to prove that, by using the inductive hypothesis, the rules A9 and
A10 can be applied when the hypotheses of N8 and N9 respectively, hold.

Next example shows that A is strictly weaker than N . We show that if |= [η]P (ρ)

and `A0 (η)P (ρ), then [η]P (ρ)⇒ (η)P (ρ) does not imply that `N0 [η]P (ρ).

Example 7.21. Consider the property Par and the program:

P
def= h := h+ 1; l := 2 ∗ h

with security typing: t = 〈h : H , l : L 〉 and VH = VL = Z. Note that [Sign]P (Par)

since
∀l ∈ VL , h ∈ VH we have Par(JP K(h, l)L) = Par(2 ∗ h) = 2Z

This means also that |= (Sign)P (Par). Moreover, 6|= [Sign]h := h+ 1 (Par) since

Sign(2) = Sign(3) = Z+ and Par(Jh := h+ 1K(h, 2)L) = Par(2) = 2Z 6=
Par(Jh := h+ 1K(h, 3)L) = Par(3) = 2Z + 1

This means that 6`N0 [Sign]P (Par). On the other hand, `A0 (Sign)h := h+1 (Par)

and `N0 [Par]l := 2 ∗ h (Par), therefore we can use A5 since Par is disjunctive,
and therefore we infer `A0 (Sign)P (Par).

7.2 Non-deterministic case 169

7.2 Non-deterministic case

In this section, we extend the given proof system in order to derive abstract non-
interference also for non-deterministic programs. The first step is the construction
of the rule for the non-deterministic choice in the proof system I:

I8:
∀i ∈ I . {ρi}L ci {ρi}L

{
F

i∈I ρi}L �ici {
F

i∈I ρi}L

Rule I8 controls the non-deterministic choice in a rather standard way. Indeed, it
says that an invariant property for a non-deterministic choice is the most abstract
invariant among the ones for all the programs involved in the non-deterministic
choice.
At this point, we have to modify the proof system N . The problem is that it is
not sufficient to add the rule for non-deterministic choice since the fact that the
denotational semantics returns a set of values instead of a singleton, creates for
N5 the same problems that we found in A5. So we build a new rule N′5 for
composition and we introduce the rule for the non deterministic choice. In the
following example we show that if we consider not additive output observations,
as in N5, then we are not sound.

Example 7.22. Consider the program:

P = c1; c2 = l := 1− (h mod 2) � l := 2 ∗ (h mod 2) + 2 ∗ (1− (h mod 2));
l := (l mod 2) ∗ 4h+ (1− (l mod 2)) ∗ (4h+ 1)

with security typing: t = 〈h : H , l : L 〉 and VH = VL = Z. Consider the property
observing the modulus in the division by 4: ρ = {Z, 4Z, 4Z + 1, 4Z + 2, 4Z + 3,∅}
(not additive), then we can show that [>]c1 (ρ) since

∀h ∈ 2Z. ∀l ∈ Z ρ(Jc1K(h, l)L) = ρ({1, 2}) = Z and
∀h ∈ 2Z + 1. ∀l ∈ Z ρ(Jc1K(h, l)L) = ρ({0, 2}) = Z

On the other hand, it is simple to show that [ρ]c2 (ρ) since the abstraction of
l does not depend on h. But if we consider the composition then we have that
6|= [>]P (ρ) because

∀h ∈ 2Z. ∀l ∈ Z ρ(JP K(h, l)L) = ρ({4h, 4h+ 1}) = Z
∀h ∈ 2Z + 1. ∀l ∈ Z ρ(JP K(h, l)L) = ρ({4h+ 1}) = 4Z + 1

while rule N5 would infer that ` [>]P (ρ)

Therefore, we have to add the following rules:

N′5:
[η]c1 (

b
(ρ)), [ρ]c2 (

b
(β))

[η]c1; c2 (
b

(β))
N10:

∀i ∈ I . [ηi]ci (ρi)

[
d

i∈I ηi]�ici (
F

i∈I ρi)

170 7 Proving Abstract Non-Interference

N10 says that, if we have a non-deterministic choice among the elements of a
set of programs, then this non-deterministic choice is secret for the attacker char-
acterized, in input by the greatest lower bound of input observations for which
the elements of the set are secret, and in output by the least upper bound of
output observations of the same elements. For instance, note that if we have
c

def= l := 2 ∗ h � l := 2h + l, and we consider ρ =
b (
{2Z} ∪

{
{n}

∣∣n odd
})

,
then we obtain [ρ]l := 2 ∗ h (ρ) and [Par]l := 2h + l (Par). Clearly the execution
of c has to guarantee secrecy independently from the statement that is executed,
so we have [ρ]c (Par).

Lemma 7.23. Let ρ and η additive and [η]P (ρ), then we have also that for each
L1, L2 ∈ ℘(VL) and H1,H2 ∈ ℘(VH) if η(L1) = η(L2) then ρ(JP K(H1, L1)L) =
ρ(JP K(H2, L2)L)

Proof. Being ρ additive we have

ρ(JP K(H1, L1)L) =
⋃

h1∈H1,l1∈L1

ρ(JP K(h1, l1)L).

Since also η is additive, we have that η(L1) = η(L2) implies that for each l1 ∈ L1

there exists l2 ∈ L2 such that η(l1) = η(l2). Namely we have that⋃
h1∈H1,l1∈L1

ρ(JP K(h1, l1)L) ⊆
⋃

h2∈H2,l2∈L2

ρ(JP K(h2, l2)L)

since [η]P (ρ). Viceversa we can prove the other inclusion in a similar way, there-
fore we have that

ρ(JP K(H1, L1)L) = ρ(JP K(H2, L2)L).

Theorem 7.24. The proof system NNd def= N r {N5} ∪ {N′5,N10} is complete

and the proof system NNd
0

def= N0 r {N5} ∪ {N′5,N10} is sound.

Proof. The completeness is straightforward for the presence of the rule N0 (see
Corollary 7.8).
In order to prove correctness of N′5 we have to show that whenever the premises of
the rule hold then the consequence holds as well. Consider ρ and β additive, namely
ρ =

b
(ρ) and β =

b
(β). Then we suppose that [η]c1 (ρ) and that [ρ]c2 (β),

namely if η(l1) = η(l2) then ρ(Jc1K(h1, l1)L) = ρ(Jc1K(l2, h2)L) and if ρ(l1) = ρ(l2)
then β(Jc2K(h1, l1)L) = β(Jc2K(l2, h2)L). We have to prove that if η(l1) = η(l2)
then β(Jc1; c2K(h1, l1)L) = β(Jc1; c2K(l2, h2)L). Hence suppose η(l1) = η(l2), the
following equalities hold:

β(Jc1; c2K(h1, l1)L) = β(Jc2K(Jc1K(h1, l1))L) = β(Jc2K(Jc1K(h1, l1)H , Jc1K(h1, l1)L)L)
= β(Jc2K(Jc1K(h2, l2)H , Jc1K(h2, l2)L)L) (By Lemma 7.23)
= β(Jc2K(Jc1K(h2, l2))L) = β(Jc1; c2K(h2, l2)L)

and so we have non-interference.
N10 is sound since J�ici∈IK = JckK for some k ∈ I, and [ηk]ck (ρk), that holds by

7.3 Discussion 171

hypothesis, implies by N7, that [uiηi]ck (tiρi).

Finally, we modify the proof system for abstract non-interference. In this case
we have only to add the new rule for the non-deterministic choice:

A11:
∀i ∈ I . (η)ci (ρi)

(η)�ici (
F

i∈I ρi)

The completeness of A∪ {A11} and the soundness of A0 ∪ {A11} is immediate.

Theorem 7.25. The proof system ANd is complete, while the proof system ANd
0

is only sound.

7.3 Discussion

In this chapter, we have introduced a sound proof-system for both narrow and
abstract non-interference. The advantage of a proof-system for abstract non-
interference is that checking abstract non-interference can be easily mechanized.
Both N and A can benefit of standard abstract interpretation methods for gener-
ating basic certificates for simple program fragments (rules N0 and A0). The other
rules allow us to combine certificates from program fragments in a proof-theoretic
derivation of harmless models of attackers, certifying program secrecy. The interest
in this technology is mostly related with its use in a la proof carrying code (PCC)
verification of abstract non-interference, when mobile code is allowed. In this case
in a PCC architecture, the code producer may create an abstract non-interference
certificate that attests to the fact that the code secrecy cannot be violated by the
corresponding model of the attacker. Then the code consumer may validate the
certificate to check that the foreign code is secure for the corresponding model of
attacker. The implementation of this technology requires an appropriate choice of
a logic for specifying abstractions and an adequate logical framework where the
logic can be manipulated. We believe that predicate abstraction [46,70] is a fairly
simple and easily mechanizable way for reasoning about abstract domains. More
appropriate logics can be designed following the ideas in [8], even though a mech-
anizable logic for reasoning about abstractions is currently a major challenge in
this field and deserves further investigations.

8

Abstract Non-Interference: A completeness

problem

The hidden harmony is more beautiful than the visible one.

Ippolito

In the previous chapters, we introduced the notion of abstract non-interference
whose aim is that of modeling the secrecy degree of programs by using abstract
interpretation. In particular, we are able to characterize which is the observational
capability of the most concrete harmless attacker, namely of the most concrete
attacker that cannot disclose any confidential information. Moreover, we noticed
that our model allows also to characterize what aspect of private information can
flow during the execution of a given program, when non-interference fails. This
latter fact puts our work in strong relation with the notion of robust declassifi-
cation introduced in [118], even if we consider here only passive attackers, i.e.,
attackers that can only observe the computation. It is clear that the stronger is
the attacker, the more information can be released by the program. Namely, the
more concrete is the model of the harmless attacker, the more abstract is the con-
fidential information that can be kept private. This observation gives an intuitive
explanation of the adjoint relation existing between the actions of weakening at-
tackers and of declassifying private information. In particular, we can note that
when we derive the most concrete attacker model, then we are looking for the
most concrete public observer , while when we derive the most abstract property
the has to be declassified in order to guarantee non-interference, we are looking for
the most abstract private observable. Indeed, the most concrete public observer is
the model of the most powerful attacker that can observe only public data. While,
the most abstract private observable is the maximal amount of information that
a program releases during computation. This means that, whenever we declassify
a property which contains this private observable, we surely guarantee secrecy.

In this chapter, we prove that this duality corresponds precisely to an ad-
junction in the lattice of abstract interpretations. This is achieved by considering

174 8 Abstract Non-Interference: A completeness problem

abstract non-interference as a generalization of both declassification for passive
attackers and attack models. In this setting we prove that, under non restrictive
hypothesis, abstract non-interference corresponds precisely to making abstract in-
terpretation complete [65] relatively to the denotational semantics of programs.
This derives directly from an abstract interpretation-based generalization of Joshi
and Leino’s approach to secure information flows [78], which makes this approach
equivalent to a completeness problem. Abstract interpretation plays a key role here,
providing the adequate framework where program properties can be compared by
considering their relative precision. In particular, we prove that declassification
and attack models are adjoint notions and they correspond respectively to the
minimal complete refinement, providing the most concrete public observer prop-
erty of a program, and the minimal complete simplification, providing the most
abstract private observable property of the program. This chapter is based on the
paper [57].

The chapter is structured as follows. In Sect. 8.1 we prove that abstract non-
interference is a problem of completeness in the abstract interpretation framework,
while in Sect. 8.2 and in Sect. 8.3 we prove that the most concrete public observer,
modeling harmless attackers, and the most abstract private observable, character-
izing declassification, are respectively the minimal simplification and refinement
of a given abstract domain, in order to achieve completeness. The chapter ends in
Sect. 8.4 by proving an adjunction between public observers and private observ-
ables.

8.1 Abstract Non-Interference as Completeness

Joshi and Leino’s semantic-based approach to information flows [78] provides a
way to interpret abstract non-interference as the problem of making an abstract
domain complete [65] (see Sect. 5.1.3). We remind the reader that, in the Joshi and
Leino’s semantic-based approach to information flows, non-interference is modeled
by the Eq. 5.1, which is:

H H ; P ; H H
.= P ; H H

where H H is a program that “assigns to h an arbitrary value”. Let us consider now,
the denotational semantics of a program P , denoted by JP K. Then we can show
that the equation above can be rewritten as a backward completeness problem
by describing the semantics of H H as an abstraction. Indeed, the program that
associates with any private variable an arbitrary value can be interpreted as the
closure that abstracts the private value to the “don’t know” abstract value, i.e.,
to the set of all the possible values for private variables. Therefore, we define the
function H : ℘(V) −→ ℘(V) in the following way (recall that ℘(V) = ℘(VH ×VL)):

H = λX. 〈VH , XL 〉 where XL def=
{
l
∣∣ 〈h, l〉 ∈ X }

8.1 Abstract Non-Interference as Completeness 175

It is straightforward to prove its monotonicity, idempotence and extensivity,
namely it is an upper closure operator. Hence, we can conclude that

JH H ; P ; H H K = H ◦JP K ◦H JP ; H H K = H ◦JP K

This means that, non-interference can be equivalently formalized in the equation

H ◦JP K ◦H = H ◦JP K

which is a backward completeness problem (see Sect. 2.2.4). At this point, we
remind the reader that in [65] the problem of making abstract domains com-
plete as regards a given function, is solved and allows us to modify H in order to
make the equation above to hold for the given function JP K, which corresponds
to characterizing a new abstract domain H# which makes the program P sat-
isfy non-interference. In particular, the idea is to transform H, either refining or
simplifying it, in order to get completeness in the equation above, and, therefore,
abstract non-interference. Note that

H = λX.〈>(XH), id(XL)〉 = λX. 〈VH , XL 〉

where XH def=
{
h
∣∣ 〈l, h〉 ∈ X }

, i.e., H is the product of respectively the top ab-
straction on private information, and the bottom abstraction on public one, in the
lattice of abstract interpretations. This means that the private component of H
can only be refined as well as its public component can only be abstracted. Recall
that, given an abstract domain A, that we want to make complete for f , the back-
ward completeness core looks for the most concrete abstract domain contained in
A and which is complete for f , while the complete shell looks for the most abstract
domain that contains A and which is complete for f . Therefore, we can interpret
completeness cores and shells in the following way:

• The core, which can only abstract the public component, characterizes the
most concrete attacker that cannot disclose private properties, i.e., the most
concrete public observer ;

• The shell, which can only refine the private component, characterizes the most
abstract property that flows, i.e., the most abstract private observable.

Formally, completeness cores and shells of an abstract domain ρ, relatively to a
monotone function f , are defined in the following way (see Sect. 2.2.4):

RBf (ρ) = gfpvρ λϕ.ρ uRBf (ϕ) CBf (ρ) = lfpvρ λϕ.ρ t CBf (ϕ)
where

RBf
def= λρ.M(

⋃
y∈ρ max(f−1(↓y))) CBf

def= λρ.
{
y ∈ C

∣∣max(f−1(↓y)) ⊆ ρ
}

The following examples show how we can apply these transformers in the context
of abstract non-interference, and how we can interpret the results obtained.

Example 8.1. Consider the program fragment:

176 8 Abstract Non-Interference: A completeness problem

P
def= l := 2 ∗ h

where l : L and h : H . It is worth noting that P violates non-interference, since
for example

H ◦JP K ◦H(〈2, 3〉) = H ◦JP K(〈Z, 3〉) = H(〈Z, 2Z〉) = 〈Z, 2Z〉 while
H ◦JP K(〈2, 3〉) = H(〈2, 4〉) = 〈Z, 4〉

where 2Z 6= 4. We can derive the complete core of H for JP K, which makes the
program secure. From [65] we have to keep only those elements whose inverse
image is a fixpoint of H:

CBJP K(H) = H t
{
X ′
∣∣∣max

{
X
∣∣ JP K(X) ⊆ X ′ } ⊆ H }

=
{
〈Z, L〉

∣∣∣ { 〈h, l〉 ∣∣ JP K(〈h, l〉) ⊆ 〈Z, L〉
}
⊆ H

}
=
{
〈Z, L〉

∣∣∣ { 〈h, l〉 ∣∣ 〈h, 2h〉 ⊆ 〈Z, L〉 } ⊆ H }
Note that 〈H,L〉 ∈ H iff H = Z and 〈Z, L′〉 ⊇ 〈Z, 2Z〉 iff L′ ⊇ 2Z. In general, if we
have that L′ ⊆ 2Z + 1 then 〈h, 2h〉 ∈ 〈Z, L′〉 is false for each possible L′, namely{

〈h, l〉
∣∣ JP K(〈h, l〉) ⊆ 〈H ′, L′〉

}
= ∅ ⊆ H

which means that in this case 〈Z, L′〉 is kept. Therefore, we have that the complete
core is the transformer

CBJP K(H) =
{
〈Z, L〉

∣∣L ∩ 2Z ∈ {2Z,∅}
}

which corresponds to abstracting the public output in the domain that is not able
to distinguish even numbers, but only the odd ones. Let H def= CBJP K(H), then we
have for example

H ◦JP K ◦H(〈2, 3〉) = H ◦JP K(〈Z, 3〉) = H(〈Z, 2Z〉) = 〈Z, 2Z〉 and
H ◦JP K(〈2, 3〉) = H(〈2, 4〉) = 〈Z, 2Z〉

Example 8.2. Consider the program fragment

P
def= l := (2h+ 1) mod 2

where l : L and h : H . The program violates non-interference, since, for instance,

H ◦JP K ◦H(〈2, 3〉) = H ◦JP K(〈Z, 3〉) = H(〈Z, {−1, 1}〉) = 〈Z, {−1, 1}〉 while
H ◦JP K(〈2, 3〉) = H(〈2, 1〉) = 〈Z, 1〉

and {−1, 1} 6= 1. We compute the complete shell of H, characterizing the flow-
ing property of private information, namely we add all the inverse images of the
elements in H.

RBJP K(H) = H uM(
⋃

L′∈℘(VL) max
{
X
∣∣ JP K(X) ⊆ 〈Z, L′〉

}
)

= H uM(
⋃

L′∈℘(VL)

{
〈h, l〉

∣∣ 〈h, 2h+ 1 mod 2〉 ∈ 〈Z, L′〉
}
)

8.1 Abstract Non-Interference as Completeness 177

At this point note that, if −1 /∈ L′, then{
〈h, l〉

∣∣ 〈h, 2h+ 1 mod 2〉 ∈ 〈Z, L′〉
}

= 〈Z+
0 ,Z〉

where Z+
0

def= Z+ ∪ {0}. While, if 1 /∈ L′, then we have{
〈h, l〉

∣∣ 〈h, 2h+ 1 mod 2〉 ∈ 〈Z, L′〉
}

= 〈Z−,Z〉

Finally, if 1,−1 /∈ L′, then we obtain{
〈h, l〉

∣∣ 〈h, 2h+ 1 mod 2〉 ∈ 〈Z, L′〉
}

= ∅

Hence
⋃

L′∈℘(VL)

{
〈h, l〉

∣∣ 〈h, 2h+ 1 mod 2〉 ∈ 〈Z, L′〉
}

= {〈Z+
0 ,Z〉, 〈Z−,Z〉,∅},

and
RBJP K(H) = H ∪

{
〈H,L〉

∣∣H ∈ {Z+
0 ,Z−}, L ∈ ℘(VL)

}
At this point, let H def= RBJP K(H), then for example, we have

H ◦JP K ◦H(〈2, 3〉) = H ◦JP K(〈Z+
0 , 3〉) = H(〈Z+

0 , {1}〉) = 〈Z+
0 , {1}〉 and

H ◦JP K(〈2, 3〉) = H(〈2, 1〉) = 〈Z+
0 , {1}〉

At this point, we would like to model abstract non-interference by considering this
completeness characterization of non-interference. The idea is to embed the model
of an attacker, described, in abstract non-interference, by a pair of input/output
abstractions, inside the closure operator H. Consider the domain

〈℘(VH)× ℘(VL),∅, 〈VH ,VL 〉,d,∩,⊆〉

where 〈H1, L1〉d 〈H2, L2〉
def= 〈H1 ∪H2, L1 ∪L2〉. It is well known that there exists

an obvious Galois insertion from ℘(VH)×℘(VL) in ℘(VH ×VL), corresponding to
the closure:

Split
def= λX.

{
〈x1, x2〉

∣∣∃y. 〈x1, y〉 ∈ X, ∃z. 〈z, x2〉 ∈ X
}

Given a closure ρ ∈ uco(℘(VL)), let us define Hρ ∈ uco(℘(VH)× ℘(VL))

Hρ
def= λX ∈ ℘(VH × VL). 〈VH , ρ(XL)〉

Then we have that Hρ ∈ uco(℘(VH × VL)), and that H = Hid. At this point, we
can define abstract non-interference by using the completeness equation, in the
following way:

Hρ ◦JP K ◦Hη = Hρ ◦JP K

where η, ρ ∈ uco(℘(VL)) and 〈h, l〉 ∈ V. The following results prove that this
characterization provide a notion of narrow abstract non-interference which is, in
general, stronger than the notion introduced in the previous chapters. Anyway,
under some restrictions on the attacker model, we have the equivalence of these
two characterizations of narrow non-interference.

178 8 Abstract Non-Interference: A completeness problem

Theorem 8.3. Let ρ, η ∈ uco(℘(VL)).

1. [η]P (ρ) ⇐ Hρ ◦JP K ◦Hη = Hρ ◦JP K;
2. If ρ is disjunctive and η is partitioning: [η]P (ρ) ⇒ Hρ ◦JP K ◦Hη = Hρ ◦JP K.

Proof. 1. Let us see what means completeness in the context of non-interference.
Indeed,

Hρ ◦JP K ◦Hη(〈h, l〉) = 〈VH , ρ(JP K(VH , η(l))L)〉

while, on the other hand,

Hρ ◦JP K(〈h, l〉) = 〈VH , ρ(JP K(h, l)L)〉

Hence, the equality becomes ρ(JP K(〈VH , η(l)〉)L) = ρ(JP K(〈h, l〉)L), which has
to hold for each l ∈ VL and h ∈ VH . Consider l, l′ ∈ VL and h, h′ ∈ VH ,
then we have the following implications, which corresponds to narrow abstract
non-interference:

η(l) = η(l′) ⇒ ρ(JP K(〈h, l〉)L) = ρ(JP K(VH , η(l))L)
= ρ(JP K(VH , η(l′))L) = ρ(JP K(〈h′, l′〉)L)

2. By definition of JP K, JP K(〈VH , η(l)〉) =
⋃

h∈VH ,l′∈η(l)JP K(〈h, l′〉). Since η is par-
titioning, for each l′ ∈ η(l), we have that η(l′) = η(l), therefore by the hypoth-
esis of non-interference, ∀h′ ∈ VH ,∀l′ ∈ η(l) we have that ρ(JP K(〈h′, l′〉)L) =
ρ(JP K(〈h, l〉)L). Hence, by additivity of ρ, for each l′ ∈ η(l), and for each
h ∈ VH

ρ(JP K(〈VH , η(l)〉)L) = ρ(JP K(〈h, l′〉)L)

At this point, consider X ∈ ℘(VH ×VL), then for what we have just proved, we
have that for each 〈h, l〉 ∈ X, ρ(JP K(〈VH , η(l)〉)L) = ρ(JP K(〈h, l〉)L), therefore⋃

〈h,l〉∈X

ρ(JP K(〈VH , η(l)〉)L) =
⋃

〈h,l〉∈X

ρ(JP K(〈h, l〉)L)

By additivity of ρ (and of JP K) this corresponds to ρ(JP K(〈VH , η(XL)〉)L) =
ρ(JP K(X)L). On the other hand, note that Hρ ◦JP K(X) = 〈VH , ρ(JP K(X)L)〉,
and

Hρ ◦JP K ◦Hη(X) = Hρ ◦JP K(〈VH , η(XL)〉) = 〈VH , ρ(JP K(〈VH , η(XL)〉)L)〉

For what we proved above, these tuples are the same, and therefore we have
completeness.

