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1 Introduction

This short note is a sequel of [BM04]. In [BM04] we introduced a complete
Gentzen-style proof system for a fragment MTL∞ of propositional metric tem-
poral logic over dense time. The fragment allows use of the unbounded tem-
poral operator �[m,∞[, where �[m,∞[α roughly means that α continually holds
from time m onwards. The proof system extends a similar system presented in
[MPT00].

The language of MTL∞ comprises a relational part and a labelled part that
is built upon temporal formulas. Among the relational axioms there is an infini-
tary one that is crucial for most properties. The system is essentially cut-free
and is strong enough to prove formulas expressing a general temporal induction
principle.

In addition to the infinitary axiom there are some infinitary rules for rela-
tional formulas only (no infinitary rule for temporal formulas is present).

In this note we investigate the consequences of removing the infinitary axiom
and rules.
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2 Preliminaries

We introduce a finitary proof system to deal with unbounded temporal opera-
tors. We call such a system MTL′ (see the Appendix). The language of MTL′

is the finitary fragment of the language of MTL∞ (see [BM04] for details),
hence infinitary disjunction is not anymore present. Moreover we replace the
infinitary axiom 4. in [BM04] by

4′. ∀x(f(0) < x → ∃y(f(y) = x)),

and we retain all the other relational axioms.
The semantics, the finitary rules of the sequent calculus and the first order

translation of l–formulas are the same as in [BM04] (see the Appendix).
In particular, we deal with structures like

A = 〈A,<A, fA : A → A, 0A, σ : V ar → A, τ : A → 2At〉,

where AF = 〈A,<A, fA, 0A〉 satisfies the relational axioms and σ, τ are arbi-
trary maps. We say that AF is the frame of A. We also say that A is based on
its frame.

It is straightforward to prove that every provable sequent in MTL′ is valid
(true in all structures).

Remark 2.1. Contrary to what shown for MTL∞, in MTL′ the sequent St

defined by
` t : α ∧2[0,∞[(α → 2[0,1]α) → 2[0,∞[α

(representing a possible formalization of an instance of the axiom schema of
induction) is not anymore valid. For, let / be the order on A = (Q≥0 × {0}) ∪
(Q× {1}) defined by

(p, i) / (q, j) ⇔ i < j or (i = j and p < q)

and let A = 〈A, /, F, (0, 0), σ, τ〉, where:

a. F : (q, i) 7→ (q + 1, i), for i ∈ {0, 1}.

b. σ is any assignment of values to variables;

c. τ is any mapping from A to 2At such that, for some proposition symbol
p and for all q ∈ Q≥0,

p ∈ τ((q, i)) ⇔ i = 0.

It is straightforward to check that the relational axioms are true in A, but A
does not satisfy the sequent S0 given by ` 0 : p∧2[0,∞[(p → 2[0,1]p) → 2[0,∞[p.

As a consequence of the previous remark and of the soundness of MTL′,
we see that no induction rule implying provability of the sequent S0 defined in
Remark 2.1 can be derived in MTL′. This implies that MTL′ does not obey any
reasonable form of induction.
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3 Completeness

We state the following:

Theorem 3.1. (Completeness) For each sequent Γ ` ∆ one of the following
holds:

1. there exists a proof of Γ ` ∆ in MTL′ whose cuts are r-cuts on relational
axioms or l-cuts on atomic l-formulas only;

2. there exists a structure A as above such that A |= γ and A 6|= δ for all
γ ∈ Γ and all δ ∈ ∆.

Proof. See the proof of Theorem 3.1 in [BM04].

In the sequel we investigate the structure of a countermodel A = 〈A, /, F, 0, σ, τ〉
obtained as in the proof of the previous Theorem from an unprovable sequent
Γ ` ∆. By definition, A is a model of all relational axioms. Furthermore, A is
obtained from a first order predicative structure A0 for a countable language
(see the proof of Theorem 3.1 in [BM04]). Hence, by the downward Löwenheim-
Skolem theorem of first order predicate logic, we can assume A being countable.
In particular, the frame AF of A is a countable model of the theory of dense
linear ordering with least element and no greatest element. By ℵ0–categoricity
of such a theory, we can identify A with the nonnegative rationals Q≥0 and /
with the usual order relation < on rational numbers.

There are two possibilities for the function F :

Case 1. (standard frame) the sequence (Fn(0))n∈N is unbounded in Q≥0;

Case 2. (nonstandard frames) the sequence (Fn(0))n∈N is bounded in Q≥0.

In Case 1., an easy back–and–forth argument shows that AF is, up to
isomorphism of first order structures, the structure 〈Q≥0, <, s, 0〉, with s : q 7→
q + 1. Hence the name standard frame.

In Case 2., we have that the sequence (Fn(0))n∈N necessarily converges to
an irrational number q. For, if the limit q is rational then, by axiom 4′, there
exists r ∈ Q≥0 such that F (r) = q. Hence a contradiction since r < Fn(0) holds
for some n ∈ N and so q < Fn+1(0) (by the axioms on F ), contradicting the
property of q of being the supremum of the sequence.

Therefore, up to isomorphism of first order structures, we can regard AF

as 〈A, /, F, (0, 0)〉, where:

a. A = (Q≥0 × {0}) ∪ (Q× {1});

b. / is the order defined in Remark 2.1;

c. F : (q, 0) 7→ (q+1, 0) for q ∈ Q≥0 and F restricted to Q×{1} is a bijective
order preserving mapping satisfying the condition ∀x(x < F (x)).
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Consequently, in Case 2, infinitely many frames are possible (depending on
the behavior of F on Q× {1}). Hence the name nonstandard frames.

A labelled sentence is a labelled formula t : α, where t is a closed term.

We say that two structures are temporally elementarily equivalent (briefly:
tee) if they satisfy the same labelled sentences.

We say that two frames F1 and F2 are tee if:

(1) for each structure A1 based on F1 (i.e. for each choice of σ1 and τ1 on
F1) there exists A2 based on F2 such that A1 and A2 are tee;

(2) property (1) holds by interchanging F1 and F2.

It is easy to see that no nonstandard frame is isomorphic, as a first order
structure, to the standard frame. At least we would like two such frames being
tee. Unfortunately this is not the case: each structure based on the standard
frame satisfies the consequent of previously defined sequent S0, but we have
shown in Remark 2.1 that there are structures based on a Case 2 frame satisfying
the labelled sentence 0 : ¬(p ∧2[0,∞[(p → 2[0,1]p) → 2[0,∞[p).

After the previous discussion, we can reformulate Theorem 3.1 as follows:

Theorem 3.2. (Completeness–strong form) For each sequent Γ ` ∆ one
of the following holds:

1. there exists a proof of Γ ` ∆ in MTL′ whose cuts are r-cuts on relational
axioms or l-cuts on atomic l-formulas only;

2. there exists a structure A based on the standard frame or on a nonstandard
frame (as in Case 2 above) such that A |= γ and A 6|= δ for all γ ∈ Γ and
all δ ∈ ∆.

Therefore, after removing the infinitary part of MTL∞, apparently we can-
not anymore formulate the completeness theorem relative to just one frame.

Question 1 Are any two nonstandard frames tee ?

Notice that a positive answer to the question above allows to reduce the
nonstandard frames to the frame of the structure A defined in Remark 2.1
when dealing with closed sequents (i.e. those containing labelled sentences)
only.

Unfortunately the answer is negative. In order to show it, we make the
following:

Remark 3.1. notice that we can describe the nonstandard frames AF occurring
in Case 2 in a more convenient way: up to isomorphism of first order structures
we can regard the universe A of any such frame as a disjoint union of the
nonnegative rationals with countably many copies of the rationals. Moreover,
up to isomorphism, we can assume that F : q 7→ q + 1 on A.
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As usual, we use � as an abbreviation for ¬2¬.
Let p be a propositional letter and let

α ≡ p ∧2[0,∞[(p → 2[0,1[p)
β ≡ (�[0,∞[¬p) ∧2[0,∞[(¬p → 2[0,1[¬p)
γ ≡ �[0,∞[2[0,∞[p

Let δ be the labelled sentence 0 : α∧β ∧ γ. It is easy to check that δ is false
in all models whose frame is made by the nonnegative rationals followed by a
single copy of the rationals. On the contrary, δ is true in some models whose
frame is made by the nonnegative rationals followed by two (or more) copies of
the rationals (for instance by letting p true on the nonnegative rationals and
on the second copy of the rationals, false elsewhere).