In order to extend Theorem 8.3 to model abstract non-interference we have
to modify the program semantics. The idea is to consider an abstract semantics
that is applied to abstract (public and private) data. Consider η ∈ uco(℘(VL))
and the private property φ ∈ uco(℘(VH)). We define the abstract semantics as
JP Kη,φ def= λ〈h, l〉. JP K(φ(h), η(l)), and therefore, we can define abstract non inter-
ference as follows

8.1 Abstract Non-Interference as Completeness 179

Hρ ◦JP Kη,φ ◦Hη = Hρ ◦JP Kη,φ

where η, ρ ∈ uco(℘(VL)) and 〈h, l〉 ∈ V. At this point, we can prove that this char-
acterization of abstract non-interference is, in general, stronger than the notion
introduced in the previous chapters. Anyway, also in this case, under some re-
strictions on the attacker model, we can prove the equivalence of the two abstract
non-interference characterizations.

Theorem 8.4. Consider η, ρ ∈ uco(℘(VL)) and φ ∈ uco(℘(VH)):

1. (ρ)P (φ []η) ⇐ Hρ ◦JP Kη,φ ◦Hη = Hρ ◦JP Kη,φ;
2. Consider ρ and η disjunctive: (η)P (φ []ρ) ⇒ Hρ ◦JP Kη,φ ◦Hη = Hρ ◦JP Kη,φ.

Proof. 1. Note that Hρ ◦JP Kη,φ ◦Hη(〈h, l〉) = Hρ ◦JP Kη,φ(〈VH , η(l)〉), since we
have φ(VH) = VH and η is idempotent. Therefore,

Hρ ◦JP K(VH , η(l)) = 〈VH , ρ(JP K(VH , η(l))L)〉

On the other hand,

Hρ ◦JP Kη,φ(〈h, l〉) = Hρ ◦JP K(〈φ(h), η(l)〉) = 〈VH , ρ(JP K(〈φ(h), η(l)〉)L)〉

Hence, we have ρ(JP K(VH , η(l))L) = ρ(JP K(〈φ(h), η(l)〉)L), for each possible
input and therefore for each possible input we have the same result.

2. The implication can be proved similarly to Theorem 8.3. In particular, by
additivity of JP K on ℘(VH × VL), JP K(〈VH , η(l)〉) =

⋃
h∈VH JP K(〈φ(h), η(l)〉).

By hypothesis of non-interference we have that ∀h′ ∈ VH .ρ(JP K(〈h′, η(l)〉)L) =
ρ(JP K(〈h, η(l)〉)L), hence the additivity of ρ implies that, for each h ∈ VH , and
for each l ∈ VL

ρ(JP K(〈VH , η(l)〉)L) = ρ(JP K(〈φ(h), η(l)〉)L)

Let X ∈ ℘(VH ×VL), what we have just proved implies that for each 〈h, l〉 ∈ X
we have ρ(JP K(〈VH , η(l)〉)L) = ρ(JP K(〈φ(h), η(l)〉)L). Therefore we obtain that⋃

〈h,l〉∈X

ρ(JP K(〈VH , η(l)〉)L) =
⋃

〈h,l〉∈X

ρ(JP K(〈φ(h), η(l)〉)L)

which implies ρ(JP Kη,φ(〈VH , η(XL)〉)L) = ρ(JP Kη,φ(X)L) by additivity of ρ
and of η. On the other hand, note that Hρ ◦JP Kη,φ(X) = 〈VH , ρ(JP Kη,φ(X)L)〉.
While we also have

Hρ ◦JP Kη,φ ◦Hη(X) = Hρ ◦JP Kη,φ(〈VH , η(XL)〉)
= 〈VH , ρ(JP Kη,φ(〈VH , η(XL)〉)L)〉.

And these two tuples are equal for what we proved above.

In the following, without loss of generality we consider the abstract non-
interference case being more general.

180 8 Abstract Non-Interference: A completeness problem

8.2 The most concrete observer as completeness core

In Sect 6.3, we gave a method for systematically deriving the most concrete harm-
less attacker associated with a given program, namely the most concrete attacker
that cannot disclose any confidential property. By Theorem 8.4, the most concrete
public observer can be derived as the most concrete abstraction satisfying the
following completeness problem:

H ◦JP Kη,φ ◦Hη = H ◦JP Kη,φ (8.1)

Then, we have the following result which allows us to specify the most concrete
harmless attacker as the fixpoint of an abstract domain simplification. In the fol-
lowing, we omit the apex B from shells and cores, since we will consider always
backward completeness.

Theorem 8.5. Let η ∈ uco(℘(VL)) be disjunctive and φ ∈ uco(VH). Then we have
CHη

JP Kη,φ(H) =
{
〈VH , L〉

∣∣∣ { 〈h, l〉 ∣∣ JP K(〈φ(h), η(l)〉) ⊆ 〈VH , L〉
}
∈ Hη

}
and{

L ∈ ℘(VL)
∣∣∣ 〈VH , L〉 ∈ CHη

JP Kη,φ(H)
}

= (η)JP K (φ []id).

Proof. We remind the reader that, in Sect. 6.3 the domain (η)JP K (φ []id) is char-
acterized as the set

{
X ∈ ℘(VL)

∣∣Secrη
JP K(X)

}
, where Secrη

JP K(X) if and only if,
for each l ∈ VL we have (∃Z ∈ Υ η, φ

JP K (l)). Z ⊆ X ⇒ ∀W ∈ Υ η, φ

JP K (l). W ⊆ X), and
the set of indistinguishable elements is Υ η, φ

JP K (l) def=
{

JP K(〈φ(h), η(l)〉)
∣∣h ∈ VH

}
(Th. 6.12). Therefore, we have to prove that all the elements 〈VH , L〉 in the core
are such that L is secret, and that all the secret elements L are such that 〈VH , L〉
is in the core. Consider X ∈ ℘(VH × VL).

CHη

JP Kη,φ(H) = Ht{
X
∣∣∣max

{
X ′ ∈ ℘(VH × VL)

∣∣ JP Kφ,η(X ′) ⊆ X
}
⊆ Hη

}
=
{
〈VH , L〉

∣∣∣ { 〈h, l〉 ∣∣ JP Kφ,η(〈h, l〉) ⊆ 〈VH , L〉
}
∈ Hη

}
(∗)

=
{
〈VH , L〉

∣∣∣ { 〈h, l〉 ∣∣ JP K(〈φ(h), η(l)〉) ⊆ 〈VH , L〉
}
∈ Hη

}
where the equality (∗) holds since JP Kφ,η is additive (being an additive lift) on
℘(VH ×VL). Now we have to prove that a set L ∈ ℘(VL) is secret, i.e., Secrη

JP K(L), if
and only if 〈VH , L〉 ∈ CHη

JP Kη,φ(H). Consider 〈VH , L〉 ∈ CHη

JP Kη,φ(H), i.e., L is such that
there exists L′ ∈ ℘(VL) such that

{
〈h, l〉

∣∣ JP K(φ(h), η(l))L ⊆ L
}

= 〈VH , η(L′)〉.
We have to prove that ∀l ∈ VL : ∀h ∈ VH . JP K(φ(h), η(l))L ⊆ L or we prove that
∀h ∈ VH .JP K(φ(h), η(l))L * L. Let l ∈ η(L′), then ∀h ∈ VH .JP K(φ(h), η(l))L ⊆ L,
since otherwise there exists h′ ∈ VH such that JP K(φ(h′), η(l))L * L, which means
that 〈h′, l〉 ∈ 〈VH , η(L′)〉, but also that 〈h′, l〉 /∈

{
〈h, l〉

∣∣ JP K(φ(h), η(l))L ⊆ L
}
,

which is a contradiction. Consider now l /∈ η(L′). Then ∀h ∈ VH .JP K(φ(h), η(l))L *
L. Indeed, if ∃h′ ∈ VH . JP K(φ(h′), η(l))L ⊆ L, then 〈h′, l〉 /∈ 〈VH , η(L′)〉, but

8.2 The most concrete observer as completeness core 181

〈h′, l〉 ∈
{
〈h, l〉

∣∣ JP K(φ(h), η(l))L ⊆ L
}
, which is again a contradiction.

Consider now L secret, then we have ∀l ∈ VL : ∀h ∈ VH . JP K(φ(h), η(l))L ⊆ L or
∀h ∈ VH . JP K(φ(h), η(l))L * L. We have to prove that there exists L′ ∈ ℘(VL)
such that {

〈h, l〉
∣∣ JP K(φ(h), η(l))L ⊆ L

}
= 〈VH , η(L′)〉

Let us define the set L′ def=
{
l ∈ VL

∣∣∀h ∈ VH . JP K(φ(h), η(l))L ⊆ L
}
, we prove

that this L′ is the needed set. Let 〈h, l〉 such that JP K(φ(h), η(l))L ⊆ L, then by
secrecy of L we have that ∀h′ ∈ VH . JP K(φ(h′), η(l))L ⊆ L, therefore, by definition
of L′ and by extensivity of η, we have l ∈ L′ ⊆ η(L′). So 〈h, l〉 ∈ 〈VH , η(L′)〉.
Consider, now, 〈h, l〉 ∈ 〈VH , η(L′)〉, namely l ∈ η(L′). If l ∈ L′, then by definition
we have ∀h ∈ VH . JP K(φ(h), η(l))L ⊆ L.
At this point note that η(L′) = η(

{
l ∈ VL

∣∣∀h ∈ VH . JP K(φ(h), η(l))L ⊆ L
}
), let

us prove that η(L′) = L′. By extensivity we have η(L′) ⊇ L′, suppose, towards
a contradiction, that there exists l′ ∈ η(L′) such that l′ /∈ L′. Then by defini-
tion of L′, ∃h′ ∈ VH such that JP K(φ(h′), η(l′))L * L. Since η is an additive
closure, l′ ∈ η(L′) implies that ∃l′′ ∈ L′ such that l′ ∈ η(l′′), which means that
η(l′) ⊆ η(l′′). So, if JP K(φ(h′), η(l′′))L ⊆ L, then also JP K(φ(h′), η(l′))L ⊆ L, be-
ing JP K(φ(h′), η(l′))L ⊆ JP K(φ(h′), η(l′′))L . But this fact contradicts the hypoth-
esis made, therefore JP K(φ(h′), η(l′))L * L, which is again a contradiction since
l′′ ∈ L′. This means that l′ ∈ η(L′) iff l′ ∈ L′. Therefore, if 〈h, l〉 ∈ 〈VH , η(L′)〉
then JP K(φ(h), η(l))L ⊆ L. Hence,

{
〈h, l〉

∣∣ JP K(φ(h), η(l))L ⊆ L
}

= 〈VH , η(L′)〉,
namely 〈VH , L〉 ∈ CHη

JP Kη,φ(H).

The following example shows how we can use this completeness characterization
of abstract non-interference, in order to derive the most concrete public observer,
which corresponds to the most concrete harmless attacker.

Example 8.6. Consider the following program fragment, with l : L and h : H .

P
def= while h do l := 2l; h := 0 endw JP K(〈h, l〉) =

{
〈h, l〉 if h = 0
〈h, 2l〉 otherwise

We look for the core in order to make 〈H,H〉 complete for the map JP Kid,id = JP K.

CHJP K(H) = H t
{
〈H,L〉

∣∣∣max
{
〈H ′, L′〉

∣∣ JP K(〈H ′, L′〉) ⊆ 〈H,L〉
}
⊆ H

}
=
{
〈Z, L〉

∣∣∣max
{
〈H ′, L′〉

∣∣ JP K(〈H ′, L′〉) ⊆ 〈Z, L〉
}
⊆ H

}
=
{
〈Z, L〉

∣∣∣ { 〈h, l〉 ∣∣∀h ∈ VH . JP K(〈h, l〉)L ⊆ L
} }

=
{
〈Z, L〉

∣∣∀l ∈ VL . l ∈ L ⇔ 2l ∈ L
}

It is straightforward to show that CHJP K(H) is the domain that abstracts the public
data in the domain

b ({
n{2}N

∣∣n ∈ 2Z + 1
})

, where {2}N def=
{

2k
∣∣k ∈ N

}
. Let

H def= CHJP K(H), then, for instance, we have that

H ◦JP K ◦H(〈3, 5〉) = H ◦JP K(Z, 5) = H(〈Z, {5, 10}〉) = 〈Z, 5{2}N〉 and
H ◦JP K(〈3, 5〉) = H(〈Z, {10}〉) = 〈Z, 5{2}N〉

182 8 Abstract Non-Interference: A completeness problem

while we have that

H ◦JP K ◦H(〈3, 5〉) = H ◦JP K(Z, 5) = H(〈Z, {5, 10}〉) = 〈Z, {5, 10}〉 and
H ◦JP K(〈3, 5〉) = H(〈Z, {10}〉) = 〈Z, {10}〉

8.3 The most abstract observable as completeness shell

We are now interested in applying the same construction for characterizing the
most abstract private observable, used for characterizing abstract declassification,
as a solution of a completeness problem in abstract interpretation. Namely, we
are interested in the most abstract property that has to be declassified in order
to guarantee abstract non-interference. By Theorem 8.4, this information can be
obtained by solving the following completeness problem:

Hρ ◦JP Kη,id ◦Hη = Hρ ◦JP Kη,id (8.2)

Lemma 8.7. Let ρ ∈ uco(D), and f : C −→ D. Let x ∈ C and A ∈ ρ ⊆ D, then
f(x) ⊆ A iff ρf(x) ⊆ A.

Proof. If f(x) ⊆ A, then by monotonicity ρf(x) ⊆ ρ(A) = A, since A ∈ ρ. If
ρf(x) ⊆ A, then by extensivity of ρ, f(x) ⊆ ρf(x) ⊆ A.

Lemma 8.8. Let ρ, η ∈ uco(℘(VL)). Then we have

RHρ

JP Kη,id(Hη) = Hη uM(
{ {
〈h, l〉

∣∣ρ(JP K(〈h, η(l)〉)L) ⊆ L
} ∣∣L ∈ ρ } .

Moreover, let R def= RHρ

JP Kη,id(Hη), then for all l, l′ ∈ VL , h, h′ ∈ VH we have

R(〈h, l〉) = R(〈h′, l′〉) iff ρJP K(〈h, η(l)〉)L = ρJP K(〈h′, η(l′)〉)L

Proof. First of all, we want to characterize the complete shell of Hη.

RHρ

JP Kη,id(Hη) = Hη uM(
⋃

Y ∈Hρ
max

{
X ′
∣∣ JP Kid,η(X ′) ⊆ Y

}
)

= Hη uM(
⋃
〈VH ,ρ(L)〉

{
〈h, l〉

∣∣ JP K(〈h, η(l)〉) ⊆ 〈VH , ρ(L)〉
}
)

= Hη uM(
⋃

ρ(L)

{
〈h, l〉

∣∣ JP K(〈h, η(l)〉)L ⊆ ρ(L)
}
)

= Hη uM(
{ {
〈h, l〉

∣∣ JP K(〈h, η(l)〉)L ⊆ L
} ∣∣L ∈ ρ })

= Hη uM(
{ {
〈h, l〉

∣∣ρJP K(〈h, η(l)〉)L ⊆ L
} ∣∣L ∈ ρ })

(By Lemma 8.7)

Now, if 〈h′, l′〉 ∈
{
〈h, l〉

∣∣ρJP K(〈h, η(l)〉)L ⊆ L
}
, then we have ∀l′′ ∈ η(l′). η(l′′) ⊆

η(l′), which implies, by monotonicity, JP K(〈h′, η(l′′)〉)L ⊆ JP K(〈h′, η(l′)〉)L ⊆ L,
therefore

〈h′, l′′〉 ∈
{
〈h, l〉

∣∣ρJP K(〈h, η(l)〉)L ⊆ L
}

8.3 The most abstract observable as completeness shell 183

namely 〈h′, η(l′)〉 ⊆
{
〈h, l〉

∣∣ρJP K(〈h, η(l)〉)L ⊆ L
}
. This simple fact implies that

the reduced product cannot refine the property η on the public data.
Consider now 〈h, l〉 ∈ VH × VL , let L def= ρJP K(〈h, η(l)〉). Then we have that

〈h, l〉 ∈
{
〈h1, l1〉

∣∣ρJP K(〈h1, η(l1)〉)L ⊆ L
}

At this point, if ∃L1 ∈ ρ. 〈h, l〉 ∈
{
〈h1, l1〉

∣∣ρJP K(〈h1, η(l1)〉)L ⊆ L1

}
, then we

have ρJP K(〈h1, η(l1)〉)L = L ⊆ L1 and we obtain{
〈h1, l1〉

∣∣ρJP K(〈h1, η(l1)〉)L ⊆ L
}
⊆
{
〈h1, l1〉

∣∣ρJP K(〈h1, η(l1)〉)L ⊆ L1

}
which implies that the Moore closure doesn’t add new elements containing 〈h, l〉,
namely

R(〈h, l〉) =
{
〈h1, l1〉

∣∣ρJP K(〈h1, η(l1)〉)L ⊆ ρJP K(〈h, η(l)〉)
}
.

Now, if R(〈h, l〉) = R(〈h′, l′〉), for some 〈h′l′〉 ∈ VH × VL , then we have{
〈h1, l1〉

∣∣ρJP K(〈h1, η(l1)〉)L ⊆ ρJP K(〈h, η(l)〉)
}

={
〈h1, l1〉

∣∣ρJP K(〈h1, η(l1)〉)L ⊆ ρJP K(〈h′, η(l′)〉)
}

This implies that 〈h, l〉 ∈
{
〈h1, l1〉

∣∣ρJP K(〈h1, η(l1)〉)L ⊆ ρJP K(〈h′, η(l′)〉)L
}
, i.e.,

it implies ρJP K(〈h, η(l)〉)L ⊆ ρJP K(〈h′, η(l′)〉)L .
On the other hand, 〈h′, l′〉 ∈

{
〈h1, l1〉

∣∣ρJP K(〈h1, η(l1)〉)L ⊆ ρJP K(〈h, η(l)〉)L
}
, i.e.,

ρJP K(〈h′, η(l′)〉)L ⊆ ρJP K(〈h, η(l)〉)L . So ρJP K(〈h′, η(l′)〉)L = ρJP K(〈h, η(l)〉)L . If
ρJP K(〈h′, η(l′)〉)L = ρJP K(〈h, η(l)〉)L , then clearly we have R(〈h, l〉) = R(〈h′, l′〉),
by definition of R.

It is worth noting that, by Lemma 8.8, the partition induced by the complete
shell of Hη on ℘(VH × VL) for Eq. 8.2 does not affect the closure η. This means
that the only component which is actually refined is the abstraction on private
data, and this corresponds to the most abstract partitioning of private data which
can generate insecure information flows. This means that any change between
equivalent elements does not produce insecure flows, as stated in the following
theorem.

Theorem 8.9. Let ρ, η ∈ uco(℘(VL)) then for each l, l′ ∈ VL , h, h′ ∈ VH we have
η(l) = η(l′) = Y ⇒ (R(〈h, l〉) = R(〈h′, l′〉) iff h′ ∈ [h]ΠP (η,ρ)|Y).

Proof. The abstract declassification introduced in Sect. 6.4 considers

ΠP (η, ρ) def=
{
〈
{
h ∈ VH

∣∣ρJP K(〈h, η(l)〉)L = A
}
, η(l)〉

∣∣ l ∈ VL , A ∈ ρ
}

We define the sets ΠP (η, ρ)|Y =
{
X ⊆ VH

∣∣ 〈X,Y 〉 ∈ ΠP (η, ρ)
}
, for each Y ∈ η,

which are partitions of private data. Consider l, l′ ∈ VL such that Y def= η(l) = η(l′).
By Lemma 8.8, R(〈h, l〉) = R(〈h′, l′〉) iff ρJP K(〈h′, η(l′)〉)L = ρJP K(〈h, η(l)〉)L , for
h, h′ ∈ VH . This can be rewritten as ρJP K(〈h′, Y 〉)L = ρJP K(〈h, Y 〉)L . But, by
definition of ΠP (η, ρ)|Y , this holds iff h′ ∈ [h]ΠP (η,ρ)|Y .

184 8 Abstract Non-Interference: A completeness problem

Next examples show how the most abstract private observable, characterizing
abstract declassification, can be obtained as solution of a completeness problem.

Example 8.10. Consider the program fragment:

P
def= l := l ∗ h2

with l : L and h : H . We want to find the shell in order to make 〈H,HPar〉 complete
for the map JP Kid,id = JP K.

RHPar

JP K (H) = H uM
⋃
〈Z,L〉∈HPar

max
{
X ′
∣∣ JP K(X ′) ⊆ 〈Z, L〉

}
= H uM

⋃
L∈Par

{
〈h, l〉

∣∣ JP K(〈h, l〉)L ⊆ L
}

= H uM
⋃

L∈Par

{
〈h, l〉

∣∣h2 ∗ l ∈ L
}

= H uM(
{
〈h, l〉

∣∣h2 ∗ l ∈ 2Z
}
∪
{
〈h, l〉

∣∣h2 ∗ l ∈ 2Z + 1
}
)

= H uM{〈Z, 2〉 ∪ 〈Z, 4〉 ∪ . . . ∪ 〈2Z, 1〉 ∪ 〈2Z, 3〉 ∪ . . . ,
〈2Z + 1, 1〉 ∪ 〈2Z + 1, 3〉 ∪ . . .})

= H uM{〈Z, 2Z〉 ∪ 〈2Z, 2Z + 1〉, 〈2Z + 1, 2Z + 1〉})

= H u
({
〈Z,Z〉, 〈Z, 2Z〉 ∪ 〈2Z, 2Z + 1〉, 〈2Z + 1, 2Z + 1〉,
〈2Z + 1, 2Z〉,∅

})
This means that the reduced product generates also 〈2Z, 2Z + 1〉 and therefore
generates 〈2Z, l〉 for each l ∈ 2Z+1. Let H def= RHPar

JP K (H), then for instance, we have

HPar ◦JP K ◦H(〈2, 3〉) = HPar ◦JP K(〈2Z, 3〉) = 〈Z, 2Z〉 and
HPar ◦JP K(〈2, 3〉) = 〈Z, 2Z〉

while HPar ◦JP K ◦H(〈2, 3〉) = HPar ◦JP K(Z, 3) = 〈Z,Z〉. As in abstract declassifica-
tion, this means that it is the variation of parity of the private input that generates
the flow.