Notice that all the counterexamples to tee provided so far do involve at
least one structure where some instance of the induction schema fails. We
may wonder what happens if we focus on structures that satisfy all the closed
instances of the induction schema.

It is an easy remark that there are structures based on a nonstandard frame
that satisfy the induction schema. A straightforward way of proving it goes
through the translation of labelled formulas into first order formulas described
in [BM04]: let A be any structure based on the standard frame and let Th(A)∗

be the set made of the first order translations of all labelled sentences that are
true in A and of all relational axioms. By a standard compactness argument
in first order logic (expand the language with a new constant symbol c and add
to Th(A)∗ the sentences fn(0) < c, n ∈ N), and by the downward Löwenheim-
Skolem theorem, one gets a first order structure that - regarded as a temporal
structure - is tee to A and, up to isomorphism, is based on a nonstandard frame
of the form described in Remark 3.1.

Of course, application of compactness theorem does not explicitly provide
a structure with the required properties. For such a reason, in what follows we
describe a structure based on a nonstandard frame that satisfies the induction
schema. In addition to that we want such a structure not being tee to any
structure based on the standard frame.

For simplicity we identify symbols with their interpretations when no con-
fusion arises. We let

M = 〈(Q≥0 × {0}) ∪ (Q× {1}) ∪ (Q× {2}), <, f, (0, 0), σ, τ〉,

where < is defined similarly to / in Remark 2.1, f : (q, i) 7→ (q + 1, i) for all
(q, i) ∈ M and, for all propositional letters p,

p ∈ τ(q, i) ⇔ i = 0 or (i = 1 and q ≤ 0).

For what follows there is no need to specify σ. We let A = Q≥0; B = Q×{1}
and C = Q× {2}, so that M = A ∪B ∪ C.

Remark 3.2. Let r ∈ Q≥0 and let Mr = 〈{s ∈ M : s ≥ (r, 0)}, <, f, (r, 0), σ, τ〉.
(We do not bother to use a different name for the restriction of < to Mr.
Similarly for the restrictions of σ and τ.)
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The map defined by (q, 0) 7→ (q + r, 0) on A and as identity elsewhere on M
is an isomorphism of temporal structures, by this meaning that, for all temporal
formulas α,

M |=(q,0) α ⇔ Mr |=(q+r,0) α for all q ∈ Q≥0

and
M |=s α ⇔ Mr |=s α for all s ∈ B ∪ C.

The proof of the first equivalence is by easy induction on α. The proof of the
second one follows from the the fact that truth of a temporal formula depends
only on the future.

Notice also that Mr |=(q+r,0) α ⇔ M |=(q+r,0) α for all q, r ∈ Q≥0.
Hence M |=(q,0) α ⇔ M |=(q+r,0) α, for all q, r ∈ Q≥0 and all temporal

formulas α.
Moreover, by definition of M, we have

M |=r α ⇔ M |=s α

for all r, s ∈ C and all α. (Again we use the fact that truth of a formula depend
only on the future and that r, s ∈ C both “see” the same structure in front of
them.)

We call isomorphism the properties just described.
We prove a preliminary result.

Proposition 3.3. Let α be a temporal formula such that M |=r α for all
(equivalently: for some) r ∈ A. Then there exists s ∈ B such that M |=t α for
all t ≤ s.

Proof. By induction on α we prove:

1. if M |=r α for all r ∈ A then there exists s ∈ B such that M |=t α for all
t ≤ s;

2. if M |=r ¬α for all r ∈ A then there exists s ∈ B such that M |=t ¬α for
all t ≤ s;

The cases when α is atomic or α is of the form ¬β for some temporal formula
β follow easily by construction of M and by induction hypothesis applied to β,
respectively. We examine only a few more cases.

(a) Let α be of the form β ∧ γ. For 1., let s = min(sβ , sγ), where sβ and sγ

are given by inductive hypothesis 1. relative to β and γ respectively.