Example 8.11. Consider ρ
def= {Z, 2Z, 4Z, 2Z + 1,∅} and η

def= {Z, 2Z, 5Z, 10Z,∅},
and consider the program fragment

P
def= if (h mod 4) = 0 then l := l ∗ h else l := l ∗ (h+ 1)

Compute, first, the abstract declassification seen in Sect. 6.4:

ΠP (η, ρ) =

〈4Z ∪ 4Z + 3, 10Z〉, 〈4Z + 1 ∪ 4Z + 2, 10Z〉,
〈4Z ∪ 4Z + 3, 5Z〉, 〈4Z + 1, 5Z〉, 〈4Z + 2, 5Z〉,
〈4Z ∪ 4Z + 3, 2Z〉, 〈4Z + 1 ∪ 4Z + 2, 2Z〉,
〈4Z ∪ 4Z + 3,Z〉, 〈4Z + 1,Z〉, 〈4Z + 2,Z〉

Therefore we obtain ΠP (η, ρ)|10Z = ΠP (η, ρ)|2Z = {4Z ∪ 4Z + 3, 4Z + 1 ∪ 4Z + 2}
and ΠP (η, ρ)|5Z = ΠP (η, ρ)|Z = {4Z ∪ 4Z + 3, 4Z + 1, 4Z + 2}. Consider now the
completeness shell:{

〈h, l〉
∣∣ JP K(〈h, η(l)〉)L ⊆ 4Z

}
= 〈4Z ∪ 4Z + 3,Z〉{

〈h, l〉
∣∣ JP K(〈h, η(l)〉)L ⊆ 2Z

}
= 〈Z r 4Z + 2,Z〉 ∪ 〈4Z + 2, 2Z〉{

〈h, l〉
∣∣ JP K(〈h, η(l)〉)L ⊆ 2Z + 1

}
= ∅

8.4 Adjoining observer and observable properties 185

Then we have:

RHρ

JP K(Hη) = Hη uM ({〈〈Z r 4Z + 2,Z〉 ∪ 〈4Z + 2, 2Z〉, 4Z ∪ 4Z + 3,Z〉})

= Hη ∪

〈Z r 4Z + 2,Z〉 ∪ 〈4Z + 2, 2Z〉, 〈4Z ∪ 4Z + 3,Z〉,
〈Z r 4Z + 2, 5Z〉 ∪ 〈4Z + 2, 10Z〉, 〈4Z ∪ 4Z + 3, 5Z〉,
〈4Z ∪ 4Z + 3, 2Z〉, 〈4Z ∪ 4Z + 3, 10Z〉

For instance, consider 5, 9 ∈ 4Z +1, 6, 10 ∈ 4Z +2, and note that η(10) = η(30) =
10Z, and η(5) = η(15) = 5Z. Note that, 5 and 6 are in the same equivalence
class in the partition induced by ΠP (η, ρ)|10Z, written 5 ∈ [6]10Z, and indeed
R(〈5, 10〉) = R(〈6, 30〉) = 〈Z, 10Z〉 ∈ Hη. While 5 ∈ [9]5Z 6= [6]5Z, namely the
partition induced by ΠP (η, ρ)|5Z distinguishes 5 and 6, while 5 is together with 9
and 6 is together with 10, i.e., 10 ∈ [6]5Z. On the other hand, we have

R(〈5, 5〉) = R(〈9, 15〉) = 〈Z r 4Z + 2, 5Z〉 ∪ 〈4Z + 2, 10Z〉

and
R(〈6, 5〉) = R(〈10, 15〉) = 〈Z, 5Z〉 ∈ Hη

8.4 Adjoining observer and observable properties

Modeling attackers means characterizing which is the maximal power of an harm-
less attacker, i.e., an attacker which is not able to disclose confidential information.
Declassification, instead, means characterizing which is the information revealed
to a fixed attacker. As we have seen in the previous sections, the model of the most
concrete harmless attacker corresponds to the most concrete public observer, while
abstract declassification is characterized by the most abstract private observable.
Clearly there is a strong relation between these two notions, since the more power-
ful is attacker and the less confidential information can be kept private. Therefore,
it is intuitively clear that there is a balance between public observers and private
observables, i.e., between attack models and declassification. In other words, the
index of the partition of private data for declassification is proportional to the
cardinality of the abstract domain which models the precision of the property
that the attacker can observe. This phenomenon can be precisely characterized in
the lattice of abstract interpretations as an adjunction. In Fig. 8.1 we provide a
graphical representation of the relation existing between the most concrete prop-
erty modeling the public observer and the most abstract property modeling the
private observable. In particular, this picture represents the fact that the more
powerful is the attacker, i.e., the more concrete is the observer property, the less
confidential information can be kept private, i.e., the more concrete is the private
observable. In particular, in Fig. 8.1 we also show that, if the arrow represents the
most abstract private observable, then when we declassify a confidential property
which lays in the white area we cannot guarantee the secrecy of the program,
since we are declassifying less than what is released by the semantics. While when

186 8 Abstract Non-Interference: A completeness problem

we declassify a property in the filled area, then we guarantee that no confidential
information leakage may happen. Moreover, note that, even if the attacker is able
to observe the value of public variables, then the observable property can be more
abstract then the identity since the program itself can behave as a firewall for
certain confidential properties, such as the square operation hides the sign.

The most concrete observer

The most abstract observable

Declassification

Secure

id

> id

Fig. 8.1. Public observer vs confidential observable

In Section 8.2 and 8.3 we proved that both problems can be viewed as instances
of the problem of making abstract interpretations complete. While the private
observable for declassification is obtained by computing the completeness shell, the
public observer, modeling the attacker, is obtained by computing the completeness
core in the same completeness problem. These abstract domain transformers have
been proved in [65] to be adjoint functions (see Sect. 2.2.4) on the lattice of abstract
interpretations. The following result is therefore a consequence of Theorem 8.5 and
8.9.

Theorem 8.12. Let η ∈ uco(℘(VL)) be a disjunctive property, and P a program.
Then we have that id @ (η)JP K (id []id) ⇔ P(uL∈ηM(ΠP (η, id)|L)) @ >.

Proof. First of all, note that id @ (η)JP K (id []id) is equivalent to saying Hid @
CHη

JP Kη,id(Hid), by Th. 8.5. In Sect. 2.2.4 we showed that C`,η
f (ρ) A ρ ⇔ η A R`,ρ

f (η),

therefore we have Hid @ C
Hη

JP Kη,id(Hid) if and only if Hη A RHid

JP Kη,id(Hη). But this last

inequality holds if and only if the partition induced by RHid

JP Kη,id(Hη) (see Th. 8.9)
is strictly more concrete than the >.

8.5 Discussion 187

This theorem tells us that the more we abstract the public observer, in order to
guarantee non-interference, and the more we can concretize the information kept
secret.

8.5 Discussion

In this chapter, we formalize the duality existing between the derivation of the
most concrete public observer, and of the most abstract private observable, as
adjunction in the algebra of abstract domain transformers. This result provides
a precise mathematical framework where declassification and attack models can
be systematically derived and compared with each other in the lattice of abstract
interpretations by applying well known methods for abstract domain design. This
framework can be the basis for applying quantitative methods and metrics [16] for
measuring the amount of information leaked relatively to a given attack model,
or by adjunction, the precision of an attacker under the hypothesis that some
information can be declassified. This framework can also be particularly interesting
when JϕK is the semantics of a temporal formula ϕ in the µ-calculus on a transition
system T = 〈Σ,→〉. In this case, abstract non-interference corresponds to prove
that the property ϕ on some public states is not affected by varying the private
ones. Because also bisimulation is a problem of (forward) completeness, as proved
in [102], abstract non-interference on temporal logic boils down to bisimulation in
a (adjoint) system, such that 〈Σ, 〉, where s s′ iff s→ s1 and for all s′ 6= s1:
s 6→ s′. This result proves a strong link between proving abstract non-interference
and proving strong preservation in abstract model checking. Moreover, abstract
non-interference can be used in regression testing by typing program variables
according to code update: when new code is added to existing code, regression
testing verifies that the existing code continues to work correctly. The impact of
this observation in security protocols and in regression testing deserves further
investigations.

9

Timed Abstract Non-Interference

The true knowledge is daughter of experience,

and experience is mother of any knowledge.

Leonardo da Vinci

The notion of abstract non-interference introduced so far, based on denota-
tional semantics compares computations observing simply the results of the compu-
tations, without considering any other possible external observation, i.e., without
taking into account any possible covert channel. Unfortunately, there are many
other aspects of the computation that an attacker may observe in order to get
some confidential information. One of these aspects is the time elapsed during the
computation. Consider for example the following program fragment:

P
def= while h do l := l;h := h− 1 endw

In this case, the public output is always the same, independently from the initial
value of h. Anyway, if the attacker can measure the time elapsed, then it could un-
derstand whether the while is executed or not, disclosing some information about
the initial value of h. This means that, in this case, the program is not secure, even
if our notion of abstract non-interference, such as the standard non-interference,
would say that the program guarantees secrecy. The problem is that abstract non-
interference is time insensitive, since the semantics used doesn’t consider time. We
would like to extend the notion of abstract non-interference, in order to model also
the case when the attacker is able to observe timing channels, namely when it is
able to measure the time elapsed during the computation of programs. Let us con-
sider standard imperative languages, where time cannot be modified or used by the
system during the computation, as it happens, for example, in real-time systems.
We obtain this generalization of abstract non-interference including time by con-
cretizing the semantics used. A first approach consists in considering the maximal
trace semantics, instead of the denotational one, since the trace semantics compare

190 9 Timed Abstract Non-Interference

the partial results at each step of computation. Indeed, the trace semantics implic-
itly embeds the time elapsed during computations in the length of traces. A more
general approach consists in considering an operational semantics that stores also
the time elapsed during the execution of each statement. In this case we consider
this time information as a public datum, i.e., that can be observed by the attacker.
Once, that we have a timed notion of abstract non-interference, we are interested
in characterizing the relation between proving abstract non-interference with and
without time. This would provide the conditions characterizing the attackers whose
capability of observing time does not increase their power in disclosing confiden-
tial information about data. In other words, we characterize in which conditions
timed abstract non-interference, where attackers observe time, implies abstract
non-interference, where the same attackers cannot observe time.
In this chapter, we introduce a notion of abstract non-interference which capture
timing channels, called timed abstract non-interference. This notion provides the
appropriate setting for studying how properties, of private data, interfere during
the execution of the program, with properties of the elapsed time. On the other
hand, in this context, we do not consider how properties of the time elapsed during
program execution interfere with properties of data, since we do not consider here
real-time system, where time interferes in the execution of a system. We define a
timed notion of abstract non-interference by concretizing the semantics, in par-
ticular we first introduce abstract non-interference on traces, which can capture
timing channels, since the length of traces corresponds to a discretization of the
elapsed time. A more precise definition of timed abstract non-interference can be
obtained by enriching the operational semantics of Imp in order to measure the
elapsed time. We prove that it is always possible to transform the model of an
attacker in order to characterize the closest one, with respect to the standard or-
dering between abstractions [31], that guarantees independence between data and
time. This gives a model of the optimal harmless attacker which, by observing
time elapsed, is unable to enrich its observational capabilities on data. Finally,
since manipulation of data is independent from time, we observe that there can-
not be timing channels whenever also time is independent from manipulation of
data. In both the approaches to timed abstract non-interference we characterize
the relations between the timed and the untimed notion, and moreover we provide
the conditions on the attacker model which make these two notions comparable.
This section is based on the unpublished paper [56].

9.1 The timed semantics for a deterministic language

In the following, we consider a simple imperative language, Imp introduced in
Sect. 4.2.1, with the only difference that, here, we want to analyze also the elapsed
time. Therefore, we enhance the operational semantics given in Table 4.3, by con-
sidering states that are pairs: one component is the standard representation of

9.2 Timed abstract non-interference on traces 191

〈nil, 〈s, t〉〉 −→ 〈s, t〉
〈e, 〈s, t〉〉 −→ n ∈ Vx

〈x := e, 〈s, t〉〉 −→ 〈s[n/x], t + tA 〉

〈c0, 〈s, t〉〉 −→ 〈s0, t0〉, 〈c1, 〈s0, t0〉〉 −→ 〈s1, t1〉

〈c0; c1, 〈s, t〉〉 −→ 〈s1, t1〉

〈x, 〈s, t〉〉 −→ 0

〈while x do c endw, 〈s, t〉〉 −→ 〈s, t + tT 〉

〈x, 〈s, t〉〉 −→ n ≥ 1, 〈c, 〈s, t〉〉 −→ 〈s0, t0〉,
〈while x do c endw, 〈s0, t0〉〉 −→ 〈s1, t1〉
〈while x do c endw, 〈s, t〉〉 −→ 〈s1, t1 + tT 〉

Table 9.1. Operational timed semantics of Imp

the memory (the standard notion of state), while the other component is a non-
negative number denoting the elapsed time. This new semantics is given in Ta-
ble 9.1, where s ∈ Σ, t ∈ N and tA , tT ∈ N are constant values denoting respectively
the time spent for an assignment and for a test. As before, if |Var(P)| = n and
Σ = Vn is the set of values for the variables, then the states in the concrete se-
mantics are Σ̂ def= Σ × N, namely a state is a pair composed by a tuple of values
for the variable and by a natural value representing the time passed from the be-
ginning of the execution. The operational semantics naturally induces a transition
relation on a set of states Σ, denoted −→, specifying the relation between a state
and its possible successors. In order to define the maximal trace semantics in this
context where states store also information about the elapsed time, we start from
the tree model of a program P , i.e., {|P |}, and we derive its trace semantics as an
abstraction of this model (see Sect. 4.1.2). Namely, the maximal trace semantics
[33] of a transition system associated with a program P is 〈|P |〉 def= αT ({|P |}). We
use the same notation used in Sect. 4.1.2 extended to states with time, therefore
if σ̂ ∈ 〈|P |〉+ def= αT ({|P |}+), then σ̂a and σ̂` denote respectively the final and ini-
tial state of σ̂. The denotational semantics associates input/output functions with
programs, by modeling non-termination by ⊥, and it is derived from the maximal
trace semantics with abstraction αD (see Tab. 4.1). Note that, since our programs
are deterministic, αD(X)(ŝ) is always a singleton. It is well known that we can
associate, inductively on its syntax, with each program P ∈ Imp a function JP K
denoting its input/output relation, such that JP K def= αD(〈|P |〉).

9.2 Timed abstract non-interference on traces

One of the most important features of abstract non-interference is that it is para-
metric on the chosen semantics. This means that we can enrich/change the checked

192 9 Timed Abstract Non-Interference

notion of abstract non-interference for imperative languages simply by enrich-
ing/changing the considered semantics. For this reason, the idea for making ab-
stract non-interference time sensitive, namely able to detect timing channels, is
to consider a more concrete semantics observing time. The first approach consists
in considering the maximal trace semantics, instead of the denotational one, since
the trace semantics compare the partial results at each step of computation. In-
deed, the trace semantics implicitly embeds the time elapsed during computations
in the length of traces since we can suppose that the time is measured as the
discrete number of computational steps executed by the system. This observation
suggests us that the trace semantics can be used for defining a stronger notion of
non-interference that capture also timing channels. Therefore, we assume that we
can have a timing channel in presence of an attacker that can count the number
of execution steps, which means that the attacker observes time by looking at the
program counter.

In Sect. 6.5.1 we introduced a notion of abstract non-interference based on
the trace semantics. The semantics that we obtain so far distinguishes traces that
differ only for the repetition of states, namely it models also the timing channels
due to the capability of the attacker of observing the clock of the program. In order
to check this further kind of non-interference we consider another abstraction of
the semantics. First of all we have to consider the safety abstraction of the trace
semantics, which add all the prefixes of the traces [72]: 〈|P |〉safe = αsafe(〈|P |〉ρ)
where αsafe(X) =

{
δ
∣∣ δ 4 σ, σ ∈ X }

, where 4 is the prefix relation between
traces. This is clearly an abstraction of the power domain of traces. At this point,
in order to check narrow non-interference we can consider the following steps of
abstractions.

αD
i (X) = λs.

{
σa
∣∣σ ∈ X, |σ| = i+ 1, σ` = s

}
αD (X) =

{
αD

i (X)
∣∣∣ 0 < i < max

{
|σ|
∣∣σ ∈ X } }

then we denote by JP Ksafe
i

def= αD
i (〈|P |〉safe) and therefore, we denote by JP Ksafe

the abstract semantics αD (〈|P |〉safe) = {JP Ksafe
i |0 < i < max{|σ| |σ ∈ 〈|P |〉safe}}.

Moreover, if JP Ksafe
i (s) = s′ then we write s 7→i s

′. Now we can formalize the
abstract non-interference for timing channels in the following way:

P is secure for timed abstract non-interference if ∀h1, h2 ∈ VH ,∀l ∈ VL .

∀i . ρ(JP Ksafe
i (φ(h1), η(l))L) = ρ(JP Ksafe

i (φ(h2), η(l))L).

The interesting aspect of this extension is that we can apply the transformers de-
fined on abstract non-interference simply by considering the approximation based
on bounded iteration (see Sect. 6.3.3). Bounded iteration, in fact, proves I/O non-
interference by requiring a stronger condition, i.e., it requires that all the partial
computations provide the same public output.

At this point, since we observed that the simple use of traces makes abstract
non-interference time sensitive, we could wonder how we can obtain a notion

9.2 Timed abstract non-interference on traces 193

of abstract non-interference on traces which is time-insensitive. Therefore, we
want to derive a trace semantics which is not able to observe the clock, namely
we have to make indistinguishable traces that differ only for the repetition of
states. This is a known notion in literature called stuttering [3], indeed a se-
mantics is said to be without stuttering if it is insensitive to the repetition of
states. Namely we can think of transforming the set of traces that gives seman-
tics to the program by eliminating the stuttering and then we can check non-
interference exactly as we have done before. Let X be a property on traces σ.
Then X is safety without stuttering (also called stuttering) if it is safety and if
σ ∈ X .σ = σ0σ1 . . . σn . . . then ∀i ≥ 0 . σ0 . . . σiσi . . . ∈ X. It is straightforward to
show that the following abstraction, which characterizes the stuttering properties,
is an abstraction of sets of traces [55]. Then 〈|P |〉stu = αstu(〈|P |〉safe) where

αstu(X) =
{
〈σ0, . . . , σn〉

∣∣∣∣∃δ ∈ X . δ = 〈σk0
0 . . . , σkn

n 〉,
∀i . ki ∈ N r {0}, σi 6= σi+1

}
Therefore, we can check abstract non-interference on traces for attacker that can-
not observe time elapsed, by considering the abstraction αD as above. We denote
by JP Kstui

def= αD
i (〈|P |〉stu) and therefore

JP Kstu def= αD (〈|P |〉stu) =
{

JP Kstui

∣∣∣ 0 < i < max
{
|σ|
∣∣∣σ ∈ 〈|P |〉stu } } .

Moreover, if JP Kstui (s) = s′ then we also write s 7→i s
′. Now we can formalize

abstract non-interference in the following way:

P is secure for abstract non-interference if ∀h1, h2 ∈ VH ,∀l ∈ VL .

∀i . ρ(JP Kstui (φ(h1), η(l))L) = ρ(JP Kstui (φ(h2), η(l))L).

Example 9.1. We show now the differences between the semantics described above.
Consider the following trace semantics of a program P , with states 〈h, l〉, consider
n ∈ N and m ∈ 2N + 1:

〈|P |〉 = {〈0, 2〉 −→ 〈0, 3〉 −→ 〈0, 5〉, 〈n, 2〉 −→ 〈0, 2〉 −→ 〈0, 3〉, 〈n,m〉 −→ 〈n,m+1〉}

Consider the property ρ = Par. We want to determine the abstract trace semantics
relatively to Par:

〈|P |〉Par = αPar(〈|P |〉) = {〈0, 2N〉 −→ 〈0, 2N + 1〉 −→ 〈0, 2N + 1〉,
〈n, 2N〉 −→ 〈0, 2N〉 −→ 〈0, 2N + 1〉, 〈n, 2N + 1〉 −→ 〈n, 2N〉}

At this point, we can compute the abstract denotational semantics by using the
known abstraction:

JP KPar = αD(〈|P |〉Par) = {2N 7→ 2N + 1, 2N + 1 7→ 2N}

such that the standard non-interference on it is narrow non-interference on the
concrete semantics. Let us introduce, now, the time. We have first to compute the
safety abstraction:

194 9 Timed Abstract Non-Interference

〈|P |〉safe = αsafe(〈|P |〉Par) = {〈0, 2N〉, 〈0, 2N〉 −→ 〈0, 2N + 1〉,
〈0, 2N〉 −→ 〈0, 2N + 1〉 −→ 〈0, 2N + 1〉, 〈n, 2N〉, 〈n, 2N〉 −→ 〈0, 2N〉,
〈n, 2N〉 −→ 〈0, 2N〉 −→ 〈0, 2N + 1〉, 〈n, 2N + 1〉, 〈n, 2N + 1〉 −→ 〈n, 2N〉}

namely the semantics for checking non-interference is:

JP Ksafe = αD (〈|P |〉safe) = {〈0, 2N〉 7→1 〈0, 2N + 1〉, 〈0, 2N〉 7→2 〈0, 2N + 1〉,
〈n, 2N〉 7→1 〈0, 2N〉, 〈n, 2N〉 7→2 〈0, 2N + 1〉, 〈n, 2N + 1〉 7→1 〈n, 2N〉}

From this semantics we note that when we start with an even low variable, then we
have interference (in general it can be both security and deceptive interference).
Now, if we want to guarantee non-interference knowing that the attacker cannot
observe the time elapsed, then we use the stuttering abstraction, obtaining:

〈|P |〉stu = αstu(〈|P |〉safe) = {〈0, 2N〉, 〈0, 2N〉 −→ 〈0, 2N + 1〉,
〈n, 2N〉 −→ 〈0, 2N + 1〉, 〈n, 2N + 1〉, 〈n, 2N + 1〉 −→ 〈n, 2N〉}

Finally, we find the denotational abstraction, which is

JP Kstu = αD (〈|P |〉stu) = {〈0, 2N〉 7→1 〈0, 2N + 1〉, 〈n, 2N〉 7→1 〈0, 2N + 1〉,
〈n, 2N + 1〉 7→1 〈n, 2N〉}

In this case, we note that there’s not interference, since for each abstract property
we have only one possible result.

9.3 Timed abstract non-interference in sequential systems

A more general way for concretizing the semantics in order to make abstract non-
interference time sensitive, is to consider timed denotational semantics JP K+T as
introduced in Sect. 9.1.
Consider transition systems where the states contain the information of time. In
this way, we explicitly treat time in abstract non-interference, which means that
we could use languages where time can interfere in the flow of computation.
Let us consider Σ̂, where the low input is in general a pair where the first com-
ponent is a tuple of possible values for low variables, and the second one is the
time passed, i.e., l̂ = 〈l, t〉. We denote by l̂D = l ∈ VL the projection on the
data component, and l̂T = t ∈ N the projection on the time component. There-
fore, in the following a state σ̂ will be the triple 〈sH , sL , t〉. The initial states
are of the kind σ̂ = 〈si, 0〉, since we suppose to start measuring time when the
computation starts. With these premises we can formulate the standard notion
of non-interference without timing channels. In the following we will denote by
JP K+T the denotational semantics measuring time, obtained by using the rules in
Table 9.1.

A program P is secure if ∀v ∈ VL , t ∈ N,∀v1, v2 ∈ VH .

(JP K+T (〈v1, v, 0〉))L T = (JP K+T (〈v2, v, 0〉)L T

9.3 Timed abstract non-interference in sequential systems 195

Consider the closure ρ ∈ uco(℘(Σ̂L T)) where Σ̂L T = VL × N. In the following,
we assume η, ρ ∈ uco(℘(VL × N)) and φ ∈ uco(℘(VH)). We can therefore define
the notions of narrow and abstract timed non-interference. In order to distin-
guish the timed notions from the ones introduced before, when a program satisfies
timed narrow or abstract non-interference we write respectively [η]P+T (ρ) and
(η)P+T (φ []ρ).

Definition 9.2.

• A program P ∈ Imp is such that [η]P+T (ρ) if ∀h1, h2 ∈ VH ,∀l̂1, l̂2 ∈ VL ×{0}
such that η(l̂1)L = η(l̂2)L ⇒ ρ(JP K+T (〈h1, l̂1〉)L T) = ρ(JP K+T (〈h2, l̂2〉)L T).

• A program P ∈ Imp is such that (η)P+T (φ []ρ) if ∀h1, h2 ∈ VH , ∀l̂ ∈ VL ×{0}
we have ρ(JP K+T (〈φ(h1), η(l̂)L 〉)L T) = ρ(JP K+T (〈φ(h2), η(l̂)L 〉)L T).

It is clear that the only difference between these notions and the untimed ones
is in the semantics, therefore we can inherit, in a straightforward way, the whole
construction made in the previous sections, simply by considering the time as a
further public datum. In particular this allows us to derive the most concrete
property, about time, that an harmless attacker can observe, as we can see in the
following example.

Example 9.3. Let us consider a really simple example:

P
def= h := h mod 4; while h do l := 2l − l;h := h− 1; endw

with security typing t = 〈h : H , l : L 〉 and VL = N. Let us consider the trace
semantics where each state is 〈h, l, t〉. Consider l ∈ VL and h ∈ VH , h 6= 0:

〈0, l, 0〉 −→ 〈0, l, tA 〉 −→ 〈0, l, tA + tT 〉
〈h, l, 0〉 −→ 〈h mod 4, l, tA 〉 −→ 〈(h mod 4)− 1, l, 3tA + tT)〉

−→ 〈0, l, 2(h mod 4)tA + (h mod 4 + 1)tT)〉

Therefore, if for example h mod 4 = 2 then the total time is 4tA + 3tT . This
means that the most concrete abstraction of the domain of time that avoids timing
channels is the one that have the element {tA + tT , 2tA +2tT , 4tA +3tT , 6tA +4tT }
and abstracts all the other natural numbers in themselves.

Now that we have defined abstract non-interference for the timed denota-
tional semantics, we would like to understand the relation existing with ab-
stract non-interference. Our aim is to compare abstract non-interference defined
in terms of standard denotational semantics, with timed non-interference, in order
to study the relation existing between these two models. Starting from closures
η, ρ ∈ uco(℘(VL)) without time, the extension to semantics with time is trivially
obtained by taking the closure that is not able to observe anything about time,
i.e., we interpret a generic closure η ∈ uco(℘(VL)) as the closure that is not able
to observe time, therefore that abstracts time to the top: η+T = 〈η, λt. N〉. It is
worth noting that [η]P (ρ) ⇔ [η+T]P+T (ρ+T). In other words, since time can

196 9 Timed Abstract Non-Interference

be treated as an additional public variable, we could see abstract non-interference
as timed abstract non-interference where the time variable is abstracted to the
top. Unfortunately, if we start from a semantics with time and we want to de-
rive abstract non-interference properties without time, then the relation is not so
immediate. Indeed, if time interferes with data we have that the abstraction of
time is not straight. Clearly, time cannot interfere with data in the concrete se-
mantics for the simple imperative language we are considering, but it can interfere
in the abstract semantics modeling the attacker. In other words, when we con-
sider timed abstract non-interference, the attacker model could observe relations
between data and time, avoiding the independent abstraction of time. Namely if
we abstract time we may lose something about the attacker’s observation of data.
Therefore, if we start from closure operators on semantics with time, namely from
the closures η, ρ ∈ uco(℘(VL × N)), we can obtain properties without time in two
ways. We can think of erasing the observation of time only in the output, i.e., we
abstract away the information about time, or we can think of collecting all the
possible results for every possible time value. In this way, we are able to ignore
the information about time also in the input.

In the following, we characterize some necessary and sufficient conditions on
the attacker model, that indeed make timed abstract non-interference stronger
than abstract non-interference, and therefore the two notions comparable.

Abstracting time in the output.

Consider the first case, namely we do not observe time in the output. Let us define
the projection, of a pair X ∈ ℘(VL × N), on data (first component) or on time
(second component) in the following way:

ΠT (X) def=
{
〈x, y〉

∣∣∃y′ ∈ N . 〈x, y′〉 ∈ X, y ∈ N
}

ΠD (X) def=
{
〈x, y〉

∣∣∃x′ ∈ N . 〈x′, y〉 ∈ X, x ∈ VL
}

In particular, given a closure ρ ∈ uco(℘(VL ×N)), we can apply these abstractions
to ρ obtaining

ΠT (ρ)
def=
{
ΠT (X)

∣∣X ∈ ρ } and ΠD (ρ)
def=
{
ΠD (X)

∣∣X ∈ ρ }
Proposition 9.4.
ΠT ∈ uco(℘(VL × N)) and ΠD ∈ uco(℘(VL × N)).

Proof. We prove the fact only for ΠT , since the other proof is analogous. In order
to prove the thesis we have to show that ΠT is extensive, monotone and idempo-
tent. By definition we have that ΠT (X) def=

{
〈x, y〉

∣∣∃y′ ∈ N . 〈x, y′〉 ∈ X, y ∈ N
}
,

therefore if 〈x, y〉 ∈ X, then we have ∀z ∈ N . 〈x, z〉 ∈ ΠT (X), which means that in
particular 〈x, y〉 ∈ ΠT (X), proving thatΠT is extensive. Let us prove monotonicity.
Consider X,Y ∈ ℘(VL ×N) such that X ⊆ Y . Let 〈x, y〉 ∈ ΠT (X), this means that

9.3 Timed abstract non-interference in sequential systems 197

there exists y′ ∈ N such that 〈x, y′〉 ∈ X and y ∈ N. SinceX ⊆ Y , we have also that
〈x, y′〉 ∈ Y , which implies that 〈x, y〉 ∈

{
〈x, y〉

∣∣∃y′ ∈ N . 〈x, y′〉 ∈ Y, y ∈ N
}

=
ΠT (Y). Namely ΠT (X) ⊆ ΠT (Y). Finally let’s prove idempotence. First of all, note
that ΠT (ΠT (X)) ⊇ ΠT (X), by extensivity of ΠT (X). Let 〈x, y〉 ∈ ΠT (ΠT (X)), by
definition there exists y′ ∈ N such that 〈x, y′〉 ∈ ΠT (X) and y ∈ N. By defini-
tion of ΠT (X), this implies that ∀z ∈ N . 〈x, z〉 ∈ ΠT (X), therefore in particular
〈x, y〉 ∈ ΠT (X). We proved in this way that ΠT (ΠT (X)) ⊆ ΠT (X), and therefore
the equality, which is idempotence.

It is clear that the set ΠT (ρ) is the set of the images of the map ΠT ◦ρ. Note
that, even if both ΠT (or ΠD) and ρ are closure operator, then their composition
may not be a closure operator, as we can see in the picture below, where we have
〈2,N〉 /∈ ΠT (ρ).

〈2, 0〉
〈3, 0〉 〈3, N〉

〈2, N〉
〈5, 3〉
〈2, 4〉

⊥

>

〈5, N〉
〈2, N〉

>

⊥

〈2, N〉

ΠT (ρ)

Since in general ΠT ◦ρ is not an upper closure operator, we define the closures
ρ−T def=M(ΠT (ρ)) and ρ−D def=M(ΠD (ρ)).

Proposition 9.5. Let η ∈ uco(℘(VL × N)), then we have that both η−T and η−D

are closures, i.e., η−T ∈ uco(℘(VL)) and η−D ∈ uco(℘(N)).

The fact that in general we have ρ−T 6= ΠT (ρ) and ρ−D 6= ΠD (ρ) is a problem
when we want to compare timed non-interference with abstract non-interference
since elements that have the same image in ρmay be different in ρ−T , and viceversa
as we can see in the picture below.

〈3, 0〉
〈2, 0〉 〈3, N〉

〈2, N〉
〈5, 3〉
〈2, 4〉

⊥

>

〈5, N〉
〈2, N〉

>

⊥

〈2, N〉

ρ−T

〈2, 0〉 〈3, 0〉〈3, 0〉 〈2, 4〉〈2, 0〉〈2, 4〉

So, we would like to characterize when the two notions are comparable. The
picture above shows that problems arise when the Moore closure adds new points,
namely when ΠT (ρ) is not a closure. Therefore, we first want to understand when

198 9 Timed Abstract Non-Interference

this is an upper closure operator, namely when ΠT ◦ρ ∈ uco(℘(VL × N)). It is
well known in literature [93] that, given two closures ρ, π ∈ uco(C), then we have
π ◦ρ ∈ uco(C) iff π ◦ρ = ρ ◦π = ρ t π. This means that we need a ρ such that
ΠT ◦ρ = ρ ◦ΠT . At this point, we can note that if two closure commute then one
is complete as regards the other and viceversa, for both forward and backward
completeness.

Lemma 9.6. Let ρ, π ∈ uco(C), the following facts are equivalent:

1. ρ ◦π = π ◦ρ;
2. π ◦ρ = π ◦ρ ◦π (backward completeness);
3. ρ ◦π = π ◦ρ ◦π (forward completeness).

Proof. (1) ⇔ (2) Consider ρ ◦π = π ◦ρ, then π ◦ρ ◦π = π ◦π ◦ρ = π ◦ρ by hy-
pothesis and idempotence of π. Namely we proved that ρ ◦π = π ◦ρ ⇒
π ◦ρ = π ◦ρ ◦π. Consider now π ◦ρ = π ◦ρ ◦π. First of all, note that
ρ ◦π ≤ π ◦ρ ◦π = π ◦ρ by extensivity of π and by the hypothesis, there-
fore ρ ◦π ≤ π ◦ρ (∗). Moreover note that π ◦ρ ≤ ρ ◦π ◦ρ by extensivity of ρ,
and π ◦ρ = π ◦ρ ◦ρ ≥ ρ ◦π ◦ρ by idempotence of ρ and by (∗). Therefore we
proved that π ◦ρ = ρ ◦π ◦ρ (∗∗). At this point note that π ◦ρ is monotone and
extensive, since composition of monotone and extensive maps. Let us prove
that it is also idempotent.

π ◦ρ = ρ ◦π ◦ρ (by the property (∗∗))
≤ π ◦ρ ◦π ◦ρ (by extensivity of π)

On the other hand:

π ◦ρ ◦π ◦ρ ≤ π ◦ρ ◦π ◦ρ ◦π (by monotonicity)
= π ◦π ◦ρ ◦π (by the property (∗∗))
= π ◦ρ ◦π (by idempotence of π)
= π ◦ρ (by the hypothesis)

Therefore we proved that π ◦ρ ◦π ◦ρ = π ◦ρ, namely that π ◦ρ is idempotent.
This also proves that π ◦ρ ∈ uco(C) that by [93] implies that π ◦ρ = ρ ◦π.

(1) ⇔ (3) Consider ρ ◦π = π ◦ρ, then π ◦ρ ◦π = ρ ◦π ◦π = ρ ◦π by hypothesis
and idempotence of π. Namely we proved that ρ ◦π = π ◦ρ ⇒ ρ ◦π =
π ◦ρ ◦π. Consider now ρ ◦π = π ◦ρ ◦π. First of all note that π ◦ρ ≤ π ◦ρ ◦π =
ρ ◦π by monotonicity of π ◦ρ and by the hypothesis, therefore ρ ◦π ≥ π ◦ρ
(∗). Moreover note that ρ ◦π ≤ ρ ◦π ◦ρ by monotonicity of ρ ◦π, and ρ ◦π =
ρ ◦ρ ◦π ≥ ρ ◦π ◦ρ by idempotence of ρ and by (∗). Therefore we proved that
ρ ◦π = ρ ◦π ◦ρ (∗∗). At this point note that ρ ◦π is monotone and extensive,
since composition of monotone and extensive maps. Let us prove that it is also
idempotent.

ρ ◦π = ρ ◦π ◦ρ (by the property (∗∗))
≤ ρ ◦π ◦ρ ◦π (by monotonicity of ρ ◦π ◦ρ)

9.3 Timed abstract non-interference in sequential systems 199

On the other hand:

ρ ◦π ◦ρ ◦π ≤ π ◦ρ ◦π ◦ρ ◦π (by extensivity of π)
= π ◦ρ ◦π ◦π (by the property (∗∗))
= π ◦ρ ◦π (by idempotence of π)
= ρ ◦π (by the hypothesis)

Therefore we proved that ρ ◦π ◦ρ ◦π = ρ ◦π, namely that ρ ◦π is idempotent.
This also proves that ρ ◦π ∈ uco(C) that by [93] implies that π ◦ρ = ρ ◦π.

Therefore we have the following result.

Theorem 9.7. Let ρ ∈ uco(℘(VL × N)), then ρ−T = ΠT ◦ρ ∈ uco(℘(VL × N))
iff ΠT ◦ρ ◦ΠT = ρ ◦ΠT iff ΠT ◦ρ ◦ΠT = ΠT ◦ρ. Analogously ρ−D = ΠD ◦ρ ∈
uco(℘(VL × N)) iff ΠD ◦ρ ◦ΠD = ρ ◦ΠD iff ΠD ◦ρ ◦ΠD = ΠD ◦ρ.

In [65] it is provided a method for transforming ΠT in order to make it satisfy
ΠT ◦ρ ◦ΠT = ρ ◦ΠT and ΠT ◦ρ ◦ΠT = ΠT ◦ρ. However, since in this context the
variable closure is ρ, we are more interested in modifying ρ in order to make
it satisfy the given relations. In particular, this can be easily done for forward
completeness.
Let X ∈ {T , D }, consider the following transformations of ρ satisfying forward
completeness, and, consider Π+

X
(X) def=

⋃{
Y
∣∣ΠX(Y) ⊆ X

}
which is well defined

since ΠX is additive:

ρ↑X(Y) def=
{
ΠX ◦ρ(Y) if Y ∈ ΠX

ρ(Y) otherwise
ρ↓X(Y) def=

{
Π+

X
◦ρ(Y) if Y ∈ ΠX

ρ(Y) otherwise

Then we have that ρ↓X v ρ v ρ↑X . This transformation tells us that we can always
transform the abstractions, used for modeling the attacker, is order to guarantee
that the abstraction of time is a complete upper closure operator. Namely, given
a generic ρ we always have that (ρ↓X)−T and (ρ↑X)−T are closure operators. For this
reason we can suppose to consider closures η and ρ such that η−T and ρ−T are
closures, and therefore we can, in general write:

[η]P+T (ρ) ⇔ [η−T]P+T (ρ−T)

where [η−T]P+T (ρ−T) is narrow abstract non-interference (without time) for a
semantics with time. The following results prove the relation existing between
timed narrow abstract non-interference and narrow non-interference, as introduced
in the previous sections.

Lemma 9.8. ΠT ◦ρ 6= ρ ◦ΠT implies ρ(X) = ρ(Y) 6⇒ ρ−T (X) = ρ−T (Y) and
ρ−T (X) = ρ−T (Y) 6⇒ ρ(X) = ρ(Y).

Proof. Suppose that ΠT ◦ρ 6= ρ ◦ΠT , this means that ΠT ◦ρ 6= ρ−T . We prove
that for each X ΠT ◦ρ(X) ⊇ ρ−T (X). Consider 〈x, y〉 ∈ ρ−T (X), this means that

200 9 Timed Abstract Non-Interference

∃z ∈ N . 〈x, z〉 ∈ ρ(X). But ΠT is extensive, therefore 〈x, z〉 ∈ ΠT ◦ρ(X). By the
properties of ΠT , this implies that ∀w ∈ N . 〈x,w〉 ∈ ΠT ◦ρ(X), and therefore in
particular 〈x, y〉 ∈ ΠT ◦ρ(X). Namely for each X we have ΠT ◦ρ(X) ⊆ ρ−T (X),
namely ΠT ◦ρ w ρ−T . Since the two closure are different, there exists an element
X such that ΠT ◦ρ(X) (ρ−T (X). This means that ∃〈x, y〉 ∈ ΠT ◦ρ(X) such
that 〈x, y〉 /∈ ρ−T (X). This implies that ∀z ∈ N . 〈x, z〉 /∈ X. On the other hand
〈x, y〉 ∈ ΠT ◦ρ(X) implies that ∀z ∈ N . 〈x, z〉 ∈ ΠT ◦ρ(X), which implies that
∃〈x,w〉 ∈ ρ(X). By what we observed above we have also that 〈x,w〉 /∈ X, therefore
X 6= ρ(X). Let Y = ρ(X), we have hence that ρ(X) = ρ(Y) But ρ−T (Y) =
ΠT ◦ρ(X) 6= ρ−T (X).
We prove now that ∃X,Y such that ρ−T (X) = ρ−T (Y) but ρ(X) 6= ρ(Y). If all
the fix points of ρ would be of the kind

⋃
〈x,N〉, then ΠT ◦ρ = ρ ∈ uco(℘(VL ×N))

which is absurd. Therefore there exists X ∈ ρ such that ∃x ∈ VL such that
〈x, y1〉 ∈ X and 〈x, y2〉 /∈ X, for some y1, y2 ∈ N, y1 6= y2. But this means that
ρ(〈x, y1〉) 6= ρ(〈x, y2〉) since otherwise if ρ(〈x, y1〉) = ρ(〈x, y2〉) then 〈x, y2〉 ⊆
ρ(〈x, y2〉) = ρ(〈x, y1〉) ⊆ X, which is absurd for the hypothesis made on X. On
the other hand we have ρ−T (〈x, y1〉) = ρ−T (〈x, y2〉) =

⋂{
X
∣∣X ⊇ 〈x,N〉 }.

The following theorem says that the semantics for the timed notion of ab-
stract non-interference is an abstract interpretation of the one for abstract non-
interference with ρ−T iff the output observation ρ commutes with ΠT

Theorem 9.9. Let η, ρ ∈ uco(℘(VL ×N)), then ([η]P+T (ρ) ⇒ [η−T]P+T (ρ−T))
if and only if we have (ΠT ◦ρ = ρ ◦ΠT).

Proof. Consider η, ρ ∈ uco(℘(VL ×N)) and a program P with time. In the following
we will denote by π the closure ΠT .

(⇐) We have to prove that [η]P+T (ρ) implies [η−T]P+T (ρ−T). Namely, we
prove that η(l̂1)L = η(l̂2)L ⇒ ρ(JP K(〈h1, l̂1〉)L T) = ρ(JP K(〈h2, l̂2〉)L T)
implies abstract non-interference with time, i.e., η−T (l̂1) = η−T (l̂2) ⇒
ρ−T (JP K(〈h1, l̂1〉)L T) = ρ−T (JP K(〈h2, l̂2〉)L T). It’s worth noting that η−T (l̂1) =
η−T (l̂2) implies η(l̂1)L = η(l̂2)L . Therefore, we prove that ρ(JP K(〈h1, l̂1〉)L T) =
ρ(JP K(〈h2, l̂2〉)L T) implies ρ−T (JP K(〈h1, l̂1〉)L T) = ρ−T (JP K(〈h2, l̂2〉)L T). By
the hypothesis we have ΠT ◦ρ = ρ ◦ΠT , namely 1ΠT ◦ρ = ρ−T , consider now
X,Y ∈ ℘(VL ×N), then ρ(X) = ρ(Y) implies ΠT (ρ(X)) = ΠT (ρ(X)), namely
ρ−T (X) = ρ−T (Y). Therefore we have the wanted implication.

(⇒) Let us prove that if ΠT ◦ρ 6= ρ ◦ΠT then timed non-interference doesn’t imply
the abstract one. By Lemma 9.8 this implies that ∃X,Y ∈ ℘(VL × N) such
that ρ(X) = ρ(Y) 6⇒ ρ−T (X) = ρ−T (Y), and therefore, for what we said
above, in general we have that timed non-interference does not imply abstract
one.

Note that, adding time in abstract non-interference adds also new deceptive
flows, indeed if the abstraction of the output is a property considering relations

9.3 Timed abstract non-interference in sequential systems 201

between time and data, then timed abstract non-interference may fail even if the
program is secure and avoid timing channels, as it happens in the following exam-
ple.

Example 9.10. In this example, we show that in the timed abstract non-interference
we add new deceptive flows due to the possible relation between data and time
of the abstract property. Consider a property ρ such that ρ(〈8, 5〉) 6= ρ(〈6, 5〉) (as
depicted in the picture on the left, below) and η = 〈Par, id〉, which observes parity
of data and the identity on time.

>

〈1, N〉

>

⊥

〈2N, N〉

〈8, 5〉 〈6, 5〉〈8, 5〉〈6, 5〉

⊥

〈6, 5〉, 〈1, 2〉 〈2N, N〉〈8, 5〉, 〈3, 4〉
〈2N r {8}, 1〉

〈2N, N〉
〈2N r {6}, 3〉 〈3, N〉

ρ
ρ−T

Consider the program fragment

P : h := 2; while h do l := l + 2; h := h− 1; endw

Suppose tT = 1 and tA = 0, 5. Consider the initial low values (data and time)
〈4, 0〉 and 〈2, 0〉, clearly we have η(〈4, 0〉) = 〈2N, 0〉 = η(〈2, 0〉). We have now to
compute the semantics:

JP K(0, 〈4, 0〉)L T = 〈8, 3tT + 4tT 〉 = 〈8, 5〉

On the other hand
JP K(0, 〈2, 0〉)L T = 〈6, 5〉

At this point, since ρ(〈8, 5〉) 6= ρ(〈6, 5〉), non-interference is not satisfied, while
there aren’t timing information flows, namely ρ−T (〈8, 5〉) = ρ−T (〈6, 5〉).

We conclude this section with a theorem that shows in which conditions timing
channels are impossible in a given program.

Theorem 9.11. If ρ commutes with ΠT , i.e., ΠT ◦ρ = ρ ◦ΠT , and [η−T]P+T (ρ−T)

iff [η]P+T (ρ), then timing channels are impossible in P .

Proof. By Theorem 9.9 we have that, if ρ commutes with ΠT , i.e., ΠT ◦ρ = ρ ◦ΠT ,
then [η]P+T (ρ) implies [η−T]P+T (ρ−T). We show that, if [η−T]P+T (ρ−T) ⇒
[η]P+T (ρ), then timing channels are impossible. Indeed if this implication holds, it
means that ρ−T (X) = ρ−T (Y) ⇒ ρ(X) = ρ(Y). Namely ΠT ◦ρ(X) = ΠT ◦ρ(Y),
which means that ∀x ∈ VL 〈x,N〉 ∈ ΠT ◦ρ(X) iff 〈x,N〉 ∈ ΠT ◦ρ(Y). This also
means that ∀x ∈ V .∃y1, y2 ∈ N such that 〈x, y1〉 ∈ ρ(X) iff 〈x, y2〉 ∈ ρ(Y). But
the fact that ρ(X) = ρ(Y) implies also that 〈x, y1〉 ∈ ρ(X) iff 〈x, y1〉 ∈ ρ(Y) and
therefore there are not timing channels.

202 9 Timed Abstract Non-Interference

Abstracting time in the input.

As we said above we can think of another way of erasing time, this is also suggested
by the fact that we have two possible compositions of a closure with the projection
ΠT : ΠT ◦ρ and ρ ◦ΠT , which are the same when they are closures. Anyway, the
meaning of them is different, the first compute the property with time and ab-
stract the observation, while the second abstracts time in the input value, namely
compute the property on the abstracted value, without time. Let L ⊆ VL , this
second composition allows us to determine a closure on ℘(VL) in the following
way: ρ−T (L) def= ↓D ◦ρ ◦ΠT (〈L,N〉), where 〈L,N〉 def= {〈x, y〉|x ∈ L, y ∈ N} and the
abstraction ↓D is the projection of the tuple on data, i.e., ↓D (X) def= {x|〈x, y〉 ∈ X}.

In the following, we provide some results that allow to characterize when the
composition ↓D ◦ρ ◦ΠT is an upper closure operator. This is important in order to
derive property of narrow or abstract non-interference without time in programs
where the semantics measures time, and therefore for understanding the relation
existing between the notions of abstract non-interference with and without time.

Lemma 9.12. Let η ∈ uco(℘(VL × N)). For each L ∈ ℘(VL) the following facts
are equivalent:

• ↓D ◦η ◦ΠT ◦η(〈L,N〉) =↓D ◦η ◦ΠT (〈L,N〉)
• ↓D ◦η ◦ΠT (〈L,N〉) =↓D ◦ΠT ◦η(〈L,N〉)
• ↓D ◦η ◦ΠT =↓D ◦ΠT ◦η ◦ΠT .

Proof. Let us denote, for simplicity, π def= ΠT :

(1) ⇔ (2) (⇐) Trivial by idempotence of η.
(⇒) Note that ↓D ◦π ◦η(〈L,N〉) ⊆ ↓D ◦η ◦π ◦η(〈L,N〉) =↓D ◦η ◦π(〈L,N〉) (*),
by extensivity of η and by hypothesis. Moreover, we have ↓D ◦η ◦π(〈L,N〉) ⊆
↓D ◦π ◦η ◦π(〈L,N〉), by extensivity of π, while, we have that ↓D ◦η ◦π(〈L,N〉) =
↓D ◦η ◦π ◦π(〈L,N〉), by idempotence of π. Since ∀L ∈ ℘(VL) we have
π(〈L,N〉) = (〈L,N〉), property (∗) holds and therefore ↓D ◦η ◦π ◦π(〈L,N〉) ⊇
↓D ◦π ◦η ◦π(〈L,N〉). Then we proved ↓D ◦η ◦π(〈L,N〉) = ↓D ◦π ◦η ◦π(〈L,N〉),
therefore ↓D ◦η ◦π(〈L,N〉) = ↓D ◦π ◦η ◦π(〈L,N〉) = ↓D ◦π ◦η(〈L,N〉).