For 2., notice that if M |=r ¬α for all r ∈ A, then, without loss of
generality, there exists t ∈ A such that if M |=t ¬β for some t ∈ A. By
isomorphism (see Remark 3.2) we get M |=r ¬β for all r ∈ A. We apply
inductive hypothesis 2. relative to β to get the conclusion.

(b) Let α be of the form 2[m,n]β. For 1., a straigthforward application of
isomorphism and of inductive hypothesis 1. relative to β yields s ∈ B
such that M |=t β for all t ≤ s. Let s = (q, 1), for some q ∈ Q. Any r ∈ B
smaller or equal to (q − n, 1) has the required property.

For 2. proceed similarly to 1.
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(c) Let α be of the form 2[m,∞[β. Since 1. is trivial, we deal with 2. only.
Suppose M |=r ¬α for all r ∈ A. Then there exists r ≤ s such that
M |=s ¬β. If s ∈ B the conclusion follows easily. If s ∈ A we first apply
isomorphism and induction hypothesis relative to ¬β to finish (see (b)
above).

We call overspill the property stated in the previous proposition.
Not surprisingly, the definition of M implies that an underspill property

holds as well:

Proposition 3.4. Let α be a temporal formula such that M |=r α for all
(equivalently: for some) r ∈ C. Then there exists s ∈ B such that M |=t α for
all s ≤ t.

Proof. Similar to the proof of Proposition 3.3.

We can now prove our claim.

Proposition 3.5. The structure M previously described satisfies all closed in-
stances of the schema of induction.

Proof. Let α be a temporal formula. We assume

M |=0 α ∧2[0,∞[(α → 2[0,1]α)

and we prove M |=0 2[0,∞[α. By isomorphism and overspill, from M |=0 α we
get r ∈ B such that α is true up to r. We use M |=0 2[0,∞[(α → 2[0,1]α) to get
that α is true in A ∪ B. It follows from isomorphism and from the underspill
property that α is true also in C.

Finally, we get that all instances of the schema of induction are true in A by
isomorphism. In particular, in M all closed instances of the induction schema
are true.

It remains to check that M is not tee to any structure based on the standard
frame. This is straigthforward since, for an arbitrary propositional letter p,
M |=0 3[0,∞[¬p and M |=0 2[0,n]p for all n ∈ N.

We finish with the following:

Question 2 Does there exist a temporal sentence that is true in some structure
based on a nonstandard frame that satisfies all closed instances of the schema
of induction and is false in all structures based on the standard frame?

It is known that in the case of Linear Time Logic completeness with respect
to the standard frame of natural numbers holds (see [Em90]). Partly motivated
by such a result we conjecture that Question 2 has a negative answer. If so
we may dispose of nonstandard frames in the statement of Theorem 3.2 when
restricting the class of structures to those that satisfy all the instances of the
induction schema.
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A The system MTL′: syntax and semantics

relational formulas the relational formulas (r -formulas) are the predicate
first order formulas in a language with equality and with a countable
set V ar of variables whose extralogical symbols are:

1. the constant symbol 0;

2. the unary function symbol f ;

3. the binary predicate symbol < .

temporal formulas the temporal formulas (briefly: formulas) are the formu-
las in a propositional temporal language whose symbols are:

1. a countably infinite set At of proposition symbols;

2. the propositional connectives;

3. for all m < n in N the temporal operators

2[m,n] 2]m,n] 2[m,n[ 2]m,n[ 2[m,∞[ 2]m,∞[ .

labelled formulas the labelled formulas (l -formulas) are the expressions of
the form t : α where t is a relational term and α is a temporal formula.

A.1 The sequent calculus

Let x be a variable and let s, t be terms. We denote by s[x/t] the term obtained
by substituting all occurrences of x in s with t.

Sequents are objects of the form Γ ` ∆, where Γ and ∆ are finite lists of r -
or l -formulas.

Identity rules

ϕ ` ϕ when ϕ is an r - or an l -formula;

` ρ where ρ is one of the following: an axiom for equality; a first order
axiom of the theory of dense linear ordering with least element 0 and no greatest
element; one of the following relational axioms:

∀x(x < f(x)); ∀x∀y(x < y → f(x) < f(y)); ∀x(f(0) < x → ∃y(f(y) = x)).