(2) ⇔ (3) The proofs comes trivially by the fact that π(〈L,N〉) = 〈L,N〉.

Proposition 9.13. ρ−T ∈ uco(℘(VL)) iff ∀L ∈ ℘(VL). ↓D ◦ρ ◦ΠT (〈L,N〉) =
↓D ◦ΠT ◦ρ(〈L,N〉), i.e., ↓D ◦ΠT ◦ρ ◦ΠT =↓D ◦ρ ◦ΠT .

Proof. Let us denote π def= ΠT . Let us prove monotonicity. Consider L1, L2 ∈ ℘(VL)
such that L1 ⊆ L2. Then we have that 〈L1,N〉 ⊆ 〈L2,N〉 and since η ◦π is mono-
tone being composition of monotone maps, we have:

η−T (L1) =↓D ◦η ◦π(〈L1,N〉) ⊆↓D ◦η ◦π(〈L2,N〉) = η−T (L2)

Let us prove extensivity. Consider L ∈ ℘(VL), then we can show that in general
η−T (L) =↓D ◦η ◦π(〈L,N〉) ⊇ L. Finally let us consider idempotence. Suppose that
the two closure commutes:

9.3 Timed abstract non-interference in sequential systems 203

η−T ◦η−T (L) = ↓D ◦η ◦π(〈↓D ◦η ◦π(〈L,N〉),N〉)
(∗) = ↓D ◦η ◦π ◦η ◦π(〈L,N〉)

= ↓D ◦η ◦π ◦η(〈L,N〉)
= ↓D ◦η ◦π(〈L,N〉) (by Lemma 9.12)
= η−T (L)

where X↓D
def= ↓D (X) and the equality (∗) holds since it is trivial to check that,

if X ∈ ℘(VL × N), π(〈X ↓D,N〉) = π(X). On the other hand if the closure is
idempotent, then the equalities above implies that the two closures commute.

Lemma 9.14. ↓D ◦ρ ◦π ◦ρ 6=↓D ◦ρ ◦π implies ρ(X) = ρ(Y) 6⇒ ρ−T (X ↓D) =
ρ−T (Y ↓D) and ρ−T (X↓D) = ρ−T (Y ↓D) 6⇒ ρ(X) = ρ(Y).

Proof. Suppose ↓D ◦ρ ◦π ◦ρ(X) 6=↓D ◦ρ ◦π(X) for some X ∈ ℘(VL ×N). Consider
Y

def= ρ(X), then ρ(X) = ρ(Y). Note that ρ−T (X ↓D) = ↓D ◦ρ ◦π(〈X ↓D,N〉) =
↓D ◦ρ ◦π(X). Similarly ρ−T (Y ↓D) = ↓D ◦ρ ◦π(Y). Therefore, if ρ−T (X ↓D) =
ρ−T (Y ↓D) then we obtain ↓D ◦ρ ◦π(X) =↓D ◦ρ ◦π(Y) =↓D ◦ρ ◦π ◦ρ(X) which
is absurd.
Consider now Y = π(X), then we have ρ−T (X ↓D) = ρ−T (Y ↓D). Suppose,
towards a contradiction, that ρ(X) = ρ(Y), i.e., ρ(X) = ρ ◦π(X) (*). Then
↓D ◦ρ ◦π ◦ρ(X) =↓D ◦ρ ◦π ◦ρ ◦π(X) =↓D ◦ρ ◦π(X) for the relation (*) and for
what we proved in Proposition 9.13.

The following theorem says that the semantics for the timed notion of ab-
stract non-interference is an abstract interpretation of the one for abstract non-
interference with ρ−T iff the data projection commutes on elements closed under
ΠT .

Theorem 9.15. Consider η, ρ ∈ uco(℘(VL × N)) and η−T , ρ−T ∈ uco(℘(VL)),
↓D ◦ΠT ◦η =↓D ◦η ◦ΠT , then we have [η]P+T (ρ) ⇒ [η−T]P (ρ−T) if and only if
↓D ◦ρ ◦ΠT =↓D ◦ρ ◦ΠT ◦ρ.

Proof. Consider η, ρ ∈ uco(℘(VL × N)), a program P with time, and π def= ΠT .

(⇐) Note that

η−T (l) =↓D ◦η ◦π(〈l,N〉) =↓D ◦η ◦π(〈l, 0〉) =↓D ◦π ◦η(〈l, 0〉) = η(〈l, 0〉)L ,

since ↓D ◦π ◦η =↓D ◦η ◦π. This means that the premixes are the same. We
prove that, η(l1, 0)L = η(l2, 0)L ⇒ ρ(JP K(h1, l1, 0)L T) = ρ(JP K(h2, l2, 0)L T)
implies ρ−T (JP K(h1, l1)L) = ρ−T (JP K(h2, l2)L). We prove something stronger,
namely we prove that ρ(X) = ρ(Y) implies ρ−T (X ↓D) = ρ−T (Y ↓D) for any
X,Y ∈ ℘(VL × N).

ρ−T (X↓D) =↓D ◦ρ ◦π(〈X↓D,N〉)
=↓D ◦ρ ◦π(X) =↓D ◦ρ ◦π ◦ρ(X)
=↓D ◦ρ ◦π ◦ρ(Y) =↓D ◦ρ ◦π(Y)
=↓D ◦ρ ◦π(〈Y ↓D,N〉)
= ρ−T (Y ↓D)

204 9 Timed Abstract Non-Interference

noting that X↓D= XL if X ∈ ℘(VL × N).
(⇒) Let us prove that if ↓D ◦ρ ◦π ◦ρ 6=↓D ρ ◦π then timed non-interference doesn’t

imply abstract non-interference. By Lemma 9.14 this implies that there exist
X,Y ∈ ℘(VL × N) such that ρ(X) = ρ(Y) 6⇒ ρ−T (X) = ρ−T (Y), and there-
fore, for what we said above, in general we have that timed non-interference
does not imply abstract one.

Non-relational attackers.

A sufficient condition, in order to make the non-interference notions comparable,
consists in considering only closures defined on ℘(VL)×℘(N), which are particular
closures of ℘(VL × N). These two domains are related by the Galois insertion
α : ℘(VL ×N) −→ ℘(VL)× ℘(N) and γ : ℘(VL)× ℘(N) −→ ℘(VL ×N) defined as
follows:

α(X) def= 〈
{
x
∣∣ 〈x, y〉 ∈ X }

,
{
y
∣∣ 〈x, y〉 ∈ X }

〉 def= 〈X↓D, X↓T〉
γ(〈X,Y 〉) def=

{
〈x, y〉

∣∣x ∈ X, y ∈ Y }
Proposition 9.16. Consider ρ ∈ uco(℘(A)×℘(B)), then there exist two closures
ρA ∈ uco(℘(A)) and ρB ∈ uco(℘(B)) such that ρ = 〈ρA, ρB〉, namely such that
∀〈X,Y 〉 ∈ ℘(A)× ℘(B). ρ(〈X,Y 〉) = 〈ρA(X), ρB(Y)〉.

Proof. Consider ρ ∈ uco(℘(A)× ℘(B)), and the closure ρA
def=
{
X
∣∣ 〈X,Y 〉 ∈ ρ },

on the first component, and the closure ρB
def=
{
Y
∣∣ 〈X,Y 〉 ∈ ρ } on the second

one. We first show that these domains are Moore families respectively of ℘(A) and
of ℘(B). Consider X1, X2 ∈ ρA, then by definition there exist Y1, Y2 ∈ B such that
〈X1, Y1〉, 〈X2, Y2〉 ∈ ρ. But ρ is a closure, therefore 〈X1, Y1〉 ∩ 〈X2, Y2〉 ∈ ρ. But
we have that 〈X1, Y1〉 ∩ 〈X2, Y2〉 ∈ ρ = 〈X1 ∩X2, Y1 ∩ Y2〉 and therefore we have
X1 ∩X2 ∈ ρA. Analogously we can prove that also ρB is a Moore family. At this
point it is trivial to verify that ρ(〈X,Y 〉) = 〈ρA(X), ρB(Y)〉.

Note that each closure on ℘(VL)×℘(N) is an abstraction of γ ◦α(℘(VL ×N), since
it has its fix points in the domain ℘(VL)×℘(N)). Consider ρ ∈ uco(℘(VL)×℘(N))),
we can obtain a closure ρ∗ ∈ uco(℘(VL × N)) in the following way: ρ∗ def= γ ◦ρ ◦α.

Proposition 9.17. Let ρ ∈ uco(℘(VL) × ℘(N)), consider ρ∗ ∈ uco(℘(VL × N))
defined ρ∗ def= γ ◦ρ ◦α, then we have ΠT ◦ρ∗ = ρ∗ ◦ΠT and ΠD ◦ρ∗ = ρ∗ ◦ΠD .

Proof. Let us prove the thesis only with ΠT , the other proof is similar. Consider
X ∈ ℘(VL ×N) and ρ ∈ uco(℘(VL)×℘(N)) such that ρ(〈X,Y 〉) = 〈ρD (X), ρT (Y)〉:

ΠT ◦ρ∗(X) = ΠT ◦γ ◦ρ(〈X↓D, X↓T〉) = ΠT ◦γ(〈ρD (X↓D), ρT (X↓T〉)
= ΠT (

{
〈x, y〉

∣∣x ∈ ρD (X↓D), y ∈ ρT (X↓T))
}

=
{
〈x, y〉

∣∣x ∈ ρD (X↓D), y ∈ N
}

9.4 Discussion 205

On the other hand we have

ρ∗ ◦ΠT (X) = γ ◦ρ ◦α(
{
〈x, y〉

∣∣x ∈ X↓D, y ∈ N
}
)

= γ ◦ρ(〈X↓D,N〉) = γ(〈ρD (X↓D),N〉) =
{
〈x, y〉

∣∣x ∈ ρD (X↓D), y ∈ N
}

Therefore, by Theorem 9.9 and Theorem 9.15, this means that in the conditions
of the Proposition above, timed abstract non-interference implies abstract non-
interference.
This is only a sufficient condition, since there are closures ρ /∈ uco(℘(VL)× ℘(N)
such that ΠT ◦ρ = ρ−T or ΠD ◦ρ = ρ−D . We can see an example in the following
picture, where we denote by 〈n,N〉 def=

{
〈n,m〉

∣∣m ∈ N
}
.

ΠT ◦ρ
ρ

〈4, 5〉
〈5, 6〉

〈2, 3〉
〈3, 4〉

〈4, N〉
〈5, N〉

〈2, N〉
〈3, N〉

〈4, N〉
〈5, N〉

〈2, N〉
〈3, N〉

>

>

⊥

⊥

In particular in the example above we can also note that ΠT ◦ρ = ΠT t ρ.

9.4 Discussion

In this chapter, we extend abstract non-interference in order to check even timing
channels, namely those channels of informations created by the capability of the
attacker to observe the time elapsed during computation. We obtain, in this way
the notion of timed abstract non-interference, which is based on a trace semantics
observing time, and considers time as a public variable. Afterwards, we study
the relation between this new notion and the abstract non-interference defined in
the previous chapters. This is the last example, in this thesis, that shows how,
changing the semantics, we can change the enforced notion of non-interference.
In the same way, we would like to define a probabilistic abstract non-interference,
where we can also check probabilistic channels and where it would be interesting to
check non-interference considering also properties of the probabilistic distribution
of values.

Enriching of the semantics is not sufficient in order to cope with notions of
non-interference defined on systems different from imperative languages, such as
process algebras and timed automata. This also because the given notion of non-
interference is based on the notion of variable, that is significant only in pro-
gramming languages, and uses denotational semantics, that cannot model all the

206 9 Timed Abstract Non-Interference

computational systems. Moreover, in literature, there exist different notions of non-
interference that model the confidentiality problem in systems modeled by finite
state automata. In particular, while when considering the semantics, we allow the
private to interfere with the public as long as this interference is not visible observ-
ing the output, in process algebras, for example, non-interference is not violated
when private actions do not interfere with the sequence of public actions at all. In
order to define a uniform setting for defining abstract non-interference in different
computational systems we have to further abstract our point of view, obtaining
the generalized abstract non-interference introduced in the following chapter.

10

Generalized Abstract Non-Interference

The real voyage of discovery consists not in seeking new lands,

but in seeing with new eyes.

Marcel Proust

In the previous chapters, the notion of abstract non-interference has been in-
troduced only for imperative programs, modeled by using a denotational or a trace
semantics and where the security policy states that information about the initial
values of private variables has not to be revealed through the observation of the
output of public variables. Clearly non-interference is a more general notion and
can be applied in any system where there is a distinction between two (or more)
classes of users, and one class has not to interfere with the others [69]. Indeed, as
we have seen in Chap. 5, non-interference has been defined in different ways and
for different systems. The problem is that all these notions are not comparable
and share only the intuitive definition of non-interference, being based on differ-
ent computational systems. In particular, in the previous chapters, we describe
non-interference by using the notion of variable, but clearly we cannot speak of
variables when we consider computational systems different from programming
languages, such as process algebras or timed automata. In this case, the notion of
non-interference has been defined by considering actions and by saying that the
sequence of visible/public actions has not to be altered by the execution of private
actions [47,12]. More precisely, the notion of non-interference generally used in this
kind of systems says that the computations where private actions are hidden have
to be equivalent (w.r.t. some given relation) to the computations where private
actions are avoided .

In order to describe all these notions of non-interference in the same formalism
we have, first, to find a model of computation that allows to describe all these
computational systems. For this reason, we note that in sequential systems the
private actions are the actions of writing on the private memory, i.e., the actions

208 10 Generalized Abstract Non-Interference

of modifying private variables, while the public actions are the actions of reading
the public memory, i.e., of reading of public variables’ values. Clearly, in this case,
the private actions have also a qualitative aspect which is the value written in
the memory. For this reason, the requirement that the executions where high-level
actions are hidden have to be the same as the executions where high-level actions
are avoided, would be clearly too strong. In particular, this would mean that, if we
take the program P , and we erase all the statements that execute a private action
(i.e., modify a private variable), then we obtain a slice of the original program.
This exactly means that all the low-level actions do not depend on the high-level
ones. When observing values, this is too strong since we can admit that the ob-
server knows that the private memory has been modified unless it is not able to get
information about the initial value of private memory. For this reason, in sequen-
tial systems, we consider the abstract non-interference as introduced in Sect. 6.1.

At this point, in order to consider a more general setting, we decide to model
also programs with labeled transition systems, as described in Sect. 4.1.1. There-
fore, the model that we are going to use for modeling generic computational sys-
tems are labeled transition systems and the corresponding computational trees. By
considering this new context, we prove that abstract non-interference introduced
in Sect. 6.1 can be generalized in order to cope with many well-known models
of secrecy in sequential, concurrent and real-time systems and languages. This is
achieved by factoring abstractions in order to identify sub-abstractions modeling
the different properties of the system on which the notions of non-interference
are based. Abstract interpretation [28] and the theory of abstract domain trans-
formers [31, 61] plays a key role in this generalization: The abstraction represents
here both what an attacker may observe about a computation (as in abstract
non-interference) and which aspects of the computation are relevant for check-
ing non-interference, depending on the specific notion of non-interference that we
have to enforce. Therefore, non-interference corresponds to asking that the behav-
ior of the chosen relevant aspects of the computation is independent from what
an attacker may observe. In particular, we consider three abstractions: The first
decides the model of computation for which we are defining non-interference, e.g.,
denotational semantics; The second decides which aspects of computations the
attackers can observe, e.g., the computations where private actions are avoided;
Finally, the third one, decides the observational capability of the attacker. By com-
posing these three abstractions we obtain generalized abstract non-interference
(shortly GANI). At this point, we prove that both narrow and abstract non-
interference are instances of this generalized abstract non-interference. Then we
prove that NNI (Non-deterministic Non-Interference), SNNI (Strong NNI), NDC
(Non-Deducibility on Compositions), BNDC (Bisimulation NDC), BNNI (Bisimu-
lation NNI), and BSNNI (Bisimulation SNNI) in [47] (see Sect. 5.3.3) for Security
Process Algebras (SPA), are all instances of GANI. Finally, we prove that decidable
notions of non-interference introduced for timed automata in [12] (see Sect. 5.3.4)

10.1 Generalized Abstract Non-Interference 209

are again instances of GANI. In all these constructions, the model of an attacker
is specified as an abstract interpretation of the system semantics. This is a key
point in order to introduce systematic methods for deriving attackers by trans-
forming abstract domains. We generalize the method introduced in Sect. 6.3 to
derive harmless attackers for GANI, i.e., abstractions of the semantics of systems
which guarantee non-interference. This section is based on the unpublished paper
[53].

10.1 Generalized Abstract Non-Interference

In this section, we introduce a generalization of abstract non-interference, called
generalized abstract non-interference (shortly GANI), which subsumes many of
the known notions of non-interference based on tree-like computations and au-
tomata. Abstract interpretation plays a key role in this generalization: The ab-
straction represents here both what an attacker may observe about a computation
(as in abstract non-interference) and which aspects of the computation are rel-
evant for checking non-interference, aspects determined by the specific notion of
non-interference that we have to enforce on the system. Non-interference corre-
sponds to asking that relevant aspects of the private computation have no effects
on what an attacker may observe of the computation. Moreover, what an attacker
may observe is indeed composed by two aspects: what the particular notion of
non-interference allows to observe, and what effectively the attacker can observe.
We consider, as concrete semantics the tree semantics defined in Sect. 4.1, denoted
as {| · |}. Let us consider a system P and its semantics {|P |}. We define generalized
non-interference by using three abstractions, each one with a specific and precise
meaning, depending on the given notion of non-interference, and depending on the
attacker model. The notion of non-interference decides two of these abstractions:

αOBS: The first abstraction αOBS abstracts the computational tree, modeling the
system, in the model used in the notion of non-interference that has to be
enforced. For instance, if we want to check standard non-interference for im-
perative programming languages, then, given a program, αOBS corresponds to
the abstraction that derives the denotational semantics from the computa-
tional tree modeling the program. We call this abstraction the observation
abstraction.

αINT The second abstraction is αINT, which characterizes, in the given notion of
non-interference, which should be the maximal amount of information that
an attacker may observe. For example, if we have to check non-interference
in Spa, then we want the computations where private actions are hidden to
be equivalent to the computations where private actions are avoided. Namely
the set of all the computations where private actions are avoided should be
the maximal information that the attacker can observe, therefore in this case
αINT selects only those computations where private actions are not executed.

210 10 Generalized Abstract Non-Interference

This abstraction, called interference abstraction, forgets about all information
which should not be observed by an attacker.

These two abstractions tells us that, in general, non-interference holds whenever
the amount of information that an attacker can grasp from a computation is pre-
cisely what, for the given notion of non-interference, that attacker can observe
about it.
Finally, we have to model the observational capability of the attacker, for this
reason we consider a further abstraction αATT, called the attacker abstraction,
which characterizes what the model of the attacker can observe about the sys-
tem behavior. By using these three abstractions we define generalized abstract
non-interference in the following equation, where P is a system.

αATT ◦αOBS({|P |}) = αATT ◦αINT ◦αOBS({|P |})
This equation says that, in the model chosen by αOBS, the maximal information
that the attacker is allowed to observe, determined by αATT ◦αINT, is exactly what
the attacker does observe, determined by αATT. We show that this is a very gen-
eral formalization and that many of the known notions of non-interference can be
obtained as instances of this definition. In Fig. 10.1 we have a graphical represen-
tation of the equation above.

({|P |})αATT αOBS αATT αOBS αINT ({|P |})

αOBS

αINT
({|P |})

{|P |}

αATT

αINT αOBS

αATT

({|P |})αOBS

=

Fig. 10.1. The global picture.

10.1.1 Deriving GANI attackers

The advantage of specifying different notions of non-interference for sequential,
concurrent and timed systems as GANI relies upon the possibility offered by ab-
stract interpretation to systematically derive abstractions. As observed in Sect. 6.3,
deriving abstractions in abstract non-interference corresponds precisely to derive
models of attackers. In this section, we generalize this construction to GANI.

Let P be a system and consider the observation, interference, and attacker ab-
stractions for non-interference: αOBS, αINT and αATT, such that the system P is not

10.1 Generalized Abstract Non-Interference 211

secure. As we said, αOBS and αINT depend on the definition of non-interference that
we choose, while αATT depends on what we decide to observe about the computa-
tion. Therefore, if non-interference is not satisfied, i.e., the system is not secure
under the chosen notion of non-interference, then we can think of further abstract-
ing the attacker abstraction in order to achieve security. The resulting abstraction
provides a certificate of the security level of the system P with respect to the
fixed observation and interference abstractions. In order to find the most concrete
abstraction αATT that makes equal the sets αATT ◦αOBS and αATT ◦αINT ◦αOBS we have
to merge elements in both sets in order to make them containing the same new
abstract objects.

It is worth noting that the definition of GANI in general is characterized by
a possibilistic interpretation of equality. This means that in order to make GANI
hold, it is sufficient that the sets of abstract objects resulting from the abstractions
are the same. This is in general a possibilistic definition and it doesn’t provide a
criterion for collecting elements of these sets in order to make their abstraction
the same. On the other hand, from the notion of abstract non-interference seen
in Sect. 6.1, we know that all the computations with the same public input has
to provide the same results. In this case, there is a clear criterion for collecting
elements in order to build the abstraction: we have to abstract in the same object
all the elements resulting from computations that differ only for private inputs.
We want to find a similar construction for GANI. We can think of generalizing the
construction collecting elements that share a common maximal partial execution.
Consider the tree of computations {|A|} of the system A. Recall that when the
system A fails GANI, we have αATT ◦αOBS({|A|}) ≤ αATT ◦αINT ◦αOBS({|A|}).

A system A is secure if ∀σ ∈ αINT ◦αOBS({|A|}),∀δ ∈ αOBS({|A|}) .
δ 4max σ ⇒ αATT(δ) = αATT(σ)

where the relation 4max, specifies the maximal subtree which δ shares with σ.
The definition above clearly, depends on the subtree relation 4. Consider the tree
σ ∈ αINT ◦αOBS({|A|}) and consider δ ∈ αOBS({|A|}): δ 4max σ if

∃π 4 δ . π 4 σ ∧ ∀π′ 6= π . π 4 π′ 4 δ,∀σ′ ∈ αINT ◦αOBS({|A|}) then π′ 64 σ′

Note that the security condition given above is in general stronger than GANI. It
is clear that, at this point, we can define a family of generalized non-interferences,
depending on how we define the relation 4max, with the constraint that the defi-
nition for sequential systems has to collapse to abstract non-interference. We use
the relation above for defining the sets of objects that need to have the same
abstraction in order to achieve secrecy: ∀σ ∈ αINT ◦αOBS({|A|})

Υ (σ) = [σ] def=
{
δ ∈ αOBS({|A|})

∣∣ δ 4max σ
}

Example 10.1. Consider a system A, and suppose that

αOBS({|A|}) = {1→ 2→ 3, 1→ 2→ 4, 1→ 3→ 2}
αINT ◦αOBS({|A|}) = {1→ 2→ 3, 1→ 3→ 2}

212 10 Generalized Abstract Non-Interference

then we have that [1→ 2→ 3] = {1 → 2 → 3, 1 → 2 → 4} and [1→ 3→ 2] =
{1→ 3→ 2}. If, instead, we have that

αOBS({|A|}) = {1→ 2→ 4, 1→ 2→ 3, 1→ 5→ 3, 3→ 5→ 4,
1→ 2→ 5, 1→ 3→ 2, 3→ 2→ 1}

αINT ◦αOBS({|A|}) = {1→ 2→ 3, 1→ 3→ 2, 3→ 2→ 1}

therefore [1→ 2→ 3] = {1 → 5 → 3, 1 → 2 → 3, 1 → 2 → 4} and [1→ 3→ 2] =
{1→ 5→ 3, 1→ 3→ 2}. Finally, [3→ 2→ 1] = {3→ 2→ 1, 3→ 5→ 4}. These
sets represent what we have to abstract into a unique abstract element in order to
achieve GANI.

The definition above is based on the observation that if a computation has a
maximal partial computation in common with what can be surely observed by the
attacker, then it is in those points, where the common partial computations end,
that some private action has interfered in the computation. Similarly to what we
have done in Sect. 6.3, we define the set D{|A|} collecting all computations that
may induce a failure of secrecy, and the set Irr{|A|}, collecting all computations for
which secrecy cannot fail.

D{|A|} =
{

[σ]
∣∣σ ∈ αINT ◦αOBS({|A|})

}
Irr{|A|} =

{
X
∣∣∀σ ∈ αINT ◦αOBS({|A|}) . X /∈ ↑([σ])

}
The predicate Secr{|P |} defined on programs P , is now generalized to any compu-
tational system A:

Secr{|A|}(X) iff ∀σ ∈ αINT ◦αOBS({|A|}) . (∃Z ∈ [σ] . Z ⊆ X ⇒ ∀W ∈ [σ] . W ⊆ X)

By the construction in Sect. 6.3, we can prove that S{|A|} def=
{
X
∣∣Secr{|A|}(X)

}
is the most concrete abstraction that enforces the notion of GANI to hold, w.r.t.
the relation 4max.

Theorem 10.2. S{|A|} is the most concrete abstract domain such that, given a
system A, then ∀σ ∈ αINT ◦αOBS({|A|}),∀δ ∈ αOBS({|A|}) . δ 4max σ ⇒ S{|A|}(δ) =
S{|A|}(σ).

Proof. The proof that S{|A|} is a Moore family comes directly from the definition
of Secr{|A|} and it is straightforward.
Let us prove that S{|A|} satisfies the given notion of non-interference. By con-
struction it is composed only by secret sets. Consider σ ∈ αATT ◦αINT ◦αOBS({|A|}),
and δ ∈ [σ], clearly we have that S{|A|}(δ) ⊇ [σ] and S{|A|}(σ) ⊇ [σ] since
they are both secret. We have to prove that they are the same. Suppose that
S{|A|}(δ) + S{|A|}(σ), then σ * S{|A|}(δ) (otherwise, by monotonicity and idem-
potence we would have S{|A|}(δ) ⊇ S{|A|}(σ)) and δ ⊆ S({|A|})(δ) by extensivity,
therefore we have an absurd since S({|A|})(δ) is secret. When S{|A|}(δ) * S{|A|}(σ)
the proof is similar.

10.1 Generalized Abstract Non-Interference 213

Finally we prove that it is the most concrete. Suppose that we have a clo-
sure ρ v S{|A|} that makes the system A secret. Clearly there exists X ∈ ρ

such that ¬Secr{|A|}(X). This means that ∃σ ∈ αATT ◦αINT ◦αOBS({|A|}) such that
∃δ ∈ [σ] . δ ∈ X and ∃δ′ ∈ [σ] . δ′ /∈ X. Suppose σ /∈ X, then we have that ρ(δ) ⊆ X
and ρ(σ) * X, namely ρ(δ) 6= ρ(σ). On the other hand if σ ∈ X then ρ(σ) ⊆ X

and ρ(δ′) * X, therefore again we have ρ(δ′) 6= ρ(σ), absurd for the hypothesis on
ρ.

Finally, we prove that S({|A|}) is S(↑(D{|A|})) ∪ Irr{|A|}.

Proposition 10.3. S({|A|}) = S(↑(D{|A|})) ∪ Irr{|A|}.

Proof. The inclusion ⊇ is straightforward. We prove that S({|A|}) ⊆ S(↑(D{|A|}))∪
Irr{|A|}. ConsiderX ∈ S({|A|}) andX /∈ S(↑(D{|A|}))∪Irr{|A|}. ThenX /∈ S(↑(D{|A|}))
and X /∈ Irr{|A|}. The first condition holds iff ¬Secr{|A|}(X) (absurd for the hy-
pothesis on X) or X /∈ ↑(D{|A|}). Therefore we summarize the condition on X:
Secr{|A|}(X), X /∈ Irr{|A|} and X /∈ ↑(D{|A|}). The second condition implies that
∃σ . δ ∈ [σ] . δ ∈ X. Namely we can conclude that X + [σ] since X /∈ ↑(D{|A|}), but
this would mean that X is not secret, which is absurd.

10.1.2 Abstract non-interference as GANI

In this section, we prove that abstract non-interference, introduced in Sect. 6.1, is
an instance of the generalized abstract non-interference. Recall that, if P is a pro-
gram, its denotational semantics is defined: JP K = αD(αT ({|P |})) (see Table 4.1),
where σ` and σa denote respectively the initial and the final states of the trace
σ. Given two closures φ ∈ uco(VH) and η ∈ uco(VL), we define the abstraction
αη

φ : (Σ → Σ) −→ ℘(℘(Σ)× ℘(Σ)) such that for any f : Σ −→ Σ:

αη
φ(f) =

{
〈S`, Sa〉

∣∣S` = 〈φ(h), η(l)〉, h ∈ VH , l ∈ VL Sa = f(φ(h), η(l))
}

The idea is to abstract the denotational input/output semantics to the set of all the
possible associations between the corresponding input/output abstract states. In
this way, we model the observation made by the attacker, which consists precisely
in the ability of observing input/output abstract values. Consider a function CH :
℘(VH) −→ VH that uniquely chooses an element in the domain of values VH . Note
that the equation ∀h1, h2. ρ(JP K(〈φ(h1), η(l)〉)L) = ρ(JP K(〈φ(h2), η(l)〉)L) is equiv-
alent to the equation: ∀h. ρ(JP K(〈φ(h), η(l)〉)L) = ρ(JP K(〈φ(CH (VH)), η(l)〉)L), by
the transitive property of equality. Therefore, abstract non-interference can be
formulated as follows:

∀h ∈ VH . ρ(JP K(φ(h), η(l))L) = ρ(JP K(φ(CH (VH)), η(l))L)

We can define the interference abstraction αANI : ℘(℘(Σ) × ℘(Σ)) −→ ℘(℘(Σ) ×
℘(Σ)), which embodies the meaning of abstract non-interference and which is such
that, for any F ∈ ℘(℘(Σ)× ℘(Σ)):

214 10 Generalized Abstract Non-Interference

αANI(F) =
{
〈S`, Sa〉 ∈ F

∣∣∃l ∈ VL . S` = 〈φ(CH (VH)), η(l)〉
}

In order to obtain abstract non-interference, we assume that the attacker may
observe only the ρ abstraction of the low output. This corresponds to the attacker
modeled by η, ρ ∈ uco(℘(VL)): αρη

ATT : ℘(℘(Σ) × ℘(Σ)) −→ ℘(℘(VL) × ℘(VL))
where

αρη
ATT(F) =

{
〈η(XL), ρ(YL)〉

∣∣ 〈〈XH , XL 〉, 〈YH , YL 〉〉 ∈ F
}

Finally, we can specify abstract non-interference as follows:

αρη
ATT ◦α

η
φ(JP K) = αρη

ATT ◦αANI ◦α
η
φ(JP K)

Theorem 10.4. αρη
ATT ◦α

η
φ(JP K) = αρη

ATT ◦αANI ◦α
η
φ(JP K) iff (η)P (φ []ρ).

Proof. Let us prove the implication (⇒). Suppose 0 = CH (VH)). Suppose that
αρη

ATT ◦α
η
φ(JP K) = αρη

ATT ◦αANI ◦α
η
φ(JP K) and that 6|= (η)P (φ []ρ), towards a contra-

diction. The latter hypothesis implies that, for what we underlined above, there
exists h ∈ VH such that ρ(JP K(φ(h), η(l))L) 6= ρ(JP K(φ(0), η(l))L). Suppose that
we have

〈〈φ(h), η(l)〉, JP K(φ(h), η(l))〉 ∈ αη
φ(JP K)

so 〈η(l), ρ(JP K(φ(h), η(l))L)〉 ∈ αρη
ATT ◦α

η
φ(JP K). On the other hand, we have also

that 〈〈φ(0), η(l)〉, JP K(φ(0), η(l))〉 ∈ αη
φ(JP K) and therefore it is in αANI ◦α

η
φ(JP K).

Namely, 〈η(l), ρ(JP K(φ(0), η(l))L)〉 ∈ αρη
ATT ◦αANI ◦α

η
φ(JP K). Since in this last set we

have, by construction, only one association with η(l), in order to have in the ab-
straction the pair 〈η(l), ρ(JP K(φ(h), η(l))L)〉, we need that ρ(JP K(φ(h), η(l))L) =
ρ(JP K(φ(0), η(l))L) which is a contradiction. Therefore |= (η)P (φ []ρ).
Consider the implication (⇐), we note that in general it holds αρη

ATT ◦α
η
φ(JP K) ⊇

αρη
ATT ◦αANI ◦α

η
φ(JP K), we have to prove the other inclusion. Suppose |= (η)P (φ []ρ),

then for what we noted above we have ∀h ∈ VH that ρ(JP K(φ(h), η(l))L) =
ρ(JP K(φ(0), η(l))L). Hence, consider 〈η(l), ρ(JP K(φ(h), η(l))L)〉 ∈ αρη

ATT ◦α
η
φ(JP K),

then 〈〈φ(h), η(l)〉, JP K(φ(h), η(l))〉 ∈ αη
φ(JP K). On the other hand, we have that

〈〈φ(0), η(l)〉, JP K(φ(0), η(l))〉 ∈ αη
φ(JP K) and therefore 〈η(l), ρ(JP K(φ(0), η(l))L)〉 ∈

αρη
ATT ◦αANI ◦α

η
φ(JP K), hence, by hypothesis, we conclude 〈η(l), ρ(JP K(φ(h), η(l))L)〉 ∈

αρη
ATT ◦αANI ◦α

η
φ(JP K).

Note that the observation abstraction is precisely the composition αη
φ ◦α

D ◦αT .
As far as the narrow case is concerned, we have to check if the possible exe-

cutions with the high variable ranging on the whole concrete domain VH and the
low variables ranging on the set of values with the same property η are equal to
the interference abstraction obtained by setting the high variable to CH (VH) and
the low one to any fixed value in the given property of low variables. This means
that we have to change the interference abstraction given above as follows, where
CL : ℘(VL) −→ VL is a function that uniquely selects an element from sets of
values: αNANI : ℘(℘(Σ)× ℘(Σ)) −→ ℘(℘(Σ)× ℘(Σ))

10.1 Generalized Abstract Non-Interference 215

αNANI(F) =
{
f

∣∣∣∣∃l ∈ VL . f = 〈〈CH (VH), η(l)〉, Sa〉, 〈〈CH (VH), l′〉, Sa〉 ∈ F ,
l′ = CL (

{
y ∈ VL

∣∣ η(y) = η(l)
}
)

}
Therefore, we can rewrite also narrow abstract non-interference (NANI).

αρη
ATT ◦αid

id(JP K) = αρη
ATT ◦αNANI ◦αid

id(JP K)

Theorem 10.5. αρη
ATT ◦αid

id(JP K) = αρη
ATT ◦αNANI ◦αid

id(JP K) iff [η]P (ρ).

Proof. Let us prove the implication (⇒). Consider the choice function CH (VH) = 0,
and suppose that αρη

ATT ◦αid
id(JP K) = αρη

ATT ◦αNANI ◦αid
id(JP K) and, towards a contradic-

tion, that 6|= [η]P (ρ). Suppose that l′ = CL (
{
y ∈ VL

∣∣ η(y) = η(l)
}
). The hypoth-

esis above implies that there exists h ∈ VH such that ρ(JP K(h, l)L) 6= ρ(JP K(0, l′)L),
since if all the elements are equal to ρ(JP K(0, l′)L) then by transitivity we
would have secrecy. Consider now that by definition we have 〈〈h, l〉, JP K(h, l)〉 ∈
αid

id(JP K), therefore 〈η(l), ρ(JP K(h, l)L)〉 ∈ αρη
ATT ◦αid

id(JP K). On the other hand we
have also that 〈〈0, l′〉, JP K(0, l′)〉 ∈ αid

id(JP K) and therefore in αNANI ◦αid
id(JP K).

Namely 〈η(l′), ρ(JP K(0, l′)L)〉 ∈ αρη
ATT ◦αNANI ◦αid

id(JP K). Since in this last set we have,
by construction, only one association with η(l), in order to have 〈η(l), ρ(JP K(h, l)L)〉
in it we need that ρ(JP K(h, l)L) = ρ(JP K(0, l′)L) which is a contradiction. There-
fore |= [η]P (ρ).
Consider the implication (⇐), we note that in general it holds αρη

ATT ◦αid
id(JP K) ⊇

αρη
ATT ◦αNANI ◦αid

id(JP K), we have to prove the other inclusion. Suppose |= [η]P (ρ),
then for what we noted above we have ∀h ∈ VH that ρ(JP K(h, l)L) = ρ(JP K(0, l′)L),
where l′ = CL (

{
y ∈ VL

∣∣ η(y) = η(l)
}
). Hence, consider 〈η(l), ρ(JP K(h, l)L)〉 ∈

αρη
ATT ◦αid

id(JP K) then 〈〈h, l〉, JP K(h, l)〉 ∈ αid
id(JP K). On the other hand, we have

〈〈0, l′〉, JP K(0, l′)〉 ∈ αid
id(JP K) and so, 〈η(l′), ρ(JP K(0, l′)L)〉 ∈ αρη

ATT ◦αNANI ◦αid
id(JP K),

hence we obtain 〈η(l), ρ(JP K(h, l)L)〉 ∈ αρη
ATT ◦αNANI ◦αid

id(JP K).

Let us show now that the method given for deriving attackers in the generalized
abstract non-interference is, indeed, a generalization of the method given in [52].
First of all, since the relation 4max is applied to maps, namely traces with length 2,
then to have a common prefix means to have the same input, therefore the relation
4max collects together all the maps starting from the same input. Consider the
abstract case, then, by definition, we have that the elements in αATT ◦α

η
φ are of the

kind η(l) 7→ JP K(φ(h), η(l))L , therefore [σ] collects together all this kind of maps
starting from the same η(l). Namely

[η(l) 7→ JP K(φ(h), η(l))L] =
{
η(l) 7→ JP K(φ(h′), η(l))L

∣∣h′ ∈ VH
}
,

which is isomorphic to Υ η, φ

JP K in [52]. Therefore, we obtain that

DJP K =
{
η(l) 7→ JP K(VH , η(l))L

∣∣ l ∈ VL
}
,

while

IrrJP K =
{
X
∣∣∀h ∈ VH , l ∈ VL .X /∈ ↑(η(l) 7→ JP K(φ(h), η(l))L)

}

216 10 Generalized Abstract Non-Interference

which is Irrφ, η

JP K. Finally consider the predicate SecrJP K, SecrJP K(X) iff

∀JP K(φ(h), η(l))L .(∃Z ∈ [η(l) 7→ JP K(φ(h), η(l))L] . Z ⊆ X ⇒
∀W ∈ [η(l) 7→ JP K(φ(h), η(l))L] . W ⊆ X),

which is precisely isomorphic to the notion given in [52].

10.1.3 Timed abstract non-interference as GANI

In the previous chapter, we introduced a notion of timed abstract non-interference,
which consists in enriching the notion of abstract non-interference in order to
capture also timing channels. We can formulate also the timed abstract non-
interference as generalized abstract non-interference. Let us define the functions:

safe[αη
φ](JP K) =

{
S` 7→n Sa

∣∣∣∣∣S` = 〈φ(h), η(l)〉, h ∈ VH , l ∈ VL

Sa = JP Ksafe
n (〈φ(h), η(l)〉)

}
and

stu[αη
φ](JP K) =

{
S` 7→n Sa

∣∣∣∣∣S` = 〈φ(h), η(l)〉, h ∈ VH , l ∈ VL

Sa = JP Kstun (〈φ(h), η(l)〉)

}

Then we have that the two notions above are respectively

αρη
ATT ◦safe[αη

φ](JP K) = αρη
ATT ◦αANI ◦safe[αη

φ](JP K) and
αρη

ATT ◦stu[αη
φ](JP K) = αρη

ATT ◦αANI ◦stu[αη
φ](JP K)

Theorem 10.6.

• αρη
ATT ◦safe[αη

φ](JP K) = αρη
ATT ◦αANI ◦safe[αη

φ](JP K) if and only if P is secure for
timed abstract non-interference.

• αρη
ATT ◦stu[αη

φ](JP K) = αρη
ATT ◦αANI ◦stu[αη

φ](JP K) if and only if P is secure for
abstract non-interference.

Proof. We prove only one point since the two proofs are similar. Let us prove
the implication (⇒). Consider the choice function CH (VH) = 0 and suppose
that αρη

ATT ◦safe[αη
φ](JP K) = αρη

ATT ◦αANI ◦safe[αη
φ](JP K) and, towards a contradic-

tion, that P is not secure as regards timed abstract non-interference. This im-
plies that there exists h ∈ VH and i ∈ N such that ρ(JP Ksafe

i (φ(h), η(l))L) 6=
ρ(JP Ksafe

i (φ(0), η(l))L). By definition we have 〈〈φ(h), η(l)〉, JP Ksafe
i (φ(h), η(l))〉 ∈

safe[αη
φ](JP K), therefore 〈η(l), ρ(JP Ksafe

i (φ(h), η(l))L)〉 ∈ αρη
ATT ◦safe[αη

φ](JP K). On

the other hand we have, by definition, that 〈〈φ(0), η(l)〉, JP Ksafe
i (φ(0), η(l))〉 ∈

safe[αη
φ](JP K) and therefore in αANI ◦safe[αη

φ](JP K). Namely we can prove that

〈η(l), ρ(JP Ksafe
i (φ(0), η(l))L)〉 ∈ αρη

ATT ◦αANI ◦safe[αη
φ](JP K). Since in this last set we

have only one association with η(l), in order to have 〈η(l), ρ(JP Ksafe
i (φ(h), η(l))L)〉

in it we need that the equality ρ(JP Ksafe
i (φ(h), η(l))L) = ρ(JP K(φ(0), η(l))L)

holds. But this is a contradiction. Therefore P is secure for timed abstract non-
interference.

10.2 GANI in concurrency 217

As far as the implication (⇐) is concerned, we note that in general it holds
αρη

ATT ◦safe[αη
φ](JP K) ⊇ αρη

ATT ◦αANI ◦safe[αη
φ](JP K), we have to prove the other in-

clusion. Suppose the program P secure, then ∀h ∈ VH and ∀i ∈ N we have
that ρ(JP Ksafe

i (φ(h), η(l))L) = ρ(JP Ksafe
i (φ(0), η(l))L). Hence, consider the ele-

ment 〈η(l), ρ(JP Ksafe
i (φ(h), η(l))L)〉 ∈ αρη

ATT ◦safe[αη
φ](JP K). In this way we obtain

〈〈φ(h), η(l)〉, JP Ksafe
i (φ(h), η(l))〉 ∈ safe[αη

φ](JP K). On the other hand, for the same
reasoning, we have 〈〈φ(0), η(l)〉, JP Ksafe

i (φ(0), η(l))〉 ∈ safe[αη
φ](JP K) and therefore,

we obtain the element 〈η(l), ρ(JP Ksafe
i (φ(0), η(l))L)〉 ∈ αρη

ATT ◦αANI ◦safe[αη
φ](JP K).

So, by hypothesis, 〈η(l), ρ(JP Ksafe
i (φ(h), η(l))L)〉 ∈ αρη

ATT ◦αANI ◦safe[αη
φ](JP K).

The interesting aspect of translating timed abstract non-interference in the frame-
work of generalized abstract non-interference is the possibility, in GANI, of deriv-
ing attackers. In this way, we are able to characterize which is the most concrete
property concerning time, such that the attacker is not able to disclose private
information through timing channels.

10.2 GANI in concurrency

In [47], the authors introduced a classification of security properties for security
process algebras, an extension of CCS. Since, process algebras can be modeled
by computational trees, we show how, different security properties defined in [47]
can be re-interpreted as instances of the generalized abstract non-interference. See
Sect. 4.2.2 for the syntax and the semantics of Spa.

Consider a process P ∈ Spa, whose computational tree is {|P |}. We start by
considering NNI (non-deterministic non-interference) which is defined by using
the trace equivalence ≈T in the following way: (P\IH)/H ≈T P/H , where P/H
means that all the actions in H (high) are hidden, i.e., they are substituted by
the internal action ε, while P\IH means that all the actions in H which are input
actions cannot be executed by P . We can translate this definition obtaining an
instance of generalized abstract non-interference. It is clear that the definition
of NNI considers the concrete system P , this means that αOBS

def= id. On the other
hand, we have that what an external user can observe is the system having the high
actions hidden. Therefore, we have to define the attacker abstraction that hides
high-level actions. Let t ∈ TAct, where Act is the set of all the possible actions,
and consider the following function: low : TAct −→ TL such that low(t) is the tree
where any label σ ∈ H in t is substituted by τ . Then we define the abstraction
αlow : ℘(TAct) → ℘(TL) such that αlow(T) =

{
low(t)

∣∣ t ∈ T }. This abstraction
specifies the attacker abstraction in GANI and it is such that {|P/H |} = αlow({|P |}).

Proposition 10.7. The map αlow is additive and {|P/H |} = αlow({|P |}).

Proof. Immediate by construction.

218 10 Generalized Abstract Non-Interference

Moreover, we can note that NNI is defined by using trace equivalence, therefore this
means that the attacker can analyze traces of computations only. By definition two
systems are trace equivalent if they accept the same language, therefore we have
to make equal the αT abstraction of the result, namely αATT

def= αT ◦αlow. Finally,
consider the operation P\IH which avoids high-level inputs. Let I be the set of
input actions, we can define the abstraction αI

L : ℘(TAct) −→ ℘(TAct) such
that for any T ⊆ TAct: α

I
L (T) =

{
t ∈ T

∣∣∀σ ∈ t . σ /∈ H ∩ I
}
, where σ ∈ t is a

shorthand notation for σ being an action (node) in t. Then we have that {|P\IH |} =
αI
L ({|P |}).

Proposition 10.8. The map αL is additive and {|P\H |} = αL ({|P |}) .

Proof. Immediate by construction.

At this point, we can derive the NNI as:

αT ◦αlow({|P |}) = (αT ◦αlow) ◦αI
L ({|P |})

Consider now the notion of Strong Non-deterministic Non-Interference (SNNI)
defined in [47]: P satisfies SNNI iff P/H ≈T P\H . In order to define SNNI as an
instance of the generalized abstract non-interference, we have to define the operator
P/H , that hides all the high-level actions. Let us define αL : ℘(TAct) −→ ℘(TAct)
such that ∀T ⊆ TAct we have αL (T) =

{
t ∈ T

∣∣∀σ ∈ t . σ ∈ L
}
. This defines the

interference abstraction in GANI and it is such that {|P\H |} = αL ({|P |}) . The
standard notion of SNNI introduced in [47] can be defined as

αT ◦αlow({|P |}) = αT ◦αlow ◦αL ({|P |}).

At this point, since bisimulations are equivalence relations [92], they can be viewed
as abstractions of computational trees, i.e., a tree is abstracted into the equivalence
class of all the trees bisimilar to it, then we can model the BNNI and BSNNI. We
obtain this by substituting to αT , the abstraction αB , corresponding to the chosen
bisimulation, which associates with a computation the set of all the computations
bisimilar to the given one.
Consider now non-deducibility on compositions (NDC) and the bisimulation-based
NDC (BNDC) notions of non-interference. NDC is defined as: ∀Π . P/H ≈T

(P ||Π)\H , where Π is a process that can execute only high-level actions. In [47] it
is proved that NDC=SNNI, therefore also NDC can be modeled as a generalized
abstract non-interference. The situation is different when we consider BNDC, i.e.,
∀Π . P/H ≈B (P ||Π)\H , for the bisimulation relation B. In this case, we have
that BNDC6=BSNNI, and therefore we have to explicitly model it as generalized
abstract non-interference. In [47] the authors also prove that BNDC can be equiv-
alently formalized as: ∀Π .P\H ≈B (P ||Π)\H . At this point, we note that we have
to consider αB ◦αL as αATT, since in this definition it is only observable what a
low-level user (i.e., a user that can execute only low level actions) can see, namely
only the computations without high-level actions. Moreover, we have that αOBS is

10.3 GANI in real-time systems 219

the identity, since, in this case, non-interference is defined on computational trees.
Finally, we define αINT noting that the semantics (computational tree) of P ||Π
contains the semantics of P.Π (which doesn’t execute synchronizations), therefore
we can define αINT({|P ||Π|}) = {|P.Π|}. Hence we can model BNDC as follows:

∀Π.(αB ◦αL) ◦αINT({|P ||Π|}) = αB ◦αL ({|P ||Π|}).