Γ ` ρ,∆ Γ, ρ ` ∆
when ρ is an r -formula (r–cut)

Γ ` ∆

Γ ` λ, ∆ Γ, λ ` ∆
when λ is an l -formula (l–cut)

Γ ` ∆

Γ, u1 = u2, t[x/u1] : α, t[x/u2] : α ` ∆
i = 1, 2

Γ, u1 = u2, t[x/ui] : α ` ∆
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Γ, u1 = u2 ` t[x/u1] : α, t[x/u2] : α, ∆
i = 1, 2

Γ, u1 = u2 ` t[x/ui] : α, ∆

Structural rules
Weakening, Exchange and Contraction (for all kind of formulas).

Rules for r-formulas
By these we mean the rules acting on relational formulas. They are the

standard rules of classical sequent calculus for finitary connectives and for the
quantifiers ∀ and ∃ (applicable to all r -formulas)

Rules for l-formulas
The propositional rules for l -formulas closely follow the first order proposi-

tional rules. They require the same label appearing in premises and conclusion:
Here are two examples:

Γ, t : α ` t : β, ∆

Γ ` t : α → β, ∆

Γ, t : β ` ∆ Γ ` t : α, ∆

Γ, t : α → β ` ∆

The rules for temporal operators:

Γ, fm(t) ≤ x, x ≤ fn(t) ` x : α, ∆
if x does not occur free in Γ ∪∆ ∪ {t}

Γ ` t : 2[m,n]α, ∆

Γ ` fm(t) ≤ s Γ ` s ≤ fn(t) Γ, s : α ` ∆

Γ, t : 2[m,n]α ` ∆
Γ, fm(t) ≤ x ` x : α, ∆

if x does not occur free in Γ ∪∆ ∪ {t}
Γ ` t : 2[m,∞[α, ∆

Γ ` fm(t) ≤ s Γ, s : α ` ∆

Γ, t : 2[m,∞[α ` ∆

The rules for the other temporal operators are similar.

A.2 Semantics

Formulas are assigned a truth value in structures of the form

A = 〈A,<A, fA : A → A, 0A, σ : V ar → A, τ : A → 2At〉,

where 〈A,<A, fA, 0A〉 satisfies the relational axioms and σ, τ are arbitrary
maps. We say that AF = 〈A,<A, fA, 0A〉 is the frame of A. We also say
that A is based on its frame.

Let A be a structure as above. As usual, we denote by tA the interpretation
of relational term t in A.
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The semantics of relational formulas is the usual first order semantics. It
is taken care by the frame of a structure and by the assignment of values to
relational variables.

We define A |=a α, where a ∈ A and α is an arbitrary formula, by induction
on α :

A |=a p if p ∈ τ(a) for p ∈ At;

A |=a ¬α if not A |=a α;

A |=a α • β if A |=a α • A |=a β, when • is a binary propositional
connective;

A |=a 2[m,n]α if A |=b α for all (fA)m(a) ≤ b ≤ (fA)n(a);

A |=a 2]m,∞[α if A |=b α for all (fA)m(a) < b.

(The other cases are similar.)

We let
A |= t : α ⇔ A |=tA α.

We say that sequent Γ ` ∆ is true in the structure A if

A |= γ for all γ ∈ Γ ⇒ A |= δ for some δ ∈ ∆.

A.3 A first order translation of l-formulas

A translation ∗ of r -formulas and l -formulas into first order formulas of the
relational language, expanded with a unary predicate symbol p for each p ∈ At,
is defined so that ∗ behaves as identity on r -formulas and has the following
inductive definition on l -formulas:

1. (t : p)∗ = p(t);

2. ∗ commutes with propositional connectives;

3. (t : 2[m,n]α)∗ = ∀x(fm(t) ≤ x ≤ fn(t) → (x : α)∗), where x is the first
in a list of variables not occurring in t. (Similarly for the other temporal
operators.)

If Γ is a list of r - or l -formulas, we denote by Γ∗ the list of r -formulas
obtained by applying ∗ to each formula in Γ.
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