This is BNDC since in the right side of the equality αL is applied to the semantics
of P.Π, and therefore executes only the high-level actions of P .

10.3 GANI in real-time systems

Let A be a timed automaton, {|A|} be the corresponding computational tree and
〈|A|〉 be the corresponding timed language accepted by A (see Sect. 4.2.3). In [12]
a notion of non-interference for timed automata is introduced (see Sect. 5.3.4).
Given a natural number n, the authors say that high-level actions do not interfere
with the system, by considering minimum delay n, if the system behaviour in
absence of high-level actions is equivalent to the system behaviour, observed on
low-level actions only, when high-level actions can occur with a delay between them
greater than n. We recall that in [12] a system A is said to be n-non-interfering
iff 〈|A|〉nH /H = 〈|A|〉|L .
Let us consider the example in Fig. 10.2, from [12]. This timed automaton have
L = {begin-c,end-c} and H = {cloche,reset}. There is only one possible trace of
only low-level actions, namely:

〈begin-c, 2〉〈end-c, 4〉 . . . 〈begin-c, 2 + 4i〉〈end-c, 4 + 4i〉 . . .

If more than one cloche action is executed and the time elapsed between them
is less than 1, then it is possible to execute the action reset, which can change
the moment of the execution of begin-c, and therefore in this case we have an
interference.

x0 = 1,cloche,{x1}

x1 < 1,cloche,{x1}

x1 < 1,cloche,{x1}

x0 ≤ 2

x0 = 2,begin-c,{}

x0 > 2

s0s1 s2

s3

x0 = 4,end-c,{x0} x1 = 1, ε, {}

ε, {}

reset,{x0}

Fig. 10.2. A timed automaton: A simplified airplane control.

220 10 Generalized Abstract Non-Interference

In particular, for example, we can have the trace

〈begin-c, 2〉〈end-c, 4〉〈cloche, 5〉〈cloche, 5.6〉〈cloche, 6.3〉〈begin-c, 8.3〉 . . .

whose projection 〈begin-c, 2〉〈end-c, 4〉〈begin-c, 6.3〉〈end-c, 8.3〉, on the low-level ac-
tions, is not the one described above. This means that in this system there is
interference.

Consider the attacker abstraction αlow, defined in Sec. 10.2, the interference
abstraction αL and the language 〈|A|〉nH . Recall that the timed language accepted
is a set of traces on Σ × R, i.e., (Σ × R)∗. Therefore, we define the family of
abstractions αn : ℘((Σ × R)∗)→ ℘((Σ × R)∗), with n ∈ N, as follows:

αn(〈|A|〉) =
{
τ ∈ 〈|A|〉

∣∣∀〈σi, ti〉, 〈σj , tj〉 ∈ τ . i 6= j, σi, σj ∈ H ⇒ |ti − tj | ≥ n
}

Proposition 10.9. The map αn, ∀n ∈ N, is additive and 〈|A|〉nH = αn(〈|A|〉).

Proof. Immediate by construction.

Then the notion of non-interference introduced in [12] for timed automata can
be specified as follows:

αlow ◦αn(〈|A|〉) = αlow ◦αL ◦αn(〈|A|〉),

where αL ◦αn = αL . Note that, in this case, αOBS = αn ◦αtT .

10.4 Discussion

In this chapter, we introduce a generalization of abstract non-interference for au-
tomata and concurrent systems. We believe that the combination of abstract inter-
pretation and non-interference may provide advanced techniques for analyzing how
sub-components of complex systems interact during the computation. On one side,
abstract interpretation has been proved to be the most appropriate framework for
reasoning about properties of computations at different levels of abstraction. On
the other side, strong-dependency, and in particular non-interference, is the most
appropriate notion to disclose information-flows among sub-components of a sys-
tem, when a variation of some of them can be conveyed to the others. Generalized
abstract non-interference is intended to bridge these two notions in order to pro-
vide adequate methods for studying properties of complex systems by analyzing
the properties of computations that are conveyed among system sub-components.
In this sense, generalized abstract non-interference may provide a framework for
studying the relation between different and interacting entities which may be re-
ciprocally influenced by the action of computing, giving advanced techniques for
systematically classifying the information leakage in the lattice of abstractions.

11

Conclusions

The wise seeks the truth,

the foolish thinks to have found it.

Blaise Pascal

In this thesis, we present a weakening of the notion of non-interference in lan-
guage based security. This weakening is based on the idea of modeling attackers
as static program analyzers whose task is to disclose confidential information by
observing the input/output public behaviour. The model is, therefore, obtained
by using abstract interpretation, and in particular by modeling attackers through
two abstract domains, one representing the input observation and one representing
the output one. Being, abstract non-interference, based on the denotational seman-
tics, and therefore not very practical, we also introduce, for imperative languages,
a compositional proof system, that allows us to derive abstract non-interference
certifications, inductively on the syntax of programs. Moreover, the abstract char-
acterization of information flows allows us to formally derive the most abstract
property of private information revealed by the semantics of a program. In other
words, the same model, which is abstract non-interference, allows us to character-
ize the most concrete public observer , which cannot violate non-interference, i.e.,
the most powerful harmless attacker, and the most abstract private observable,
i.e., the most concrete confidential property that the semantics reveals through
the observation of public outputs. Moreover, the domain transformers that derives
the public observer and the private observable, are adjoint transformers in the
standard abstract interpretation framework. This relation formally characterizes
their dual nature. In order to prove this duality, we follow [78] modelling non-
interference as an abstract domain completeness problem [31,65]. The interesting
aspect is that, this formalization of non-interference shows new ways for approach-
ing the problem. Indeed, given a function f and an abstraction ρ that we want
to be complete for the function f , [65] studies how to minimally transform ρ in

222 11 Conclusions

order to make it complete for f (and this is what we did in Chapter 8). On the
other hand, we are also working on the problem of transforming f in order to make
the domain ρ complete for the transformed function. Since in the completeness-
based formalization of abstract non-interference, the function is the semantics of
the system, we would like to understand how we would have to transform the
system in order to guarantee that it does not disclose secrets to a given attacker.
In particular, this could be interesting for deriving secret security protocols, since
we could derive the minimal transformation of a given protocol, that guarantees
that non-interference cannot be violated.

In this thesis, we also show that, one of the most important features, of the
semantic approach to non-interference, is that simply by changing the considered
semantics we indeed change the notion of non-interference that we can enforce.
Hence, we notice that we can define a stronger notion of non-interference, simply
by considering the maximal trace semantics instead of the denotational one, or
we can define abstract non-interference for even non-deterministic systems, simply
by considering the non-deterministic denotational semantics that associates with
a state the set of all the reachable states [27]. This general aspect is even more
powerful, since by considering a semantics that can store the time elapsed during
the execution of a program, then we can use the same definition of abstract non-
interference for obtaining a security notion that avoids also timing channels. We
would like also to understand which semantics we have to consider in order to
define an abstract non-interference that avoids also probabilistic channels, exactly
as it happens with the PER model [106]. Moreover, the strong relation between
abstract non-interference and the PER model, suggests us to exploit if we can give
a more precise or efficient characterization of abstract non-interference whenever
we consider equivalence relations instead of generic upper closure operators.

This thesis ends with a further generalization of the notion of non-interference,
again by using abstract interpretation, whose aim is to model non-interference
for many well known computational systems, in an uniform setting. In particu-
lar, the idea is that of considering the most concrete model that we can asso-
ciate with a computational system, which is the computational tree of executions.
This allows us to move from the definition for one system to another simply by
suitably abstracting this concrete model, following the hierarchy of semantics de-
fined by Cousot [27]. In this way, we can uniformly model several notions of non-
interference: abstract non-interference, many of the notions defined for the process
algebra Spa [47] and the decidable notion for timed automata [12]. But the most
important aspect of this generalization is that we also generalize the derivation of
the canonical attacker. Moreover, generalized abstract non-interference provides a
pattern for defining even new and, if necessary, ad hoc notions of non-interference.

Another aspect that should be investigated is that the whole work done con-
siders only passive attackers, namely attackers that are simple observers of the
computation, but that cannot modify it. It would be interesting, to understand
how we can model, in abstract non-interference, active attackers, that can modify

11 Conclusions 223

the semantics. But much more interesting would be to be able to use abstract
non-interference for characterizing also the secrecy level of programs in presence
of active attackers. A possible way for solving this problem, can be to consider the
completeness characterization of abstract non-interference. Indeed, by minimally
modifying the semantics, in order to guarantee non-interference, we could be able
to characterize which can be the minimal transformations of the semantics that
guarantees non-interference, namely which is the most concrete active harmless
attack for the given computational system.

From the practical point of view, it misses an implementation of our derivation
of canonical attackers, and therefore of the secrecy certification of programs. In this
case, the well known relation between non-interference and slicing, based on the
program dependency graphs, [1] provides the idea for a possible implementation.
Indeed, if we derive the slice of a program, considering as criterion the final values
of public variables, whenever the private data are contained in the slice, then it
means that the final value of public variables does depend on the initial private
data. Namely, insecure information flows are not sure, but possible. The idea is
to define an algorithm for abstract program slicing, where the slicing criterion
considers also a property of public data. Therefore, if we derive such an algorithm,
when we take as criterion the final property ρ for the public variables, and the slice
contains private data, it means that private data could interfere in the property
ρ of the final value of public variables, with a possible violation of abstract non-
interference.
Anyway, slicing, or abstract slicing, provides only a method for checking, and
therefore certifying non-interference. We would like to derive also methods that
allow to protect programs from certain kind of attacks. In this direction code
obfuscation [21,22] could help, since we could think of obfuscate a code as regards
the most concrete public observer in order to avoid any possible attacker from
disclosing information about confidential data. In this way, whenever we a have
a certificate which states for which kind of attacks a program is not secure, we
could derive a protected transformation of the code, preserving the semantics but
secure as regards the considered possible attacks. This seems to put in evidence a
possible relation between obfuscation used for enforcing abstract non-interference
and the transformation of the semantics for guaranteeing abstract non-interference,
modeled as a completeness problem.

From a more theoretical, and in particular mathematical, point of view, ab-
stract non-interference can be interpreted as a non relational analysis of the rela-
tions existing among the objects composing a system, for instance the values of
variables in programming languages. It is well known, that in abstract interpreta-
tion there exists a lot of work on relational abstract domains for static program
relational analyses. These domains are devoted to investigate the relations existing
between values of variable, e.g., a variable x is even whenever the variable y is odd.
Therefore, it could be interesting to study the relation existing between relational
analyses and abstract non-interference.

224 11 Conclusions

The fascinating aspect of this work, is that while working on abstract non-
interference, we noticed that in many fields, also in those that seem really far away
from language based security, the notion of non-interference is relevant. For exam-
ple, in a biological system an important field of study consists in understanding how
the presence of certain kind of proteins interferes with the activation/inhibition
of other kinds of proteins. This problem is important since it allows to determine,
for instance, which proteins have to be contained in a medicine in order to make
it useful for destroying a specific virus. This example, only to say that abstract
non-interference, here studied in the specific of language based security, can be
seen as a very general problem, and our approach can be used and studied for
weakening non-interference in order to make it fit with many problems concerning
interferences and dependencies in computational systems.

List of Figures

2.1 Example of reduced product . 32
2.2 Example of least upper bound of closures . 32
2.3 A partitioning closure. 33
2.4 Soundness condition . 35
2.5 Backward completeness condition . 36
2.6 Forward completeness condition . 36

3.1 Shells vs cores. 43
3.2 Expander vs compressors. 46
3.3 The global picture . 57
3.4 An application to predicate abstraction. 60
3.5 Example of compression . 62
3.6 A transition system, two abstractions and their complete refinements 63
3.7 The algebra of transformers. 66
3.8 The 3D algebra of transformers. 69

4.1 Cousot’s hierarchy. 78

5.1 Trace vs bisimulation equivalence . 103
5.2 The automata InhibH and Interfn

H . 104

6.1 The Sign and Par domains. 116
6.2 Deriving attackers: The idea . 127
6.3 Irrelevant elements . 128
6.4 The construction of Sε

JP K(↑(DJP K(η))). 131
6.5 Deriving secret kernels . 135

8.1 Public observer vs confidential observable . 186

10.1 The global picture. 210
10.2 A timed automaton: A simplified airplane control. 219

List of Tables

4.1 Basic natural-style semantics as abstract interpretations 76
4.2 Observable semantics as abstract interpretations 77
4.3 Operational semantics of Imp . 80
4.4 Operational semantics of Spa . 82

5.1 Security type system . 96
5.2 Subtyping rules . 96
5.3 An axiomatic logic for independencies . 98

7.1 Derivation of public invariants of programs. 155
7.2 Axiomatic narrow (abstract) non-interference . 157
7.3 Axiomatic abstract non-interference . 162

9.1 Operational timed semantics of Imp . 191

References

1. M. Abadi, A. Banerjee, N. Heintze, and J. Riecke. A core calculus of dependency.

In Proc. of the 26th Annual ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages (POPL ’99), pages 147–160. ACM-Press, NY, 1999.

2. J. Agat. Transforming out timing leaks. In Proc. of the 27th Annual

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages

(POPL ’00), pages 40–53. ACM-Press, NY, 2000.

3. B. Alpern, A. J. Demers, and F. B. Schneider. Safety without stuttering. Informa-

tion Processing Letters, 23(4):177–180, 1986.

4. B. Alpern and F. B. Schneider. Defining liveness. Information Processing Letters,

21:181–185, 1985.

5. R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer Science,

126(2):183–235, 1994.

6. T. Amtoft and A. Banerjee. Information flow analysis in logical form. In R. Gia-

cobazzi, editor, Proc. of The 11th Internat. Static Analysis Symp. (SAS’04), volume

3184 of Lecture Notes in Computer Science, pages 100–115. Springer-Verlag, 2004.

7. G.R. Andrews and R. P. Reitman. An axiomatic approach to information flow in

programs. ACM Trans. Program. Lang. Syst., 2(1):56–76, 1980.

8. A. Appel. Foundational proof-carrying code. In Proc. of the 16th IEEE Symp. on

Logic in Computer Science (LICS ’01), pages 247–258. IEEE Computer Society

Press, Los Alamitos, Calif., 2001.

9. K. Apt and E.-R. Olderog. Verification of sequential and concurrent programs.

Springer-Verlag, Berlin, 1997.

10. K. R. Apt and G. D. Plotkin. Countable nondeterminism and random assignment.

J. ACM, 33(4):724–767, 1986.

11. T. Ball, A. Podelski, and S.K. Rajamani. Relative completeness of abstraction

refinement for software model checking. In J.-P. Kaoen and P. Stevens, editors, Proc.

of TACAS: Tools and Algorithms for the Construction and Analysis of Systems,

volume 2280 of Lecture Notes in Computer Science, pages 158–172. Springer-Verlag,

Berlin, 2002.

12. R. Barbuti, N. De Francesco, A. Santone, and L. Tesei. A notion of non-interference

for timed automata. Fundamenta Informaticae, 51:1–11, 2002.

13. D. E. Bell and L. J. LaPadula. Secure computer systems: Mathematical foundations

and model. Technical Report M74-244, MITRE Corp. Badford, MA, 1973.

230 References

14. G. Birkhoff. Lattice Theory. AMS Colloquium Publication, 3rd edition. AMS,

Providence, RI, 1967.

15. T.S. Blyth and M.F. Janowitz. Residuation theory. Pergamon Press, 1972.

16. D. Clark, S. Hunt, and P. Malacaria. Quantitative analysis of the leakage of con-

fidential data. In Workshop on Quantitative Aspects of Programming Laguages

(QAPL ’01), volume 59 of Electronic Notes in Theoretical Computer Science. Else-

vier, Amsterdam, 2001.

17. D. Clark, S. Hunt, and P. Malacaria. Quantified interference: Information theory

and information flow (extended abstract). In Workshop on Issues in the Theory of

Security (WITS’04), 2004.

18. E.M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided

abstraction refinement. In Proc. of the 12th Internat. Conf. on Computer Aided

Verification (CAV ’00), volume 1855 of Lecture Notes in Computer Science, pages

154–169. Springer-Verlag, Berlin, 2000.

19. E. S. Cohen. Information transmission in computational systems. ACM SIGOPS

Operating System Review, 11(5):133–139, 1977.

20. E. S. Cohen. Information transmission in sequential programs. Foundations of

Secure Computation, pages 297–335, 1978.

21. C. Collberg and C. Thomborson. Watermarking, tamper-proofing, and obduscation-

tools for software protection. IEEE Trans. Software Eng., pages 735–746, 2002.

22. C. Collberg, C. Thomborson, and D. Low. A taxonomy of obduscating transforma-

tions. Technical Report 148, Department of Computer Science, The University of

Auckland, 1997.

23. A. Cortesi, G. Filé, R. Giacobazzi, C. Palamidessi, and F. Ranzato. Complemen-

tation in abstract interpretation. ACM Trans. Program. Lang. Syst., 19(1):7–47,

1997.

24. A. Cortesi, B. Le Charlier, and P. Van Hentenryck. Combinations of abstract do-

mains for logic programming. In Proc. of Conf. Record of the 21st ACM Symp.

on Principles of Programming Languages (POPL ’94), pages 227–239. ACM Press,

New York, 1994.

25. P. Cousot. Constructive design of a hierarchy of semantics of a transition system by

abstract interpretation (Invited Paper). In S. Brookes and M. Mislove, editors, Proc.

of the 13th Internat. Symp. on Mathematical Foundations of Programming Seman-

tics (MFPS ’97), volume 6 of Electronic Notes in Theoretical Computer Science. El-

sevier, Amsterdam, 1997. URL: http://www.elsevier.nl/locate/entcs/volume6.html.

26. P. Cousot. The calculational design of a generic abstract interpreter. In M. Broy

and R. Steinbrüggen, editors, Calculational System Design. NATO ASI Series F.

IOS Press, Amsterdam, 1999.

27. P. Cousot. Constructive design of a hierarchy of semantics of a transition system

by abstract interpretation. Theor. Comput. Sci., 277(1-2):47,103, 2002.

28. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for

static analysis of programs by construction or approximation of fixpoints. In Proc.

of Conf. Record of the 4th ACM Symp. on Principles of Programming Languages

(POPL ’77), pages 238–252. ACM Press, New York, 1977.

29. P. Cousot and R. Cousot. A constructive characterization of the lattices of all

retractions, preclosure, quasi-closure and closure operators on a complete lattice.

Portug. Math., 38(2):185–198, 1979.

References 231

30. P. Cousot and R. Cousot. Constructive versions of Tarski’s fixed point theorems.

Pacific J. Math., 82(1):43–57, 1979.

31. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In

Proc. of Conf. Record of the 6th ACM Symp. on Principles of Programming Lan-

guages (POPL ’79), pages 269–282. ACM Press, New York, 1979.

32. P. Cousot and R. Cousot. Abstract interpretation and application to logic programs.

J. Logic Program., 13(2-3):103–179, 1992.

33. P. Cousot and R. Cousot. Inductive definitions, semantics and abstract interpreta-

tion. In Proc. of Conf. Record of the 19th ACM Symp. on Principles of Programming

Languages (POPL ’92), pages 83–94. ACM Press, New York, 1992.

34. P. Cousot and R. Cousot. Higher-order abstract interpretation (and application

to comportment analysis generalizing strictness, termination, projection and PER

analysis of functional languages) (Invited Paper). In Proc. of the 1994 IEEE In-

ternat. Conf. on Computer Languages (ICCL ’94), pages 95–112. IEEE Computer

Society Press, Los Alamitos, Calif., 1994.

35. P. Cousot and R. Cousot. On abstraction in software verification. In D. Brinksma

and K.G. Larsen, editors, Proc. of the 14th Internat. Conf. on Computer Aided

Verification (CAV ’02), volume 2404 of Lecture Notes in Computer Science, pages

37–56. Springer-Verlag, Berlin, 2002.

36. A. Darvas, R. Hähnle, and D. Sands. A theorem proving approach to analysis of

secure information flow. In Roberto Gorrieri, editor, Workshop on Issues in the

Theory of Security (WITS’03). IFIP WG 1.7, ACM SIGPLAN and GI FoMSESS,

2003.

37. B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Cambridge

University Press, Cambridge, U.K., 1990.

38. D. E. Denning. A lattice model of secure information flow. Communications of the

ACM, 19(5):236–242, 1976.

39. D. E. Denning and P. Denning. Certification of programs for secure information

flow. Communications of the ACM, 20(7):504–513, 1977.

40. J. Desharnais, B. Möller, and F. Tchier. Kleene under a demonic star. In

Proc. of the 9th Internat. Conf. on Algebraic Methodology and Software Technology

(AMAST ’00), volume 1816 of Lecture Notes in Computer Science, pages 355–370.

Springer-Verlag, 2000.

41. A. Di Pierro, C. Hankin, and H. Wiklicky. Approximate non-interference. In Proc. of

the IEEE Computer Security Foundations Workshop, pages 1–17. IEEE Computer

Society Press, 2002.

42. E. W. Dijkstra. A discipline of programming. Series in automatic computation.

Prentice-Hall, 1976.

43. E.W. Dijkstra. Guarded commands, nondeterminism and formal derivation of pro-

grams. Comm. of The ACM, 18(8):453–457, 1975.

44. G. Filé, R. Giacobazzi, and F. Ranzato. A unifying view of abstract domain design.

ACM Comput. Surv., 28(2):333–336, 1996.

45. G. Filé and F. Ranzato. Complementation of abstract domains made easy. In

M. Maher, editor, Proc. of the 1996 Joint Internat. Conf. and Symp. on Logic

Programming (JICSLP ’96), pages 348–362. The MIT Press, Cambridge, Mass.,

1996.

232 References

46. C. Flanagan and S. Qadeer. Pedicate abstraction for software verification. In Proc.

of Conf. Record of the 29th ACM Symp. on Principles of Programming Languages

(POPL ’02), pages 191–202. ACM Press, New York, 2002.

47. R. Focardi and R. Gorrieri. A classification of security properties for process alge-

bras. Journal of Computer security, 3(1):5–33, 1995.

48. R. Focardi and R. Gorrieri. Classification of security properties (part I: Information

flow). In R. Focardi and R. Gorrieri, editors, Foundations of Security Analysis and

Design, volume 2171 of Lecture Notes in Computer Science. Springer-Verlag, 2001.

49. R. Giacobazzi and I. Mastroeni. A characterization of symmetric semantics by

domain complementation. In Proc. of the 2nd Internat. Conf. in Principles and

Practice of Declarative Programming PPDP’00, pages 115–126. ACM press, New

York, 2000.

50. R. Giacobazzi and I. Mastroeni. Domain compression for complete abstractions.

In In proc. of the 4th Internat. Conf. on Verification, Model Checking and Abstract

Interpretation (VMCAI’03), volume 2575 of Lecture Notes in Computer Science,

pages 146–160. Springer-Verlag, 2003.

51. R. Giacobazzi and I. Mastroeni. Non-standard semantics for program slicing.

Higher-Order and Symbolic Computation (HOSC), 16(4):297–339, 2003. Special

issue on Partial Evalution and Semantics-Based Program Manipulation.

52. R. Giacobazzi and I. Mastroeni. Abstract non-interference: Parameterizing non-

interference by abstract interpretation. In Proc. of the 31st Annual ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages (POPL ’04), pages

186–197. ACM-Press, NY, 2004.

53. R. Giacobazzi and I. Mastroeni. Generalized abstract non-interference for

automata. 2004. Submitted for publication. http://profs.sci.univr.it/ mas-

troen/abstracts/genANI.abstract.html.

54. R. Giacobazzi and I. Mastroeni. Proving abstract non-interference. In Annual Con-

ference of the European Association for Computer Science Logic (CSL’04), volume

3210, pages 280–294. Springer-Verlag, 2004.

55. R. Giacobazzi and I. Mastroeni. Safety semantics by abstract inter-

pretation, 2004. Submitted for publication. http://profs.sci.univr.it/ mas-

troen/abstracts/safety.abstract.html.

56. R. Giacobazzi and I. Mastroeni. Timed abstract non-interference. 2004. Submitted

for publication. http://profs.sci.univr.it/ mastroen/abstracts/tANI.abstract.html.

57. R. Giacobazzi and I. Mastroeni. Adjoining declassification and attack models by

abstract interpretation. In M. Sagiv, editor, Proc. of the European Symposium

on Programming (ESOP’05), Lecture Notes in Computer Science. Springer-Verlag,

2005. To appear.

58. R. Giacobazzi and I. Mastroeni. Transforming semantics by abstract interpretation.

Theoretical Computer Science, 2005. Extended version of [49]. To appear.

59. R. Giacobazzi, C. Palamidessi, and F. Ranzato. Weak relative pseudo-complements

of closure operators. Algebra Universalis, 36(3):405–412, 1996.

60. R. Giacobazzi and E. Quintarelli. Incompleteness, counterexamples and refinements

in abstract model-checking. In P. Cousot, editor, Proc. of The 8th Internat. Static

Analysis Symp. (SAS’01), volume 2126 of Lecture Notes in Computer Science, pages

356–373. Springer-Verlag, 2001.

61. R. Giacobazzi and F. Ranzato. Refining and compressing abstract domains. In

P. Degano, R. Gorrieri, and A. Marchetti-Spaccamela, editors, Proc. of the 24th

References 233

Internat. Colloq. on Automata, Languages and Programming (ICALP ’97), volume

1256 of Lecture Notes in Computer Science, pages 771–781. Springer-Verlag, Berlin,

1997.

62. R. Giacobazzi and F. Ranzato. Optimal domains for disjunctive abstract interpre-

tation. Sci. Comput. Program, 32(1-3):177–210, 1998.

63. R. Giacobazzi and F. Ranzato. Uniform closures: order-theoretically reconstructing

logic program semantics and abstract domain refinements. Inform. and Comput.,

145(2):153–190, 1998.

64. R. Giacobazzi and F. Ranzato. The reduced relative power operation on abstract

domains. Theor. Comput. Sci., 216:159–211, 1999.

65. R. Giacobazzi, F. Ranzato, and F. Scozzari. Making abstract interpretations com-

plete. J. of the ACM., 47(2):361–416, 2000.

66. R. Giacobazzi and F. Scozzari. A logical model for relational abstract domains.

ACM Trans. Program. Lang. Syst., 20(5):1067–1109, 1998.

67. G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove, and D. S. Scott.

A Compendium of Continuous Lattices. Springer-Verlag, Berlin, 1980.

68. J. A. Goguen and J. Meseguer. Security policies and security models. In Proc.

IEEE Symp. on Security and Privacy, pages 11–20. IEEE Computer Society Press,

1982.

69. J. A. Goguen and J. Meseguer. Unwinding and inference control. In Proc. IEEE

Symp. on Security and Privacy, pages 75–86. IEEE Computer Society Press, 1984.

70. S. Graf and H. Säıdi. Construction of abstract state graphs with PVS. In Proc. of

the 9th Internat. Conf. on Computer Aided Verification (CAV ’97), volume 1254 of

Lecture Notes in Computer Science, pages 72–83. Springer-Verlag, Berlin, 1997.

71. J. W. Gray III. Toward a mathematical foundation for information flow security. In

Proc. IEEE Symp. on Security and Privacy, pages 21–34. IEEE Computer Society

Press, 1991.

72. H. P. Gumm. Another glance at the alpern-schneider theorem. Information Pro-

cessing Letters, 47:291–294, 1993.

73. M. A. Harrison, W. L. Ruzzo, and J. D. Ullman. On protection in operating systems.

In 5th Symp. on Operating Systems Principles, pages 14–24, 1975.

74. C.A.R Hoare. An axiomatic basis for computer programming. Comm. of The ACM,

12(10):576–580, 1969.

75. C.A.R Hoare. Communicating Sequential Processes. Prentice-Hall, Inc., Englewood

Cliffs, New Jersey, 1985.

76. M. F. Janowitz. Residuated closure operators. Portug. Math., 26(2):221–252, 1967.

77. T. Jensen. Disjunctive program analysis for algebraic data types. ACM Trans.

Program. Lang. Syst., 19(5):751–803, 1997.

78. R. Joshi and K. R. M. Leino. A semantic approach to secure information flow.

Science of Computer Programming, 37:113–138, 2000.

79. W. Just and M. Weese. Discovering modern set theory. I: The basics, volume 8 of

Graduate studies in mathematics. American mathematical society, 1996.

80. B. Lampson. A note on the confinement problem. In Communications of the ACM,

pages 613–615. ACM, 1973.

81. K.G. Larsen and A. Skou. Bisimulation through probabilistic testing. Information

and computation, 94(1):1–28, 1991.

234 References

82. P. Laud. Semantics and program analysis of computationally secure information

flow. In Programming Languages and Systems, 10th European Symp. On Program-

ming, ESOP, volume 2028 of Lecture Notes in Computer Science, pages 77–91.

Springer-Verlag, 2001.

83. P. Li and S. Zdancewic. Downgrading policies and relaxed noninterference. In

Proc. of the 32st Annual ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages (POPL ’05). ACM-Press, NY, 2005. To appear.

84. G. Lowe. Quantifying information flow. In Proc. of the IEEE Computer Security

Foundations Workshop, pages 18–31. IEEE Computer Society Press, 2002.

85. H. Mantel. Possibilistic definitions of security – an assemply kit –. In Proc. of the

IEEE Computer Security Foundations Workshop, pages 185–199. IEEE Computer

Society Press, 2000.

86. H. Mantel. Unwinding possibilistic security properties. In F. Cuppens et al., edi-

tor, ESORICS, volume 1895 of Lecture Notes in Computer Science, pages 238–254.

Springer-Verlag, 2000.

87. G. Markowsky. Chain-complete p.o.sets and directed sets with applications. Algebra

universalis, 6:53–68, 1976.

88. I. Mastroeni. Numerical power analysis. In Proc. of the 2nd Symp. on Programs

as Data Objects (PADO’01), volume 2053 of Lecture Notes in Computer Science.

Springer, 2001.

89. I. Mastroeni. Algebraic power analysis by abstract interpretation. Higher-Order

and Symbolic Computation (HOSC), 17(4):299–347, 2004. Extended version of [88].

90. J. McLean. Security models and information flow. In Proc. 1990 IEEE Symp. on

Security and Privacy, pages 180–187. IEEE Computer Society Press, 1990.

91. J. McLean. A general theory of composition for trace sets closed under selective

interleaving functions. In Proc. IEEE Symposium on Research in Security and

Privacy, pages 79–93, 1994.

92. R. Milner. Communication and Concurrency. Prentice-Hall, Inc., Englewood Cliffs,

New Jersey, 1989.

93. J. Morgado. Some results on the closure operators of partially ordered sets. Portug.

Math., 19(2):101–139, 1960.

94. J. Morgado. Note on complemented closure operators of complete lattices. Portug.

Math., 21(3):135–142, 1962.

95. A. Mycroft. Completeness and predicate-based abstract interpretation. In Proc.

of the ACM Symp. on Partial Evaluation and Program Manipulation (PEPM ’93),

pages 179–185. ACM Press, New York, 1993.

96. A.C. Myers, A. Sabelfeld, and S. Zdancewic. Enforcing robust declassification. In

Proc. IEEE Symp. on Security and Privacy. IEEE Computer Society Press, 2004.

97. G. Necula. Proof-carrying code. In Proc. of Conf. Record of the 24th ACM Symp.

on Principles of Programming Languages (POPL ’97), pages 106–119. ACM Press,

New York, 1997.

98. F. Nielson. Tensor products generalize the relational data flow analysis method. In

M. Arató, I. Kátai, and L. Varga, editors, Proc. of the 4th Hungarian Computer

Science Conf., pages 211–225, 1985.

99. G. Plotkin. A structural approach to operational semantics. DAIMI-19 Aarhus

University, Denmark, 1981.

100. F. Ranzato. Closures on CPOs form complete lattices. Inform. and Comput.,

152(2):236–249, 1999.

References 235

101. F. Ranzato and F. Tapparo. Making abstract model checking strongly preserving. In

M. Hermenegildo and G. Puebla, editors, Proc. of The 9th Internat. Static Analysis

Symp. (SAS’02), volume 2477 of Lecture Notes in Computer Science, pages 411–427.

Springer-Verlag, 2002.

102. F. Ranzato and F. Tapparo. Strong preservation as completeness in abstract inter-

pretation. In D. Schmidt, editor, Proc. of the 13th European Symposium on Pro-

gramming (ESOP’04), volume 2986 of Lecture Notes in Computer Science, pages

18–32. Springer-Verlag, 2004.

103. A. Sabelfeld and A. C. Myers. A model for delimited information release. In Proc. of

the International Symp. on Software Security (ISSS’03), Lecture Notes in Computer

Science. Springer-Verlag, 2004.

104. A. Sabelfeld and A.C. Myers. Language-based information-flow security. IEEE J.

on selected ares in communications, 21(1):5–19, 2003.

105. A. Sabelfeld and D. Sands. Probabilistic noninterference for multi-threaded pro-

grams. In Proc. of the IEEE Computer Security Foundations Workshop, pages

200–214. IEEE Computer Society Press, 2000.

106. A. Sabelfeld and D. Sands. A PER model of secure information flow in sequential

programs. Higher-Order and Symbolic Computation, 14(1):59–91, 2001.

107. F. Scozzari. Logical optimality of groundness analysis. Theoretical Computer Sci-

ence, 277(1-2):149–184, 2002.

108. G. Smith and D. Volpano. Secure information flow in a multi-threaded imperative

language. In Proc. of The 25th ACM SIGPLAN-SIGACT Symp. on Principles of

Programming Languages, pages 355–364. ACM Press, New York, 1998.

109. G. Smith and D. Volpano. Confinement properties for multi-threaded programs.

volume 20 of Electronic Notes in Theoretical Computer Science. Elsevier, Amster-

dam, 1999.

110. A. Tarski. A lattice theoretical fixpoint theorem and its applications. Pacific J.

Math., 5:285–310, 1955.

111. D. Volpano. Safety versus secrecy. In Proc. of the 6th Static Analysis Symp.

(SAS’99), volume 1694 of Lecture Notes in Computer Science, pages 303–311.

Springer-Verlag, 1999.

112. D. Volpano and G. Smith. Eliminating covert flows with minimum typing. In

Proc. of the IEEE Computer Security Foundations Workshop, pages 156–168. IEEE

Computer Society Press, 1997.

113. D. Volpano and G. Smith. Probabilistic noninterference in a concurrent language.

Journal of Computer Security, 7(2,3):231–253, 1999.

114. D. Volpano, G. Smith, and C. Irvine. A sound type system for secure flow analysis.

Journal of Computer Security, 4(2,3):167–187, 1996.

115. M. Ward. The closure operators of a lattice. Ann. Math., 43(2):191–196, 1942.

116. G. Winskel. The formal semantics of programming languages: an introduction. MIT

press, 1993.

117. A. Zakinthinos and E. S. Lee. A general theory of security properties. In Proc. IEEE

Symp. on Security and Privacy, pages 94–102. IEEE Computer Society Press, 1997.

118. S. Zdancewic and A. C. Myers. Robust declassification. In Proc. of the IEEE

Computer Security Foundations Workshop, pages 15–23. IEEE Computer Society

Press, 2001.

Sommario

In questa tesi, mostriamo come è possibile utilizzare l’interpretazione astratta per
certificare il grado di sicurezza dei programmi. In particolare, l’idea è quella di
modellare gli attaccanti come domini astratti e poi trasformare questi domini al
fine di manipolare gli attaccanti. Per questo motivo, le nozioni centrali in questa
tesi sono quelle di trasformatore di domini astratti e di flussi di informazione sicura
(chiamati anche non-interferenza). Per prima cosa studiamo come possiamo pro-
gettare, classificare e confrontare trasformatori di domini astratti. In particolare,
mostriamo che la teoria standard dell’interpretazione astratta dei coniugi Cousot,
basata sulla nozione di aggiunzione ovvero di connessione di Galois, può essere
direttamente applicata per ragionare su trasformatori di domini astratti, fornendo
delle metodologie formali per la progettazione siste-matica di questi trasforma-
tori. Il punto chiave è che nella maggior parte dei casi i trasformatori di domini
possono essere visti come precisi problemi di raffinamento della precisione relativa-
mente a qualche aspetto semantico del linguaggio di programmazione che vogliamo
analizzare. Questa è esattamente la filosofia che ci ha portato a caratterizzare il
trasformatore di domini astratti che costruisce il più concreto attaccante inca-
pace di violare la non-interferenza in un dato programma, ovvero il più concreto
osservatore pubblico che non riesce ad acquisire nessuna informazione privata.
Di fatto, l’argomento principale di questa tesi è la definizione della nozione di
non-interferenza astratta, ottenuta parametrizzando la nozione standard di non-
interferenza relativamente a ciò che un attaccante è in grado di osservare del com-
portamento I/O di un programma. Questa nozione è ciò di cui abbiamo bisogno
per caratterizzare il grado di sicurezza dei programmi nel reticolo delle interpre-
tazioni astratte, derivando il più potente attaccante per il quale un programma
risulta essere sicuro. La definizione di non-interferenza astratta dipende della se-
mantica del programma. Questo significa che possiamo rendere più precisa questa
nozione semplicemente arricchendo la semantica corrispondente.
La non-interferenza astratta è un indebolimento della nozione standard di non-
interferenza, ma non è il primo lavoro con questo obiettivo, per questa ragione
confrontiamo la non-interferenza astratta con due dei lavori più affini: il modello

238 Sommario

che utilizza le relazioni di equivalenza parziale (PER) [106] e la declassificazione
robusta [118].
Al fine di rendere la certificazione della non-interferenza astratta più pratica, intro-
duciamo un sistema di prova composizionale, il cui scopo è quello di certificare la
non-interferenza astratta dei programmi, induttivamente sulla sintassi del linguag-
gio di programmazione, seguendo una deduzione di segretezza a la Hoare. A questo
punto mostriamo come il problema della non-interferenza astratta può essere for-
malizzato come problema di completezza, nella teoria standard dell’interpretazione
astratta. Questo permette di caratterizzare la derivazione del più concreto osser-
vatore pubblico, ovvero il più potente attaccante innocuo, e la derivazione del
più astratto osservabile privato del programma, come trasformatori di domini che
stanno in relazione di aggiunzione tra loro. Questa relazione di aggiunzione formal-
izza l’intuitivo dualismo esistente tra questi due approcci utilizzati per indebolire
la nozione di non-interferenza.
Concludiamo la tesi mostrando come possiamo arricchire ulteriormente la non-
interferenza astratta aggiungendo l’osservazione del tempo e generalizzando la
non-interferenza astratta al fine di modellare il problema del confinamento anche
per sistemi computazionali che non sono linguaggi di programmazione. Per questo
introduciamo la nozione di non-interferenza astratta con tempo, la quale costituisce
l’ambiente ideale in cui studiare come proprietà degli input privati interferiscono
con proprietà riguardanti il tempo di esecuzione del programma. In questo modo
otteniamo una nozione di non-interferenza astratta che impedisce i canali di infor-
mazione dovuti alla capacità dell’attaccante di osservare il tempo di esecuzione.
Infine dimostriamo che la non-interferenza astratta può essere generalizzata al fine
di modellare molti dei noti modelli usati per la non-interferenza in sistemi sequen-
ziali, concorrenti e real-time. Questo è ottenuto fattorizzando le astrazioni al fine
di ottenere delle sotto-astrazioni che modellano i differenti aspetti della nozione di
non-interferenza che dobbiamo formalizzare. In particolare, un’astrazione decide
il modello del sistema usato per definire la nozione di non-interferenza, ad esem-
pio la semantica denotazionale nei linguaggi imperativi. Un’ulteriore astrazione
decide gli aspetti della computazione che possono essere osservabili nel nostro sis-
tema secondo la nostra politica di sicurezza, ad esempio solo le computazioni in
cui le azioni private non vengono eseguite. Infine, l’ultima astrazione consi-derata
caratterizza quali proprietà della computazione l’attaccante effettivamente osserva.
Queste tre astrazioni sono composte tra loro al fine di ottenere la non-interferenza
astratta generalizzata, e a seconda di come definiamo queste astrazioni decidiamo
la nozione di non-interferenza che vogliamo garantire nel nostro sistema.

Index

Abstract declassification, 141

flow-irredundant closure, 141

Abstract Non-Interference, 118

bounded iterations, 133

canonical attacker, 136

independent composition, 134

invariant property, 155

irrelevant elements, 128

narrow, 116

relevant elements, 130

secret expression, 158, 162

secret kernel, 123

secret set, 124

Abstraction

best correct approximation, 34

complete abstraction, 35

sound abstraction, 34

Access control, 93

access matrix model, 94

Algebra

boolean algebra, 24

complete Heyting algebra, 25

Heyting algebra, 25

Anti-chain, 20

Bisimulation, 103

weak bisimulation, 103

Bound

greatest lower bound, 21

least upper bound, 21

lower bound, 21

maximal, 21

maximum, 21

minimal, 21

minimum, 21

upper bound, 21

Cardinality, 19

Cartesian product, 16

Chain, 20

Closure operator, 29

disjunctive, 30, 39

partitioning, 33

Complement, 24

Completeness

backward, 35

complete core, 37

complete shell, 37

forward, 36

Confinement problem, 87

Covert channels, 105

probabilistic channels, 107

termination channels, 106

timing channels, 106

Deceptive flow, 117

Declassification, 109

abstract, 149

delimited information release, 110

relaxed noninterference, 110

robust declassification, 109

Dependency

selective dependency, 89

strong dependency, 87, 88

Directed set, 21

Disjunctive completion, 39

Domain transformer

240 Index

refinement, 42

reversible transformer, 45

simplification, 42

Duality principle, 20

Element

atom, 23

co-atom, 23

join-irreducible, 22

meet-irreducible, 22

Entropy, 109

Filter, 21

closure, 21

Fixpoint, 25

greatest fixpoint, 25

least fixpoint, 25

post-fixpoint, 25

pre-fixpoint, 25

Function

additive, 24

co-additive, 24

co-continuous, 24

continuous, 23

extensive, 28

image, 17

inverse image, 17

iterable, 26

join-uniform, 24, 48

meet-uniform, 24

monotone or order-preserving, 23

one-to-one or injective, 17

onto or surjective, 17

order-embedding, 23

range, 17

reductive, 28

relative join-uniform, 51, 53

Galois

connection, 27

insertion, 28

projection, 29

Generalized abstract non-interference, 209

attacker abstraction, 210

interference abstraction, 210

observation abstraction, 209

Heyting completion, 40

Ideal, 21

closure, 21

Induction, 19

transfinite, 20

Lattice, 22

ACC, 23

atomistic, 23

co-atomistic, 23

complemented, 24

complete lattice, 22

completely distributive, 25

DCC, 23

distributive, 24

join-generated, 22

meet-generated, 22

pseudo-complemented, 25

upper closure operators lattice, 30

Moore

closure, 22

family, 22

Non-interference, 87

concurrent systems, 99

deterministic systems, 99

Goguen-Meseguer non-interference, 90

multi-threaded systems, 107

non-deterministic systems, 99

on timed automata, 105

PER model, 91

possibilistic, 99

process algebras, 101

semantic-based models, 91

standard, 90

Ordinal, 19

limit, 19

successor, 19

Partition, 16

Pattern completion, 39

Powerset, 16

Programming languages

language Imp, 79

language Mt-Imp, 80

language Nd-Imp, 80

Index 241

Pseudo-complement, 24

relative, 25

Reduced power, 40

Reduced product, 30, 31, 39

Relation

equivalence relation, 16

linear, 17

partial equivalence relation, 16

partial order, 17

pointwise order, 23

well-founded, 17

well-order, 17

Secure information flow

Bell-LaPadula Model, 94

Denning-Denning model, 94

type systems, 95

Security policy, 87

Security Process Algebra, 81

non-deducibility on compositions

(NDC), 102

non-deterministic non-interference

(NNI), 102

operational semantics, 82

strong non-deterministic non-

interference (SNNI), 102

Security property, 87

generalized non-interference, 101

generalized non-inference, 101

non-inference, 101

possibilistic non-interference, 99

separability, 101

Semantics, 72

angelic, 75

Cousot’s hierarchy, 73

demonic, 76

denotational semantics, 74

Hoare’s axiomatic semantics, 75

infinite, 77

relational semantics, 74

tree semantics, 73

weakest precondition, 75, 77

Set, 15

operations, 16

transfinite, 19

transitive set, 18

Tarski theorem, 26

Timed Automata, 82

Transition system, 72

labelled transition system, 72

	Table of Contents
	Preface
	Introduction
	Non-interference in language-based security
	The problem: Weakening non-interference
	The idea: Attackers as abstract interpretations
	Abstract non-interference: A versatile notion
	Algebra of domain transformers
	Structure of thesis

	Basic Notions
	Mathematical background
	Sets
	Algebraic ordered structures

	Abstract Interpretation
	Abstract domains individually
	Abstract domains collectively
	Equivalence relations vs Closure operators
	Abstract domain soundness and completeness

	A Geometry of Abstract Domain Transformers
	Abstract interpretation in higher types
	Reversible transformers
	Shell vs core
	Complete shell vs core
	Expander vs compressor
	Complete expansion vs compression

	Making domain transformers right reversible
	The 3D geometry of completeness transformers
	Discussion: The 3D scenario

	Computational Systems and Semantics
	Semantics
	Transition systems
	Cousot's semantics hierarchy

	Computational systems
	A simple imperative language
	A process algebra: Spa
	Timed Automata

	Non-Interference in Language-based Security
	Background: Defining non-interference
	Cohen's strong and selective dependency
	Goguen-Meseguer non-interference
	Semantic-based security models

	Background: Enforcing non-interference
	Standard security mechanism
	Denning and Denning Information flow static analysis
	Security type systems
	The axiomatic approach

	Non-interference for different computational systems
	Deterministic systems: Imperative languages
	Non-deterministic and thread-concurrent systems
	Communicating systems: Process algebras
	Real-time systems: Timed automata

	Covert Channels
	Termination channels
	Timing channels
	Probabilistic channels

	Weakening non-interference
	Characterizing released information
	Constraining attackers

	Abstract Non-Interference: Imperative languages
	Defining abstract non-interference
	Checking abstract non-interference
	Deriving attackers
	Characterizing secret kernels
	Deriving secret kernels
	Approximating the secret kernel
	Canonical attackers

	Abstract declassification
	Enriching the semantics
	Abstract non-interference on traces
	Abstract non-interference for non-deterministic languages

	Related works
	Abstract non-interference vs PER model
	Abstract non-interference vs robust declassification

	Discussion

	Proving Abstract Non-Interference
	Axiomatic abstract non-interference
	Proof system for invariants
	Proof system for Narrow non-interference
	Proof system for Abstract non-interference

	Non-deterministic case
	Discussion

	Abstract Non-Interference: A completeness problem
	Abstract Non-Interference as Completeness
	The most concrete observer as completeness core
	The most abstract observable as completeness shell
	Adjoining observer and observable properties
	Discussion

	Timed Abstract Non-Interference
	The timed semantics for a deterministic language
	Timed abstract non-interference on traces
	Timed abstract non-interference in sequential systems
	Discussion

	Generalized Abstract Non-Interference
	Generalized Abstract Non-Interference
	Deriving GANI attackers
	Abstract non-interference as GANI
	Timed abstract non-interference as GANI

	GANI in concurrency
	GANI in real-time systems
	Discussion

	Conclusions
	List of Figures
	List of Tables
	References
	Sommario
	Index

